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Abstract

This paper investigates an efficient estimation method for a cointegrating regression
model with structural change. Our proposal is that we first estimate the break point
by minimizing the sum of squared residuals and then, by replacing the break fraction
with the estimated one, we estimate the regression model by the canonical cointegrating
regression (CCR) method proposed by Park (1992). We show that the estimator of the
break fraction is consistent and of order faster than 7-'/2 and that the CCR estimator
with the estimated break fraction has the same asymptotic property as the estimator
with the known break point. Simulation experiments show how the finite sample distri-
bution gets close to the limiting distribution as the magnitude of the break and/or the
sample size increases.
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1. Introduction

Cointegration is among the primary interests of a researcher who investigates the long-run
relationship between economic variables. Single equation methods for testing cointegration
or no cointegration have been developed by Engle and Granger (1987), Phillips and Ouliaris
(1990), and Shin (1994) among others, while a system equation model is considered by
Johansen (1988, 1991), Ahn and Reinsel (1990), Liitkepohl and Saikkonen (2000), Saikkonen
and Liitkepohl (2000a, b), and papers in references of Hubrich, Liitkepohl and Saikkonen

(2001), who give a nice review of system methods.

It is often the case that data collected over relatively long time frames is used in the
investigation of the long-run relationship, and the economic structure may change during
the sample period. For a single or partial equation model, Campos, Ericsson and Hendry
(1996) investigate the effect of structural change on cointegration tests, and Gregory and
Hansen (1996a, b) propose tests for the null hypothesis of no cointegration with possibly one
time structural break. Of importance is that the Gregory and Hansen’s test is robust to the
existence of structural change but the test is not helpful in determining whether structural
change has occurred or not. Thus, once the cointegrating relation with or without structural
change is observed by the test, we need to test for structural change. Hansen (1992) proposes
various tests for the parameter stability and Quintos and Phillips (1993) investigate the LM
test for structural change, while Hao and Inder (1996) regard testing for structural change
as a diagnostic test and develop the CUSUM test. The finite sample properties of Hansen’s
(1992) tests are investigated by Gregory, Nason and Watt (1996) and Hao (1996), and they
are generalized by Han (1996) to the exponential type tests as proposed by Andrews and
Ploberger (1994) and Andrews, Lee and Ploberger (1996). Bai, Lumsdaine and Stock (1998)
investigate testing for one time break and develop statistical inference about the estimator

of the break point.

For a system equation model, tests of the cointegrating rank with a deterministic shift
were developed by Saikkonen and Liitkepohl (2000c), Liitkepohl, Saikkonen and Trenkler

(2003) for a known break point, while the unknown case is treated by Inoue (1999) and



Liitkepohl, Saikkonen and Trenkler (2004). On the other hand, change in cointegrating
vectors is considered by Quintos (1995) for known break points, while tests for structural
change for unknown break points are proposed by Quintos (1997), Seo (1998) and Hansen
and Johansen (1999). Hansen (2003) derives the limiting distribution of the maximum like-
lihood estimator and proposes the likelihood ratio test for parameter restrictions when the
break point and the cointegrating rank are known. Unfortunately, tests for the cointegrat-
ing rank with structural change assume the existence of structural change, whereas tests for
structural change basically require the knowledge of the cointegrating rank. Additionally,
to our best knowledge there is no test for the cointegrating rank with structural change in
cointegrating vectors. Therefore, the system equation approach seems to be limited more
or less when structural change in cointegrating vectors is incorporated in a model. For this

reason, we consider a single equation model in this paper.

For a single equation model, suppose that we observe the cointegrating relation and
structural change by using previously explained methods. If we know the date of structural
change, we can estimate the model efficiently by the canonical cointegrating regression
(CCR) method by Park (1992) and the fully modified regression (FMR) technique by Phillips
and Hansen (1990) and Phillips (1995). However, we often encounter the case where we do
not know the break date, and in this case the natural method for the estimation of the model
is to first estimate the break point and then estimate the parameter in the model using the
estimated break point. Bai, Lumsdaine and Stock (1998) show that the estimator of the
parameter with the estimated break point has the same limiting distribution as the estimator
with the known break point, assuming that the error term is independent of all leads and
lags of the regressors. However, this assumption seems too restrictive for a cointegrating
regression model because we often observe and commonly assume correlation between the
error term and the regressors in a model. In this case, we cannot apply their result and
are then required to find different methods to estimate the model with the unknown break

point.

In this paper, we investigate the estimation method under the general assumptions that



first, the error term is correlated with leads and lags of the regressors, and second that the
break point is unknown. We propose to estimate the break point at first by minimizing the
sum of squared residuals (SSR) and then, using the estimated break fraction, to estimate the
model by the CCR method of Park (1992). We show that the estimator of the break fraction
is consistent and of order faster than 7-/2. Although this order may not be sharp, this is
enough for us to derive the asymptotic distribution of the estimator of the parameter. Since
the limiting distribution is shown to be a mixed normal, we can test parameter restrictions

by constructing the Wald type test statistic, which converges to a chi-square distribution.

The structure of this paper is as follows. Section 2 explains the model and assumptions.
In Section 3 we first derive the CCR estimator with the known break point. We then inves-
tigate the asymptotic property of the estimator of the break fraction. Using this estimated
break fraction, we estimate the regression model by the CCR method and show that the
estimator of the parameter has the same limiting distribution as the CCR estimator with
the known break point. Section 4 gives the finite sample property of the estimator. Section

5 concludes the paper.

