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Abstract
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regression (CCR) method proposed by Park (1992). We show that the estimator of the
break fraction is consistent and of order faster than T−1/2 and that the CCR estimator
with the estimated break fraction has the same asymptotic property as the estimator
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1. Introduction

Cointegration is among the primary interests of a researcher who investigates the long-run

relationship between economic variables. Single equation methods for testing cointegration

or no cointegration have been developed by Engle and Granger (1987), Phillips and Ouliaris

(1990), and Shin (1994) among others, while a system equation model is considered by

Johansen (1988, 1991), Ahn and Reinsel (1990), Lütkepohl and Saikkonen (2000), Saikkonen

and Lütkepohl (2000a, b), and papers in references of Hubrich, Lütkepohl and Saikkonen

(2001), who give a nice review of system methods.

It is often the case that data collected over relatively long time frames is used in the

investigation of the long-run relationship, and the economic structure may change during

the sample period. For a single or partial equation model, Campos, Ericsson and Hendry

(1996) investigate the effect of structural change on cointegration tests, and Gregory and

Hansen (1996a, b) propose tests for the null hypothesis of no cointegration with possibly one

time structural break. Of importance is that the Gregory and Hansen’s test is robust to the

existence of structural change but the test is not helpful in determining whether structural

change has occurred or not. Thus, once the cointegrating relation with or without structural

change is observed by the test, we need to test for structural change. Hansen (1992) proposes

various tests for the parameter stability and Quintos and Phillips (1993) investigate the LM

test for structural change, while Hao and Inder (1996) regard testing for structural change

as a diagnostic test and develop the CUSUM test. The finite sample properties of Hansen’s

(1992) tests are investigated by Gregory, Nason and Watt (1996) and Hao (1996), and they

are generalized by Han (1996) to the exponential type tests as proposed by Andrews and

Ploberger (1994) and Andrews, Lee and Ploberger (1996). Bai, Lumsdaine and Stock (1998)

investigate testing for one time break and develop statistical inference about the estimator

of the break point.

For a system equation model, tests of the cointegrating rank with a deterministic shift

were developed by Saikkonen and Lütkepohl (2000c), Lütkepohl, Saikkonen and Trenkler

(2003) for a known break point, while the unknown case is treated by Inoue (1999) and

1



Lütkepohl, Saikkonen and Trenkler (2004). On the other hand, change in cointegrating

vectors is considered by Quintos (1995) for known break points, while tests for structural

change for unknown break points are proposed by Quintos (1997), Seo (1998) and Hansen

and Johansen (1999). Hansen (2003) derives the limiting distribution of the maximum like-

lihood estimator and proposes the likelihood ratio test for parameter restrictions when the

break point and the cointegrating rank are known. Unfortunately, tests for the cointegrat-

ing rank with structural change assume the existence of structural change, whereas tests for

structural change basically require the knowledge of the cointegrating rank. Additionally,

to our best knowledge there is no test for the cointegrating rank with structural change in

cointegrating vectors. Therefore, the system equation approach seems to be limited more

or less when structural change in cointegrating vectors is incorporated in a model. For this

reason, we consider a single equation model in this paper.

For a single equation model, suppose that we observe the cointegrating relation and

structural change by using previously explained methods. If we know the date of structural

change, we can estimate the model efficiently by the canonical cointegrating regression

(CCR) method by Park (1992) and the fully modified regression (FMR) technique by Phillips

and Hansen (1990) and Phillips (1995). However, we often encounter the case where we do

not know the break date, and in this case the natural method for the estimation of the model

is to first estimate the break point and then estimate the parameter in the model using the

estimated break point. Bai, Lumsdaine and Stock (1998) show that the estimator of the

parameter with the estimated break point has the same limiting distribution as the estimator

with the known break point, assuming that the error term is independent of all leads and

lags of the regressors. However, this assumption seems too restrictive for a cointegrating

regression model because we often observe and commonly assume correlation between the

error term and the regressors in a model. In this case, we cannot apply their result and

are then required to find different methods to estimate the model with the unknown break

point.

In this paper, we investigate the estimation method under the general assumptions that
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first, the error term is correlated with leads and lags of the regressors, and second that the

break point is unknown. We propose to estimate the break point at first by minimizing the

sum of squared residuals (SSR) and then, using the estimated break fraction, to estimate the

model by the CCR method of Park (1992). We show that the estimator of the break fraction

is consistent and of order faster than T−1/2. Although this order may not be sharp, this is

enough for us to derive the asymptotic distribution of the estimator of the parameter. Since

the limiting distribution is shown to be a mixed normal, we can test parameter restrictions

by constructing the Wald type test statistic, which converges to a chi-square distribution.

The structure of this paper is as follows. Section 2 explains the model and assumptions.

In Section 3 we first derive the CCR estimator with the known break point. We then inves-

tigate the asymptotic property of the estimator of the break fraction. Using this estimated

break fraction, we estimate the regression model by the CCR method and show that the

estimator of the parameter has the same limiting distribution as the CCR estimator with

the known break point. Section 4 gives the finite sample property of the estimator. Section

5 concludes the paper.

2. A Model and Assumptions

Let us consider the following cointegrating regression model,

y1t = µ1 + µ2ϕtτo + β′1y2t + β′2y2tϕtτo + v1t (1)

= b′xtτo + v1t,

for t = 1, · · · , T , where {y1t} and {y2t} are one and m dimensional stochastic sequences,

ϕtτo is a step function such that ϕtτo = 0 for t ≤ [Tτo] and ϕtτo = 1 for t > [Tτo],

b = [µ1, µ2, β
′
1, β

′
2]
′, and xtτo = [1, ϕtτo , y

′
2t, y

′
2tϕtτo ]′. Let vt = [v1t, v

′
2t]
′ where v2t = 4y2t,

and define its long-run variance as Ω = limT T−1E[VT V ′
T ] where VT =

∑T
t=1 vt. We partition

Ω conformably with vt as

Ω =

[
ω11 ω′21

ω21 Ω22

]
.
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We also define

Σ = lim
T→∞

T−1
T∑

t=1

E[vtv
′
t], Λ = lim

T→∞
T−1

T−1∑

j=1

T−j∑

t=1

E[vtv
′
t+j ],

Γ = Σ + Λ =

[
γ11 γ′12

γ21 Γ22

]
=

[
γ′1
Γ′2

]
,

where Γ is partitioned conformably with vt.

We employ the following set of assumptions throughout the paper.

Assumption 1 (a) y0 is a fixed or a random vector with E[y0] < ∞ and independent of T .

(b) {vt} is mean-zero and strong mixing with mixing coefficients of size −pα/(p − α) and

E|vt| < ∞ for some p > α > 5/2.

