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Abstract

Recently because of Basel Il and the subprime mortgage crisis, the quantification of recovery size
and recovery rate for the debt of a defaulted company is a serious problem for financial institutions and
their supervision, but there has been no study of structure of recovery process. Existent recovery models
do not regard recovery progress before the time of achievement of recovery.

We directly model recovery process for the debt of a single defaulted company. We model the recov-
ery process by a homogeneous compound Poisson process and extend our model to an inhomogeneous
compound Poisson process. Interest rate is explicitly used in our model. By our model, the relation-
ship between cumulative recovery, the increment of recovery, the initial debt amount, the last recovery
possible time and interest rate can be analyzed.

We derive the expectation and the variance of the survival value of the debt and recovery rate, and
also derive the probability distribution function and the expectation of the recovery completion time. For
this paper we present the numerical methods of calculating the expectation and the variance based on
Panjer recursion formula and the fast Fourier transformation, and give numerical result. The methods
of calculating the transition density of an inhomogeneous compound Poisson process is necessary for
calculating the expectation and the variance of those in the inhomogeneous compound Poisson model,
however little attention has been given to such methods. Therefore we propose the new procedure for
calculating it by a piecewise homogeneous compound Poisson process.

Keywords Recovery rate, Credit risk, Basel, inhomogeneous compound Poisson process, Loan
JEL classification number C61, C63, G10, G21

1 Introduction

Recently, because of Basel Il and the subprime mortgage crisis, financial institutions must develop the model
of recovery for the debt. But compared to the amount of research on other kinds of credit risk, few studies
indeed have been done to analyze recovery for the debt.

There are a few empirical studies of recovery rate for the debt on the bank loan for small companies.
Asarnow and Edwardél995 study recovery rate of the loans at Citibank in United StatesHumd and
Felsovalyi(1998 also study them at Citibank in Latin American countri@saten, Jr. and Varshng2004)
analyze recovery rate of the loans at J.P. Morgan Chaseks, de Servigny and Davyden|@®04) research
the correlation between the features of company and recovery rate from the data of ten banks in United
kingdom, France and GermanRermine and de Carvalh@006 study the factors of changing recovery
rate by generalized linear model, using the data of Banco Comercial Péstitpl and Yamashit2008

*The author is grateful to Professor Hajime Takahashi, Graduate School of Economics, Hitotsubashi University and Professor
Junichiro Fukuchi, Department of Economics, Gakushuin University for their helpful comments. However, any remaining errors
are the responsibility of the author.

fGraduate School of Economics, Hitotsubashi University; 2-1, Naka, Kunitachi, Tokyo 186-8601, 4dp&ap01@g.hit-
u.ac.jp

2/31


mailto:ed061001@g.hit-u.ac.jp
mailto:ed061001@g.hit-u.ac.jp

study recovery rate of the guarantee loans of Credit Guarantee Corporations in Japan. They analyze the
factors which affect recovery rate of the debt for small companies by binary logit model and ordered logit
model. Also the point that all of above studies indicate the cumulative recovery rate has bimodal distribution
deserves careful attention.

There are very few theoretical studies of recovery raiekivuolle and Peur§2003 suppose if asset
value at maturity is less than the default boundary, the company is assumed to default. Meitoa
(19749 type default framework in structural models. They also suppose the collateral value process of a
company follows geometric Brownian motion, and the collateral value process and the asset value process
are correlated. Recovery rate is mainly determined by collateral value at default.

Guo, Jarrow and Zen(008 set random recovery rate in reduced form model. Reduced form model
gives default exogenously and focuses on modeling the stochastic process for the default intensity.

Thus there are a few empirical and theoretical studies for the recovery of the debt of an individual
company. Because the recovery data is much important for lender and borrower on business, the empirical
data is seldom opened for academic study. Also because the feature of the recovery action may be different
by the lender, there are few general arguments for recovery progress.

For public study as far as we knowph and Yamashitd2008 study empirically for the recovery
progress (the relationship between time and recovery) for each company. Figure 6, Figure 7, and Figure
8 of Itoh and Yamashit2008 show the empirical recovery process. From these figures, we know that
there are usually several times of recovery for the same debt, that the recovery points are at random and that
the increments of the recoveries are at random.

On the basis of study dtoh and Yamashit2008, in this paper we attempt to model the recovery
process for the debt of single defaulted company by a homogeneous compound Poisson process and extend
to an inhomogeneous compound Poisson process. Moreover we suppose there is interest on the debt after
default and thus we can analyze the change of the survival value of the debt as interest rate changes.

Our model is similar to the framework of the aggregate loss model and the ruin process model in actuarial
mathematics. For the aggregate loss model,Mig@sch (2004, Klugman, Panjer and Willmo{2004),

Rolski, Schmidli, Schmidt and Teuge{$999. For further information of the ruin process model, see
Gerber and Shig1998. Wu, Wang and Zhan{005 add to the interest rate in the model®érber and
Shiu(1998. Lindskog and Mcnei(2003 model an insurance loss and credit risk by a Poisson process.

In the real world, there are usually several times of recovery for the same debt. But other recovery
models do not consider more than one time of recovery at all. Thus they can not distinguish the increment
of recovery (each recovery) from the cumulative recovery. Our model can analyze the relationship between
the cumulative recovery, the increment of recovery, the initial debt amount (debt amount at default), the last
recovery possible time and interest rate.

This paper is organized as follows. We introduce the model in the second section and our main results
of this paper are given the third section. The fourth section sets the distribution of increment of recovery and
the fifth section extends to the inhomogeneous compound Poisson model and suggests the new procedure
for calculating the transition of an inhomogeneous compound Poisson process. The sixth section demon-
strates numerical results. The seventh section concludes. In appendix we explain a homogeneous compound
Poisson process and present the numerical methods of calculating the probability distribution of compound
Poisson distribution.

2 Model

We consider a single defaulted company whose default occurs a0tilneour model, the prescription for
the debt is assumed simply as below.

Assumption 1. Lender can recover the loan up to tirfie It meansT is the last recovery possible time for

3/31



lender.

Assumption 2. At time0, the initial debt amount i®). It meansD is the survival value of the debt at default
time.