2. A Model and Assumptions

Let us consider the following cointegrating regression model,

it = 1+ peeir, + By + B5y2prn, + vit (1)

/
= bz, +v18,

for t = 1,---,T, where {y1;} and {yo;} are one and m dimensional stochastic sequences,
©ir, 1s a step function such that @i, = 0 for ¢t < [T'7,] and ¢y, = 1 for t > [T'1,],
b= [u1, 2, By, B3] and @ir, = [1, @tr,, Yop, Yortr,)'- Let ve = [vig, vy,]” where vy = Ayay,
and define its long-run variance as = limp T~ 'F [VrVi}] where Vi = Zle v¢. We partition

Q conformably with v; as
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We also define
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where I' is partitioned conformably with v,.

We employ the following set of assumptions throughout the paper.

Assumption 1 (a) yo is a fized or a random vector with E[yo] < oo and independent of T'.
(b) {v} is mean-zero and strong mizing with mizing coefficients of size —pa/(p — a) and
E|v| < 0o for some p > a > 5/2.

(¢) The matriz Q0 exists with finite elements, > 0, wi1 > 0, and Qg > 0.

(d) The break fraction 1, is constant and 7, € T = |1, 7] for known 0 <7 < 7 < 1.

(e) Bo = Por = T=1/28,, where Bay is a fized vector.

Assumption (a) gives the initial value condition such that yy does not affect the asymp-
totic theory derived in the following sections. Assumptions (b) and (c) ensure that the
functional central limit theorem (FCLT) holds for the partial sum process of {v;}, so that

(Tr]

T—1/2;Ut = B(r) = l g:g;; ] 7711 :
where B(r) is an (m + 1) dimensional Brownian motion with the variance matrix 2 and =
signifies weak convergence of the associated probability measures. The positive definiteness
of Q99 excludes the case where yy; is cointegrated. Assumption (d) is standard for a struc-
tural break model. Assumption (e) is used to derive the convergence rate of the estimator
of the break fraction. Strictly speaking, this assumption is not necessary for our asymptotic
theory because we will not derive the limiting distribution of 7, the estimator of the break
fraction. However, as will be discussed in the next section, if we assume that 35 is fixed, the
asymptotic property of 7 will be determined only by yo; and a constant term will no longer
play an important role for estimation of 7. (e) is assumed so that both a constant and the

I(1) regressors are effective in the estimation of the break point.



3. The CCR Estimator with Structural Change

Our strategy for estimation is that we first obtain the estimate of the break point by mini-
mizing the SSR and then estimate (1) by the CCR method using the estimated break point.
We will show that the CCR estimator with the estimated break point has the same limiting
distribution as the CCR estimator with the known break point. Note that, although the
following explanation proceeds based on the CCR method, we can easily apply our result to
the fully modified regression (FMR) technique by Phillips and Hansen (1990) and Phillips
(1995). The difference between the CCR and the FMR methods resides in how to correct
serial correlations. See Phillips and Hansen (1990) and Park (1992) for details.

3.1. The CCR method with a known break point

First, we briefly explain the CCR method for a known break point. It consists of two
separate step estimations. The first step is to estimate (1) by OLS regression. Let 1370 =
[/llfo,ﬂ%o,/éi%,@é%] be the OLS estimator of b and 914, be the OLS residual. Using b,,

and 0147, we construct variables y7,, and y3,, as

* o A ™ os—1 A =1 ~ 1 A—1 ~ * _ " x—1n
Yitr, = ylt_(ﬁlro 27027'0 +ﬁ2'ro 270270 (Ptro+[0,W217—092270])'Ut7—0, Yotr, = yQt_F2TDETO Vi,

where 0y, = [014r,, Ayy) and f‘QTO, 2‘70, w21r,, and QQQTO are consistent estimators of I'o,
3., wo1, and §299 that are defined below. Then, the CCR estimator is obtained by regressing

* *
yltTo on y2tTo ’

gl % *
Yitr, = b’ToxtTo + €ty (2)

where z}. = [1, Qir,, Ysir,» Yoiz, Piro) - We denote the CCR estimator and the estimated

residual as b7 and éf, .

The long-run matrices are estimated by

T ‘ T—j
ZTO = T_l Z @t’ro’[]?/f’ro? ATO = T_1 Z k(]/ﬁ) Z ﬁtToﬁt‘i‘jTo?
t=1 j t=1

Jj=1

~

f‘ﬂ, = 27-0 + AToy QTO = 2A]TO + ATD + A;O)

and k(j/¢) is a kernel function that satisfies the following restrictions.



Assumption 2 (a) k() is a continuous and even faction with |k(-)] < 1, k(0) = 1 and
22 K (z)dx < oo.
(b) £ goes to infinity as n — oo and £ = o(T/?).

Assumption 2 suffices to guarantee the consistency of ATO, f‘Ta, and QTO, and many well
known kernels such as the Bartlett and the quadratic spectral kernels satisfy this assumption.
See, for example, Andrews (1991).

The asymptotic distribution of Bio is given by the following proposition, which can be

proved in exactly the same way as Park (1992). Since this is the case, we omit the proof.

Proposition 1 Let Assumptions 1 (a)-(d) and Assumption 2 hold. Then, as T — oo,

Dr(iz, -5 - ( / X, ()X, (r)dr ) /XTO JdByo(r), (3)

where Dy = diag{T"/?, T2, T I,,,T I,}, X.. (1) = [1, r, (1), Ba(r)', Bo(r) 05, (1), ©r,(T)
is a step function on [0, 1] such that @, (r) = 1{r > 75} with 1{-} being an indicator function,
and By.o(r) = By (r) — why Qo Ba(r).