(c) The matrix Ω exists with finite elements, Ω > 0, ω11 > 0, and Ω22 > 0.

(d) The break fraction τo is constant and τo ∈ T = [τ , τ̄ ] for known 0 < τ < τ̄ < 1.

(e) β2 = β2T = T−1/2β2o where β2o is a fixed vector.

Assumption (a) gives the initial value condition such that y0 does not affect the asymp-

totic theory derived in the following sections. Assumptions (b) and (c) ensure that the

functional central limit theorem (FCLT) holds for the partial sum process of {vt}, so that

T−1/2
[Tr]∑

t=1

vt ⇒ B(r) =

[
B1(r)
B2(r)

]
1
m

,

where B(r) is an (m + 1) dimensional Brownian motion with the variance matrix Ω and ⇒
signifies weak convergence of the associated probability measures. The positive definiteness

of Ω22 excludes the case where y2t is cointegrated. Assumption (d) is standard for a struc-

tural break model. Assumption (e) is used to derive the convergence rate of the estimator

of the break fraction. Strictly speaking, this assumption is not necessary for our asymptotic

theory because we will not derive the limiting distribution of τ̂ , the estimator of the break

fraction. However, as will be discussed in the next section, if we assume that β2 is fixed, the

asymptotic property of τ̂ will be determined only by y2t and a constant term will no longer

play an important role for estimation of τ . (e) is assumed so that both a constant and the

I(1) regressors are effective in the estimation of the break point.
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3. The CCR Estimator with Structural Change

Our strategy for estimation is that we first obtain the estimate of the break point by mini-

mizing the SSR and then estimate (1) by the CCR method using the estimated break point.

We will show that the CCR estimator with the estimated break point has the same limiting

distribution as the CCR estimator with the known break point. Note that, although the

following explanation proceeds based on the CCR method, we can easily apply our result to

the fully modified regression (FMR) technique by Phillips and Hansen (1990) and Phillips

(1995). The difference between the CCR and the FMR methods resides in how to correct

serial correlations. See Phillips and Hansen (1990) and Park (1992) for details.

3.1. The CCR method with a known break point

First, we briefly explain the CCR method for a known break point. It consists of two

separate step estimations. The first step is to estimate (1) by OLS regression. Let b̂τo =

[µ̂1τo , µ̂2τo , β̂
′
1τo

, β̂′2τo
] be the OLS estimator of b and v̂1tτo be the OLS residual. Using b̂τo

and v̂1tτo we construct variables y∗1tτo
and y∗2tτo

as

y∗1tτo
= y1t−(β̂′1τo

Γ̂′2τo
Σ̂−1

τo
+β̂′2τo

Γ̂′2τo
Σ̂−1

τo
ϕtτo +[0, ω̂′21τo

Ω̂−1
22τo

])v̂tτo , y∗2tτo
= y2t−Γ̂′2τo

Σ̂−1
τo

v̂tτo ,

where v̂tτo = [v̂1tτo ,4y′2t]
′ and Γ̂2τo , Σ̂τo , ω̂21τo , and Ω̂22τo are consistent estimators of Γ2,

Σ, ω21, and Ω22 that are defined below. Then, the CCR estimator is obtained by regressing

y∗1tτo
on y∗2tτo

,

y∗1tτo
= b∗′τo

x∗tτo
+ e∗tτo

, (2)

where x∗tτo
= [1, ϕtτo , y

∗′
2tτo

, y∗′2tτo
ϕtτo ]′. We denote the CCR estimator and the estimated

residual as b̂∗τo
and ê∗tτo

.

The long-run matrices are estimated by

Σ̂τo = T−1
T∑

t=1

v̂tτo v̂
′
tτo

, Λ̂τo = T−1
∑̀

j=1

k(j/`)
T−j∑

t=1

v̂tτo v̂t+jτo ,

Γ̂τo = Σ̂τo + Λ̂τo , Ω̂τo = Σ̂τo + Λ̂τo + Λ̂′τo
,

and k(j/`) is a kernel function that satisfies the following restrictions.
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Assumption 2 (a) k(·) is a continuous and even faction with |k(·)| ≤ 1, k(0) = 1 and
∫∞
−∞ k2(x)dx < ∞.

(b) ` goes to infinity as n →∞ and ` = o(T 1/2).

Assumption 2 suffices to guarantee the consistency of Λ̂τo , Γ̂τo , and Ω̂τo , and many well

known kernels such as the Bartlett and the quadratic spectral kernels satisfy this assumption.

See, for example, Andrews (1991).

The asymptotic distribution of b̂∗τo
is given by the following proposition, which can be

proved in exactly the same way as Park (1992). Since this is the case, we omit the proof.

Proposition 1 Let Assumptions 1 (a)-(d) and Assumption 2 hold. Then, as T →∞,

DT (b̂∗τo
− b) d−→

(∫ 1

0
Xτo(r)Xτo(r)

′dr

)−1 ∫ 1

0
Xτo(r)dB1·2(r), (3)

where DT = diag{T 1/2, T 1/2, T Im, T Im}, Xτo(r) = [1, ϕτo(r), B2(r)′, B2(r)′ϕτo(r)]′, ϕτo(r)

is a step function on [0, 1] such that ϕτo(r) = 1{r ≥ τo} with 1{·} being an indicator function,

and B1·2(r) = B1(r)− ω′21Ω
−1
22 B2(r).

As discussed in Park (1992), the Wald test statistic based on the CCR estimator has an

asymptotic chi-square distribution because (3) is a mixed normal distribution. For example,

let us consider the general hypothesis of the form

H0 : g(b) = 0

where g(·) is a continuously differentiable q dimensional vector. Assume that G(b) =

∂g(b)/∂b′ is of rank q. Then, from Proposition 1, we can see that

WT (b̂∗τo
) = g(b̂∗τo

)′


ω̂∗1·2τo

G(b̂∗τo
)

(
T∑

t=1

x∗tτo
x∗′tτo

)−1

G(b̂∗′τo
)





−1

g(b̂∗τo
) (4)

d−→ χ2
q ,

where ω̂∗1·2τo
is a consistent estimator of the long-run variance ω1·2, which can be constructed

using the CCR error ê∗tτo
in the same way as the nonparametric estimator of Ω.
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3.2. The CCR method with an unknown break point

Regressions (1) and (2) are infeasible in practice because we do not know the true break

point. A feasible method is that we first estimate the break point and then estimate the

model using the estimated break point by the CCR method.

