
 
 
 
 
 

Discussion Paper #2006-4 
 

Multiple Stochastically Stable Equilibria  
in Coordination Games 

  
by  

Toshimasa Maruta and Akira Okada 
October, 2006 

 



Multiple Stochastically Stable Equilibria

in Coordination Games

Toshimasa Maruta1 and Akira Okada2

October 3, 2006

Abstract: In an (n, m)-coordination game, each of the n players has two alternative
strategies. A strategy generates positive payoff only if there are at least m− 1 others who
choose the same, where m > n/2. The payoff is nondecreasing in the number of such others
so that there are exactly two strict equilibria. Applying the adaptive play with mistakes
(Young 1993) to (n, m)-coordination games, we point out potential complications inherent
in many-person games. Focusing on games that admit simple analysis, we show that there
is a nonempty open set of (n, m)-coordination games that possess multiple stochastically
stable equilibria, which may be Pareto ranked, if and only if m > (n + 3)/2, which in turn
is equivalent to the condition that there is a strategy profile against which every player has
alternative best responses.
Journal of Economic Literature Classification Numbers: C70, C72, D70.

Keywords: Equilibrium selection, stochastic stability, unanimity game, coordination
game, collective decision making.

1Corresponding author: Advanced Research Institute for the Sciences and Humanities, Nihon University,

12-5 Goban-cho, Chiyoda, Tokyo 102–8251, Japan. E-mail: tosh@arish.nihon-u.ac.jp Phone: +81 3 5275 9607

Fax: +81 3 5275 9204.
2Graduate School of Economics, Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo 186-8601 Japan. E-

mail: aokada@econ.hit-u.ac.jp Phone: +81 42 580 8599 Fax: +81 42 580 8748



1 Introduction

Many social and economic models have multiple equilibria. Whenever players face a “coordi-

nation” problem, they typically find themselves in a game with multiple strict Nash equilibria.

Such a problem may arise in the context of collective decision making. One of the simplest

examples is the unanimity game, in which a particular policy can be implemented only if all the

participants unanimously agree. Imagine that there are two alternative policies, either of them

is preferred by everyone to the inaction, the status quo. If the collective decision is governed

by the unanimity rule, it gives rise to a game with two strict equilibria. One may consider this

situation as a prototypical example of the equilibrium selection problem, in that the game is

so simple but the problem it poses is genuine. In developing their theory, thus, Harsanyi and

Selten (1988) regarded the equilibrium selection in the unanimity game as a benchmark. For

unanimity games, their theory selects an equilibrium that maximizes the Nash product, i.e.,

the risk dominant equilibrium.

Another class of selection theories that receives attention is the stochastic evolution,1

developed by Kandori, Mailath, and Rob (1993), Young (1993) and others. It is well known

that in a two-player two-strategy coordination game, theories agree in their selection outcome.

A majority of stochastic evolution models pick the same outcome, and it coincides with the

risk dominant equilibrium. In broader classes of games, however, the agreement collapses in a

drastic way. Not only that stochastic evolution need not select the risk dominant equilibrium,

but also that outcomes differ within the class of stochastic evolution models. In fact, a stark

disagreement arises even in the class of many-person binary unanimity games.2

In one of the rare studies that focus on the stochastic equilibrium selection in many-

person stage games, Kim (1996), working in a single population random matching environment,

obtains a unique equilibrium selection for a symmetric n-person binary coordination game.

Thus, in a unanimity game, Kim (1996) selects the Pareto dominant equilibrium, which in this

case is equivalent to the risk dominant equilibrium. By contrast, Young (1998), working in

a multi-population random matching environment, points out by an example that there are

binary unanimity games with four or more players and non-degenerated payoffs, in which both

equilibria are stochastically stable. In particular, such an indeterminacy may occur even when

two equilibria are Pareto ranked.

In this paper, we characterize a class of n-person coordination games that have multiple

stochastically stable equilibria. As the equilibrium selection model, we adopt the adaptive play
1By a “stochastic evolution” model, we mean an equilibrium selection model formulated as a Markov chain

and analyzed by the notion of stochastic stability à la Freidlin and Wentzell (1984) or its adaptation by Young

(1993), or a closely related method.
2A strategic game is binary if every player has exactly two strategies.
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with mistakes, a perturbation of the fictitious play with histories of a fixed length, introduced by

Young (1993). Not only the result is of interest, but also an examination of the argument leading

to it suggests answers to the following questions, which arise naturally when one compares Kim

(1996) on one hand, and Young (1998) and the present paper on the other: What is the source

of the different selection outcome?3 Is the indeterminacy specific to the unanimity rule per se?