As discussed in Park (1992), the Wald test statistic based on the CCR estimator has an
asymptotic chi-square distribution because (3) is a mixed normal distribution. For example,

let us consider the general hypothesis of the form
Hy: g(b)=0

where ¢(-) is a continuously differentiable ¢ dimensional vector. Assume that G(b) =
Ag(b)/0V is of rank g. Then, from Proposition 1, we can see that
T -1 -1
wrb;,) = g(@) {@i‘.znG(fﬁo) <; xi‘fﬂfﬂo) G(Bii)} 9(b7,) (4)

d 2
— Xg»

where Wy, is a consistent estimator of the long-run variance wy.o, which can be constructed

using the CCR error €, in the same way as the nonparametric estimator of (2.



3.2. The CCR method with an unknown break point

Regressions (1) and (2) are infeasible in practice because we do not know the true break
point. A feasible method is that we first estimate the break point and then estimate the

model using the estimated break point by the CCR method.

In the framework of cointegrating regressions, Bai, Lumsdaine and Stock (1998) inves-
tigated the quasi-maximum likelihood estimator of the break point and they derived the
limiting distribution of the estimator. Ome of the important assumptions in their paper
is that the disturbance v;; must be independent of the regressors for all leads and lags
(Assumption 3.2 in Bai, Lumsdaine and Stock, 1998). However, it is apparent that this
assumption is not satisfied in our model, and we cannot apply their result. Therefore, we
must investigate the asymptotic behavior of the estimator of the break point under general

assumptions.

Let us consider a feasible version of the regression (1)

yie = b'wer + 0147, (5)

where 7 € T and vy = v1y — V' (24 — 247,). Let b, and 914 be the OLS estimator of b and
the regression residual. The estimator of the break point is obtained by minimizing the sum

of squared residuals in (5), or equivalently, the estimator of the break fraction is given by
r= inf S ,
# = arg inf 57(r)

where Sp(7) = T7! Zthl 9%,,. We first give the consistency of 7 by the following proposition.

Proposition 2 Let Assumptions 1 (a)-(e) hold. Then, + -2 7.

Assumption 1 (e) implies that the magnitude of the break for yo; shrinks to zero as
T goes to infinity and is of order 7-/2. It is not difficult to see that Proposition 2 holds
without Assumption 1 (e). The reason we assume Assumption 1 (e) is that, if 35 is supposed
to be fixed, yo;: asymptotically dominates the other terms in the objective function and the

asymptotic property of 7 will be determined only by the behavior of ys;. Assumption 1 (e)



is supposed so that both a constant and yo; have the same importance for determining the

asymptotic behavior of the estimator. See also Bai, Lumsdaine and Stock (1998).

Once the consistency of 7 is obtained, we can restrict the parameter space of 7 to only
the vicinity of 7, that shrinks to 7,. Details are given in the appendix. By considering the

shrinking parameter space, we can prove the next proposition.

Proposition 3 Let Assumptions 1 (a)-(e) hold. Then, T'/?(+ —1,) = 0.

Proposition 3 implies that 7 converges in probability to 7, of order faster than T-1/2,

This convergence rate is slower than that obtained by Bai, Lumsdaine and Stock (1998) and
the result in Proposition 3 may not be sharp. However, our purpose is not to derive the
limiting distribution of the estimator of the break fraction but to obtain a feasible method
of statistical inference about regression coefficients when the break point is unknown. The
convergence rate given by Proposition 3 is enough for us to obtain such a feasible method

and we do not pursue a sharp rate of 7 under general assumptions.

To construct the CCR estimator we need the estimators of the long-run variances. In
exactly the same way as the known break point case, we construct XA]%, f\%, f%, and Q% by
replacing ¢, by 04z = [0147, Ayh,)'. The following proposition shows that these estimators

are consistent.

Proposition 4 Let Assumptions 1 (a)-(e) and Assumption 2 hold. Then, S, As, T2, and

~

Q> converge in probability to X, A, I', and Q, respectively.

We are now in a position to construct the CCR estimator using the estimated break
point, 7. Let yj;; and y5,. be defined in the same way as yj;, and y3,, wusing 7. The
feasible CCR estimator, 67”—, is obtained by regressing yj,» and y3,.. The following is the

main theorem in this paper.

Theorem 1 Let Assumptions 1 (a)-(e) and Assumption 2 hold. Then,

Dr(b; - b,) == 0.



Theorem 1 implies that the CCR estimator with the estimated break point has the
same limiting distribution as the estimator with the known break point. Then, even if we
construct the Wald test statistic for Hy using the feasible CCR, estimator, it converges in

distribution to a chi-square distribution with ¢ degrees of freedom, that is,

1 -1

T
Wr(b7) = g(b3){ @1.2:G(b7) (Zw;w;‘%) GOF)p  g(b7)
t=1
d
LN Xg-

To conclude this section, we consider the extension of the model (1) in several directions.
For example, we may be interested in a partial change of the parameters. In this case, we
can eagsily see that all of the results in the paper are established in exactly the same manner.

We may also want to include a linear trend as a regressor,

Y1t = p1 + poptr, + dit + dotorr, + B1yar + BoYarpir, + Vit

Again, the propositions and the theorem can be shown to hold for this model. In this case,
D7 is defined as Dy = diag{Tl/Q,T1/2,T3/2,T3/2,T I,,T I,,} and the definition of X,
in (3) should be changed appropriately. Seasonal constants may be of particular interest
for some researchers and they may be included. In any case, although the expression (3)
of the limiting distribution should be changed, the Wald statistic still has an asymptotic

chi-square distribution and we can make statistical inferences about regression coefficients.