In the framework of cointegrating regressions, Bai, Lumsdaine and Stock (1998) inves-

tigated the quasi-maximum likelihood estimator of the break point and they derived the

limiting distribution of the estimator. One of the important assumptions in their paper

is that the disturbance v1t must be independent of the regressors for all leads and lags

(Assumption 3.2 in Bai, Lumsdaine and Stock, 1998). However, it is apparent that this

assumption is not satisfied in our model, and we cannot apply their result. Therefore, we

must investigate the asymptotic behavior of the estimator of the break point under general

assumptions.

Let us consider a feasible version of the regression (1)

y1t = b′xtτ + v1tτ , (5)

where τ ∈ T and v1tτ = v1t − b′(xtτ − xtτo). Let b̂τ and v̂1tτ be the OLS estimator of b and

the regression residual. The estimator of the break point is obtained by minimizing the sum

of squared residuals in (5), or equivalently, the estimator of the break fraction is given by

τ̂ = arg inf
τ∈T

ST (τ),

where ST (τ) = T−1 ∑T
t=1 v̂2

1tτ . We first give the consistency of τ̂ by the following proposition.

Proposition 2 Let Assumptions 1 (a)-(e) hold. Then, τ̂
p−→ τo.

Assumption 1 (e) implies that the magnitude of the break for y2t shrinks to zero as

T goes to infinity and is of order T−1/2. It is not difficult to see that Proposition 2 holds

without Assumption 1 (e). The reason we assume Assumption 1 (e) is that, if β2 is supposed

to be fixed, y2t asymptotically dominates the other terms in the objective function and the

asymptotic property of τ̂ will be determined only by the behavior of y2t. Assumption 1 (e)

7



is supposed so that both a constant and y2t have the same importance for determining the

asymptotic behavior of the estimator. See also Bai, Lumsdaine and Stock (1998).

Once the consistency of τ̂ is obtained, we can restrict the parameter space of τ to only

the vicinity of τo that shrinks to τo. Details are given in the appendix. By considering the

shrinking parameter space, we can prove the next proposition.

Proposition 3 Let Assumptions 1 (a)-(e) hold. Then, T 1/2(τ̂ − τo)
p−→ 0.

Proposition 3 implies that τ̂ converges in probability to τo of order faster than T−1/2.

This convergence rate is slower than that obtained by Bai, Lumsdaine and Stock (1998) and

the result in Proposition 3 may not be sharp. However, our purpose is not to derive the

limiting distribution of the estimator of the break fraction but to obtain a feasible method

of statistical inference about regression coefficients when the break point is unknown. The

convergence rate given by Proposition 3 is enough for us to obtain such a feasible method

and we do not pursue a sharp rate of τ̂ under general assumptions.

To construct the CCR estimator we need the estimators of the long-run variances. In

exactly the same way as the known break point case, we construct Σ̂τ̂ , Λ̂τ̂ , Γ̂τ̂ , and Ω̂τ̂ by

replacing v̂tτo by v̂tτ̂ = [v̂1tτ̂ ,4y′2t]
′. The following proposition shows that these estimators

are consistent.

Proposition 4 Let Assumptions 1 (a)-(e) and Assumption 2 hold. Then, Σ̂τ̂ , Λ̂τ̂ , Γ̂τ̂ , and

Ω̂τ̂ converge in probability to Σ, Λ, Γ, and Ω, respectively.

We are now in a position to construct the CCR estimator using the estimated break

point, τ̂ . Let y∗1tτ̂ and y∗2tτ̂ be defined in the same way as y∗1tτo
and y∗2tτo

using τ̂ . The

feasible CCR estimator, b̂τ̂ , is obtained by regressing y∗1tτ̂ and y∗2tτ̂ . The following is the

main theorem in this paper.

Theorem 1 Let Assumptions 1 (a)-(e) and Assumption 2 hold. Then,

DT (b̂∗τ̂ − b̂∗τo
)

p−→ 0.
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Theorem 1 implies that the CCR estimator with the estimated break point has the

same limiting distribution as the estimator with the known break point. Then, even if we

construct the Wald test statistic for H0 using the feasible CCR estimator, it converges in

distribution to a chi-square distribution with q degrees of freedom, that is,

WT (b̂∗τ̂ ) = g(b̂∗τ̂ )
′


ω̂∗1·2τ̂G(b̂∗τ̂ )

(
T∑

t=1

x∗tτ̂x
∗′
tτ̂

)−1

G(b̂∗′τ̂ )





−1

g(b̂∗τ̂ )

d−→ χ2
q .

To conclude this section, we consider the extension of the model (1) in several directions.

For example, we may be interested in a partial change of the parameters. In this case, we

can easily see that all of the results in the paper are established in exactly the same manner.

We may also want to include a linear trend as a regressor,

y1t = µ1 + µ2ϕtτo + d1t + d2tϕtτo + β′1y2t + β′2y2tϕtτo + v1t.

Again, the propositions and the theorem can be shown to hold for this model. In this case,

DT is defined as DT = diag{T 1/2, T 1/2, T 3/2, T 3/2, T Im, T Im} and the definition of Xτo

in (3) should be changed appropriately. Seasonal constants may be of particular interest

for some researchers and they may be included. In any case, although the expression (3)

of the limiting distribution should be changed, the Wald statistic still has an asymptotic

chi-square distribution and we can make statistical inferences about regression coefficients.

4. Finite sample evidence

In this section, we investigate finite sample properties of the feasible CCR estimator and

the Wald test statistic proposed in the previous section. We consider the following data

generating process:

y1t = µ1 + µ2ϕtτo + β1y2t + β2y2tϕtτo + v1t, (6)

vt = Avt−1 + εt,

where y2t is a one dimensional unit root process, vt = [v1t,4y2t]′, A = diag{a, a}, and

{εt} ∼ NID(0, I2). We set µ1 = 0, β1 = 1, a = −0.6, 0, or 6, and the sample size is 100,

9



300 or 500. The break fraction τo is set to be 0.5 for all experiments. The values of µ2 and

β2 are selected as follows. First, we regard d = µ2 + β2 ×{V ar(y2t)}1/2 as a measure of the

magnitude of the change. We also note that variation in y1,t+1 given y1,t is v2,t+1 + v1,t+1

for all t if structural change does not occur at t and its standard deviation is given by

{V ar(v2,t+1 + v1,t+1)}1/2 = 21/2 when vt is an i.i.d. sequence. We choose µ2 and β2 so that

the magnitude of the break, d, becomes approximately equal to s× 21/2 for s = 0.5, 1, 2, or

3 at t = Tτo +1. According to this rule, we set {µ2, β2} = {0.35, 0.05}, {0.7, 0.1}, {1.4, 0.2},
and {2.1, 0.3}, which correspond to the cases where T = 100 and s = 0.5, 1, 2, and 3. The

same sets of values are also used for T = 300 and 500 to see the effect of the sample size on

the finite sample property.