We suppose there is interest on debt after default.

Assumption 3. The interest rate per a period is invariable (constant) for all periods and continuously
compounded.

Definition 1. Let D; be the survival value of the debt at timdet U,, be then-th recovery time, leX,, be
the n-th increment of recovery which means each recovery size, Wketg; < Us < --- < Uy, < t, and
let N; be the number of recoveries up to time

In the case that at each tinig, U,,--- ,Uy,, borrower repaysXi, Xs,--- , Xn,
survival value of the debt at timeis

Dt — e’l‘tD _ er(t—Ul)Xl _ e?"(t—UQ)XQ L er(t—UNt)XNt

respectively. The

N
— eTtD _ Z €T(t_Un)Xn.
n=1
Assumption 4. The increments of recoverigs(,, : n € N} are non negative i.i.d. random variables and
have the common distribution functidfy .

Assumption 5. N, the number of recoveries up to time t, follows the Poisson process with the intensity
where)\ is positive.

Assumption 6. The increments of recoveri€¢s(,, : n € N} and the number of recoveri€$, are indepen-
dent.

Definition 2. Let.S, be the cumulative recovery with no interest effect up to tiamed S, be the cumulative
recovery with interest effect up to timas follows.

Nt

St £ X, (1)
n=1

~ Nt

Sp &) ettty 2)
n=1

From above assumptions and the consequence of Séctipthe cumulative recovery with interest rate
follows a compound Poisson process and the survival value of thelebtay be written as,

Dy =eTD— Sp. (3)

Figurel shows the relationship between the survival value of the felaind timet.

3 Main Result

3.1 The Modified Survival Value of Debt and Recovery Rate

In this section, we derive the expectation and the variance of the modified survival value of the debt and
recovery rate.

We have modeled the survival value of the dBhtby (3). However we do not consider accomplishment
of recovery (borrower clears all the debt) up to tiffien the previous section and now we make the following
assumption.
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Figure 1:The relationship between the survival value of the depand timet.
Assumption 7. Lender can not recover more than the amount of the initial value of theldgibtis interest
onD.
In view of Assumption/, we introduce the following definition.

Definition 3. Let7 be the first time thaD; is not positiver is called the recovery completion time, and we
can write it as follows,

T=inf{t >0: Dy <0}.

We employ standard convention that the infimum of the empty set is infinity.
Let M; be the modified survival value of the debt,

Mté Dt, t<7’7
0, t>T.

By Assumption/, onceD; crosses zero, all the debt are cleared and then the cumulative recovery amount
is De™™. The increment of recovery in the modified survival value of the debt is no longer independent and
identically distributed. But using the probability function 6§ (in which the increment of recovery is
independent and identically distributed), we derive the expectation of the modified survival value of the debt
atT € [0, 00).

Theorem 3.1.For D,r > 0, T > 0, we have
e'T'D
B [My] = / 2fs, (7D - z) da, 4)
0

Wherefgt(x) is the probability density function of, defined by(2)

fo, @) = ey P pona, ®
n=1 ’

f;{;(a:) is the probability density function of thefold convolution ofX; = ¢"T~V9) X, andV; is uniform
random variable or{0, ¢].
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We defer the proof off) until SectionA.1.

Proof. Attime T, we get

Nt
P{Dp<az}l=P {eTTD =y ey, < x}

n=1

—1-Fg

5 (eTD —z).

BecauseX,, is non negative, onc®; = e"*(D — Zf:f;l e "Un X,,) becomes non positive at, D; is
monotone decreasing as Therefore only in the casE < 7, Dy is almost surely positive for all sample
paths. We remarlOr < ¢"7 D. Therefore, we get

E[Mr] = E [1{p,>0Dr]

e'TD
= / zdP {DT < .T}}
0

O
Next we consider the variance &f ;.
Proposition 3.2.
erTD erTD 2
Var (Mr) = / z? 3y ("D — z) dx — </ zfs (e"'D — 1) dm) (6)
0 0
Proof. Note (1{DT>0})2 = 1yp, >0y @and as in the proof of Theoretl, we have
E [M}] = E [1{p, 0y D7]
e'TD
= / w?fg (e D — ) da.
0
We obtain €) easily. O

Let Ry be the cumulative recovery rateBtand it is defined as follows,

e'TD — My

Fr = e’ D

We will derive the expectation and the varianceaf from TheorenB.1and Propositior8.2

Corollary 3.3. We have that

e'"D — E[Mr
E[Ry] = e”TD[ ]’
Var (Mr)
Var (RT) = W
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3.2 Recovery Completion Time

In this section we derive the probability distribution function and the expectation of the recovery completion
timer.

First of all, we prove the following lemma. We séf, = ¢ ""*X; and let F'g, be the probability
distribution function ofX; whereV; is uniform random variable of0, t].

Lemma 3.4. If F'x is continuous distribution, then

32 Z::at< n!n Xt(x)>' @

Proof. We setg, ,(z) = YY" Fy¢ (z). For the proof, It is necessary to show tHay, ,(z) is continuous
ast, » o2, grn() convergences anggtn ) convergences uniformly. We will |Ilustrate thgggtn
convergences uniformly.

We use Weierstrass M-test for the check of uniform convergence.

(%gtn ;:1 >\ F*” )+ ;:1 n') g FYl(x) (8)
We consider each term o8
gna(2) 22 ©
gnate) & Q0 gy (10)
First, we show @) converges uniformly. We se\t,, | = A((M) s and we have_ > | M, = =AM <

oco. Now, because d < F)*(’j( x) < 1, we obtain

M\ n—1
gt,”vl(x) - ’)\((nzlyF;(?(I‘)‘ SA | :Mn,l, Vxe [0700)7 vte [O7T]a n:1727"' .
Then from Weierstrass M-test, ~ ; g »,1(x) converges uniformly.

Next, we show thatl(0) converges uniformly.