4. Finite sample evidence

In this section, we investigate finite sample properties of the feasible CCR estimator and
the Wald test statistic proposed in the previous section. We consider the following data
generating process:

Y1t = p1 + H2ptr, + Bryae + Beyarpir, + vit, (6)

vy = Av1 + &y,

where yo; is a one dimensional unit root process, vy = [v1s, Ayar], A = diag{a,a}, and

{et} ~ NID(0,13). Weset uy =0, 81 =1, a = —0.6, 0, or 6, and the sample size is 100,



300 or 500. The break fraction 7, is set to be 0.5 for all experiments. The values of 2 and
(2 are selected as follows. First, we regard d = ug + 2 X {Var(ygt)}l/ 2 as a measure of the
magnitude of the change. We also note that variation in y; 441 given y1; is v2 441 + V1,141
for all t if structural change does not occur at ¢ and its standard deviation is given by
{Var(va 41+ v17t+1)}1/2 = 21/2 when v is an i.i.d. sequence. We choose o and s so that
the magnitude of the break, d, becomes approximately equal to s x 21/2 for s = 0.5, 1, 2, or
3att=T7,+1. According to this rule, we set {u2, G2} = {0.35,0.05}, {0.7,0.1}, {1.4,0.2},
and {2.1,0.3}, which correspond to the cases where "= 100 and s = 0.5, 1, 2, and 3. The
same sets of values are also used for T' = 300 and 500 to see the effect of the sample size on

the finite sample property.

First, we see the finite sample distributions of the estimates of §; and 5. Figure 1 shows
the probability density functions (pdf) of (3, — 1) and T(32 — (32) for a = 0, each of which
is drawn based on 100,000 replications. We can see that the pdf has fatter tails for each
case when the magnitude of the break is smaller. The finite sample distribution approaches
the limiting distribution as the magnitude of the break becomes larger, and the pdf with
the known break point is closest to the limiting distribution. As expected, the finite sample
distribution approaches the limiting distribution when the sample size is large. We can also
see that the pdf of Bg is not as close to the limiting distribution as the pdf of Bl- This is
because (31 is estimated using the whole sample period, while 35 is estimated using only the
observations after the break point. As a whole, more than 300 observations are required to
approximate the finite sample distribution by the limiting one when the magnitude of the
change is very small (s = 0.5).

The above property is preserved when a = 0.6 and a = —0.6, but the finite sample
distribution is slightly closer to the limiting one for a = 0.6 compared with the case when
a = 0, while the difference between the finite and the limiting distributions is slightly larger
when a = —0.6 than the case when a = 0 (we do not draw the pdfs when a # 0 to save
space).

Next, we investigate the size and power of the Wald test statistic. We consider the null

10



hypothesis of Hy : B1 = b and construct the test statistic. We set b = 1 to see the size of
the test, while it is set to be 1.01, 1.05, and 1.1 to investigate the power of the test. The

level of significance is 0.05 and the number of replications is 5,000 in all experiments.

Table 1 summarizes the results of the simulations. When the break point is known, the
size of the test is close to the nominal one when a = 0, but the test suffers from size distortion
when a = 0.6. As expected from Figure 1, the size of the Wald statistic with the estimated
break point approaches the known break point case as the magnitude of the break is larger.
Regarding power, the test becomes more powerful when |b1, — 1| increases. Although we
must be cautious of the comparison of the power for different settings of parameters, the

power property of the test does not seem to depend significantly on the value of a.

We also investigate the size and power of the Wald test for bs. The performance of the
test under the null hypothesis is similar to the test of by, but the test of by is less powerful

than that of b; (we do not report this result to save space).

5. Conclusion

In this paper we proposed to estimate the cointegrating regression model with structural
change by the CCR. estimation technique with the break point replaced by the estimated
one. We first estimated the break fraction by minimizing the sum of squared residuals, and
this estimator was shown to converge in probability to the true break fraction at a rate faster
than T7/2. We found that the feasible CCR estimator converges in distribution to a mixed
normal distribution, so that the Wald test statistic based on it is asymptotically chi-square
distributed. By Monte Carlo simulations, we showed that the finite sample distribution of
the estimator approaches the limiting distribution as the magnitude of the break and/or the

sample size becomes larger.

It might be possible to obtain an efficient estimator by other methods such as the dy-
namic OLS (DOLS) method used by Saikkonen (1991) and Stock and Watson (1993), which
estimates the model by adding leads and lags of the first differences of the I(1) regres-

sors, where the lag length goes to infinity as T' — oo. Since the number of the regressors

11



changes depending on the sample size, much would be required to obtain the results given

by Propositions 2 and 3.
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Appendix

Without loss of generality we shall assume that 17, and T'7 are integers in this appendix.
Proof of Proposition 2: We need to show that P(|7 — 7, > ¢) — 0 for every € > 0.
Noting that

Pt =1 >¢) = P( inf Sp(7) < inf ST(T)>

T€T\d(¢) TES(g)
< P wf S Sr(r) | 7
< (TE%%&(&) () < Sr(T. )) (7)

where 6(¢) = {7 : |1 — 75| < €}, it is sufficient to show that the right-hand side in (7)

converges to zero.

The following lemma gives the limiting distribution of the OLS estimator of b.