First, we see the finite sample distributions of the estimates of β1 and β2. Figure 1 shows

the probability density functions (pdf) of T (β̂1−β1) and T (β̂2−β2) for a = 0, each of which

is drawn based on 100,000 replications. We can see that the pdf has fatter tails for each

case when the magnitude of the break is smaller. The finite sample distribution approaches

the limiting distribution as the magnitude of the break becomes larger, and the pdf with

the known break point is closest to the limiting distribution. As expected, the finite sample

distribution approaches the limiting distribution when the sample size is large. We can also

see that the pdf of β̂2 is not as close to the limiting distribution as the pdf of β̂1. This is

because β1 is estimated using the whole sample period, while β2 is estimated using only the

observations after the break point. As a whole, more than 300 observations are required to

approximate the finite sample distribution by the limiting one when the magnitude of the

change is very small (s = 0.5).

The above property is preserved when a = 0.6 and a = −0.6, but the finite sample

distribution is slightly closer to the limiting one for a = 0.6 compared with the case when

a = 0, while the difference between the finite and the limiting distributions is slightly larger

when a = −0.6 than the case when a = 0 (we do not draw the pdfs when a 6= 0 to save

space).

Next, we investigate the size and power of the Wald test statistic. We consider the null
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hypothesis of H0 : β1 = b and construct the test statistic. We set b = 1 to see the size of

the test, while it is set to be 1.01, 1.05, and 1.1 to investigate the power of the test. The

level of significance is 0.05 and the number of replications is 5,000 in all experiments.

Table 1 summarizes the results of the simulations. When the break point is known, the

size of the test is close to the nominal one when a = 0, but the test suffers from size distortion

when a = 0.6. As expected from Figure 1, the size of the Wald statistic with the estimated

break point approaches the known break point case as the magnitude of the break is larger.

Regarding power, the test becomes more powerful when |b1o − 1| increases. Although we

must be cautious of the comparison of the power for different settings of parameters, the

power property of the test does not seem to depend significantly on the value of a.

We also investigate the size and power of the Wald test for b2. The performance of the

test under the null hypothesis is similar to the test of b1, but the test of b2 is less powerful

than that of b1 (we do not report this result to save space).

5. Conclusion

In this paper we proposed to estimate the cointegrating regression model with structural

change by the CCR estimation technique with the break point replaced by the estimated

one. We first estimated the break fraction by minimizing the sum of squared residuals, and

this estimator was shown to converge in probability to the true break fraction at a rate faster

than T 1/2. We found that the feasible CCR estimator converges in distribution to a mixed

normal distribution, so that the Wald test statistic based on it is asymptotically chi-square

distributed. By Monte Carlo simulations, we showed that the finite sample distribution of

the estimator approaches the limiting distribution as the magnitude of the break and/or the

sample size becomes larger.

It might be possible to obtain an efficient estimator by other methods such as the dy-

namic OLS (DOLS) method used by Saikkonen (1991) and Stock and Watson (1993), which

estimates the model by adding leads and lags of the first differences of the I(1) regres-

sors, where the lag length goes to infinity as T → ∞. Since the number of the regressors
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changes depending on the sample size, much would be required to obtain the results given

by Propositions 2 and 3.
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Appendix

Without loss of generality we shall assume that Tτo and T τ̂ are integers in this appendix.

Proof of Proposition 2: We need to show that P (|τ̂ − τo| > ε) → 0 for every ε > 0.

Noting that

P (|τ̂ − τo| > ε) = P

(
inf

τ∈T \δ(ε)
ST (τ) < inf

τ∈δ(ε)
ST (τ)

)

≤ P

(
inf

τ∈T \δ(ε)
ST (τ) < ST (τo)

)
, (7)

where δ(ε) = {τ : |τ − τo| < ε}, it is sufficient to show that the right-hand side in (7)

converges to zero.

The following lemma gives the limiting distribution of the OLS estimator of b.

Lemma 1 When τ = τo,

DT (b̂τo − b) ⇒
(∫ 1

0
Xτo(r)X

′
τo

(r)dr

)−1 (∫ 1

0
Xτo(r)dB2(r) + [0, 0, γ′21, (1− τo)γ′21]

′
)
≡ ητo ,

(8)

while for τ 6= τo,

T−1/2DT (b̂τ − b) ⇒ −
(∫ 1

0
Xτ (r)X ′

τ (r)dr

)−1 ∫ 1

0
Xτ (r)∇X ′

2τ (r)dr b2 ≡ ητ , (9)

where ∇X2τ (r) = [ϕτ (r)− ϕτo(r), B′
2(r)(ϕτ (r)− ϕτo(r))]′ and b2 = [µ2, β

′
2o]
′.

Proof of Lemma 1: (8) is obtained in the same way as Park and Phillips (1988). To prove

(9), note that

T−1/2DT (b̂τ − b) =

(
D−1

T

T∑

t=1

xtτx
′
tτD

−1
T

)−1 (
T−1/2D−1

T

T∑

t=1

xtτv1tτ

)
. (10)

Using the FCLT and the continuous mapping theorem (CMT), we have D−1
T

∑T
t=1 xtτx

′
tτD

−1
T ⇒

∫ 1
0 Xτ (r)X ′

τ (r)dr uniformly over τ . On the other hand, the term in the last parentheses on

the right hand side of (10) becomes

T−1/2D−1
T

T∑

t=1

xtτv1tτ
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=

[
T−1

T∑

t=1

v1tτ , T
−1

T∑

t=1

v1tτϕtτ , T
−3/2

T∑

t=1

y′2tv1tτ , T
−3/2

T∑

t=1

y′2tv1tτϕtτ

]′
. (11)

Since

v1tτ = v1t − b′2∇x2tτ ,

where ∇x2tτ = [ϕtτ − ϕtτo , T
−1/2y′2t(ϕtτ − ϕtτo)]′, we have

T−1
[Tr]∑

t=1

v1tτ = T−1
[Tr]∑

t=1

v1t − b′2T
−1

[Tr]∑

t=1

∇x2tτ (12)

⇒ −b′2
∫ r

0
∇X2τ (s)ds,

T−3/2
[Tr]∑

t=1

y2tv1tτ = T−3/2
[Tr]∑

t=1

y2tv1t − T−3/2
[Tr]∑

t=1

y2t∇x′2tτ b2 (13)