How the number of players in the stage game affects the stochastic stability analysis?

We apply the adaptive play with mistakes to the class of (n, m)-coordination games.4

Imagine a situation in which a group of n players has to make a collective decision over two

alternative policies. The decision rule stipulates that a policy can be implemented only if at

least m > n/2 members favor it. Once a policy has been implemented, the environment in

question allows those and only those who chose it to receive the positive payoffs. The payoff

from the policy is nondecreasing in the size of its proponents so that there are exactly two strict

equilibria. A unanimity game is an (n, n)-coordination game. The intended interpretation of

an (n, m)-coordination games is a collective decision making on the provision of a club good,

as opposed to a public good. An alternative interpretation is that of a generalized n-person

bargaining, in the spirit of Harsanyi and Selten (1988) and Young (1998).

The best response structure of an (n, m)-coordination game depends on the relative mag-

nitude of n and m. For our purposes, it is worth pointing out that the game has a strategy

profile against which all players have alternative best responses if and only if m > (n + 3)/2.

At such a profile, best response behavior cannot point to any particular direction the adaptive

dynamics should move toward.

We show that if m > (n + 3)/2, then there is an open set of (n, m)-coordination games on

which stochastic stability fails to discriminate the two equilibria. Conversely, if (n+3)/2 ≥ m,

then any multiplicity is non-generic, in that a slight perturbation of payoffs in the space of

(n, m)-coordination games would restore equilibrium selection one way or another. Therefore

an (n, m)-coordination game may have multiple stochastically stable equilibria if and only if it

has a strategy profile at which none of the players is advised to choose any particular strategy

by the best response principle.

In general, each stochastic evolution model has a particular adjustment dynamics through

which the stage game is played. Authors have identified modeling details that may affect the

nature of their selection outcome. Ellison (1993) shows that a local interaction shorten the

average waiting time to observe the stochastically stable outcome. Binmore, Samuelson, and

Vaughan (1995) pointed out Kandori et al. (1993) and Young (1993) may differ in their waiting
3While it is easy to point out the difference in the number of populations in Kim (1996) and Young (1998),

it is not clear how it relates to the difference in the selection outcome.
4Kim (1996, p.217) considers a similar class of games.
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time distributions. Bergin and Lipman (1996), Blume (2003), and Maruta (2002) examined

how the selection outcome depends on the way the vanishing rates of mistake vary on different

states. Robson and Vega-Redondo (1996) and Canals and Vega-Redondo (1998) show that it

depends on the way the payoff information, based on which the strategies of the agents are

revised, is given. Our analysis shows that the selection outcome also depends on the variety

of probability distributions on the stage game strategy profiles that an agent might face in the

underlying adaptive dynamics. It turns out that the range of the distributions in the multi-

population random matching (Young 1998) or in the adaptive play (Young 1993) is much wider

than that in the single population model (Kim 1996). This accounts for the different selection

results mentioned above.

The plan of the paper is as follows. In Section 2, we define a binary population game.

In such a game, each player has two strategies, her payoff is increasing in the number of the

others who do the same, and the two unanimous strategy configurations are strict equilibria.

We apply the adaptive play with mistakes to the class of binary population games. The class

is much broader than that of (n, m)-coordination games. We start with this class in order

to point out potential complications one may face in identifying resistances in general many-

person games. In Section 3, we evaluate the resistance. We do this by introducing a linear

program, the optimal solution of which constitutes a lower bound of the resistance. Examining

the possible types of its optimal solution and its relationship to the resistance, we point out

complications specific in many-person games. We focus on a doubly simple binary population

game, in which the relevant linear program admits a simple solution and its value and the

resistance coincide. For such a game, the resistances are explicitly solved in terms of the payoff

parameters. In Section 4, the results in Section 3 are applied to investigate the equilibrium

selection problem. First, we explain why and how the multiple stochastically stable equilibria

may arise in a binary population game. Subsequently, we show that there is an open set of

doubly simple (n, m)-coordination games that have multiple stochastically stable equilibria if

and only if m > (n + 3)/2. In Section 5, we discuss the relationship between the differences

in the specifics of the dynamics and those of the selection outcomes among representative

stochastic equilibrium selection models. The proofs are given in the Appendix.