0
&F;‘—(Zl(:c): t12/ F¥' (e™ )du+ (er) (11)

We setM,,» = 201 and we havé > | M,,» = (M — 1) 1 < oo, Now, because df < F(a) <1,
we obtain

Gtn2(z)| = _ aF)—Q( )| = il Gl F (e"x)du + re LeFt(e)
< nl ;FX (6 t.%')
At)™ 1
S(n') EZMnQ, Vzel0,00), "tel[0,T], n=1,2,---

Then from Weierstrass M-tes}, > ; g:».2(x) converges uniformly. Thus, because each ternBptén-
verges uniformly @%gtm(:f;) converges uniformly.
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Similarly becauseg; ,,(z)| = \ n, Fxt( z)| < £ M, and>>° M, = e —1 < oo, then
Yo gt,n( x) converges uniformly from Welerstrass M-test. Thus condltlon E%‘f 1 9t.n(x) converges
is shown. 2 519t.n 1S continuous asin the case that's, (x) is continuous distribution.

Therefore {) holds. O

Next, we derive the probability distribution function and the expectation of the recovery completion time
T.

Proposition 3.5.
P{r<T}=1-Fg (¢"'D),
If Fx is continuous , then

B [11(r<my]

) /OTt {)\e)‘t wz {(A_) FpD) + /Ot Fy (:;up) du_F)*(n(:rtD)]} & (12)

Proof.
P{r<T}=P{Dyr <0}

Nt
=P {eTTD — Ze*(T—U")Xn < 0}

n=1

=1-Fg (e"'D)

Next we derive expectation.
T
E[t1{<1y] :/ tdP{r <t}
0

T
0
= [ t=(1-Fz (¢'TD))dt (13)
/0 ot ( s ( )>
Similarly as in Sectiom.1 (cf. (29)), we haveFy (e"x) = e M + e M Y70 Q7 F¢(z), and

Fx () =P{X; <u}
1 t
= / Fx (e™z) du.
t Jo
Using Lemma3.4, we obtain

n=1
—At -t = ()‘t)n *N —At = )‘ntnil *n —)\t
A A Zl n! %, (#) = Zln n! X Z n‘ 7 F5(@)
e ()" sn 9 en
NN ey ()\f?>F (2) - 5 PR (@) - (14)
n=1
Substituting {1) and (4) into (13), we obtain 12). O
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4 Numerical Study

In this section we set notation and the distribution of the increment of recovery. In SéQiare specify

the distribution of the increment of recovery. Also we present the two methods of calculating the probability
distribution of compound Poisson distribution in SectB®nPanjer recursion formula and the fast Fourier
transformation.

4.1 Notation

In order to calculate4), we must calculatg‘gT. From the consequence of Sectiarl, given fixedT', Sy

is considered a$§ which is compound Poisson distribution with the intensi#y and increment of recovery
Xr. Also from SectiorA.1, the method of calculating probability function or probability density function
of S is the same to that of without interest effect fo whereS is compound Poisson distribution with the
intensity AT" and increment of recover¥. We will explain the method of calculating probability function
or probability density function of when increment of recover¥ is continuous and discrete respectively.
Suppos€{ X, : n € N} are discrete (continuous) random variablespletbe the probability function
(fx be the probability density function) of.
Therefore in the casgX,, : n € N} have a discrete distributiopg is the probability function of, and
in the casq X, : n € N} have a continuous distributioffig is the probability density function &f. Also let
Fs be the probability distribution function . Let Py is the probability function of Poisson distribution
with the intensity\T". Then

n=0

fs(@) = pn(n)f{(x), =>0.
n=0

Since it is difficult to calculateg or fg directly by above expression, we will present the two methods
of calculating it in Sectiom8: Panjer recursion formula and the fast Fourier transformation.

4.2 Increment of Recovery

If the increment of recovery has continuous distribution, it is difficult to calcutatéy the methods based
on either Panjer recursion formula or the fast Fourier transformation, but if the increment of recovery has
discrete distribution, it is easy to calculate. Thus if the increment of recovery has continuous distribution,
we discretize its distribution. In Secti@gh2.1, we propose some methods of discretization.

Up to here, we have not supposed the increment of recovery has particular distribution, but in the re-
maining section let us assume the increment of recovery has exponential or Pareto distribution.

4.2.1 Discretization

If {X,, : n € N} have a continuous distribution function, we approximate it by the following method which
Panjer(2006 calls rounding method. This method spilts the probability betwéern )k andih and assigns
ittol —1landlfori=1,2,---.
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Letpx,,, (1) denote the probability placed &t, I = 0,1,2,---. Then we set
h h
223 <4} 5 (50

h h
DXy, (1) éP{lh— F<X< lh+2}

— Fy (lh+;—0>—FX <m—g—0>, 1=1,2,,

where notatiornF’x (x — 0) indicates that probability mass ais excluded.
Panjer and Willmo{1992 suggests rounding method at not mid-point in span but left endpoint or right
endpoint in span as follows.

pX'right(O) é FX (h’_o)

leeft(O) £0
Pxp, (1) 2 Fx (Ih) — Fx (th—h), 1=1,2,---.

4.2.2 Increment of Recovery with Exponential Distribution

In this section we suppose the increment of recovery has exponential distribution. Exponential density is
monotonically decreasing toward the right and the difference one minus exponential distribution is expo-
nentially decaying its right tail. Therefore large increment of recovery is given a roughly zero probability.

Assumption 8. {X,, : n € N} are independent and have common exponential distribution function with
meand.

Under Assumptior8, we get

Fx(z)=1—e"9, x>0,
1 =
fx(z) = 5675, x> 0.

Let X; denote the increment of recovery with interest effect and from Seatibrit represents
Xt = €r(t_vt)X1

)

whereV; is uniform random variable o(0, t]. Let F'y denote the probability distribution function af;,
and then it follows from26) that

Fy (z) = P{f(t < x}

1 t lef'r(tfu)
= / 1—e" 0 du.
tJo

Also let f¢, denote the probability density function af,, and we obtain

1 t
5 i —r(t—u) —r(t—u)
fx, (@) ; /0 e fx (:Ue ) du

1 x ze Tt
:<—6_6+6_ g >
xtr




4.2.3 Increment of Recovery with Pareto Distribution

In this section we suppose the increment of recovery has Pareto distribution. Pareto distribution has heavy
tail and is used in actuarial mathematics when there is high probability of very large losses.