Lemma 1 When 7 = 1,,

. 1 -1 1
Drlbr, =0 = ([ X )Xt,0)dr) ([ X 0)aBar) + 0,090, (1= mip} ) = s,
®
while for T # 1,,

1
T2 D (b, — b) = — ( /0 1 XT(T)X;(r)dr> /0 XA (VXL (dr b = (9)
where V Xor(r) = [pr(r) — o7, (1), By(r) (- (1) — ¢r,(r)]" and by = [u2, B5,]"-

Proof of Lemma 1: (8) is obtained in the same way as Park and Phillips (1988). To prove
(9), note that

-1

T T
T2Dy(by — b) = <DT1 thTx;TD;) (T_I/QDTl > xt7v1t7> . (10)
t=1

t=1

Using the FCLT and the continuous mapping theorem (CMT), we have D' 337, a4, 2. Dyt =
fol X (r)XZ(r)dr uniformly over 7. On the other hand, the term in the last parentheses on
the right hand side of (10) becomes

T
—-1/2 -1
T /DT thrvltr
t=1

17



/

T T T T
= |T7! Z v1er, T71 Z Vitriprr, T2 Z Yhvier, T3/ Z YoUirper | - (11)
t=1 t=1 t=1 t=1

Since

/
Vigr = V1t — by Vo,

where Vo, = [01r — @try, T2y (01r — p1r, )], we have

[Tr] [Tr] [Tr]
71 Z Vitr = 7! Z U1t — bIQTil Z Vzar (12)
t=1 t=1 t=1

= —b’2/ V Xo,(s)ds,
0

(Tr] [Tr] [Tr]
T7-3/2 Z YorUier = T7-3/2 Z Yor U1y — T7-3/2 Z TR v (13)
t=1 t=1 =1

= —/ Ba(s)V XY _(s)ds b,
0

for 0 <r < 1. Using these results, we obtain (9).0

Next, we investigate the asymptotic behavior of Sp(7) — Sr(7,) on 7 € T \ d(g). We
expand S7(7) and St(7,) as

T
Sr(r) = T7') (yu — Vrar)?
t=1
T ~
= 7 Z<b,xt7'o + o — b;xtT + bz — b/xtT)Q
t=1
T ~
= T Z{Ult — (by — b)'DrD3 gy — bh Vg,
t=1
T ) T )
= 77! Zv%t + T*1/2(b7 —b)'Dr (DEl thngTD?) T*I/QDT(bT —b)
t=1 t=1

T T
+T 70y > Vg, Vb, by + 277 /%(b, — b)' Dy (T—WD;1 > xtTvx’th@)
t=1 t=1
/ /

T T
—2 (T—WD;1 th7v1t> T=2Dyp(br —b) — 2 (T‘l > ngtTv1t> by
t=1

=1
= Sor + Sit + Sar + Ssr — Sar — S5, say,

18



and
T A
Sr(ro) = T (yu — b, 24r,)°
t=1
T ~
= 77! Z{vu — (by, — b)Y DD ey, }?
t=1

T T
= 71 Zv% — 2T_1(?)TO —b)' Dy (D;l mevlt>
t=1 t=1

T

+T7(b,, — b)' Dy (DTl mex;%D;) Dp(by, —b)
t=1

= Sor — Ser + Str, say.

We then have

St(1) — S7(7,) = SiT + Sor + S37 — Sar — Ss57 + ST — S777- (14)

In the following, we will show that Si7 + Sor + Sspr converges in distribution to a
random variable that is positive almost surely (a.s.) while the rest of (14) converges to zero
in probability.

Using (9) we have
1 1
Sir + Sor + S3r = 77/7/ X (r)XL(r)dr n, + bé/ VX (r)VX5(r)dr bs

0 0

1

—1—277;/ X, (r)VX5(r)dr be
0
1

= [ X )+ V()

while we can see that Ser and Sy are O,(T~!) since Dy (by, — b) = Op(1) as shown in

Lemma 1. On the other hand, since Sy and Sy are expressed as

T T T T
Syt =2 [Tl Z vy, T Z V1t Ptr T3/ Z V1Y T3/ Z Ultyét%f] T71/2DT(bT —b),

t=1 t=1 t=1 t=1
T T

Ssr =2 [Tl S vt — @), T2 yhvie(@er — @ir, )| ba,
= i=1
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we can see that both terms are O, (T ~1/2). Since these convergences hold uniformly over 7,
we have
1
it Sr(r) — Sr(ro) = _inf / (X (F) + BV Xo(r)2dr > 0 (as.),  (15)
e)Jo

TET\4(¢) TET\S

which implies that (7) converges to zero as T' goes to infinity.O

Proof of Proposition 3: Since the consistency of 7 is obtained in Proposition 2, we can
restrict the range of 7 only to the vicinity of 7, that shrinks to 7,. More precisely, for a

given € > 0, we define a sequence of positive real numbers, rp(¢), such that
rr(e) =inf{r: P(|7 — 1| <r) >1—¢},
T

and consider only 7 that satisfies |7 — 7,| < r(€). Since 7 is a consistent estimator, r7(¢)
goes to zero as T' — oo. Without loss of generality, we assume that Trr(e) goes to infinity
as T — oo. This property, in fact, holds if we redefine rr(¢) as max(rr(g), 7~?) for some

0 < a < 1. We abbreviate rp(g) as rp for simplicity. We also reparameterize the break

1/2

fraction as 7 = 7, + ¢I'~/%. Since we are considering only the vicinity of 7,, the possible

range of ¢ is C = {c: |¢| < T/ ?rp}.