2 Preliminaries

There are n players, denoted by i ∈ I = {1, . . . , n}. Each player chooses her strategy σi from

{A,B}. σ ∈ Σ = {A,B}n and σ−i ∈ {A,B}n−1 denote a generic strategy profile and a strategy

profile of players other than i, respectively. Let |σ| be the number of A-players in σ and σ−i,
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respectively. Let the payoff of player i be given as follows:

ui(σ) =

ai (|σ|) , if σi = A,

bi (n− |σ|) , if σi = B,

where ai(k) and bi(k) are functions defined on {1, . . . , n} such that

• ai(k) and bi(k) are nondecreasing in k,

• ai(n) > bi(1) and bi(n) > ai(1).

The game thus defined is called a binary population game. It is called symmetric if ai(k) = a(k)

and bi(k) = b(k) for every i ∈ I. It is called asymmetric if it is not symmetric.

An example of a binary population game is an (n, m)-coordination game, in which

ai(k) = bi(k) = 0 for every k < m,

where n and m are natural numbers such that n ≥ m > n/2. A unanimity game is an

(n, n)-coordination game.

By the second assumption on payoffs, both (A, . . . , A) and (B, . . . , B) are strict equilibria.

If the game is either symmetric or (n, m)-coordination, one can show that it has exactly two

strict equilibria. In Section 3, we discuss general binary population games. We simply assume

there that the game has exactly two strict equilibria.

As an equilibrium selection model, we adopt the adaptive play with mistakes, introduced

by Young (1993). We assume that the reader is familiar to the stochastic stability analysis in

general, and the adaptive play with mistakes in particular. For details, the reader is referred

to Young (1993). In what follows, the sizes of a history and of a sample are denoted by T

and s, respectively. Let A and B denote the T -fold repetition of (A, . . . , A) and (B, . . . , B),

respectively. We assume that s ≤ T/2. Under this assumption, one can show that in the

adaptive play without mistakes for an (n, m)-coordination game, starting from any state, ei-

ther A or B is reached with probability one. Thus the method of Young (1993) to identify

stochastically stable equilibria is applicable. In Section 3, we implicitly assume this for the

general binary population games. The resistance from A to B is denoted by r(A,B). r(B,A)

is the resistance for the other direction. (A, . . . , A) is uniquely stochastically stable if and only

if r(A,B) > r(B,A).
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3 The resistance and the relevant linear program

3.1 Programs

Consider the adaptive play with mistakes for a binary population game. The current state is

A. In any path from A to B, there is a player who optimally chooses strategy B for the first

time. Let us call that player a first exitor. The first exitor i ∈ I must have a sample against

which playing B is optimal. Such a sample must contain considerable number of Bs played

by others. Since player i is a first exitor, all such Bs are mistakes. We are going to set up a

linear program that gives us the minimum number of mistaken Bs that i must face. Its optimal

solution not only gives us the number, but also reveals the way the mistaken Bs occur, a factor

that becomes significant only in games played by three or more players.

Fix a player and let her stick with A. In the adaptive play, what matters are samples. A

sample is simply a set of strategy profiles that she observes. Specifically, we search for a sample

against which she can best respond by B, and we count the number of Bs (i.e., mistakes) in

it. The number of mistakes in the sample is the sum of the numbers of mistakes in constituent

profiles. In each profile, in turn, the number of mistakes is at most n−1. In a two-person game,

it follows that the number of mistakes in the sample is equal to the number of profiles that

deviate from the original equilibrium. In many-person games, they differ. A consequence is that

two samples may work quite differently even if they contain the same number of mistakes. Not

only the number, but also the distribution of mistakes matters. The linear program introduced

below takes care of the case in point. The relationship between its optimal value and the

resistance r(A,B) is clarified in the next subsection.

Fix a player i ∈ I. Denote ak = ai(k) and bk = bi(k) for k = 1, . . . , n and set

zk = an − an−k + bk+1 − b1

for k = 1, . . . , n−1. Note that zk is nonnegative and nondecreasing in k. Although zk depends

on i ∈ I, we omit the superscript most of the time. The relevant program to solve is given as

follows:

minx1 + 2x2 + · · ·+ (n− 1)xn−1

s.t. x1 + · · ·+ xn−1 ≤ s,
∑n−1

k=1 zkxk ≥ s(an − b1), (Pi
A)

together with the nonnegativity condition x1 ≥ 0, . . . , xn−1 ≥ 0.5 In this program, xk is the

number of profiles in the sample that contain exactly k mistakes. x1 + · · ·+xn−1 is the number
5To be precise, we have to consider the integer constraint for xk, since the stochastic stability hinges on the

number of mistakes. Implicitly assuming that the sample size s is sufficiently large, we ignore the rounding

problem throughout.
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of profiles that contain at least one mistake. The first constraint comes from the fact that this

number cannot exceed the sample size. The second constraint expands into

bnxn−1 + · · ·+ b2x1 + (s−
∑n−1

k=1 xk)b1 ≥ a1xn−1 + · · ·+ an−1x1 + (s−
∑n−1

k=1 xk)an.

