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Abstract

Recently because of Basel II and the subprime mortgage crisis, the quantification of recovery size
and recovery rate for the debt of a defaulted company is a serious problem for financial institutions and
their supervision, but there has been no study of structure of recovery process. Existent recovery models
do not regard recovery progress before the time of achievement of recovery.

We directly model recovery process for the debt of a single defaulted company. We model the recov-
ery process by a homogeneous compound Poisson process and extend our model to an inhomogeneous
compound Poisson process. Interest rate is explicitly used in our model. By our model, the relation-
ship between cumulative recovery, the increment of recovery, the initial debt amount, the last recovery
possible time and interest rate can be analyzed.

We derive the expectation and the variance of the survival value of the debt and recovery rate, and
also derive the probability distribution function and the expectation of the recovery completion time. For
this paper we present the numerical methods of calculating the expectation and the variance based on
Panjer recursion formula and the fast Fourier transformation, and give numerical result. The methods
of calculating the transition density of an inhomogeneous compound Poisson process is necessary for
calculating the expectation and the variance of those in the inhomogeneous compound Poisson model,
however little attention has been given to such methods. Therefore we propose the new procedure for
calculating it by a piecewise homogeneous compound Poisson process.

Keywords Recovery rate, Credit risk, Basel, inhomogeneous compound Poisson process, Loan
JEL classification number C61, C63, G10, G21

1 Introduction

Recently, because of Basel II and the subprime mortgage crisis, financial institutions must develop the model
of recovery for the debt. But compared to the amount of research on other kinds of credit risk, few studies
indeed have been done to analyze recovery for the debt.

There are a few empirical studies of recovery rate for the debt on the bank loan for small companies.
Asarnow and Edwards(1995) study recovery rate of the loans at Citibank in United States andHurt and
Felsovalyi(1998) also study them at Citibank in Latin American countries.Araten, Jr. and Varshney(2004)
analyze recovery rate of the loans at J.P. Morgan Chase.Franks, de Servigny and Davydenko(2004) research
the correlation between the features of company and recovery rate from the data of ten banks in United
kingdom, France and Germany.Dermine and de Carvalho(2006) study the factors of changing recovery
rate by generalized linear model, using the data of Banco Comercial Português.Itoh and Yamashita(2008)
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study recovery rate of the guarantee loans of Credit Guarantee Corporations in Japan. They analyze the
factors which affect recovery rate of the debt for small companies by binary logit model and ordered logit
model. Also the point that all of above studies indicate the cumulative recovery rate has bimodal distribution
deserves careful attention.

There are very few theoretical studies of recovery rate.Jokivuolle and Peura(2003) suppose if asset
value at maturity is less than the default boundary, the company is assumed to default. It is aMerton
(1974) type default framework in structural models. They also suppose the collateral value process of a
company follows geometric Brownian motion, and the collateral value process and the asset value process
are correlated. Recovery rate is mainly determined by collateral value at default.

Guo, Jarrow and Zeng(2008) set random recovery rate in reduced form model. Reduced form model
gives default exogenously and focuses on modeling the stochastic process for the default intensity.

Thus there are a few empirical and theoretical studies for the recovery of the debt of an individual
company. Because the recovery data is much important for lender and borrower on business, the empirical
data is seldom opened for academic study. Also because the feature of the recovery action may be different
by the lender, there are few general arguments for recovery progress.

For public study as far as we know,Itoh and Yamashita(2008) study empirically for the recovery
progress (the relationship between time and recovery) for each company. Figure 6, Figure 7, and Figure
8 of Itoh and Yamashita(2008) show the empirical recovery process. From these figures, we know that
there are usually several times of recovery for the same debt, that the recovery points are at random and that
the increments of the recoveries are at random.

On the basis of study ofItoh and Yamashita(2008), in this paper we attempt to model the recovery
process for the debt of single defaulted company by a homogeneous compound Poisson process and extend
to an inhomogeneous compound Poisson process. Moreover we suppose there is interest on the debt after
default and thus we can analyze the change of the survival value of the debt as interest rate changes.

Our model is similar to the framework of the aggregate loss model and the ruin process model in actuarial
mathematics. For the aggregate loss model, seeMikosch (2004), Klugman, Panjer and Willmot(2004),
Rolski, Schmidli, Schmidt and Teugels(1999). For further information of the ruin process model, see
Gerber and Shiu(1998). Wu, Wang and Zhang(2005) add to the interest rate in the model ofGerber and
Shiu(1998). Lindskog and Mcneil(2003) model an insurance loss and credit risk by a Poisson process.

In the real world, there are usually several times of recovery for the same debt. But other recovery
models do not consider more than one time of recovery at all. Thus they can not distinguish the increment
of recovery (each recovery) from the cumulative recovery. Our model can analyze the relationship between
the cumulative recovery, the increment of recovery, the initial debt amount (debt amount at default), the last
recovery possible time and interest rate.

This paper is organized as follows. We introduce the model in the second section and our main results
of this paper are given the third section. The fourth section sets the distribution of increment of recovery and
the fifth section extends to the inhomogeneous compound Poisson model and suggests the new procedure
for calculating the transition of an inhomogeneous compound Poisson process. The sixth section demon-
strates numerical results. The seventh section concludes. In appendix we explain a homogeneous compound
Poisson process and present the numerical methods of calculating the probability distribution of compound
Poisson distribution.

2 Model

We consider a single defaulted company whose default occurs at time0. In our model, the prescription for
the debt is assumed simply as below.

Assumption 1. Lender can recover the loan up to timeT . It meansT is the last recovery possible time for
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lender.

Assumption 2. At time0, the initial debt amount isD. It meansD is the survival value of the debt at default
time.

We suppose there is interest on debt after default.

Assumption 3. The interest rate per a periodr is invariable (constant) for all periods and continuously
compounded.

Definition 1. LetDt be the survival value of the debt at timet, letUn be then-th recovery time, letXn be
the n-th increment of recovery which means each recovery size, where0 < U1 < U2 < · · · < UNt ≤ t, and
letNt be the number of recoveries up to timet.

In the case that at each timeU1, U2, · · · , UNt , borrower repaysX1, X2, · · · , XNt respectively. The
survival value of the debt at timet is

Dt = ertD − er(t−U1)X1 − er(t−U2)X2 − · · · − er(t−UNt )XNt

= ertD −
Nt∑

n=1

er(t−Un)Xn.

Assumption 4. The increments of recoveries{Xn : n ∈ N} are non negative i.i.d. random variables and
have the common distribution functionFX .

Assumption 5. Nt, the number of recoveries up to time t, follows the Poisson process with the intensityλ
whereλ is positive.

Assumption 6. The increments of recoveries{Xn : n ∈ N} and the number of recoveriesNt are indepen-
dent.

Definition 2. LetSt be the cumulative recovery with no interest effect up to timet andS̃t be the cumulative
recovery with interest effect up to timet as follows.

St ,
Nt∑

n=1

Xn, (1)

S̃t ,
Nt∑

n=1

er(t−Un)Xn. (2)

From above assumptions and the consequence of SectionA.1, the cumulative recovery with interest rate
follows a compound Poisson process and the survival value of the debtDT may be written as,

DT = erTD − S̃T . (3)

Figure1 shows the relationship between the survival value of the debtDt and timet.