In the following, we will show that, for every ¢, > 0, TV/2(Sp (1) — S7(7,)) is asymptot-
ically positive (a.s.) uniformly over ¢ € C \ d(¢,) where 6(c,) = {c: |¢| < ¢o}. This implies
that TV/2(Sy (1) — St(7,)) does not take its minimum on C \ §(c,), so that ¢ = TY2(7 — 1,)

converges to zero in probability.

Lemma 2 The following results hold uniformly over ¢ € C \ 6(c,).

[T'7]
T3/ Z Yot
t=[T"10]+1
[T'7]
T Z y?tyét
t=[T"10]+1
(T'7]
T2 3T oy = ou(1). (18)
t=[T7o]+1

Il

e[ 7712 (Ba (7o) + 0p(1)) , (16)

e[ 7712 (Ba(70) Ba (7o) + 0p(1)) 4 (17)
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(T'7]

T Y yavie = op(1). (19)
t=[T"10]+1

Proof of Lemma 2: We proceed with the proof for 7 > 7,. The case where 7 < 7, is treated

in the same way. Since Yo7, |4+t = Yo[Tr,] T Z;Zl Va[Tr,]4; from the definition of ya, we have

(T'7] [T'7]—[To) t
T7-3/2 Z yor = T2 Z Yo[Tr,] + Z V2[Tro)+j
=1

t=[T1o]+1 t=1
(T'7]—[T'7o]
= (T =) T Py + T¥2(Trp)? Y (Trp) ™ ZUQ[TTO
=1
= (r—1,)T/? Yorrr,) + 17" 1/2([TT] — [T7])Op(1)

(7 = 70)(Ba(7o) + 0p(1)).

The second last equality is established because (T'r7)~1/2 Z —1 V2[Tr,)+j 18 Op(1) uniformly
over C since |[T7] — [T'1o)] < Trp on C. We also used the fact that rp — 0 so that
rr x Op(1) = 0p(1). Since T — 7, = ¢T~/2, (16) is obtained.

Similarly, we can see that

[T7] [T7])—[T7) t t /
T2 Z yoryyy = T7° Z Y217, T Z VTl 45 | | Y2177] T Z V[T 7o) 45

t=[T70]+1 t=1 j=1 j=1

= (7= 70)T  Yo[rr, ) Uarr)
[T7]—[T'70]

t
AT Py T2 (Tre) V2 37 (Tre) ™23y
t=1 7=1

[T7]—[T70)

+T73(Trp) /2 (Trr)” Z%[TT i (T oty
t= Jj=1

1
[TT] [T70] t '
T (Trrp) (Trp)~1/2 Z Varre | | (Tre) ™2 Y varn e
j=1
= (1—71o)(T™ yQ[TTO] (T 1/2 A 2[T75) )+ T~ 1/2 yQ[TTo]rT/2(T — 70)Op(1)
+T;"/2(T _ TO)O ( )(T—l/ [T’T’o]) —|— (7‘ — TO)TTOP(]‘)

L (7 = 7,)(Bar, Bhs, + 0p(1)),

from which (17) is obtained.
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For (18) and (19) we have

[T'7] [T7]—[T70]

T2 Z vy = 7“%p/2(T7“T)_1/2 Z V1[Tro]+t
t=[T70)+1 t=1
= T;/2Op ( 1 ) )

(T7] [T7]—[T7o] t
0N oy = TN YoTry] + D Va(Tr )45 | V1Tre] 4t

t=[To]+1 t=1 j=1
[T7]—[T7o]

= T;‘/Z (T_I/ZyZ[TTO})(TTT)_l/Q Z V1[T7o)+t
t=1
[T7]—[T'70]

t
+7’T(T7“T)_l (Z 'U2[T7-o}+j> V1[Tro)+t
=1

t=1

= r20,(1) + rr0,(1).

Again, since rp — 0, these equations imply (18) and (19).0

Next, we investigate the asymptotic property of b, on C \ §(co). Again, we proceed with
the proof for 7 > 7,. We first investigate the asymptotic behavior of -1 2DE 1 Zthl TrU1tr,

which is expressed as (11). Here note that

T (T7]
Til Z V:BIZtT = — | T — To, T73/2 Z yét
t=1 t=[T7o)+1
= —cT'2[1,0,(1)]
from (16), and then, using expression (12), we have
T
T3 vpr = Op(T7Y2) + O (T7H?). (20)
t=1
Similarly, from (16) and (17) we have
T (T7] (T'7]
T3PS yuVah, = —|T77 3" oy, T2 D gty
t=1 t=[T7o]+1 t=[T7o]+1

= —CTﬁl/z[Op(l)v Op(l)]7
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and then, using expression (13),
T

T7323 " yopvier = Op(T7 %) + cO,(T71/3). (21)
t=1

We can easily see that 7! Zthl v1tr P and T-3/2 Zthl Y2¢V1¢r have the same orders as

(20) and (21). Then, from expression (11), we have

T
T72DE S wgrvier = Op(T7H2) + O, (T72).
t=1

Since the term in the first parentheses on the right hand side of (10) converges in distribution

uniformly as was seen in the proof of Lemma 1, we have
TYAT 2Dy (by — b) = Oy (T~ Y4 + O, (T4, (22)
Using this result, we get

TY2S1p = EOy(T™Y2) + cOp(T™Y?) + O,(T~Y/?)

= Oy(rr) + Op(rr) + Op(T71/?),

where the second equality holds because |¢|T~'/2 = |7 — 7,| < r7 so that ¢T—1/2 = O(rr).