⇒ −
∫ r

0
B2(s)∇X ′

2τ (s)ds b2,

for 0 ≤ r ≤ 1. Using these results, we obtain (9).2

Next, we investigate the asymptotic behavior of ST (τ) − ST (τo) on τ ∈ T \ δ(ε). We

expand ST (τ) and ST (τo) as

ST (τ) = T−1
T∑

t=1

(y1t − b̂′τxtτ )2

= T−1
T∑

t=1

(b′xtτo + v1t − b̂′τxtτ + b′xtτ − b′xtτ )2

= T−1
T∑

t=1

{v1t − (b̂τ − b)′DT D−1
T xtτ − b′2∇x2tτ}2

= T−1
T∑

t=1

v2
1t + T−1/2(b̂τ − b)′DT

(
D−1

T

T∑

t=1

xtτx
′
tτD

−1
T

)
T−1/2DT (b̂τ − b)

+T−1b′2
T∑

t=1

∇x2tτ∇x′2tτ b2 + 2T−1/2(b̂τ − b)′DT

(
T−1/2D−1

T

T∑

t=1

xtτ∇x′2tτ b2

)

−2

(
T−1/2D−1

T

T∑

t=1

xtτv1t

)′
T−1/2DT (b̂τ − b)− 2

(
T−1

T∑

t=1

∇x2tτv1t

)′
b2

≡ S0T + S1T + S2T + S3T − S4T − S5T , say,
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and

ST (τo) = T−1
T∑

t=1

(y1t − b̂′τo
xtτo)

2

= T−1
T∑

t=1

{v1t − (b̂τo − b)′DT D−1
T xtτo}2

= T−1
T∑

t=1

v2
1t − 2T−1(b̂τo − b)′DT

(
D−1

T

T∑

t=1

xtτov1t

)

+T−1(b̂τo − b)′DT

(
D−1

T

T∑

t=1

xtτox
′
tτo

D−1
T

)
DT (b̂τo − b)

≡ S0T − S6T + S7T , say.

We then have

ST (τ)− ST (τo) = S1T + S2T + S3T − S4T − S5T + S6T − S7T . (14)

In the following, we will show that S1T + S2T + S3T converges in distribution to a

random variable that is positive almost surely (a.s.) while the rest of (14) converges to zero

in probability.

Using (9) we have

S1T + S2T + S3T ⇒ η′τ
∫ 1

0
Xτ (r)X ′

τ (r)dr ητ + b′2
∫ 1

0
∇X2(r)∇X ′

2(r)dr b2

+2η′τ
∫ 1

0
Xτ (r)∇X ′

2(r)dr b2

=
∫ 1

0

(
η′τXτ (r) + b′2∇X2(r)

)2
dr,

while we can see that S6T and S7T are Op(T−1) since DT (b̂τo − b) = Op(1) as shown in

Lemma 1. On the other hand, since S4T and S5T are expressed as

S4T = 2

[
T−1

T∑

t=1

v1t, T
−1

T∑

t=1

v1tϕtτ , T
−3/2

T∑

t=1

v1ty
′
2t, T

−3/2
T∑

t=1

v1ty
′
2tϕtτ

]
T−1/2DT (b̂τ − b),

S5T = 2

[
T−1

T∑

t=1

v1t(ϕtτ − ϕtτo), T
−3/2

T∑

t=1

y′2tv1t(ϕtτ − ϕtτo)

]
b2,
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we can see that both terms are Op(T−1/2). Since these convergences hold uniformly over τ ,

we have

inf
τ∈T \δ(ε)

ST (τ)− ST (τo) ⇒ inf
τ∈T \δ(ε)

∫ 1

0

(
η′τXτ (r) + b′2∇X2(r)

)2
dr > 0 (a.s.), (15)

which implies that (7) converges to zero as T goes to infinity.2

Proof of Proposition 3: Since the consistency of τ̂ is obtained in Proposition 2, we can

restrict the range of τ only to the vicinity of τo that shrinks to τo. More precisely, for a

given ε > 0, we define a sequence of positive real numbers, rT (ε), such that

rT (ε) = inf
r
{r : P (|τ̂ − τo| ≤ r) ≥ 1− ε} ,

and consider only τ that satisfies |τ − τo| ≤ rT (ε). Since τ̂ is a consistent estimator, rT (ε)

goes to zero as T →∞. Without loss of generality, we assume that TrT (ε) goes to infinity

as T → ∞. This property, in fact, holds if we redefine rT (ε) as max(rT (ε), T−a) for some

0 < a < 1. We abbreviate rT (ε) as rT for simplicity. We also reparameterize the break

fraction as τ = τo + cT−1/2. Since we are considering only the vicinity of τo, the possible

range of c is C = {c : |c| ≤ T 1/2rT }.
In the following, we will show that, for every co > 0, T 1/2(ST (τ)− ST (τo)) is asymptot-

ically positive (a.s.) uniformly over c ∈ C \ δ(co) where δ(co) = {c : |c| < co}. This implies

that T 1/2(ST (τ)− ST (τo)) does not take its minimum on C \ δ(co), so that ĉ = T 1/2(τ̂ − τo)

converges to zero in probability.

Lemma 2 The following results hold uniformly over c ∈ C \ δ(co).

T−3/2
[Tτ ]∑

t=[Tτo]+1

y2t
d= |c|T−1/2 (B2(τo) + op(1)) , (16)

T−2
[Tτ ]∑

t=[Tτo]+1

y2ty
′
2t

d= |c|T−1/2 (
B2(τo)B2(τo)′ + op(1)

)
, (17)

T−1/2
[Tτ ]∑

t=[Tτo]+1

v1t = op(1). (18)
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T−1
[Tτ ]∑

t=[Tτo]+1

y2tv1t = op(1). (19)

Proof of Lemma 2: We proceed with the proof for τ > τo. The case where τ < τo is treated

in the same way. Since y2[Tτo]+t = y2[Tτo] +
∑t

j=1 v2[Tτo]+j from the definition of y2t, we have

T−3/2
[Tτ ]∑

t=[Tτo]+1

y2t = T−3/2
[Tτ ]−[Tτo]∑

t=1


y2[Tτo] +

t∑

j=1

v2[Tτo]+j




= (τ − τo)T−1/2y2[Tτo] + T−3/2(TrT )1/2
[Tτ ]−[Tτo]∑

t=1

(TrT )−1/2
t∑

j=1

v2[Tτo]+j

= (τ − τo)T−1/2y2[Tτo] + T−1r
1/2
T ([Tτ ]− [Tτo])Op(1)

d= (τ − τo)(B2(τo) + op(1)).

The second last equality is established because (TrT )−1/2 ∑t
j=1 v2[Tτo]+j is Op(1) uniformly

over C since |[Tτ ] − [Tτo]| ≤ TrT on C. We also used the fact that rT → 0 so that

rT ×Op(1) = op(1). Since τ − τo = cT−1/2, (16) is obtained.