3 Main Result

3.1 The Modified Survival Value of Debt and Recovery Rate

In this section, we derive the expectation and the variance of the modified survival value of the debt and
recovery rate.

We have modeled the survival value of the debtDT by (3). However we do not consider accomplishment
of recovery (borrower clears all the debt) up to timeT in the previous section and now we make the following
assumption.
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Figure 1:The relationship between the survival value of the debtDt and timet.

Assumption 7. Lender can not recover more than the amount of the initial value of the debtD plus interest
onD.

In view of Assumption7, we introduce the following definition.

Definition 3. Letτ be the first time thatDt is not positive.τ is called the recovery completion time, and we
can write it as follows,

τ = inf {t ≥ 0 : Dt ≤ 0} .

We employ standard convention that the infimum of the empty set is infinity.
LetMt be the modified survival value of the debt,

Mt ,
{
Dt, t < τ,

0, t ≥ τ.

By Assumption7, onceDt crosses zero, all the debt are cleared and then the cumulative recovery amount
isDerτ . The increment of recovery in the modified survival value of the debt is no longer independent and
identically distributed. But using the probability function ofS̃T (in which the increment of recovery is
independent and identically distributed), we derive the expectation of the modified survival value of the debt
atT ∈ [0,∞).

Theorem 3.1. For D, r > 0, T ≥ 0, we have

E [MT ] =
∫ erT D

0
xfS̃T

(
erTD − x

)
dx, (4)

wherefS̃t
(x) is the probability density function of̃St defined by(2)

fS̃t
(x) = e−λt

∞∑
n=1

(λt)n

n!
f∗n

X̃t
(x), (5)

f∗n
X̃t

(x) is the probability density function of then-fold convolution ofX̃t = er(T−Vt)X, andVt is uniform

random variable on(0, t].
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We defer the proof of (5) until SectionA.1.

Proof. At time T , we get

P {DT < x} = P

{
erTD −

NT∑
n=1

er(T−Un)Xn < x

}
= 1 − FS̃T

(erTD − x).

BecauseXn is non negative, onceDt = ert(D −
∑Nt

n=1 e
−rUnXn) becomes non positive atτ , Dt is

monotone decreasing ast. Therefore only in the caseT < τ , DT is almost surely positive for all sample
paths. We remarkDT ≤ erTD. Therefore, we get

E [MT ] = E
[
1{DT >0}DT

]
=
∫ erT D

0
xdP {DT < x}

=
∫ erT D

0
xfS̃T

(
erTD − x

)
dx.

Next we consider the variance ofMT .

Proposition 3.2.

V ar (MT ) =
∫ erT D

0
x2fS̃T

(
erTD − x

)
dx−

(∫ erT D

0
xfS̃T

(
erT tD − x

)
dx

)2

(6)

Proof. Note
(
1{DT >0}

)2 = 1{DT >0} and as in the proof of Theorem3.1, we have

E
[
M2

T

]
= E

[
1{DT >0}D

2
T

]
=
∫ erT D

0
x2fS̃T

(
erTD − x

)
dx.

We obtain (6) easily.

LetRT be the cumulative recovery rate atT and it is defined as follows,

RT =
erTD −MT

erTD
.

We will derive the expectation and the variance ofRT from Theorem3.1and Proposition3.2.

Corollary 3.3. We have that

E [RT ] =
erTD − E [MT ]

erTD
,

V ar (RT ) =
V ar (MT )
e2rTD2

.
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3.2 Recovery Completion Time

In this section we derive the probability distribution function and the expectation of the recovery completion
time τ .

First of all, we prove the following lemma. We set̄Xt = e−rVtX1 and letFX̄t
be the probability

distribution function ofX̄t whereVt is uniform random variable on(0, t].

Lemma 3.4. If FX is continuous distribution, then

∂

∂t

∞∑
n=1

(λt)n

n!
FX̄t

(x) =
∞∑

n=1

∂

∂t

(
(λt)n

n!
FX̄t

(x)
)
. (7)

Proof. We setgt,n(x) = (λt)n

n! FX̄t
(x). For the proof, It is necessary to show that∂

∂tgt,n(x) is continuous
ast,

∑∞
n=1 gt,n(x) convergences and∂∂tgt,n(x) convergences uniformly. We will illustrate that∂∂tgt,n(x)

convergences uniformly.
We use Weierstrass M-test for the check of uniform convergence.

∂

∂t
gt,n(x) =

∞∑
n=1

λ
(λt)n−1

(n− 1)!
F ∗n

X̄t
(x) +

∞∑
n=1

(λt)n

n!
∂

∂t
F ∗n

X̄t
(x) (8)

We consider each term of (8).

gt,n,1(x) , λ
(λt)n−1

(n− 1)!
F ∗n

X̄t
(x) (9)

gt,n,2(x) , (λt)n

n!
∂

∂t
F ∗n

X̄t
(x) (10)

First, we show (9) converges uniformly. We setMn,1 = λ (λt)n−1

(n−1)! , and we have
∑∞

n=1 Mn,1 = λeλt <

∞. Now, because of0 ≤ F ∗n
X̄t

(x) ≤ 1, we obtain∣∣∣∣gt,n,1(x)
∣∣∣∣ = ∣∣∣∣λ (λt)n−1

(n− 1)!
F ∗n

X̄t
(x)
∣∣∣∣ ≤ λ

(λt)n−1

(n− 1)!
= Mn,1,

∀x ∈ [0,∞), ∀t ∈ [0, T ], n = 1, 2, · · · .

Then from Weierstrass M-test,
∑∞

n=1 gt,n,1(x) converges uniformly.
Next, we show that (10) converges uniformly.

∂

∂t
F ∗n

X̄t
(x) = − 1

t2

∫ t

0
F ∗n

X (erux) du+
1
t
F ∗n

X (ertx) (11)

We setMn,2 = (λt)n

n!
1
t , and we have

∑∞
n=1 Mn,2 =

(
eλt − 1

)
1
t < ∞. Now, because of0 ≤ F ∗n

X̄t
(x) ≤ 1,

we obtain∣∣∣∣gt,n,2(x)
∣∣∣∣ = ∣∣∣∣(λt)n

n!
∂

∂t
F ∗n

X̄t
(x)
∣∣∣∣ = ∣∣∣∣(λt)n

n!

(
− 1
t2

∫ t

0
F ∗n

X (erux) du+
1
t
rertxF ∗n

X (ertx)
) ∣∣∣∣

≤
∣∣∣∣(λt)n

n!
1
t
F ∗n

X (ertx)
∣∣∣∣

≤ (λt)n

n!
1
t

= Mn,2,
∀x ∈ [0,∞), ∀t ∈ [0, T ], n = 1, 2, · · · .

Then from Weierstrass M-test,
∑∞

n=1 gt,n,2(x) converges uniformly. Thus, because each term of (8) con-
verges uniformly ,∂∂tgt,n(x) converges uniformly.
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Similarly because|gt,n(x)| = | (λt)n

n! FX̄t
(x)| ≤ (λt)n

n! , Mn and
∑∞

n=1 Mn = eλt − 1 < ∞, then∑∞
n=1 gt,n(x) converges uniformly from Weierstrass M-test. Thus condition that

∑∞
n=1 gt,n(x) converges

is shown. ∂
∂tgt,n is continuous ast in the case thatFX̄t

(x) is continuous distribution.
Therefore (7) holds.