Thus it ensures that strategy B is a best response against the sample. The objective function

gives the total number of mistakes (i.e., Bs) in the sample. It is clear that (Pi
A) has an optimal

solution.6

Define kA = min { k | bk+1 ≥ an−k }. Here again, we omit the superscript most of the time

although kA depends on i ∈ I. In a single strategy profile, strategy B is a best response for

the player in question if and only if there are other k ≥ kA players who choose B. If there

is j < kA then zj < an − b1. Thus if j < kA ≤ k then 0 ≤ zj < zk. Let (x1, . . . , xn−1) be a

feasible solution of (Pi
A). Its support is the set { k | xk > 0 } of indices. When it is singleton,

we identify the set and its unique element. The next result characterizes conditions that ensure

an optimal solution with single support.7

Proposition 1. Consider the program (Pi
A) of a player i ∈ I in a binary population game.

Denote by λ1 and λ2 the Lagrange multipliers for the best response constraint and the sample

size constraint, respectively. The following conditions are equivalent:

(1) There is an optimal solution in which λ2 = 0.

(2) There is k∗ ≥ kA such that
k∗

zk∗
= min

k
zk 6=0

k

zk
.

(3) The solution

(x∗1, . . . , x
∗
n−1 : λ∗1, λ

∗
2) =

( k∗︷ ︸︸ ︷
0, . . . , 0,

s(an − b1)
zk∗

, 0, . . . , 0 :
k∗

zk∗
, 0

)
is optimal.

If these conditions are satisfied, then the optimal value is given by
sk∗(an − b1)

zk∗
.

In (Pi
A), let ak and bk be interchanged and replace zk by wk, where

wk = bn − bn−k + ak+1 − a1,

6In a binary population game, what matters to each player is the number of other A-players and B-players.

Who takes which does not matter. This feature justifies the formulation of (Pi
A).

7Note that the result allows the relevant program to have a single support optimal solution with λ2 > 0, in

which case it must be that xk∗ = s. It also permits xk∗ = s and λ2 = 0 to be optimal. One can construct

examples that possess these types of optimal solutions.
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and name the resulting program (Pi
B). It is the program that is relevant to evaluate the

resistance r(B,A) from B to A. For (Pi
B), the counterpart result to Proposition 1 follows.

For each i ∈ I, there are associated programs (Pi
A) and (Pi

B). They correspond to the

minimum number of mistakes when i is a first exitor. Let iA be the player whose optimal

value of (Pi
A) is the smallest among i ∈ I. Intuitively, iA is the player who prefer equilibrium

(B, . . . , B) most. In what follows, set (PA) = (PiA
A ) and define (PB) analogously.

In asymmetric games, (PA) and (PB) belong to different players in general. We always

assume that the optimal value of iA is strictly less than those of the others so that slight

perturbation of iA’s payoff parameters would not alter the status of iA. The same assumption

is made for iB.

Definition. A binary population game is simple if both (PA) and (PB) have optimal solutions

with λ2 = 0.

Simple binary population games inherit a tractable property from two-person games. Imag-

ine the adaptive play over a two-person strategic game and find a sample with the least number

of mistakes that allows an optimal switch from an equilibrium to another. Unless the destina-

tion equilibrium involves a weakly dominated strategy, we know that the least mistake sample

contains one or more original equilibrium profiles. Is this also true in a game with many play-

ers? Since there is no dominance relationship between two strategies, we know for sure that

there are samples containing one or more original profiles that allow the switch. We do not

know, however, whether the least mistake sample can be found within such type of samples.

Every profile in the least mistake sample may well contain a mistake. This occurs if (PA) has

no optimal solution with λ2 = 0.8 Viewed thus, a simple binary population game is “simple”

in that the least mistake sample for the game looks “similar” to that for a two-person game.

Examples below should make the issue clear. In Figure 1 and similar ones, a strategy with an

asterisk denotes one by mistake.

Example 1. Consider the following symmetric (4, 3)-coordination game:

(a3, a4 : b3, b4) = (3, 4 : 2, 6).