Similarly, we can see that

T−2
[Tτ ]∑

t=[Tτo]+1

y2ty
′
2t = T−2

[Tτ ]−[Tτo]∑

t=1


y2[Tτo] +

t∑

j=1

v2[Tτo]+j





y2[Tτo] +

t∑

j=1

v2[Tτo]+j



′

= (τ − τo)T−1y2[Tτo]y
′
2[Tτo]

+T−1/2y2[Tτo]T
−3/2(TrT )1/2

[Tτ ]−[Tτo]∑

t=1

(TrT )−1/2
t∑

j=1

v′2[Tτo]+j

+T−3/2(TrT )1/2
[Tτ ]−[Tτo]∑

t=1

(TrT )−1/2
t∑

j=1

v2[Tτo]+j(T
−1/2y2[Tτo])

′

+T−2(TrT )
[Tτ ]−[Tτo]∑

t=1


(TrT )−1/2

t∑

j=1

v2[Tτo]+j





(TrT )−1/2

t∑

j=1

v2[Tτo]+j



′

= (τ − τo)(T−1/2y2[Tτo])(T
−1/2y′2[Tτo]) + T−1/2y2[Tτo]r

1/2
T (τ − τo)Op(1)

+r
1/2
T (τ − τo)Op(1)(T−1/2y2[Tτo])

′ + (τ − τo)rT Op(1)

d= (τ − τo)(B2τoB
′
2τo

+ op(1)),

from which (17) is obtained.
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For (18) and (19) we have

T−1/2
[Tτ ]∑

t=[Tτo]+1

v1t = r
1/2
T (TrT )−1/2

[Tτ ]−[Tτo]∑

t=1

v1[Tτo]+t

= r
1/2
T Op(1),

T−1
[Tτ ]∑

t=[Tτo]+1

y2tv1t = T−1
[Tτ ]−[Tτo]∑

t=1


y2[Tτo] +

t∑

j=1

v2[Tτo]+j


 v1[Tτo]+t

= r
1/2
T (T−1/2y2[Tτo])(TrT )−1/2

[Tτ ]−[Tτo]∑

t=1

v1[Tτo]+t

+rT (TrT )−1
[Tτ ]−[Tτo]∑

t=1




t∑

j=1

v2[Tτo]+j


 v1[Tτo]+t

= r
1/2
T Op(1) + rT Op(1).

Again, since rT → 0, these equations imply (18) and (19).2

Next, we investigate the asymptotic property of b̂τ on C \ δ(co). Again, we proceed with

the proof for τ > τo. We first investigate the asymptotic behavior of T−1/2D−1
T

∑T
t=1 xtτv1tτ ,

which is expressed as (11). Here note that

T−1
T∑

t=1

∇x′2tτ = −

τ − τo, T−3/2

[Tτ ]∑

t=[Tτo]+1

y′2t




= −cT−1/2[1, Op(1)]

from (16), and then, using expression (12), we have

T−1
T∑

t=1

v1tτ = Op(T−1/2) + cOp(T−1/2). (20)

Similarly, from (16) and (17) we have

T−3/2
T∑

t=1

y2t∇x′2tτ = −

T−3/2

[Tτ ]∑

t=[Tτo]+1

y2t, T−2
[Tτ ]∑

t=[Tτo]+1

y2ty
′
2t




= −cT−1/2[Op(1), Op(1)],
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and then, using expression (13),

T−3/2
T∑

t=1

y2tv1tτ = Op(T−1/2) + cOp(T−1/2). (21)

We can easily see that T−1 ∑T
t=1 v1tτϕtτ and T−3/2 ∑T

t=1 y2tv1tτ have the same orders as

(20) and (21). Then, from expression (11), we have

T−1/2D−1
T

T∑

t=1

xtτv1tτ = Op(T−1/2) + cOp(T−1/2).

Since the term in the first parentheses on the right hand side of (10) converges in distribution

uniformly as was seen in the proof of Lemma 1, we have

T 1/4T−1/2DT (b̂τ − b) = Op(T−1/4) + cOp(T−1/4). (22)

Using this result, we get

T 1/2S1T = c2Op(T−1/2) + cOp(T−1/2) + Op(T−1/2)

= cOp(rT ) + Op(rT ) + Op(T−1/2),

where the second equality holds because |c|T−1/2 = |τ − τo| ≤ rT so that cT−1/2 = O(rT ).

Similarly, using Lemma 2 and (22) we have

T 1/2S2T = T 1/2b′2


 |τ − τo| −T−3/2 ∑[Tτ ]

[Tτo]+1 y′2t

−T−3/2 ∑[Tτ ]
[Tτo]+1 y2t T−2 ∑[Tτ ]

[Tτo]+1 y2ty
′
2t


 b2

d= T 1/2b′2

[
cT−1/2 −cT−1/2(B′

2(τo) + op(1))
−cT−1/2(B2(τo) + op(1)) cT−1/2(B2(τo)B′

2(τo) + op(1))

]
b2

= c
{
(µ2 − β′2B2τo)

2 + op(1)
}

,

T 1/2S3T = 2T 1/4T−1/2(b̂τ − b)′DT

(
T 1/4T−1/2D−1

T

T∑

t=1

xtτ∇x′2tτ b2

)

= (Op(T−1/4) + cOp(T−1/4))× (cOp(T−1/4))

= Op(rT ) + cOp(rT ),

23



T 1/2S4T = 2T 1/4T−1/2(b̂τ − b)′DT

(
T 1/4T−1/2D−1

T

T∑

t=1

xtτv1t

)

= (Op(T−1/4) + cOp(T−1/4))×Op(T−1/4)

= Op(T−1/2) + Op(rT ),

T 1/2S5T = 2


T−1/2

[Tτ ]∑

t=[Tτo]+1

v1t, T
−1

[Tτ ]∑

t=[Tτo]+1

y′2tv1t


 b2

= op(1).

Since S6T and S7T do not depend on τ , they are op(T−1) uniformly over τ . Then, by

combining these results, we get

T 1/2(ST (τ)− ST (τo))
d= c

{
(µ2 − β′2B2τo)

2 + op(1)
}

+ op(1).

Note that c > 0 because τ > τo. Since

c(µ2 − β′2B2τo)
2 ≥ co(µ2 − β′2B2τo)

2 > 0 (a.s.)

and the middle term in the above inequality does not depend on c, we can see that ST (τ)−
ST (τo) is asymptotically positive (a.s.) over C \ δ(co). This implies T 1/2(τ̂ − τo) converges

to zero in probability.2

Proof of Proposition 4: We first prove the following lemma.

Lemma 3 Assume that T 1/2(τ̂ − τo)
p−→ 0. Then, for 0 ≤ r ≤ 1,

(i) T−1 ∑[Tr]
t=1 y2t(ϕtτ̂ − ϕtτo)

p−→ 0.