Next, we derive the probability distribution function and the expectation of the recovery completion time
τ .

Proposition 3.5.

P {τ ≤ T} = 1 − FS̃T

(
erTD

)
,

If FX is continuous , then

E
[
τ1{τ≤T}

]
=
∫ T

0
t

{
λe−λt + e−λt

∞∑
n=1

(λt)n

n!

[(
λ− n

t

)
F ∗n

X̄t
(D) +

∫ t

0

F ∗n
X (eruD)

t2
du−

F ∗n
X (ertD)

t

]}
dt. (12)

Proof.

P {τ ≤ T} = P {DT ≤ 0}

= P

{
erTD −

NT∑
n=1

er(T−Un)Xn ≤ 0

}
= 1 − FS̃T

(
erTD

)
Next we derive expectation.

E
[
τ1{τ≤T}

]
=
∫ T

0
tdP {τ ≤ t}

=
∫ T

0
t
∂

∂t

(
1 − FS̃t

(
erTD

))
dt (13)

Similarly as in SectionA.1 (cf. (29)), we haveFS̃t
(ertx) = e−λt + e−λt

∑∞
n=1

(λt)n

n! F ∗n
X̄t

(x), and

FX̄t
(x) = P

{
X̄t ≤ x

}
=

1
t

∫ t

0
FX (erux) du.

Using Lemma3.4, we obtain

∂

∂t

(
1 − FS̃t

(
ertx

))
=

∂

∂t

(
1 − e−λt − e−λt

∞∑
n=1

(λt)n

n!
F ∗n

X̄t
(x)

)

= λe−λt + λe−λt
∞∑

n=1

(λt)n

n!
F ∗n

X̄t
(x) − e−λt

∞∑
n=1

n
λntn−1

n!
F ∗n

X̄t
(x) − e−λt

∞∑
n=1

(λt)n

n!
∂

∂t
F ∗n

X̄t
(x)

= λe−λt + e−λt
∞∑

n=1

(λt)n

n!

[(
λ− n

t

)
F ∗n

X̄t
(x) − ∂

∂t
F ∗n

X̄t
(x)
]
. (14)

Substituting (11) and (14) into (13), we obtain (12).
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4 Numerical Study

In this section we set notation and the distribution of the increment of recovery. In Section4.2 we specify
the distribution of the increment of recovery. Also we present the two methods of calculating the probability
distribution of compound Poisson distribution in SectionB: Panjer recursion formula and the fast Fourier
transformation.

4.1 Notation

In order to calculate (4), we must calculatefS̃T
. From the consequence of SectionA.1, given fixedT , S̃T

is considered as̃S which is compound Poisson distribution with the intensityλT and increment of recovery
X̃T . Also from SectionA.1, the method of calculating probability function or probability density function
of S̃ is the same to that ofS without interest effect forX whereS is compound Poisson distribution with the
intensityλT and increment of recoveryX. We will explain the method of calculating probability function
or probability density function ofS when increment of recoveryX is continuous and discrete respectively.

Suppose{Xn : n ∈ N} are discrete (continuous) random variables, letpX be the probability function
(fX be the probability density function) ofX.

Therefore in the case{Xn : n ∈ N} have a discrete distribution,pS is the probability function ofS, and
in the case{Xn : n ∈ N} have a continuous distribution,fS is the probability density function ofS. Also let
FS be the probability distribution function ofS. Let PN is the probability function of Poisson distribution
with the intensityλT . Then

pS(x) =
∞∑

n=0

pN (n)p∗nX (x), x ≥ 0,

fS(x) =
∞∑

n=0

pN (n)f∗nX (x), x ≥ 0.

Since it is difficult to calculatepS or fS directly by above expression, we will present the two methods
of calculating it in SectionB: Panjer recursion formula and the fast Fourier transformation.

4.2 Increment of Recovery

If the increment of recovery has continuous distribution, it is difficult to calculateFS by the methods based
on either Panjer recursion formula or the fast Fourier transformation, but if the increment of recovery has
discrete distribution, it is easy to calculatepS . Thus if the increment of recovery has continuous distribution,
we discretize its distribution. In Section4.2.1, we propose some methods of discretization.

Up to here, we have not supposed the increment of recovery has particular distribution, but in the re-
maining section let us assume the increment of recovery has exponential or Pareto distribution.

4.2.1 Discretization

If {Xn : n ∈ N} have a continuous distribution function, we approximate it by the following method which
Panjer(2006) calls rounding method. This method spilts the probability between(l−1)h andlh and assigns
it to l − 1 andl for l = 1, 2, · · · .
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Let pXapp(l) denote the probability placed atlh, l = 0, 1, 2, · · · . Then we set

pXapp(0) , P

{
X <

h

2

}
= FX

(
h

2
− 0
)

pXapp(l) , P

{
lh− h

2
≤ X < lh+

h

2

}
= FX

(
lh+

h

2
− 0
)
− FX

(
lh− h

2
− 0
)
, l = 1, 2, · · · ,

where notationFX(x− 0) indicates that probability mass atx is excluded.
Panjer and Willmot(1992) suggests rounding method at not mid-point in span but left endpoint or right

endpoint in span as follows.

pXright
(0) , FX (h− 0)

pXright
(l) , FX (lh+ h− 0) − FX (lh− 0) , l = 1, 2, · · · .

pXleft
(0) , 0

pXleft
(l) , FX (lh) − FX (lh− h) , l = 1, 2, · · · .

4.2.2 Increment of Recovery with Exponential Distribution

In this section we suppose the increment of recovery has exponential distribution. Exponential density is
monotonically decreasing toward the right and the difference one minus exponential distribution is expo-
nentially decaying its right tail. Therefore large increment of recovery is given a roughly zero probability.

Assumption 8. {Xn : n ∈ N} are independent and have common exponential distribution function with
meanθ.

Under Assumption8, we get

FX(x) = 1 − e−
x
θ , x ≥ 0,

fX(x) =
1
θ
e−

x
θ , x ≥ 0.

Let X̃t denote the increment of recovery with interest effect and from SectionA.1, it represents

X̃t , er(t−Vt)X1,

whereVt is uniform random variable on(0, t]. Let FX̃t
denote the probability distribution function of̃Xt,

and then it follows from (26) that

FX̃t
(x) = P

{
X̃t ≤ x

}
=

1
t

∫ t

0
1 − e−

xe−r(t−u)

θ du.

Also letfX̃t
denote the probability density function of̃Xt, and we obtain

fX̃t
(x) =

1
t

∫ t

0
e−r(t−u)fX

(
xe−r(t−u)

)
du

=
1
xtr

(
−e−

x
θ + e−

xe−rt

θ

)
.
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4.2.3 Increment of Recovery with Pareto Distribution

In this section we suppose the increment of recovery has Pareto distribution. Pareto distribution has heavy
tail and is used in actuarial mathematics when there is high probability of very large losses.