In this game, kA = 2 and

min
k

zk 6=0

k

zk
=

3
z3

=
3
10

.

8This is not to say that if λ2 = 0 then the least mistake sample contains a profile without mistake. In fact,

our results in the next section hinge on the fact that in some games the relevant program has an optimal solution

in which λ2 = 0 but the corresponding sample size constraint binds.
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Phase 1 Phase 2 Phase 3 Phase 4
3s/5

︷ ︸︸ ︷
2s/5

︷ ︸︸ ︷
3s/5

︷ ︸︸ ︷ s︷ ︸︸ ︷

σ1 A · · · A B∗ · · · B∗ A · · · A X · · · X

σ2 A · · · A B∗ · · · B∗ A · · · A X · · · X

σ3 A · · · A B∗ · · · B∗ A · · · A X · · · X

σ4 A · · · A A · · · A B · · · B B · · · B

Figure 1: A simple optimal solution of (PA).

s︷ ︸︸ ︷
s/4

︷ ︸︸ ︷
3s/4

︷ ︸︸ ︷ s︷ ︸︸ ︷

σ1 B · · · B A∗ · · · A∗ A∗ · · · A∗ X · · · X

σ2 B · · · B A∗ · · · A∗ B · · · B X · · · X

σ3 B · · · B B · · · B B · · · B A · · · A

σ4 B · · · B B · · · B B · · · B A · · · A

Figure 2: A non-simple optimal solution of (PB).

Therefore there is an optimal solution of (PA) with single support x3 = 2s/5. A sample

corresponding to it is depicted in Figure 1, in which i = 4 is the first exitor. One can verify

that Program (PB) also satisfies the conditions in Proposition 1. Thus the game is simple.

Example 2. For the following symmetric (4, 3)-coordination game

(a3, a4 : b3, b4) = (3, 4 : 1, 6),

consider Program (PB). Since

min
k

wk 6=0

k

wk
=

1
w1

=
1
5
,

the game is not simple. One can verify that

(x1, x2, x3) =
(

3s

4
,
s

4
, 0

)
is an optimal solution. A sample corresponding to it is depicted in Figure 2, in which i = 3, 4

are the first exitors.

3.2 Evaluating resistances

By construction, the optimal value of (PA) is a lower bound of the resistance r(A,B). The

optimal value is exactly equal to the resistance in some games, but it is strictly less in others.

8



Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6
2s/9

︷ ︸︸ ︷
7s/9

︷ ︸︸ ︷
2s/9

︷ ︸︸ ︷
7s/9

︷ ︸︸ ︷
2s/9

︷ ︸︸ ︷
7s/9

︷ ︸︸ ︷

σ1 A · · · A B∗ · · · B∗ A · · · A X · · · X B · · · B B · · · B

σ2 A · · · A B∗ · · · B∗ A · · · A X · · · X B · · · B B · · · B

σ3 A · · · A A · · · A B · · · B B · · · B B · · · B B · · · B

σ4 A · · · A A · · · A B · · · B B · · · B B · · · B B · · · B

Figure 3: A path from A to B

This is another salient feature of games with three or more players. To see this, let us go back

to Example 1 and Figure 1. During Phase 4, let i = 1, 2, 3 sample Phases 2 and 3. Since

each of them is observing strictly less number of mistakes than program (PA) indicates, the

unspecified action X in Phase 4 is actually A. It is clear that without further mistakes there

will be no sample that rationalizes them playing B. In order to reach state B, more mistakes

are needed. That is, the resistance r(A,B) is greater than the optimal value of (PA).9

In other games, the resistance and the optimal value coincide.

Example 3. Consider a symmetric four-person binary population game in which

(a1, a2, a3, a4 : b2, b2, b3, b4) = (2, 3, 6, 7 : 0, 1, 5, 8).

One can verify that single support solutions

sa4

z2
=

7s

9
and

sb4

w2
=

8s

11

solve (PA) and (PB), respectively. Figure 3 depicts a transition from A to B. The sample

assignments are as follows. In Phase 4, sample for player 1 and 2 are not specified. Players 3

and 4 sample Phases 2 and 3. In Phase 5, players 1 and 2 sample Phases 3 and 4. Players 3

and 4 sample Phases 2 and 3. In Phase 6, players 1 and 2 sample Phases 4 and 5. Players 3 and

4 sample the final available segment of Phase 2, Phase 5, and the initial segment of Phase 6.

These assignments are possible since s ≤ T/2. Each player best responds against the sample.