(ii) T−3/2 ∑[Tr]
t=1 y2ty

′
2t(ϕtτ̂ − ϕtτo)

p−→ 0.

(iii) T−1/2 ∑[Tr]
t=1 vt(ϕtτ̂ − ϕtτo)

p−→ 0.

(iv) T−1 ∑[Tr]
t=1 y2tv

′
t(ϕtτ̂ − ϕtτo)

p−→ 0.

(v) DT (b̂τ̂ − b̂τo)
p−→ 0.

Convergences (i)-(iv) hold uniformly over 0 ≤ r ≤ 1.
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Proof of Lemma 3: (i) We have
∣∣∣∣∣∣
T−1

[Tr]∑

t=1

y2t(ϕtτ̂ − ϕtτo)

∣∣∣∣∣∣
≤ sup

0≤r≤1

∣∣∣T−1/2y2[Tr]

∣∣∣
∣∣∣T 1/2(τ̂ − τo)

∣∣∣ p−→ 0.

(ii)-(iv) can be proved in the same way as (i).

(v) is proved if we show that

D−1
T

(
T∑

t=1

xtτ̂x
′
tτ̂ −

T∑

t=1

xtτox
′
tτo

)
D−1

T
p−→ 0, (23)

and

D−1
T

(
T∑

t=1

xtτ̂v1tτ̂ −
T∑

t=1

xtτov1tτo

)
p−→ 0. (24)

Noting that

xtτ̂x
′
tτ̂ − xtτox

′
tτo

= (xtτ̂ − xtτo)x
′
tτ̂ + xtτo(xtτ̂ − xtτo)

′

and

(xtτ̂ − xtτo)
′ = [0, (ϕtτ̂ − ϕtτo), 0, y′2t(ϕtτ̂ − ϕtτo)], (25)

we can show (23) using Lemma 3 (i) and (ii). Similarly, we have

D−1
T

T∑

t=1

(xtτ̂v1tτ̂ − xtτov1tτo) = D−1
T

T∑

t=1

xtτ̂ (v1tτ̂ − v1tτo) + D−1
T

T∑

t=1

(xtτ̂ − xtτo)v1tτo .

Since v1tτ̂−v1tτo = −b′2∇x2tτ̂ , the first term converges to zero in probability by using Lemma

3 (i) and (ii). Similarly, the second term is shown to be op(1) using expression (25) and

Lemma 3 (iii) and (iv). Then, convergence (24) is established.2

Since v̂1tτ̂ = v1t − (b̂τ̂ − b)′DT D−1
T xtτ̂ − b′2∇x2tτ̂ , we have

T−1
T∑

t=1

v̂2
1tτ̂ = T−1

T∑

t=1

v2
1t + (b̂τ̂ − b)′DT

(
T−1D−1

T

T∑

t=1

xtτ̂x
′
tτ̂D

−1
T

)
DT (b̂τ̂ − b)

+b′2

(
T−1

T∑

t=1

∇x2tτ̂∇x′2tτ̂

)
b2 − 2(b̂τ̂ − b)′DT T−1D−1

T

T∑

t=1

xtτ̂v1t

−2b′2T
−1

T∑

t=1

∇x2tτ̂v1t + 2(b̂τ̂ − b)′DT T−1D−1
T

T∑

t=1

xtτ̂∇x′2tτ̂ b2

= T−1
n∑

t=1

v2
1t + R1T + R2T + R3T + R4T + R5T , say.
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We can see that R2T , R4T , and R5T are op(T−1/2) from Lemma 3. On the other hand, it is

seen that D−1
T

∑T
t=1 xtτ̂x

′
tτ̂D

−1
T is bounded in probability, so that R1T is of order T−1 since

DT (b̂τ̂ − b) ⇒ ητo from (8) and Lemma 3 (v). Similarly, since D−1
T

∑T
t=1 xtτ̂v1t = Op(1),

we can see that R3T = Op(T−1). Then, we showed that T−1 ∑T
t=1 v̂2

1tτ̂ = T−1 ∑T
t=1 v2

1t +

op(T−1/2). Since T−1 ∑T
t=1 v2

1t
p−→ σ11 by the weak law of large numbers, we have

T−1 ∑T
t=1 v̂2

1tτ̂
p−→ σ11. Similarly we have T−1 ∑T

t=1 v2tv̂1tτ̂ = T−1 ∑T
t=1 v2tv1t+op(T−1/2)

p−→
σ21, so that we obtain T−1 ∑T

t=1 v̂tτ̂ v̂
′
tτ̂

p−→ Σ.

In exactly the same way, we see that

T−1
T−j∑

t=1

v̂tτ̂ v̂t+jτ̂ = T−1
T−j∑

t=1

vtv
′
t+j + op(T−1/2)

for a given j. This implies

Λ̂τ̂ − T−1
∑̀

j=1

k(j/`)
T−j∑

t=1

vtv
′
t+j =

∑̀

j=1

k(j/`)× op(T−1/2)

= op(`/T 1/2).

Since ` = o(T 1/2) by Assumption 2 (b), the last term converges to zero in probability, which

implies Λ̂τ̂
p−→ Λ.

In the same way, we can show the consistency of Γ̂τ̂ and Ω̂τ̂ .2

Proof of Theorem 1: In the following, we replace the estimators of the long-run variances

by the true ones without loss of generality because they are consistent estimators from

Proposition 4. Similar to the proof of Lemma 3 (v), it is enough to show that

D−1
T

(
T∑

t=1

x∗tτ̂x
∗′
tτ̂ −

T∑

t=1

x∗tτo
x∗′tτo

)
D−1

T

= D−1
T

T∑

t=1

(x∗tτ̂ − x∗tτo
)x∗′tτ̂D

−1
T + D−1

T

T∑

t=1

x∗tτo
(x∗tτ̂ − x∗′tτo

)D−1
T

p−→ 0, (26)

and

D−1
T

(
T∑

t=1

x∗tτ̂e
∗
tτ̂ −

T∑

t=1

x∗tτo
e∗tτo

)

= D−1
T

T∑

t=1

x∗tτ̂ (e
∗
tτ̂ − e∗tτo

) + D−1
T

T∑

t=1

(x∗tτ̂ − x∗tτo
)e∗tτo

p−→ 0. (27)
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From the definitions of x∗tτ̂ and x∗tτo
we see that

(x∗tτ̂ − x∗tτo
)′ = [0, (ϕtτ̂ − ϕtτo), y

∗′
2tτ̂ − y∗′2tτo

, y∗′2tτ̂ϕtτ̂ − y∗′2tτo
ϕtτo ]. (28)