Assumption 9. {X,, : n € N} are independent and identically Pareto distributed with parametgs,
wherea, 5 > 0.

From Assumptior®, we obtain

_ B \°
Fx(l’)—l—<ﬁ+$> , x>0,

fx(z) = (ﬁ—fi)aﬂ? x> 0.

We have

EX] = b , a>1,

af?
(@=1)*(a—2)

Var (X) = a> 2.

Similar to Sectiort.2.2, let F'y, denote the probability distribution function af, and we get

Fg () =P {X} < w}

t «
_1 / o (— 5 Y
t Jo B+ ze—r(t—u)

5 Inhomogeneous Compound Poisson model

In the real world the expected number of recoveries per unit time may differ in time. In this section we
extend our model into the case that the number of recoveries follows an inhomogeneous Poisson process. We
present the procedure for approximating the probability function of an inhomogeneous compound poisson
process by the probability function of a piecewise homogeneous compound Poisson process. The probability
function of a piecewise compound Poisson can be calculated easily by using the Panjer recursion formula or
fast Fourier transformation, and by using its Markov property.

Assumption 10. Assume the number of recoveries follows an inhomogeneous Poisson p¥jcetdth the
intensity function\(¢) which is positive deterministic function in the intery@J 7']. LetA(t) = f(f Aw)du
be the cumulative intensity function.

For example, we may suppose the intensity function is an exponential function as time as follows. For
Y1572 > 0,

A(t) = y1exp {—2t}.

5.1 Inhomogeneous Poisson and Piecewise Homogeneous Poisson Process

We will consider a piecewise homogeneous Poisson process, and it is a compound Poisson process with a
constant intensity in each sub-interval. In this section we will also show a piecewise homogeneous Poisson
process converges weakly to an inhomogeneous Poisson process.
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Definition 4. We split the interval0, ¢] into the sub-intervalto, t1], [t1,t2], - -, [ts—1,t7] Where0 = ¢y <

t1 <ty <---<ty=t. LetA; be the partition 0f0, ¢] and letT}; be thej-th sub-interval as follows,
AJ:tO,tla"'atJ; T]Z[tjflat]]a ]:]-aza‘]

Let|T;| be the length of interval’; and the norm of the partition be

Ay = @ag]w,

and let a Riemann sum af Ax , (t) be
J

Aay(t) =) Ity — ti1|A(&),

j=1
for any but fixed; € 75,7 =1,2,--- , J.

For any but fixed{; € 7;,j = 1,2,---,J, Aa, is considered as the piecewise constant cumulative
intensity function.

Definition 5. Let N*2s be a Poisson process 00, 7' with the piecewise constant intensity functiog,
defined by,

A&) teTy
A

Aty = M8 TEE
/\(f]) teTy.

N2, is seen as a piecewise homogeneous Poisson process. We will show the piecewise homogeneous
Poisson proces®y*2s converges weakly to the inhomogeneous Poisson praééss

Theorem 5.1. If A(¢) is Riemann integrable ofd, 7], then
N*2; 2 NTon[0,T]) as|Ay| — 0 (J — o), (15)

where-% means “converges weakly”.
Proof. For"n € Ny = {0, 1,2, --- } and fixedt € [0, T, the following convergence holds

A n
P {N:\AJ = TL} = e_AAJ(t) 7( A,r];t))

— e_A(t)w as |Aj|—0(J— o0)
n

:P{N{:ﬁ}.

Because the interarrival times are independent, the finite dimensional distribution converges. From
p.137 inDaley and Vere-JongR008, for a point process, tightness follows from the convergence of its
finite dimensional distribution. Thu4.%) holds. O

An inhomogeneous Poisson process has the following property, see Proposition 1R2Iskokt al.
(1999 for the detall.

Proposition 5.2. Given the number of recoveri@g’ = n, n arrival times are distributed independently in
the interval(0, ¢] with probability density function
Alw)

D) u € (0,1].
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5.2 Inhomogeneous Compound Poisson and Piecewise Homogeneous Compound Poisson
Process

In this section we derive the probability distribution function of an inhomogeneous compound Poisson
processS;. LethtI be the probability distribution function ¢f/ andfgtf be the probability density function

of S/. Fort,z > 0, we obtain

Fg(x) = P {S{ < x}

n
+ZP{ erthg)Xka

k=1
_A(t +Zp{ie tU X <z
n=1

where{U]/ : k > 0} are the sequence of jump points of an inhomogeneous Poisson pré¢essiven
N/ = n, from Propositiorb.2, it follows that

n
P{S{wa{:n}: {Ze”U X, < z|N} = }

= P{ e (Vi) X, < x} , (17)
k=1

NtI:n}P{NtI:n}

NI } Me—/\(t)' (16)

n!

3

whereVlft, VQ{t, cee Vk{t are independent random variables with the probability density fun%f{gmhere
u € (0,¢t], and they are independent X, : n € N}. Substituting 17) into (16), we obtain

FSI = MO 4 Z P {Ze } (AEZ))HeA(t)
n=1
= Z P {Zedt_vk{t)Xk < x} (AS!))ne_A(t). (18)

n=0 k=1
Now we define

X[, 2 etV x,,
Let g, denote the distribution function of/ = X/ ,, then
Ff(t’(x) 2 p {er(t_v’it)Xk < x}

L (t=)

= —— Fx (xe_” _“))\udu.
X, "
Let 'Y} denote the:-fold convolution of Fg;, and we obtain
t

Fi(a) = {Ze X<x} (19)

Substituting 19) into (18), we have

th] (l‘) _ Z efA(t) (A(t))n F;(? (l‘)

|
n.
n=0
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Definition 6. Let f(,f; be thek-th increment of recovery compounded by the interest rate in the case the

. , . . A
number of recoveries follows a piecewise homogeneous Poisson pMpéés
- A,
Xt = VX,
whereV1 e VQA{’, e ,VnAtJ are random variables with the probability density functi A(l(‘z) whereu €
J
(0,t].