Assumption 9. {Xn : n ∈ N} are independent and identically Pareto distributed with parameterα, β,
whereα, β > 0.

From Assumption9, we obtain

FX(x) = 1 −
(

β

β + x

)α

, x > 0,

fX(x) =
αβα

(β + x)α+1 , x > 0.

We have

E [X] =
β

α− 1
, α > 1,

V ar (X) =
αβ2

(α− 1)2 (α− 2)
, α > 2.

Similar to Section4.2.2, letFX̃t
denote the probability distribution function of̃Xt and we get

FX̃t
(x) = P

{
X̃t ≤ x

}
=

1
t

∫ t

0
1 −

(
β

β + xe−r(t−u)

)α

du.

5 Inhomogeneous Compound Poisson model

In the real world the expected number of recoveries per unit time may differ in time. In this section we
extend our model into the case that the number of recoveries follows an inhomogeneous Poisson process. We
present the procedure for approximating the probability function of an inhomogeneous compound poisson
process by the probability function of a piecewise homogeneous compound Poisson process. The probability
function of a piecewise compound Poisson can be calculated easily by using the Panjer recursion formula or
fast Fourier transformation, and by using its Markov property.

Assumption 10. Assume the number of recoveries follows an inhomogeneous Poisson processN I
t with the

intensity functionλ(t) which is positive deterministic function in the interval[0, T ]. LetΛ(t) =
∫ t
0 λ(u)du

be the cumulative intensity function.

For example, we may suppose the intensity function is an exponential function as time as follows. For
γ1, γ2 > 0,

λ(t) = γ1 exp {−γ2t} .

5.1 Inhomogeneous Poisson and Piecewise Homogeneous Poisson Process

We will consider a piecewise homogeneous Poisson process, and it is a compound Poisson process with a
constant intensity in each sub-interval. In this section we will also show a piecewise homogeneous Poisson
process converges weakly to an inhomogeneous Poisson process.
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Definition 4. We split the interval[0, t] into the sub-interval[t0, t1], [t1, t2], · · · , [tJ−1, tJ ] where0 = t0 <
t1 < t2 < · · · < tJ = t. Let∆J be the partition of[0, t] and letTj be thej-th sub-interval as follows,

∆J : t0, t1, · · · , tJ ; Tj = [tj−1, tj ] , j = 1, 2, · · ·J.

Let |Tj | be the length of intervalTj and the norm of the partition be

|∆J | = max
1≤j≤J

|Tj |,

and let a Riemann sum ofλ, Λ∆J
(t) be

Λ∆J
(t) =

J∑
j=1

|tj − tj−1|λ(ξj),

for any but fixedξj ∈ Tj , j = 1, 2, · · · , J .

For any but fixedξj ∈ Tj , j = 1, 2, · · · , J , Λ∆J
is considered as the piecewise constant cumulative

intensity function.

Definition 5. LetNλ∆J be a Poisson process on[0, T ] with the piecewise constant intensity functionλ∆J

defined by,

λ∆J
(t) =


λ (ξ1) t ∈ T1

λ (ξ2) t ∈ T2

...
...

λ (ξJ) t ∈ TJ .

Nλ∆J is seen as a piecewise homogeneous Poisson process. We will show the piecewise homogeneous
Poisson processNλ∆J converges weakly to the inhomogeneous Poisson processN I .

Theorem 5.1. If λ(t) is Riemann integrable on[0, T ], then

Nλ∆J
w−→ N I on [0, T ] as|∆J | → 0 (J → ∞), (15)

where
w−→ means “converges weakly”.

Proof. For ∀n ∈ N0 = {0, 1, 2, · · · } and fixedt ∈ [0, T ], the following convergence holds

P
{
N

λ∆J
t = n

}
= e−Λ∆J

(t) (Λ∆J
(t))n

n!

−→ e−Λ(t) (Λ(t))n

n!
as |∆J | → 0 (J → ∞)

= P
{
N I

t = n
}
.

Because the interarrival times are independent, the finite dimensional distribution converges. From
p.137 inDaley and Vere-Jones(2008), for a point process, tightness follows from the convergence of its
finite dimensional distribution. Thus (15) holds.

An inhomogeneous Poisson process has the following property, see Proposition 12.2.1 ofRolski et al.
(1999) for the detail.

Proposition 5.2. Given the number of recoveriesN I
t = n, n arrival times are distributed independently in

the interval(0, t] with probability density function

λ(u)
Λ(t)

, u ∈ (0, t].

12/31



5.2 Inhomogeneous Compound Poisson and Piecewise Homogeneous Compound Poisson
Process

In this section we derive the probability distribution function of an inhomogeneous compound Poisson
process̃SI

t . LetFS̃I
t

be the probability distribution function of̃SI
t andfS̃I

t
be the probability density function

of S̃I
t . For t, x > 0, we obtain

FS̃I
t
(x) = P

{
S̃I

t ≤ x
}

= e−Λ(t) +
∞∑

n=1

P

{
n∑

k=1

er(t−UI
k)Xk ≤ x

∣∣∣∣N I
t = n

}
P
{
N I

t = n
}

= e−Λ(t) +
∞∑

n=1

P

{
n∑

k=1

er(t−UI
k)Xk ≤ x

∣∣∣∣N I
t = n

}
(Λ(t))n

n!
e−Λ(t). (16)

where
{
U I

k : k ≥ 0
}

are the sequence of jump points of an inhomogeneous Poisson processN I
t . Given

N I
t = n, from Proposition5.2, it follows that

P
{
S̃I

t ≤ x|N I
t = n

}
= P

{
n∑

k=1

er(t−UI
k)Xk ≤ x

∣∣∣∣N I
t = n

}

= P

{
n∑

k=1

er(t−V I
t,k)Xk ≤ x

}
, (17)

whereV I
1,t, V

I
2,t, · · · , V I

k,t are independent random variables with the probability density functionλ(u)
Λ(t) where

u ∈ (0, t], and they are independent of{Xn : n ∈ N}. Substituting (17) into (16), we obtain

FS̃I
t
(x) = e−Λ(t) +

∞∑
n=1

P

{
n∑

k=1

er(t−V I
k,t)Xk ≤ x

}
(Λ(t))n

n!
e−Λ(t)

=
∞∑

n=0

P

{
n∑

k=1

er(t−V I
k,t)Xk ≤ x

}
(Λ(t))n

n!
e−Λ(t). (18)

Now we define

X̃I
k,t , er(t−V I

k,t)Xk.

Let FX̃I
t

denote the distribution function of̃XI
t = X̃I

k,t, then

FX̃I
t
(x) , P

{
er(t−V I

k,t)Xk ≤ x
}

=
1

Λ(t)

∫ t

0
FX

(
xe−r(t−u)

)
λ(u)du.

Let F ∗n
X̃I

t

denote then-fold convolution ofFX̃I
t
, and we obtain

F ∗n
X̃I

t
(x) = P

{
n∑

k=1

er(t−V I
k,t)Xk ≤ x

}
. (19)

Substituting (19) into (18), we have

FS̃I
t
(x) =

∞∑
n=0

e−Λ(t) (Λ(t))n

n!
F ∗n

X̃I
t
(x).
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Definition 6. Let X̃∆J
k,t be thek-th increment of recovery compounded by the interest rate in the case the

number of recoveries follows a piecewise homogeneous Poisson processN
λ∆J
t ,

X̃∆J
k,t = er(t−V

∆J
k,t )Xk,

whereV ∆J
1,t , V

∆J
2,t , · · · , V

∆J
n,t are random variables with the probability density functionλJ (u)

Λ∆J
(t) whereu ∈

(0, t].