Similarly, using Lemma 2 and (22) we have

r—1, _T—3/2 Z[TT] y/
T1/2S2T = T1/2b/2 _3/’2 [TT% -2 [TT][TTO}—’_1 /2t
=T E[TTU] b T Z[TTO]H YotYor
i T1/2b/ CT?l/z _CT71/2(Bé(TO) + Op(l)) b2
2| —eT VA (Ba(ro) +0p(1)) T 2(Ba(7o) By (7o) + 0p(1))

= c{(n2— B3B2r,)* + 0p(1) }

T

TY2S3r = 2TY4T=Y2(h, — b) Dy <T1/4T—1/2DT1 > xtTV:L"Qth2>
t=1
= (Op(T™VN) +cOpTY)) x (cOp(T™1Y)

= Op(rr) + cOp(rr),
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T
TY2Sp = 2TYAT=Y2(b, —b)' Dy <T1/4T1/2D;1 thTvlt>
t=1
= (Op(T ) 4 cOp(T7H4) x Op(T™4)

= Op(T7'?) + Op(rr),

(T7] [T7]
T1/2S5T = 2 T71/2 Z Ult,Til Z y’ztvlt] b2
t=[T70]+1 t=[T"10]+1

= o0p(1).

Since Sgr and S7r do not depend on T, they are o,(7~!) uniformly over 7. Then, by

combining these results, we get
d
TV2(Sp(r) = Sr(70)) £ e { (12 = ByBar,)* + 0p(1) } + 0p(1).
Note that ¢ > 0 because 7 > 7,. Since

c(p2 — ByBar,)? > oz — B3 Bar,)? > 0 (a.s.)

and the middle term in the above inequality does not depend on ¢, we can see that Sp(7) —
St(7,) is asymptotically positive (a.s.) over C \ 6(c,). This implies TV/?(# — 7,) converges

to zero in probability.O

Proof of Proposition 4: We first prove the following lemma.

Lemma 3 Assume that TY/?(7 — 7,) 2,0. Then, for0<r <1,
(i) T~ Zﬂ yat(oer — pir,) = 0.

(ii) T2 S yoryy (o1 — o1r,) 2 0.

(i) T2 S (i = ir,) = 0.

(iv) T~ E,1 yarvl (oer — 1) - 0.

(v) Dy (bs —br,) == 0.

Convergences (i)-(iv) hold uniformly over 0 <r <1.
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Proof of Lemma 3: (i) We have

< sup ‘T“”yz[m‘ ’Tl/z(f - To)’ 5 0.
0<r<1

.
T Z Yot (ptr — Pir,)
t=1

(ii)-(iv) can be proved in the same way as (i).

(v) is proved if we show that

T T
D! (Z Tty — Y xmmém> Dy! =0, (23)
t=1 t=1
and

T T
ot (Z TepU17 — ZSUtToUltﬂ,) 20. (24)
=1

Noting that
o r_ / A /
T3 Ths — TirgTer, = (Tir — Tir, )Tz + Tir, (Tiz — Tir,)
and

(mﬁ - JUtro)/ = [07 (@t% - SOtTo)a 0, yét(SDﬁ- - QOtro)], (25)

we can show (23) using Lemma 3 (i) and (ii). Similarly, we have

T T T
-1 -1 -1
D' (mrvies — er,01r,) = Dt Y @ (vier — vier,) + D7t Y (@47 — Ter, ) V1tr,
t=1 t=1 t=1
Since v — V1, = —b5Vaos, the first term converges to zero in probability by using Lemma
o 2 ) g p y by g

3 (i) and (ii). Similarly, the second term is shown to be o0,(1) using expression (25) and

Lemma 3 (iii) and (iv). Then, convergence (24) is established.O

Since 0143 = v1y — (b — b)’DTDrElxﬁ — W, Vxoz, we have

T
-1 va = 7! Zvlt (bs — b)' Dr (T‘lD;l Zxﬁx;%D;l) Dy (b; — b)
t=1
T
+bh, (T—l > vxgﬁvxgﬁ> by — 2(b+ — b) DT D7 > wprvyy
t=1 t=1

T T
—205T 1 " Vagsviy + 2(bs — b) DT ' D7y~ 245 Vah,:bs
t=1 t=1

n
= T v}, + Rir + Ror + Rar + Rur + Rsr, say.
t=1
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We can see that Ror, Ryr, and Rsp are o, (T -1/ 2) from Lemma 3. On the other hand, it is

seen that D_1 Zthl l‘ti—fEé,f.D%l is bounded in probability, so that Ryt is of order 7! since

Drp(b; — b) = 7, from (8) and Lemma 3 (v). Similarly, since D' S5 | 2501 = O,(1),

we can see that Rap = Op(T~'). Then, we showed that -1 37 ;0% = T-' 27 03, +

op(T7Y/2). Since T S7 v}, 2, 11 by the weak law of large numbers, we have

T Zt 1 vltT L, 611. Similarly we have 7! Zle VorOyr = T71 Zle ’Ugtl}lt—I—Op(T_l/Q) 2,
091, so that we obtain 71 ZtT:1 01+ 0y Loy

In exactly the same way, we see that

T—j T—j
T bupinrge =T vy + 0p(T7H2)
t=1 t=1

for a given j. This implies
l

T—j ¢
Re =T 0T RGO Y ol = DR/ % 0p(T2)
t=1 j=

Jj=1 1
= o0,(t)TY?).