We will prove that the increment of recovery with interest effect with a piecewise homogeneous Poisson
process%’f" converges weakly to the increment of recovery with interest with an inhomogeneous Poisson
processX/ in the following lemma.

Lemma 5.3. If A(¢) is Riemann integrable of, 7], and if [Aa, (¢)| < g(t) holds for all J a.s. such that
fo u)du < oo, then

w

X 5 Xh, as |Ayl—0(]— o)

Proof. It follows from the dominated convergence theorem that'fog [0, 71,

Feai(z) = AAJ<t>/ ( ) A, ()

/ O0) Muydu as |Ay] -0 (J - o)
0
51 ().
O
Definition 7. Let StAJ be a piecewise homogeneous compound Poisson process with the intgnsity
NA n
Sy =3 etx,
n=1

Where{ USAJ in > 1} are the sequence of jump points of a piecewise homogeneous Poisson Nf)%éss

{X,, : n > 0} follow Assumptiod, and{X,, : n > 0} andNAA" are independent.

We will prove the piecewise homogeneous compound Poisson prSﬁe’ssonverges weakly to the
inhomogeneous compound Poisson proctss

Theorem 5.4.If \(¢) is Riemann integrable oj, 7], and if [Aa, ()| < ¢(¢) holds for all J a.s. such that
fO u)du < oo, then

S8 281 on [0,7] as |Ay|— 0 (J — o). (20)
Proof. Using the consequence of Lemia, For fixedt € [0, 7] we obtain
- (A, ()" n
stJ Ze Aa, (t)# XfJ(x>
— — At " *n
- e A(t)(fﬂ))FXt,(x) as |Ay| —0(J — o)

n=0
Because the increment of recovery is independent, the finite dimensional distribution converges weakly.
Similarly as Theorend.1, (20) holds. O
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5.3 Calculation Method for Piecewise Homogeneous Compound Poisson Process

We present the method of calculating the probability function of a piecewise homogeneous compound Pois-
son process by the absorbing Markov chain. In order to use the absorbing Markov chain, we assume the
following.
Assumption 11. The increment of recovery has discrete distribution or discretized continuous distribution.
Wesel) = hg < hy < hg < --- < hy, = De’T and assumé® {X = h; : 1 € {0,1,2,--- L}} = 1 where
L < .

We set

X(z) ={x1,29,- - ,xy: xz;j >0forall j,z1 +z2+ -+ 25 =2}.

We noteS“:%J is Markov, and if lender recoveries " ("~%)z; att;, it will increase tox; at T with
interest effect. Thus if in the each of sub-inter) lender recovers—"("—%)z; (increment of recovery
in each sub-interval is—T(T—tj)xj) respectively, the cumulative recoveryis x = 1 + 2o + - - - + x .

Therefore for fixedE = {£1, &2, - - -, &y} where¢; is arbitrary chosen in each interva),
N R
P{SIAW‘] :a:}:P Z e"(T=Un J)Xn:x
n=1
A(€1) A€2)
Nioy) en (t1.05] e
— P Z T(T_Un 1 )X’I'L Z eT(T_Un ~2 ) n
n=1 n=1
(>\(§J) ]
tj—1:ty
LY e U x g
n=1
_ A1) _—r(T—t GA&2) _ —r(T—t gaes)
- Z P {S(toﬂlfﬂ =" 1)331} P {S(tl,;] =" 2)$2} P {S(tle,tJ] o :CJ}
X(z)

where{UQ(gj) tn > 1} are the sequence of jump points]ciﬁf_jl) 4] which is the homogeneous Poisson

(&)

process on the intervdk;_;,t;] with the intensityA(¢;), and Séj )

Poisson process on the interya)_;, ;] with the intensityA(¢;).
For calculatingP {SZAJ = m} we use inhomogeneous Markov chain. ggt  be the transition kernel
from¢;_; to ¢; with the last recovery possible tin7e

is the homogeneous compound

P {Stj = GT(T_tj)hl+l/

S’tjfl = eT(T_tj_l)hl’} ) l Z 07

Qt; T =
0, <0,
and the transition matrix fromy_; to¢; be
L—
Q.7 QT @T o 1— S qut; T
L2
0 qoyr QT - 1= 0 @y
L3
QtJ,T = 0 O qovt]7T e ]' - Zl:O qlvtij
LXL : .
) 0 0 0 : :
0 0 0 e 1
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Let the probability transition vector &t andt; represent as follows,

Pgto = (1707"' 70)T7

Ps, 7= (P (S, =0) P (S, =T ny) oo P (S, = e—rcr—tj)hL))r |

J

Because the increment of recovery is independent, we obtain the probability functjors at

T T
PS}],T =Pg Qt1,TQt2 T Q1

5.4 Numerical Procedure

We present numerical procedure for calculating the probability function of the cumulative recovery which
follows the piecewise inhomogeneous compound Poisson process ﬁﬁwﬂel

(a) Split the interval(0, 7] into sub-intervalsto, t1], (t1,t2], - - -, (ts—1,ts] where0 =ty < t; < t2 <
<ty="T.

(b) CalculateP{S(t(él)} =er(T- tl)hl} =qun1 | €{0,1,2,---, L} by Panjer recursion formula or

the fast Fourier transformation.

(c) Make the transition matrig;, by the consequence of (b).

(d) Similarly, calculateQy,, Q,, - - - , Q-
T
() Make vectorPg, = (1,0,---,0) and calculaté?gt(]j = Pgt() QuQ:, Q.

5.5 Monte Calro Simulation

In this section, we present the procedure for calculating the expectation and the variance of recovery rate by
using the Monte Carlo simulation.

In the cace intensity function(t) is bounded by a constant Glassermarf2004 and Cizek, Hardle
and Weron(2005 mention the procedure for calculating the jump points of an inhomogeneous Poisson
process by using the Monte Carlo simulation. They call it thinning method. By applying thinning method,
we propose the procedure for calculating expectation and variance of an inhomogeneous compound Poisson
process o1j0, T']. This procedure is as follows.

(a) Generate jump times,, of N7, whereN 7 is the homogeneous Poisson process with the inteAsity
on [0, 7.

(b) For eachn, generatél’,, which is uniformly distributed oif0, 1].