We will prove that the increment of recovery with interest effect with a piecewise homogeneous Poisson
processX̃∆J

t converges weakly to the increment of recovery with interest with an inhomogeneous Poisson
processX̃I

t in the following lemma.

Lemma 5.3. If λ(t) is Riemann integrable on[0, T ], and if |λ∆J
(t)| ≤ g(t) holds for allJ a.s. such that∫ t

0 g(u)du <∞, then

X̃∆J
k,t

w−→ X̃I
k,t as |∆J | → 0 (J → ∞)

Proof. It follows from the dominated convergence theorem that for∀t ∈ [0, T ],

F
X̃

∆J
t

(x) =
1

Λ∆J
(t)

∫ t

0
FX

(
xe−r(t−u)

)
λ∆J

(u)du

→ 1
Λ(t)

∫ t

0
FX

(
xe−r(t−u)

)
λ(u)du as |∆J | → 0 (J → ∞)

= FX̃I
t
(x).

Definition 7. Let S̃∆J
t be a piecewise homogeneous compound Poisson process with the intensityλ∆J

,

S̃∆J
t =

N
λ∆J
t∑

n=1

er(t−U
λ∆J
n )Xn,

where
{
U

λ∆J
n : n ≥ 1

}
are the sequence of jump points of a piecewise homogeneous Poisson processN

λ∆J
t ,

{Xn : n ≥ 0} follow Assumption4, and{Xn : n ≥ 0} andN
λ∆J
t are independent.

We will prove the piecewise homogeneous compound Poisson processS̃∆J
t converges weakly to the

inhomogeneous compound Poisson processS̃I
t .

Theorem 5.4. If λ(t) is Riemann integrable on[0, T ], and if |λ∆J
(t)| ≤ g(t) holds for allJ a.s. such that∫ t

0 g(u)du <∞, then

S̃∆J
t

w−→ S̃I
t on [0, T ] as |∆J | → 0 (J → ∞). (20)

Proof. Using the consequence of Lemma5.3, For fixedt ∈ [0, T ] we obtain

F
S

∆J
t

(x) =
∞∑

n=0

e−Λ∆J
(t) (Λ∆J

(t))n

n!
F ∗n

X̃
∆J
t

(x)

→
∞∑

n=0

e−Λ(t) (Λ(t))n

n!
F ∗n

X̃I
t
(x) as |∆J | → 0 (J → ∞)

= FSI
t
(x).

Because the increment of recovery is independent, the finite dimensional distribution converges weakly.
Similarly as Theorem5.1, (20) holds.
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5.3 Calculation Method for Piecewise Homogeneous Compound Poisson Process

We present the method of calculating the probability function of a piecewise homogeneous compound Pois-
son process by the absorbing Markov chain. In order to use the absorbing Markov chain, we assume the
following.

Assumption 11. The increment of recovery has discrete distribution or discretized continuous distribution.
We set0 = h0 < h1 < h2 < · · · < hL = DerT and assumeP {X = hl : l ∈ {0, 1, 2, · · ·L}} = 1 where
L <∞.

We set

X (x) = {x1, x2, · · · , xJ : xj ≥ 0 for all j, x1 + x2 + · · · + xJ = x} .

We noteS̃∆J
T is Markov, and if lender recoveriese−r(T−tj)xj at tj , it will increase toxj at T with

interest effect. Thus if in the each of sub-intervalTj , lender recoverse−r(T−tj)xj (increment of recovery
in each sub-interval ise−r(T−tj)xj) respectively, the cumulative recovery atT is x = x1 + x2 + · · · + xJ .
Therefore for fixedΞ = {ξ1, ξ2, · · · , ξJ} whereξj is arbitrary chosen in each intervalTj ,

P
{
S̃∆J

T = x
}

= P


N

λ∆J
T∑

n=1

er(T−U
λ∆J
n )Xn = x


= P


N

λ(ξ1)

(0,t1]∑
n=1

er(T−U
λ(ξ1)
n )Xn +

N
λ(ξ2)

(t1,t2]∑
n=1

er(T−U
λ(ξ2)
n )Xn + · · ·

+

N
λ(ξJ )

(tJ−1,tJ ]∑
n=1

er(T−U
λ(ξJ )
n )Xn = x


=
∑
X (x)

P
{
S̃

λ(ξ1)
(t0,t1] = e−r(T−t1)x1

}
P
{
S̃

λ(ξ2)
(t1,t2] = e−r(T−t2)x2

}
· · ·P

{
S̃

λ(ξJ )
(tJ−1,tJ ] = xJ

}
where

{
U

λ(ξj)
n : n ≥ 1

}
are the sequence of jump points ofN

λ(ξj)

(tj−1,tj ]
which is the homogeneous Poisson

process on the interval(tj−1, tj ] with the intensityλ(ξj), andS
λ(ξj)

(tj−1,tj ]
is the homogeneous compound

Poisson process on the interval(tj−1, tj ] with the intensityλ(ξj).

For calculatingP
{
S∆J

T = x
}

, we use inhomogeneous Markov chain. Letql,tj ,T be the transition kernel

from tj−1 to tj with the last recovery possible timeT .

ql,tj ,T =

P
{
S̃tj = er(T−tj)hl+l′

∣∣∣∣S̃tj−1 = er(T−tj−1)hl′

}
, l ≥ 0,

0, l < 0,

and the transition matrix fromtj−1 to tj be

Qtj ,T
L×L

=


q0,tj ,T q1,tj ,T q2,tj ,T · · · 1 −

∑L−1
l=0 ql,tj ,T

0 q0,tj ,T q1,tj ,T · · · 1 −
∑L−2

l=0 ql,tj ,T

0 0 q0,tj ,T · · · 1 −
∑L−3

l=0 ql,tj ,T

0 0 0
...

...
0 0 0 · · · 1

 .
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Let the probability transition vector att0 andtj represent as follows,

PS̃t0
L×1

= (1, 0, · · · , 0)⊤ ,

PS̃tj ,T =
(
P
(
S̃tj = 0

)
, P
(
S̃tj = e−r(T−tj)h1

)
, · · · , P

(
S̃tj = e−r(T−tj)hL

))⊤
.

Because the increment of recovery is independent, we obtain the probability function attJ is

P⊤
S̃tJ

,T
= P⊤

S̃t0
Qt1,T Qt2,T · · ·QtJ ,T .

5.4 Numerical Procedure

We present numerical procedure for calculating the probability function of the cumulative recovery which
follows the piecewise inhomogeneous compound Poisson process modelS̃∆J

T .

(a) Split the interval(0, T ] into sub-intervals(t0, t1], (t1, t2], · · · , (tJ−1, tJ ] where0 = t0 < t1 < t2 <
· · · < tJ = T .