Since £ = o(T"/?) by Assumption 2 (b), the last term converges to zero in probability, which
implies A 25 A,

In the same way, we can show the consistency of [: and :.0
Proof of Theorem 1: In the following, we replace the estimators of the long-run variances

by the true ones without loss of generality because they are consistent estimators from

Proposition 4. Similar to the proof of Lemma 3 (v), it is enough to show that

T T

-1 * k) * */ —1
E  TEpT — E Ttr,Tir, | Dr
t=1 t=1

T

1 1
= DT Z xtT thD + D thr xtT xt‘r )D _> 0 (26)
t=1
and
T T
—1 ko _k * *
(Z Te7Ctr — Z LTtro Ctro
t=1 t=1
T T
= D;l szﬁ%(eff - 6tTo Z xt‘l’ xtT etTg —> 0. (27)



From the definitions of z}; and xj, we see that
(@7 — @i7,)" = [0, (P17 — Pur,), Ysts — Ystr,» Yotz P12 — Ystr, Ptro - (28)
The third element of (28) is expressed as
?J;ﬁ - y;m = _Fézil(@ﬁ — Dtr,)s (29)

where the last m rows of 0.+ — 04, are apparently zero while the first element of it can be

expressed as

D1er — D1tr, = —(bs — b)' DD (s — w4r,) — (bs — by,) DrDptay,, — byViag,:  (30)

~

because 12 = v — (I;T — b)xy; — byVag: and O14r, = v1g — (by, — b)'w4r,. Similarly, the

fourth element of (28) is expressed as

YsirPrr — Yoir Ptro = Y2t(@er — Pr,) — THE T (D318 — Otr, P11, ) (31)

and the first element of (017917 — Ugr, Pir,) becomes

0142917 — Vltr, Ptry
= 1t(@s — iry) — (b3 — b)'DrD (w4 — 24r, )pir — (bs — br,) DDy wr, i

—(bs, — b)) DrDp wir, (017 — Pir,) — bV Tosprs. (32)

By carefully checking each element of (26) using expressions (28)-(32), we can show by

Lemma 3 that the convergence of (26) is established.

For (27), noting that
e = vie — wh Qopvar — (Bis — A1) THE " o — (Bor — Bo) THE s iprs — byVarays
and

—1 5 14 5 14
efr, = v1r — wh Qo v2r — (Bir, — 1) THE b4z, — (B2r, — P2) THE ™ Uiz, i, s
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we can see that

* *
€t7: — etTO — —

Doz — B2) THE  0uz (015 — @ir,) — (Bar — B2) TS ™ (B1r — 1, )i,

(
(
= —(Biz — B1)THS (645 — Bir,) — (B — B, ) THE 4,
(
—(Bor — Bor ) THS Yigr, prr, — by Vaoss. (33)

Again, by checking each element of (27) using expressions (28)—(33), the convergence of (27)

is proved.O
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Table 1. Size and power of the Wald test statistic

T b | Wrbh) W (b7)

s=05 s=1 s=2 s=3
a=—-0.6
1.00 0.119 0.269 0.220 0.166 0.151
100 1.01 0.123 0.266  0.222 0.165 0.152
1.05 0.247 0.352 0.324 0.272 0.257
1.10 0.491 0.505 0.512 0.481 0.473
1.00 0.070 0.157 0.110 0.084 0.074
300 1.01 0.115 0.214 0.162 0.133 0.125
1.05 0.697 0.689 0.689 0.689 0.692
1.10 0.961 0.900 0.931 0.951 0.957
1.00 0.066 0.119 0.090 0.073 0.070
500 1.01 0.185 0.251 0.211 0.190 0.189
1.05 0.926 0.888 0.910 0.921 0.922
1.10 0.999 0.978 0.994 0.997 0.998
a=0
1.00 0.089 0.243 0.196 0.140 0.118
100 1.01 0.088 0.247  0.195 0.141 0.118
1.05 0.225 0.362 0.316 0.261 0.249
1.10 0.504 0.557 0.539 0.514 0.507
1.00 0.059 0.146  0.094 0.072 0.063
300 1.01 0.111 0.205 0.145 0.123 0.116
1.05 0.710 0.722 0.713 0.712 0.711
1.10 0.967 0.931 0.954 0.963 0.967
1.00 0.055 0.109 0.073 0.061 0.058
500 1.01 0.183 0.242 0.203 0.190 0.186
1.05 0.931 0.916 0.922 0.928 0.930
1.10 0.998 0.987 0.996 0.998 0.998
a=0.6

1.00 0.213 0.411 0.355 0.286 0.250
100 1.01 0.223 0.418 0.366 0.299 0.260
1.05 0.389 0.536  0.506 0.462 0.430
1.10 0.658 0.700 0.703 0.696 0.677
1.00 0.129 0.238 0.176 0.145 0.136
300 1.01 0.201 0.311  0.252 0.215 0.208
1.05 0.779 0.801 0.791 0.786 0.781
1.10 0.976 0.954 0.968 0.974 0.975
1.00 0.108 0.165 0.129 0.114 0.108
500 1.01 0.264 0.338 0.291 0.272 0.268
1.05 0.949 0.945 0.948 0.947 0.949
1.10 0.999 0.991  0.997 0.998 0.999
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Figure 1: Probability density functions of B{ and 35‘

Note: (i-a)—(i-c) are the probability density functions of T(3; — (1) while (ii-a)—(ii-c) are those of T'(fy —
B2). In each figure ‘limit’ corresponds to the probability density function of the limiting distribution that is
approximated by T = 2,000 observations, while ‘known’ and ‘s = 0.5,---,3" correspond to the finite sample
distributions for the cases where the break point is known and unknown. These densities are drawn by the
kernel method with a Gaussian kernel. The smoothing parameter, h, is decided by equation (3.31) in Silverman
(1986): h = 0.9AT~'/> where A = min(standard deviation, interquartile range/1.34).