(c) For eachn, if T, )\, < A(U,) then acceplU,, as a jump point ofV!, obtainingU{,U{,--. Ul
which is the sequence of the jump points’éf wherem < n.
(d) Generate the increments of recoverés Xo, - - - X,,, from i.i.d. distributionFx.
(e) Calculate
m - r(T—-Uy) ) m _
py _ | L X, <D (21)
1 it S er MU Xy > erTD.
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N B
() Repeat(a)-(e)V times and obtaik, 7, Ro.7, -+ , Ry . CalculateE[R;] = Zim B andy ar R =
) ) ) N
Zf\il ?,T _ (Zﬁl Rz‘,T)2
N N :

6 Numerical Result

In this section, we calculate the expectation and the standard deviation of the modified survival value of the
debt and recovery rate which are derived in TheoBeimPropositior8.2and Corollary3.3, by two kinds of

the method based on Panjer recursion formula and the fast Fourier transformation respectively. Parameters
without the increment of recovery are as follows.

A : the intensity of the number of recoveries
T : the last recovery possible time
r : interest rate

D : the initial value of the debt

Weseth\=5,T=1,r=0.05,D = 10.

Also we illustrate discretization. We split the interjal De™] into 100 sub-intervals. Lef be the
length of sub-intervals antl = 2¢ by the rounding method at mid-point in Sectiér2.1 Thish andh
in Section4.2.1are the same.

6.1 Exponential Distribution

In this section, we suppose the increment of recovery has exponential distribution withdm¥&da set

f = 2. We calculate the expectation and the standard deviation of the modified survival value of the debt
and recovery rate by Panjer recursion formula and the fast Fourier transformation. Regardless of numerical
methods, numerical results are almost the same. But the numerical speed by Panjer recursion formula is
much faster than that by the fast Fourier transformation. Each Figufgure5, Figure6, Figure7 and

Figure8 shows the trajectory of the expectation and the standard deviation of the survival value of the debt
by changing each of the parameters. Similarly each Figurégurel0, Figurell, Figurel2and Figurel3

shows those of recovery rate.

Table1 shows the expectation and the standard deviation of the modified survival value of the debt and
recovery rate in the case parameterstate2, A\ = 5,7 = 1,r = 0.05, D = 10.

Table2 demonstrates average time for spent on calculating the expectation and the standard deviation
of the modified survival value of the debt by Panjer recursion formula algorithm and by the fast Fourier
transformation algorithm. In order to calculate them, we use a personal computer with CPU Intel core 2
quad 2.4GHz, memory 4GB, OS Windows Vista, and software R.

Figure2 and Figure3 illustrate histogram of cumulative recovery rate as a functiofi’ofAccording
to Figure2 and Figure3, cumulative recovery rate is increasing in progress of time and has a bimodal
distribution in early time of recovery.

E[Mr] | SD(Mr) | E[Rr] SD(Rr)
Panjer recursion formula | 2.702981| 3.139094| 0.742884| 0.298600
fast Fourier transformation 2.702981| 3.139094| 0.742884| 0.298600

Table 1:Numerical results for parametets=2, A =57 = 1,r = 0.05, D = 10.
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time
Panjer recursion formula | 0.0653
fast Fourier transformation 20.9139

Table 2:Average time (second) spent on calculating the expectation and the standard deviation of the modi-

fied survival value of the debt by Panjer recursion formula algorithm and by the fast Fourier transformation
algorithm in 100 trials.
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Figure 2: The histogram of cumulative recovery rate as a functiofi’'dbr parameterg = 2, A = 5,
r=0.05, D = 10.
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Figure 3: The histogram of cumulative recovery rate as a functiofi’dbr parameter® = 1, A = 5,

r =0.05, D = 10.
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Figure 4:The expectation and the standard deviatiohigure 5: The expectation and the standard devia-
of the modified survival value of the debt as a function of the modified survival value of the debt as a

tion of  for parameters\ = 5, 7 = 1, r = 0.05, function of A for parameterd = 2,7 = 1,r =

D =10. 0.05, D = 10.
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Figure 6: The expectation and the standard deviarigure 7:The expectation and the standard deviation
tion of the modified survival value of the debt as @f the modified survival value of the debt as a func-

function of T' for parameter® = 2,A = 5,r =

0.05, D = 10.
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Figure 8:The expectation and the standard deviatio
of the modified survival value of the debt as a func-

tion of D for parameterg = 2, A = 5,7 = 1,r =
0.05.
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tion of r for parameterd =2, A =5T =1,D =
10.
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Eigure 9:The expectation and the standard deviation
of recovery rate as a function éfor parameters. =
5T =1,r=0.05,D = 10.
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Figure 10: The expectation and the standard devigrigure 11: The expectation and the standard devia-
tion of recovery rate as a function affor parameters tion of recovery rate as a function @f for parame-

9=2T=1r=0.05D = 10.

tersd =2, A\ =5,r =0.05, D = 10.
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Figure 12: The expectation and the standard devidrigure 13: The expectation and the standard devia-
tion of recovery rate as a function ofor parameters tion of recovery rate as a function &f for parame-
0=2,\A=5T=1,D=10. tersd =2, A =5T =1,r = 0.05.

6.2 Pareto Distribution

In this section we compare the case the increment of recovery has exponential distributiénwiiththe
case it has Pareto distribution with 5. We set parameters as follows.

=2
o =4.475
0 =17.234

Figurel4illustrates the difference one minus probability distribution function of exponential distribution
with # = 2 and that of Pareto distribution with = 4.475, 5 = 7.234. Figurel4 shows that the right tail of
the difference one minus Pareto distribution function is fatter than that of exponential. It means that there is
higher possibility of very large increment of recovery in the case increment of recovery has Pareto one.

Each Figurel5, Figurel6and Figurel7 shows the expectation and the standard deviation of the survival
value of the debt as a function of each parameter in two cases: the increment of recovery has exponential
distribution and it has Pareto distribution. Similarly each FiglBeFigure19 and Figure20 show those of
recovery rate.