(b) CalculateP
{
S̃

λ(ξ1)
(t0,t1] = er(T−t1)hl

}
= ql,t1,T , l ∈ {0, 1, 2, · · · , L} by Panjer recursion formula or

the fast Fourier transformation.

(c) Make the transition matrixQt1 by the consequence of (b).

(d) Similarly, calculateQt2 ,Qt3 , · · · ,Qtk .

(e) Make vectorPS̃t0
= (1, 0, · · · , 0)⊤ and calculateP⊤

S̃tJ
,T

= P⊤
S̃t0

Qt1Qt2 · · ·QtJ .

5.5 Monte Calro Simulation

In this section, we present the procedure for calculating the expectation and the variance of recovery rate by
using the Monte Carlo simulation.

In the cace intensity functionλ(t) is bounded by a constantλ, Glasserman(2004) andČı́žek, Ḧardle
and Weron(2005) mention the procedure for calculating the jump points of an inhomogeneous Poisson
process by using the Monte Carlo simulation. They call it thinning method. By applying thinning method,
we propose the procedure for calculating expectation and variance of an inhomogeneous compound Poisson
process on[0, T ]. This procedure is as follows.

(a) Generate jump timesUn of NT , whereNT is the homogeneous Poisson process with the intensityλ
on [0, T ].

(b) For eachn, generateΥn which is uniformly distributed on[0, 1].

(c) For eachn, if Υnλn < λ(Un) then acceptUn as a jump point ofN I , obtainingU I
1 , U

I
2 , · · · , U I

m

which is the sequence of the jump points ofN I wherem ≤ n.

(d) Generate the increments of recoveriesX1, X2, · · ·Xm from i.i.d. distributionFX .

(e) Calculate

RT =

{∑m
k=1 er(T−Uk)Xk

erT D
if
∑m

k=1 e
r(T−Uk)Xk < erTD

1 if
∑m

k=1 e
r(T−Uk)Xk ≥ erTD.

(21)
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(f) Repeat (a)-(e)N times and obtainR1,T , R2,T , · · · , RN ,T . CalculateE[Rt] =
∑N

i=1 Ri,T

N andV ar(Rt) =∑N
i=1 R2

i,T

N −
(∑N

i=1 Ri,T

N

)2

.

6 Numerical Result

In this section, we calculate the expectation and the standard deviation of the modified survival value of the
debt and recovery rate which are derived in Theorem3.1, Proposition3.2and Corollary3.3, by two kinds of
the method based on Panjer recursion formula and the fast Fourier transformation respectively. Parameters
without the increment of recovery are as follows.

λ : the intensity of the number of recoveries

T : the last recovery possible time

r : interest rate

D : the initial value of the debt

We setλ = 5, T = 1, r = 0.05, D = 10.
Also we illustrate discretization. We split the interval[0, DerT ] into 100 sub-intervals. Leth be the

length of sub-intervals andh = DerT

100 by the rounding method at mid-point in Section4.2.1. Thish andh
in Section4.2.1are the same.

6.1 Exponential Distribution

In this section, we suppose the increment of recovery has exponential distribution with meanθ. We set
θ = 2. We calculate the expectation and the standard deviation of the modified survival value of the debt
and recovery rate by Panjer recursion formula and the fast Fourier transformation. Regardless of numerical
methods, numerical results are almost the same. But the numerical speed by Panjer recursion formula is
much faster than that by the fast Fourier transformation. Each Figure4, Figure5, Figure6, Figure7 and
Figure8 shows the trajectory of the expectation and the standard deviation of the survival value of the debt
by changing each of the parameters. Similarly each Figure9, Figure10, Figure11, Figure12and Figure13
shows those of recovery rate.

Table1 shows the expectation and the standard deviation of the modified survival value of the debt and
recovery rate in the case parameters areθ = 2, λ = 5, T = 1, r = 0.05, D = 10.

Table2 demonstrates average time for spent on calculating the expectation and the standard deviation
of the modified survival value of the debt by Panjer recursion formula algorithm and by the fast Fourier
transformation algorithm. In order to calculate them, we use a personal computer with CPU Intel core 2
quad 2.4GHz, memory 4GB, OS Windows Vista, and software R.

Figure2 and Figure3 illustrate histogram of cumulative recovery rate as a function ofT . According
to Figure2 and Figure3, cumulative recovery rate is increasing in progress of time and has a bimodal
distribution in early time of recovery.

E[MT ] SD(MT ) E[RT ] SD(RT )
Panjer recursion formula 2.702981 3.139094 0.742884 0.298600
fast Fourier transformation 2.702981 3.139094 0.742884 0.298600

Table 1:Numerical results for parametersθ = 2, λ = 5, T = 1, r = 0.05, D = 10.
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time
Panjer recursion formula 0.0653
fast Fourier transformation 20.9139

Table 2:Average time (second) spent on calculating the expectation and the standard deviation of the modi-
fied survival value of the debt by Panjer recursion formula algorithm and by the fast Fourier transformation
algorithm in 100 trials.
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Figure 2: The histogram of cumulative recovery rate as a function ofT for parametersθ = 2, λ = 5,
r = 0.05,D = 10.

18/31



0.1

0.6

1.1

1.6

2.1
2.6

3.1
3.6

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0% 12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5% 100.0%

time

cumulative 
recovery rate

relative
frequency

Figure 3: The histogram of cumulative recovery rate as a function ofT for parametersθ = 1, λ = 5,
r = 0.05,D = 10.
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Figure 4:The expectation and the standard deviation
of the modified survival value of the debt as a func-
tion of θ for parametersλ = 5, T = 1, r = 0.05,
D = 10.
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Figure 5: The expectation and the standard devia-
tion of the modified survival value of the debt as a
function of λ for parametersθ = 2, T = 1, r =
0.05, D = 10.
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Figure 6: The expectation and the standard devia-
tion of the modified survival value of the debt as a
function of T for parametersθ = 2, λ = 5, r =
0.05, D = 10.
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Figure 7:The expectation and the standard deviation
of the modified survival value of the debt as a func-
tion of r for parametersθ = 2, λ = 5, T = 1, D =
10.
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Figure 8:The expectation and the standard deviation
of the modified survival value of the debt as a func-
tion of D for parametersθ = 2, λ = 5, T = 1, r =
0.05.
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Figure 9:The expectation and the standard deviation
of recovery rate as a function ofθ for parametersλ =
5, T = 1, r = 0.05, D = 10.
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Figure 10:The expectation and the standard devia-
tion of recovery rate as a function ofλ for parameters
θ = 2, T = 1, r = 0.05, D = 10.
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Figure 11:The expectation and the standard devia-
tion of recovery rate as a function ofT for parame-
tersθ = 2, λ = 5, r = 0.05, D = 10.
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Figure 12:The expectation and the standard devia-
tion of recovery rate as a function ofr for parameters
θ = 2, λ = 5, T = 1, D = 10.
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Figure 13:The expectation and the standard devia-
tion of recovery rate as a function ofD for parame-
tersθ = 2, λ = 5, T = 1, r = 0.05.

6.2 Pareto Distribution

In this section we compare the case the increment of recovery has exponential distribution withθ, with the
case it has Pareto distribution withα, β. We set parameters as follows.