The key is that in Phase 5, players 1 and 2 are observing a block of Bs in the right shape that

is dictated by the optimal solution of (PA).

This example should convince us that in a symmetric simple n-person binary popula-

tion game, where n is even, if the single support indices of the two programs are k = n/2,
9It is clear from Figure 1 that in a simple binary population game that is symmetric, s(k∗ + 1)(an − b1)/zk∗

is an upper bound of the resistance. In the Appendix, we derive a tighter upper bound.
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b(n+2)/2 ≥ an/2, and a(n+2)/2 ≥ bn/2, then the resistances are equal to the optimal values of

the relevant programs. This observation, in turn, explains why the property holds in any two-

person coordination game, with or without symmetric payoff. In this sense, the class of games

defined by the property is a natural generalization of two-person coordination games.

Definition. A simple binary population game, with or without symmetric payoff, is doubly

simple if r(A,B) is equal to the optimal value of (PA) and r(B,A) is equal to the optimal value

of (PB).

In a doubly simple game, one can circumscribe potential complications inherent in many-

person games.

4 Equilibrium selection in (n, m)-coordination Games

4.1 Insensitivity of the resistance to payoff parameters

Young (1998) found that in a unanimity game the resistances can be insensitive to equilib-

rium payoffs and that this leads to multiple stochastically stable equilibria. It turns out that

insensitivity and multiplicity can arise in a broader class of games. Having established the

relationship between the resistance and the relevant linear program, we are ready to explain

why and when the resistances may become insensitive to the payoff parameters.

Consider a simple binary population game. Let ξ be the optimal solution of (PA) described

in Proposition 1, in which the unique support is k∗. Assume that the envelope theorem is

applicable at ξ.10 Then as a function of payoff parameters, the derivatives of the optimal value

function L(·), the Lagrangian of (PA), are given as follows:

• ∂L(ξ)
∂an

=
sk∗

zk∗
2

(bk∗+1 − an−k∗) = −∂L(ξ)
∂b1

,

• ∂L(ξ)
∂an−k∗

=
sk∗

zk∗
2

(an − b1) = − ∂L(ξ)
∂bk∗+1

,

and all the other derivatives are zero. The mirror image equations for the program (PB) also

follow.11 By Proposition 1, k∗ ≥ kA. Thus by definition of kA, bk∗+1 ≥ an−k∗ .

It is important to notice that there are only four payoff parameters, when perturbed, that

possibly affect the optimal value. Specifically, while bk∗+1 and an−k∗ directly affect it, an or b1

10If k∗ is a unique maximizer in condition (2) of Proposition 1, then ξ is a unique solution of (PA), in which

case we can apply the envelope theorem at ξ.
11If iA 6= iB (see paragraphs that follow Proposition 1), then perturbation of iA’s payoff has no effect on the

optimal value of (PB), and vice versa. If iA = iB or the game is symmetric, then the perturbation may affect

both.
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does only if the first two differ. Note that bk∗+1 = an−k∗ means that at the strategy profile in

which exactly k∗ others play B, both A and B are best responses of iA. Therefore, insensitivity

of the resistance necessarily involves multiple best responses in the stage game.

These observations imply that in a doubly simple binary population game, if all the payoff

parameters are allowed to vary, then generically there is a unique stochastically stable equilib-

rium. As typical in games that embody collective decision rules of the majority-rule variety,

however, there are games in which some of the payoff parameters are defined to be constant.

What if the index k∗ is such that both an−k∗ and bk∗+1 have to be, say, zero by the underlying

decision rule? Then they are not allowed to be perturbed and no permissible payoff perturba-

tion would change the value of the resistance. This leads to a failure of equilibrium selection

by means of stochastic stability. This possibility is actual in the class of (n, m)-coordination

games. For expository purpose, we start with unanimity games.

4.2 Unanimity games

Let an n-person unanimity game with n ≥ 3 be given. Consider (Pi
A). We have

zi
k = ai

n − ai
n−k + bi

k+1 − bi
1 =

ai
n, for k = 1, . . . , n− 2,

ai
n + bi

n, for k = n− 1.

It follows that kA = 1. Therefore (Pi
A) has a single support optimal solution described in

Proposition 1. That is, unanimity games are simple. Proposition 1 implies that if 1/ai
n is no

more than (n − 1)/(ai
n + bi

n) for every i ∈ I, then the optimal value of (PA) is s. Otherwise,

it is s(n − 1)ai
n/(ai

n + bi
n), which is strictly less than s. In either case, the optimal value and

the resistance coincide, since by the unanimity rule an s-consecutive play of single deviation

is enough for everyone to switch optimally. That is, the unanimity game is doubly simple.12

Thus we have the following result.