Figure 14:Exponential distribution witl¥ = 2 and Pareto distribution with = 4.475, § = 7.234.
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Figure 15: Expectation and standard deviation ofigure 16: Expectation and standard deviation of
modified survival value of debt in the case incremenmhodified survival value of debt in the case increment
of recovery has an exponential distribution and in thef recovery has an exponential distribution and in the
case it has a Pareto distribution, as a functioff'of case it has a Pareto distribution, as a function foir

for parametera = 5, = 0.05,D = 10,0 =2, = parameters\ = 5,7 = 1,D = 10,0 = 2,a =
4.475 and( = 7.234. 4.475 and( = 7.234.
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Figure 17. Expectation and standard deviation ofFigure 18: Expectation and standard deviation of
modified survival value of debt in the case incrememecovery rate in the case increment of recovery has
of recovery has an exponential distribution and in than exponential distribution and in the case it has a
case it has a Pareto distribution, as a functioDof Pareto distribution, as a function @ffor parameters
for parameterss = 5,7 = 1,» = 0.05,0 = 2,a= X = 5,r = 0.05,D = 10,0 = 2, = 4.475 and
4.475 and( = 7.234. 0 =17.234.
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Figure 19: Expectation and standard deviation ofigure 20: Expectation and standard deviation of
recovery rate in the case increment of recovery hascovery rate in the case increment of recovery has
an exponential distribution and in the case it has @ exponential distribution and in the case it has a
Pareto distribution, as a function offor parameters Pareto distribution, as a function 6f for parameters
AN=5T =1,D = 10,0 = 2,a = 4475 and X = 5,7 = 1,r = 0.05,0 = 2, = 4.475 and

[ =17.234. [ =17.234.

6.3 Inhomogeneous Case

We calculate the probability function, the expectation, and the standard deviation of cumulative recovery
rate in the case the number of recovery has the inhomogeneous intensity. We set the intensity function as
follows

A(t) = 5e !, (22)

and other parameters s = 1,7 = 0.05, D = 10, and the increment of recovery has exponential distri-
bution with# = 2. For calculation, in the procedure (b) in Sect®i3, we set\({;) = A(t;—1) which
is left endpoint (and also upper bound in this case) of each sub-interval. Eigsteows 22). Figure22
shows the expectation and the standard deviation of cumulative recovery rate in two case: homogeneous
compound Poisson model and inhomogeneous compound Poisson model 2BigndeFigure24 illustrate
the histogram of cumulative recovery rate as a functioit .of

We also calculate recovery rate by using Monte calro simulation and compare the result of the piecewise
homogeneous compound Poisson approximation on computational speed and accuracy. We use the same
personal computer in Secti@lto calculate them. Tablg@and Tabled show the computational results and
speed for calculating recovery rate by the two methods.
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E[R]] | SD(R])

J =100 0.541484| 0.338744

PHCPA J =400 0.539878| 0.338791

J =1000 0.539557| 0.338800

N =100000| 0.539367| 0.338809

Monte Calro simulation A/ =300000| 0.539238| 0.338801
N =500000| 0.539371| 0.338807

Table 3: Numerical results for parametér= 2,7 = 1,r = 0.05,D = 10 and the intensity function
A(t) = 5e~t by the piecewise homogeneous compound Poisson approximation (PHCPA) and the Monte
Calro simulation in 100 trialsJ is the number of sub-intervals ard is the number of simulations.

time
J =100 6.5952
PHCPA J =400 25.8279
J =1000 64.7437
N =100000| 25.3095
Monte Carlo simulation A =300000| 76.9649
N =500000/| 127.0603

Table 4:Average time (second) spent on calculating the expectation and the standard deviation of recovery
rate for parametet = 2,7 = 1,7 = 0.05, D = 10 and the intensity function(¢) = 5¢~* by the piecewise
homogeneous compound Poisson approximation (PHCPA) and the Monte Calro simulation in 100 trials.

is the number of sub-intervals aid is the number of simulations in one trial.

E[Ry], E(RY). SD(Ry), SD(R)

Figure 22:Expectation and standard deviation of re-
covery rate in two case: homogeneous cRgeand
inhomogeneous cage,. A = 5, \(T) = 5e~ 1,0 =
2,r=0.05,D =10

Figure 21: Intensity Function\(t) = 5e~*.
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Figure 23: Histogram of cumulative recovery rate as a functioriZofor parameter$ = 2, r = 0.05,
D =10, \(T) = 5¢~T.
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Figure 24: Histogram of cumulative recovery rate as a functiorifofor parameter$ = 1, r = 0.05,
D =10, \(T) = 5¢ 1.
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7 Conclusion

This paper addresses the issue of modeling and calculating the recovery process. The expectation of recovery
rate is increasing function as the increment of recovery, the number of recoveries, the last recovery possible
time and is decreasing function as interest rate and the initial debt amount.

On the calculation of the probability function of the modified survival value of the debt, numerical results
show that Panjer recursion formula algorithm yields as much accurate as the fast Fourier transformation
does. But the calculation by the method based on Panjer recursion formula is much faster than that by the
method based on the fast Fourier transformation.

In the case the intensity is constant as time, the cumulative recovery rate is increasing as time. However
by using the inhomogeneous compound Poisson model, we can demonstrate recovery rate is diminishing as
time. This feature matches Figure 19th and Yamashité2008 which describes the relationship between
empirical cumulative recovery rate and time. In this paper, we suggest the new procedure for calculating the
transition density of an inhomogeneous compound Poisson process by the transition density of a piecewise
homogeneous compound Poisson process. From the numerical experiments, the computational speed and
accuracy of our method is similar to the Monte Calro simulation.