θ = 2
α = 4.475
β = 7.234

Figure14illustrates the difference one minus probability distribution function of exponential distribution
with θ = 2 and that of Pareto distribution withα = 4.475, β = 7.234. Figure14shows that the right tail of
the difference one minus Pareto distribution function is fatter than that of exponential. It means that there is
higher possibility of very large increment of recovery in the case increment of recovery has Pareto one.

Each Figure15, Figure16and Figure17shows the expectation and the standard deviation of the survival
value of the debt as a function of each parameter in two cases: the increment of recovery has exponential
distribution and it has Pareto distribution. Similarly each Figure18, Figure19 and Figure20 show those of
recovery rate.
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Figure 14:Exponential distribution withθ = 2 and Pareto distribution withα = 4.475, β = 7.234.
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Figure 15: Expectation and standard deviation of
modified survival value of debt in the case increment
of recovery has an exponential distribution and in the
case it has a Pareto distribution, as a function ofT
for parametersλ = 5, r = 0.05, D = 10, θ = 2, α =
4.475 andβ = 7.234.
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Figure 16: Expectation and standard deviation of
modified survival value of debt in the case increment
of recovery has an exponential distribution and in the
case it has a Pareto distribution, as a function ofr for
parametersλ = 5, T = 1, D = 10, θ = 2, α =
4.475 andβ = 7.234.
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Figure 17: Expectation and standard deviation of
modified survival value of debt in the case increment
of recovery has an exponential distribution and in the
case it has a Pareto distribution, as a function ofD
for parametersλ = 5, T = 1, r = 0.05, θ = 2, α =
4.475 andβ = 7.234.
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Figure 18: Expectation and standard deviation of
recovery rate in the case increment of recovery has
an exponential distribution and in the case it has a
Pareto distribution, as a function ofT for parameters
λ = 5, r = 0.05, D = 10, θ = 2, α = 4.475 and
β = 7.234.
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Figure 19: Expectation and standard deviation of
recovery rate in the case increment of recovery has
an exponential distribution and in the case it has a
Pareto distribution, as a function ofr for parameters
λ = 5, T = 1, D = 10, θ = 2, α = 4.475 and
β = 7.234.
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Figure 20: Expectation and standard deviation of
recovery rate in the case increment of recovery has
an exponential distribution and in the case it has a
Pareto distribution, as a function ofD for parameters
λ = 5, T = 1, r = 0.05, θ = 2, α = 4.475 and
β = 7.234.

6.3 Inhomogeneous Case

We calculate the probability function, the expectation, and the standard deviation of cumulative recovery
rate in the case the number of recovery has the inhomogeneous intensity. We set the intensity function as
follows

λ(t) = 5e−t, (22)

and other parameters isT = 1, r = 0.05, D = 10, and the increment of recovery has exponential distri-
bution with θ = 2. For calculation, in the procedure (b) in Section5.3, we setλ(ξj) = λ(tj−1) which
is left endpoint (and also upper bound in this case) of each sub-interval. Figure21 shows (22). Figure22
shows the expectation and the standard deviation of cumulative recovery rate in two case: homogeneous
compound Poisson model and inhomogeneous compound Poisson model. Figure23and Figure24 illustrate
the histogram of cumulative recovery rate as a function ofT .

We also calculate recovery rate by using Monte calro simulation and compare the result of the piecewise
homogeneous compound Poisson approximation on computational speed and accuracy. We use the same
personal computer in Section6.1to calculate them. Table3 and Table4 show the computational results and
speed for calculating recovery rate by the two methods.
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E[RI
t ] SD(RI

t )

PHCPA
J =100 0.541484 0.338744
J =400 0.539878 0.338791
J =1000 0.539557 0.338800

Monte Calro simulation
N =100000 0.539367 0.338809
N =300000 0.539238 0.338801
N =500000 0.539371 0.338807

Table 3: Numerical results for parameterθ = 2, T = 1, r = 0.05, D = 10 and the intensity function
λ(t) = 5e−t by the piecewise homogeneous compound Poisson approximation (PHCPA) and the Monte
Calro simulation in 100 trials.J is the number of sub-intervals andN is the number of simulations.

time

PHCPA
J =100 6.5952
J =400 25.8279
J =1000 64.7437
N =100000 25.3095

Monte Carlo simulation N =300000 76.9649
N =500000 127.0603

Table 4:Average time (second) spent on calculating the expectation and the standard deviation of recovery
rate for parameterθ = 2, T = 1, r = 0.05, D = 10 and the intensity functionλ(t) = 5e−t by the piecewise
homogeneous compound Poisson approximation (PHCPA) and the Monte Calro simulation in 100 trials.J
is the number of sub-intervals andN is the number of simulations in one trial.
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Figure 21: Intensity Functionλ(t) = 5e−t.

0%

20%

40%

60%

80%

100%

120%

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 22:Expectation and standard deviation of re-
covery rate in two case: homogeneous caseRT and
inhomogeneous caseR′

T . λ = 5, λ(T ) = 5e−T , θ =
2, r = 0.05, D = 10
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Figure 23: Histogram of cumulative recovery rate as a function ofT for parametersθ = 2, r = 0.05,
D = 10, λ(T ) = 5e−T .
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Figure 24: Histogram of cumulative recovery rate as a function ofT for parametersθ = 1, r = 0.05,
D = 10, λ(T ) = 5e−T .
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7 Conclusion

This paper addresses the issue of modeling and calculating the recovery process. The expectation of recovery
rate is increasing function as the increment of recovery, the number of recoveries, the last recovery possible
time and is decreasing function as interest rate and the initial debt amount.

On the calculation of the probability function of the modified survival value of the debt, numerical results
show that Panjer recursion formula algorithm yields as much accurate as the fast Fourier transformation
does. But the calculation by the method based on Panjer recursion formula is much faster than that by the
method based on the fast Fourier transformation.

In the case the intensity is constant as time, the cumulative recovery rate is increasing as time. However
by using the inhomogeneous compound Poisson model, we can demonstrate recovery rate is diminishing as
time. This feature matches Figure 15 ofItoh and Yamashita(2008) which describes the relationship between
empirical cumulative recovery rate and time. In this paper, we suggest the new procedure for calculating the
transition density of an inhomogeneous compound Poisson process by the transition density of a piecewise
homogeneous compound Poisson process. From the numerical experiments, the computational speed and
accuracy of our method is similar to the Monte Calro simulation.

A Homogeneous Compound Poisson Process

A.1 distribution function

In this section we will derive the distribution function of a compound Poisson process. We refer the reader
to Taylor and Karlin(1998) andWu et al.(2005) for the references of the following content.

Let {Un : n ∈ N} be the sequence of jump points of the Poisson processNt with the intensityλ. Let
{Xn : n ∈ N} be independent random variables and have distribution functionFX (density functionfX ).
Nt and{Xn : n ∈ N} are independent. Let̃St denote

S̃t =
Nt∑

n=1

er(t−Un)Xn.