Proposition 2. Consider an n-person unanimity game, where n ≥ 3.

(A1) If
1
ai

n

≤ n− 1
ai

n + bi
n

for every i ∈ I, then r(A,B) = s.

(A2) If there is i ∈ I such that
1
ai

n

>
n− 1

ai
n + bi

n

12This would be clear from modifying Figure 6, which will appear in the next subsection to demonstrate a

similar claim for (n, m)-coordination games. Details are left to the reader.

11



(B1) (B2)

(A1) Both A

(A2) B
A if α > β
B if β > α

Figure 4: Stochastically stable equilibria in a unanimity game.

then r(A,B) = min
i∈I

s(n− 1)ai
n

ai
n + bi

n

< s.

The analogous results (B1) and (B2) follow for the resistance r(B,A).

By Proposition 2, the stochastically stable equilibria are determined as in Figure 4, where

α = min
i∈I

ai
n

ai
n + bi

n

, β = min
i∈I

bi
n

ai
n + bi

n

.

The diagonal cases in Figure 4 are of interest. First, if both (A1) and (B1) apply, then the

stochastic stability fails to discriminate the two equilibria. When do they apply? It is easy to

see that when n = 3, they are simultaneously satisfied only if ai
n = bi

n for every i ∈ I. Hence for

three-person unanimity games, the stochastic stability selects one or the other in every game

of interest. In contrast, if n ≥ 4 then they place only very loose restriction on the equilibrium

payoffs. Specifically, (A1) and (B1) apply if and only if bi
n ≤ (n− 2)ai

n and ai
n ≤ (n− 2)bi

n, a

pair of very generous conditions, and they become more so as n increases. In particular, both

equilibria can be stochastically stable even if one of them Pareto-dominates the other.

Second, if (A2) and (B2) apply, then there is a unique stochastically stable equilibrium,

which is determined by the risk dominance in a two-strategy two-player unanimity game played

by the distinguished two players, iA and iB. It should be noted, however, that the unique

outcome may not be risk dominant in the original game.

Example 4. Consider a three-person unanimity game in which

(a1
3, a

2
3, a

3
3) = (7, 4, 4) and (b1

3, b
2
3, b

3
3) = (3, 9, 9).

Player 1 prefers the former equilibrium, but the others prefer the latter. Comparing Nash prod-

ucts, we know that (B,B,B) is risk dominant. On the other hand, it follows from Proposition

2 that (A,A, A) is uniquely stochastically stable since (A,A) is risk dominant in the two-player

game, depicted in Figure 5, that is played by iA = 2 and iB = 1.

It is instructive to consider a four-person game in which

(a1
4, a

2
4, a

3
4, a

4
4) = (7, 4, 4, 4) and (b1

4, b
2
4, b

3
4, b

4
4) = (3, 9, 9, 9).

12



A B

A 7, 4 0, 0

B 0, 0 3, 9

Figure 5: A two-person unanimity game.

Phase 1 Phase 2 Phase 3 Phase 4
T︷ ︸︸ ︷ s︷ ︸︸ ︷ s︷ ︸︸ ︷ s︷ ︸︸ ︷

σ1 A · · · A B∗ · · · B∗ A · · · A B · · · B
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

σn−m+1 A · · · A B∗ · · · B∗ A · · · A B · · · B

σn−m+2 A · · · A A · · · A B · · · B B · · · B
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

σn A · · · A A · · · A B · · · B B · · · B

Figure 6: A path from A to B.

One can verify that (A2) and (B2) still apply, so (A, . . . , A) is uniquely stochastically stable.

In the analogous five-person game, however, they no longer apply but (A1) and (B1) do. Thus

the indeterminacy occurs.

In general, even if a unique selection outcome may be obtained in a “small”-person game,

“replicating” it with respect to players eventually leads to multiplicity.

4.3 Multiple stochastically stable equilibria in (n,m)-coordination games

By definition of an (n, m)-coordination game, m > n/2. In this subsection, we consider games

in which m ≥ (n + 3)/2. In such a game, we have

zi
k = ai

n − ai
n−k + bi

k+1 − bi
1 =


ai

n − ai
n−k, for k = 1, . . . , n−m,

ai
n, for k = n−m + 1, . . . ,m− 2,

ai
n + bi

k+1, for k = m− 1, . . . , n− 1,

(?)

and wi
k is given by flipping ai

k and bi
k. Note that m ≥ (n + 3)/2 implies n − m + 1 < m − 1.