A Homogeneous Compound Poisson Process

A.1 distribution function

In this section we will derive the distribution function of a compound Poisson process. We refer the reader
to Taylor and Karlin(1998 andWu et al.(2005 for the references of the following content.
Let {U, : n € N} be the sequence of jump points of the Poisson proggssith the intensity\. Let
{X,, : n € N} be independent random variables and have distribution funétipidensity functionfx).
N; and{X,, : n € N} are independent. Le%; denote

Let Fg, be the distribution function of, andfs, be the density function of,. Fort,z > 0, we get
Fy () = P{$ <}

i {iertUk)Xka

Nt:n}P{Nt:n}

n=0 k=1
D P{En e" U Xy < 2| Ny = }W)n M 23
= kS ZT(INg=1 | € . ( )
n.
n=1 k=1

GivenN; = n, the joint distribution of U,, : n € N} is the same as that of order statisticaafiformly
distributed random variables @f, t], it follows that

P {Z e"=U X < 2| N, = n} =P {Z er(tka*t)Xk < 33} , (24)

k=1 k=1

where Vi, Vo, -+, Vi, are independently distributed uniform random variableg @], and they are
independent of X, : n € N}.

2631



Substituting 24) into (23), we obtain

F ey ZP{Z r(t— th)Xk < x} (/\;!)”e_m' (25)

k=1

Now we define
Ko 2 er(tVee)
and the distribution function ak; = X, is
Fg () £ p {6r(t_v’“t>Xk < x}

-1 /O Py (e du. (26)

Let FY" denote the:-fold convolution of F';
Xt t

F'(z) = P {Z er(t=Vee) x, < x} .tz > 0. (27)
k=1
Fort,z > 0, let ¢ denote the probability density function &F,. From @6), we get
1 t
Iz, (x) = t/ e Tt £ (:Be_r(t_“)> du, t,xz >0. (28)
‘ 0

From @5) and @7), for T, x > 0 we have

th(x) —At e~ M Z n' Xt (29)

n=1

and

fo(x)=e Z 2 (30)

Wheref;gtl is then-fold convolution offxt.

From 9) and B0), we considerS; as the compound Poisson process with Poisson pra¢essth the
intensity A and the increment of recover;.

B Panjer Recursion Formula and Fast Fourier Transformation

In this section, we present the two methods of calculating the probability distribution of compound Poisson
distribution. One of methods is based on Panjer recursion formula and the other is based on the fast Fourier
transformationEmbrechts and Fr¢2008 numerically evaluate two methods. We explain Panjer recursion
formula in SectiorB.1 and the fast Fourier transformation in Secti®:2.
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B.1 Panjer Recursion Formula

In this section we explain Panjer recursion formula. Only in the case the number of recoveries is a member
of (a,b,0)-class and the increment of recovery has non negative distribution, Panjer recursion formula can
be used.

Definition 8. We suppose(n) is the probability function of discrete random variable. It is a member of
(a, b, 0)-class, if there exist constanat b such that

p(n): <a+z>p(n_1)> n=12-.-. (31)

(a,b,0)-class is also called Panjer class.

It has been known that only four distributions i.e. Poisson, binomial, negative binomial and geometric
belong to(a, b, 0)-class. It can be seen that Poisson distribution with the intenssigtisfies the recursion
and that each value afandb is 0 and A respectively.

If the number of recoveries is a member(afb, 0)-class and the increment of recovery has non negative
discrete distribution, the following discrete type Panjer recusion formula can be used. We present the result
of Panjer(198J), for the references also sEtugman et al(2004) andPanjer(2006.

Theorem B.1. If N is a member ofa, b, 0)-class and each increment of recoveky, € Ny, then the
recursion formula is

ps(0) =¥y (pX(O))

T

Z<a+ > (ps(z—y), z=1,2,--

yzl

Ps(e) = 1—apx(0)

whereNy = {0,1,2, - } andyn (u) = E [u”] is the probability generating function of.

If the number of recoveries is a member(afb, 0)-class and the increment of recovery has non negative
continuous distribution, the following continuous type Panjer recusion formula can beResajer(1981)
proves the following Theorem.

Theorem B.2. If N is a member ofa, b, 0)-class and the increment of recovekj, has non negative
continuous distribution function, then recursion formula is

fs(0) =¥ (fx(0)),
fsa) = x4 [ (a2 xfsto -, 2> @)

whereyy (u) = E [u”] is the probability generating function o¥.

B.2 Fast Fourier Transformation

In this section, we explain the calculation method of the probability distribution function of compound
Poisson distribution by the fast Fourier transformation. A number of studies have been made by the fast
Fourier transformation in actuarial mathematics and finance. We refer the rea”elsto et al.(1999),
Klugman et al(2004 andPanjer(2006 for the references.

For any integrable functioyfi(z), the Fourier transformation is defined by

= /_Z f(x)edz.
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wheres is imaginary unit. Iff(z) is integrable, the original function can be recovered from its inverse
Fourier transform as

f@) =5 [ fereioma

When () is a probability density functionf(z) is its characteristic function.

Definition 9. For some fixech € N, consider a sequencg, f1, - - - , fo—1 Of arbitrary real numbers. The
discrete Fourier transformatiogf,? is defined by

n—1 .
A 211
D .
Ji :E fjexp{nkj}a k=0,1,---n—1.
J=0
The discrete inverse Fourier transformation is defined by
12, 2mi
~=—§ ——Fkj k=0,1,---n—1.
f] nkiofk exp{ n j}7 )+ n

The fast Fourier transformation is an algorithm that reduces the number of computations for the Fourier
transformation. The procedure for calculating distribution function of the cumulative recovery in the case
the increment of recovery has continuous distribution by the fast Fourier transformation is as follows. We
refer toPanjer(2006 for the following procedure.

(a) Discretize the distribution of the increment of recovefyusing some methods (see Sectibg.]),
obtaining the discretized increment of recovery probability function

PXapp (0), PXapp (1), s DXy (= 1),
whereX,,, is discretized random variable of.

(b) Apply the fast Fourier transformation to this vector of values, obtaining, (z) £ E [e***®?], the
characteristic function of discretized distributiaf,,,.

(c) Transform this vector using the probability generating function transformation of the number of re-
coveries distribution, obtainings, , () £ E [e¥*%*] = ¢y (¢x,,,(2)), Which is the characteristic
function, that is, the discrete Fourier transform of the cumulative recovery distribution Wheres
discretized approximation df.

(d) Apply the inverse fast Fourier transformation, which is identical to the fast Fourier transformation
except for a sign change and division by This gives a vector of length values representing the
exact distribution of cumulative recovery for the discrete increment of recovery model.
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