Let FS̃t
be the distribution function of̃St andfS̃t

be the density function of̃St. For t, x > 0, we get

FS̃t
(x) = P

{
S̃t ≤ x

}
=

∞∑
n=0

P

{
n∑

k=1

er(t−Uk)Xk ≤ x

∣∣∣∣Nt = n

}
P {Nt = n}

= e−λt +
∞∑

n=1

P

{
n∑

k=1

er(t−Uk)Xk ≤ x

∣∣∣∣Nt = n

}
(λt)n

n!
e−λt. (23)

GivenNt = n, the joint distribution of{Un : n ∈ N} is the same as that of order statistics ofn uniformly
distributed random variables on(0, t], it follows that

P

{
n∑

k=1

er(t−Uk)Xk ≤ x

∣∣∣∣Nt = n

}
= P

{
n∑

k=1

er(t−Vk,t)Xk ≤ x

}
, (24)

whereV1,t, V2,t, · · · , Vk,t are independently distributed uniform random variables on(0, t], and they are
independent of{Xn : n ∈ N}.
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Substituting (24) into (23), we obtain

FS̃t
(x) = e−λt +

∞∑
n=1

P

{
n∑

k=1

er(t−Vk,t)Xk ≤ x

}
(λt)n

n!
e−λt. (25)

Now we define

X̃k,t , er(t−Vk,t)Xk,

and the distribution function of̃Xt = X̃k,t is

FX̃t
(x) , P

{
er(t−Vk,t)Xk ≤ x

}
=

1
t

∫ t

0
FX

(
xe−r(t−u)

)
du. (26)

Let F ∗n
X̃t

denote then-fold convolution ofFX̃t
,

F ∗n
X̃t

(x) = P

{
n∑

k=1

er(t−Vk,t)Xk ≤ x

}
, t, x > 0. (27)

For t, x > 0, let fX̃t
denote the probability density function of̃Xt. From (26), we get

fX̃t
(x) =

1
t

∫ t

0
e−r(t−u)fX

(
xe−r(t−u)

)
du, t, x > 0. (28)

From (25) and (27), for T, x > 0 we have

FS̃t
(x) = e−λt + e−λt

∞∑
n=1

(λt)n

n!
F ∗n

X̃t
(x), (29)

and

fS̃t
(x) = e−λt

∞∑
n=1

(λt)n

n!
f∗n

X̃t
(x), (30)

wheref∗n
X̃t

is then-fold convolution offX̃t
.

From (29) and (30), we consider̃St as the compound Poisson process with Poisson processNt with the
intensityλ and the increment of recoverỹXt.

B Panjer Recursion Formula and Fast Fourier Transformation

In this section, we present the two methods of calculating the probability distribution of compound Poisson
distribution. One of methods is based on Panjer recursion formula and the other is based on the fast Fourier
transformation.Embrechts and Frei(2008) numerically evaluate two methods. We explain Panjer recursion
formula in SectionB.1 and the fast Fourier transformation in SectionB.2.
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B.1 Panjer Recursion Formula

In this section we explain Panjer recursion formula. Only in the case the number of recoveries is a member
of (a, b, 0)-class and the increment of recovery has non negative distribution, Panjer recursion formula can
be used.

Definition 8. We supposep(n) is the probability function of discrete random variable. It is a member of
(a, b, 0)-class, if there exist constanta, b such that

p(n) =
(
a+

b

n

)
p(n− 1), n = 1, 2, · · · . (31)

(a, b, 0)-class is also called Panjer class.

It has been known that only four distributions i.e. Poisson, binomial, negative binomial and geometric
belong to(a, b, 0)-class. It can be seen that Poisson distribution with the intensityλ satisfies the recursion
and that each value ofa andb is 0 andλ respectively.

If the number of recoveries is a member of(a, b, 0)-class and the increment of recovery has non negative
discrete distribution, the following discrete type Panjer recusion formula can be used. We present the result
of Panjer(1981), for the references also seeKlugman et al.(2004) andPanjer(2006).

Theorem B.1. If N is a member of(a, b, 0)-class and each increment of recoveryXn ∈ N0, then the
recursion formula is

pS(0) = ψN (pX(0)) ,

pS(x) =
1

1 − apX(0)

x∑
y=1

(
a+

by

x

)
pX(y)pS(x− y), x = 1, 2, · · ·

whereN0 = {0, 1, 2, · · · } andψN (u) = E
[
uN
]

is the probability generating function ofN .

If the number of recoveries is a member of(a, b, 0)-class and the increment of recovery has non negative
continuous distribution, the following continuous type Panjer recusion formula can be used.Panjer(1981)
proves the following Theorem.

Theorem B.2. If N is a member of(a, b, 0)-class and the increment of recoveryXn has non negative
continuous distribution function, then recursion formula is

fS(0) = ψN (fX(0)) ,

fS(x) = pN (1)fX(x) +
∫ x

0

(
a+

by

x

)
fX(y)fS(x− y), x > 0, (32)

whereψN (u) = E
[
uN
]

is the probability generating function ofN .

B.2 Fast Fourier Transformation

In this section, we explain the calculation method of the probability distribution function of compound
Poisson distribution by the fast Fourier transformation. A number of studies have been made by the fast
Fourier transformation in actuarial mathematics and finance. We refer the reader toRolski et al.(1999),
Klugman et al.(2004) andPanjer(2006) for the references.

For any integrable functionf(x), the Fourier transformation is defined by

f̂(z) =
∫ ∞

−∞
f(x)eizxdx.
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wherei is imaginary unit. Iff̂(z) is integrable, the original function can be recovered from its inverse
Fourier transform as

f(x) =
1
2π

∫ ∞

−∞
f̂(z)e−izxdz.

Whenf(x) is a probability density function,̂f(z) is its characteristic function.

Definition 9. For some fixedn ∈ N, consider a sequencef0, f1, · · · , fn−1 of arbitrary real numbers. The
discrete Fourier transformation̂fD

k is defined by

f̂D
k =

n−1∑
j=0

fj exp
{

2πi

n
kj

}
, k = 0, 1, · · ·n− 1.

The discrete inverse Fourier transformation is defined by

fj =
1
n

n−1∑
k=0

f̂D
k exp

{
−2πi

n
kj

}
, k = 0, 1, · · ·n− 1.

The fast Fourier transformation is an algorithm that reduces the number of computations for the Fourier
transformation. The procedure for calculating distribution function of the cumulative recovery in the case
the increment of recovery has continuous distribution by the fast Fourier transformation is as follows. We
refer toPanjer(2006) for the following procedure.

(a) Discretize the distribution of the increment of recoveryX using some methods (see Section4.2.1),
obtaining the discretized increment of recovery probability function

pXapp(0), pXapp(1), · · · , pXapp(n− 1),

whereXapp is discretized random variable ofX.

(b) Apply the fast Fourier transformation to this vector of values, obtainingϕXapp(z) , E
[
eizXapp

]
, the

characteristic function of discretized distributionXapp.

(c) Transform this vector using the probability generating function transformation of the number of re-
coveries distribution, obtainingϕSapp(z) , E

[
eizSapp

]
= ψN

(
ϕXapp(z)

)
, which is the characteristic

function, that is, the discrete Fourier transform of the cumulative recovery distribution whereSapp is
discretized approximation ofS.

(d) Apply the inverse fast Fourier transformation, which is identical to the fast Fourier transformation
except for a sign change and division byn. This gives a vector of lengthn values representing the
exact distribution of cumulative recovery for the discrete increment of recovery model.
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