The third element of (28) is expressed as

y∗2tτ̂ − y∗2tτo
= −Γ′2Σ

−1(v̂tτ̂ − v̂tτo), (29)

where the last m rows of v̂tτ̂ − v̂tτo are apparently zero while the first element of it can be

expressed as

v̂1tτ̂ − v̂1tτo = −(b̂τ̂ − b)′DT D−1
T (xtτ̂ − xtτo)− (b̂τ̂ − b̂τo)

′DT D−1
T xtτo − b′2∇x2tτ̂ (30)

because v̂1tτ̂ = v1t − (b̂τ̂ − b)′xtτ̂ − b′2∇x2tτ̂ and v̂1tτo = v1t − (b̂τo − b)′xtτo . Similarly, the

fourth element of (28) is expressed as

y∗2tτ̂ϕtτ̂ − y∗2tτo
ϕtτo = y2t(ϕtτ̂ − ϕtτo)− Γ′2Σ

−1(v̂tτ̂ϕtτ̂ − v̂tτoϕtτo), (31)

and the first element of (v̂tτ̂ϕtτ̂ − v̂tτoϕtτo) becomes

v̂1tτ̂ϕtτ̂ − v̂1tτoϕtτo

= v1t(ϕtτ̂ − ϕtτo)− (b̂τ̂ − b)′DT D−1
T (xtτ̂ − xtτo)ϕtτ̂ − (b̂τ̂ − b̂τo)

′DT D−1
T xtτoϕtτ̂

−(b̂τo − b)′DT D−1
T xtτo(ϕtτ̂ − ϕtτo)− b′2∇x2tτ̂ϕtτ̂ . (32)

By carefully checking each element of (26) using expressions (28)–(32), we can show by

Lemma 3 that the convergence of (26) is established.

For (27), noting that

e∗tτ̂ = v1t − ω′21Ω
−1
22 v2t − (β̂1τ̂ − β1)′Γ′2Σ

−1v̂tτ̂ − (β̂2τ̂ − β2)′Γ′2Σ
−1v̂tτ̂ϕtτ̂ − b′2∇x2tτ̂

and

e∗tτo
= v1t − ω′21Ω

−1
22 v2t − (β̂1τo − β1)′Γ′2Σ

−1v̂tτo − (β̂2τo − β2)′Γ′2Σ
−1v̂tτoϕtτo ,
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we can see that

e∗tτ̂ − e∗tτo
= −(β̂1τ̂ − β1)′Γ′2Σ

−1v̂tτ̂ − (β̂2τ̂ − β2)′Γ′2Σ
−1v̂tτ̂ϕtτ̂ − b′2∇x2tτ̂

+(β̂1τo − β1)′Γ′2Σ
−1v̂tτo + (β̂2τo − β2)′Γ′2Σ

−1v̂tτoϕtτo

= −(β̂1τ̂ − β1)′Γ′2Σ
−1(v̂tτ̂ − v̂tτo)− (β̂1τ̂ − β̂1τo)

′Γ′2Σ
−1v̂tτo

−(β̂2τ̂ − β2)′Γ′2Σ
−1v̂tτ̂ (ϕtτ̂ − ϕtτo)− (β̂2τ̂ − β2)′Γ′2Σ

−1(v̂tτ̂ − v̂tτo)ϕtτo

−(β̂2τ̂ − β̂2τo)
′Γ′2Σ

−1v̂tτoϕtτo − b′2∇x2tτ̂ . (33)

Again, by checking each element of (27) using expressions (28)–(33), the convergence of (27)

is proved.2
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Table 1. Size and power of the Wald test statistic

T b WT (b̂∗τo
) WT (b̂∗τ̂o

)
s = 0.5 s = 1 s = 2 s = 3

α = −0.6
1.00 0.119 0.269 0.220 0.166 0.151

100 1.01 0.123 0.266 0.222 0.165 0.152
1.05 0.247 0.352 0.324 0.272 0.257
1.10 0.491 0.505 0.512 0.481 0.473
1.00 0.070 0.157 0.110 0.084 0.074

300 1.01 0.115 0.214 0.162 0.133 0.125
1.05 0.697 0.689 0.689 0.689 0.692
1.10 0.961 0.900 0.931 0.951 0.957
1.00 0.066 0.119 0.090 0.073 0.070

500 1.01 0.185 0.251 0.211 0.190 0.189
1.05 0.926 0.888 0.910 0.921 0.922
1.10 0.999 0.978 0.994 0.997 0.998

α = 0
1.00 0.089 0.243 0.196 0.140 0.118

100 1.01 0.088 0.247 0.195 0.141 0.118
1.05 0.225 0.362 0.316 0.261 0.249
1.10 0.504 0.557 0.539 0.514 0.507
1.00 0.059 0.146 0.094 0.072 0.063

300 1.01 0.111 0.205 0.145 0.123 0.116
1.05 0.710 0.722 0.713 0.712 0.711
1.10 0.967 0.931 0.954 0.963 0.967
1.00 0.055 0.109 0.073 0.061 0.058

500 1.01 0.183 0.242 0.203 0.190 0.186
1.05 0.931 0.916 0.922 0.928 0.930
1.10 0.998 0.987 0.996 0.998 0.998

α = 0.6
1.00 0.213 0.411 0.355 0.286 0.250

100 1.01 0.223 0.418 0.366 0.299 0.260
1.05 0.389 0.536 0.506 0.462 0.430
1.10 0.658 0.700 0.703 0.696 0.677
1.00 0.129 0.238 0.176 0.145 0.136

300 1.01 0.201 0.311 0.252 0.215 0.208
1.05 0.779 0.801 0.791 0.786 0.781
1.10 0.976 0.954 0.968 0.974 0.975
1.00 0.108 0.165 0.129 0.114 0.108

500 1.01 0.264 0.338 0.291 0.272 0.268
1.05 0.949 0.945 0.948 0.947 0.949
1.10 0.999 0.991 0.997 0.998 0.999
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Figure 1: Probability density functions of β̂∗1 and β̂∗2

Note: (i-a)–(i-c) are the probability density functions of T (β̂1 − β1) while (ii-a)–(ii-c) are those of T (β̂2 −
β2). In each figure ‘limit’ corresponds to the probability density function of the limiting distribution that is
approximated by T = 2, 000 observations, while ‘known’ and ‘s = 0.5, · · · , 3’ correspond to the finite sample
distributions for the cases where the break point is known and unknown. These densities are drawn by the
kernel method with a Gaussian kernel. The smoothing parameter, h, is decided by equation (3.31) in Silverman
(1986): h = 0.9AT−1/5 where A = min(standard deviation, interquartile range/1.34).