Thus there is at least one k such that zi
k = ai

n. It follows that kA ≤ n−m + 1.

Inspecting (?), if xn−m+1 = s solves (Pi
A), then by Proposition 1 the optimal value of (Pi

A)

is (n−m + 1)s, a value that depends on neither the players nor the payoff parameters. If this

is true for some i ∈ I, then (n−m+1)s is an upper bound of the resistance r(A,B). In Figure

13



6, let i ∈ {1, . . . , n − m + 1} and j ∈ {n − m + 2, . . . , n}. In Phase 3, let j sample Phase 2.

Then both A and B are best responses since n −m + 2 < m. In Phase 4, let i sample Phase

3. Then i can choose B since respective strategies yields bi
m ≥ 0 and ai

n−m+1 = 0. Letting j

sample the final available segment of Phase 2 and the initial segment of Phase 4, we make her

choose B in Phase 6 as well. In this way, an s-consecutive (B, . . . , B) arises. It follows that if

k = n−m + 1 is the single support solution index of (Pi
A) and (Pi

B) for every i ∈ I, then the

game is doubly simple and the two resistances are equal to (n−m + 1)s. Formally, the crucial

condition is given by

n−m + 1
ai

n

= min
k

zi
k 6=0

k

zi
k

and
n−m + 1

bi
n

= min
k

wi
k 6=0

k

wi
k

for every i ∈ I. (M)

The question is, therefore, when this can be true. It turns out that if m > (n+3)/2 then there

is an open set of (n, m)-coordination games in which (M) is satisfied.

A sequence of nonempty open intervals γ1, γ2, . . . , γK in R is strictly increasing if every

element of γk is strictly less than every element of γk+1.

Proposition 3. If m > (n + 3)/2, then there are strictly increasing nonempty open intervals

αm, αm+1, . . . , αn and βm, βm+1, . . . , βn of positive numbers such that for every ai
k ∈ αk and

bi
k ∈ βk, where k = m,m+1, . . . , n and i ∈ I, the (n, m)-coordination game (ai

m, ai
m+1, . . . , a

i
n :

bi
m, bi

m+1, . . . , b
i
n)i∈I is doubly simple in which both equilibria are stochastically stable.

4.4 Characterizing multiplicity

An (n, m)-coordination game has generic payoff if both ai
m and bi

m are positive, ai
n and bi

n

differ, and both ai
k and bi

k are strictly increasing in k ≥ m. With generic payoff, we can prove

a sort of converse to Proposition 3.

Proposition 4. Let there be a simple (n, m)-coordination game with generic payoff such that

the optimal values of (PA) and (PB) coincide. If m ≤ (n + 3)/2, then a slight perturbation of

payoff results in another (n, m)-coordination game in which the optimal values differ.

Proposition 3 and 4 characterize multiplicity in the class of doubly simple13 (n, m)-coordi-

nation games: there is an open set of games with multiple stochastically stable equilibria if and

only if (n + 3)/2 > m. The latter condition, in turn, is a necessary and sufficient condition for

an (n, m)-coordination game to have a strategy profile against which both strategies are best

responses for every player. Thus the characterization indicates a close relationship between

multiplicity of equilibria and of best responses.
13We are simply assuming that after the slight payoff perturbation the game remains to be doubly simple.
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5 Concluding Remarks

Working in the adaptive play with mistakes, we have characterized the indeterminacy in doubly

simple (n, m)-coordination games. Our analysis have shown that it is not specific to unanimity

games but may present itself in games with alternative best responses. The result should be

compared with Kim (1996), in which a unique selection result for binary coordination games

has been obtained, and Young (1998), where the possibility of indeterminacy in unanimity

games has been pointed out. In what follows, we reconcile the different selection results that

may appear to be contradicting each other.

Stochastic evolution models vary in their own specific adjustment dynamics through which

the stage game is played. Nonetheless, it is possible to describe a general structure. Typically,

the dynamics run as follows.14 There is a mapping f from its state space Z into the set

∆(Σ) of all probability distributions on the set Σ of stage game pure strategy profiles. At

state z ∈ Z, each player may or may not best respond against the probability distribution

f(z) ∈ ∆(Σ). Their strategies determine the next state. Naturally, different models generate

different mappings. For equilibrium selection, the range of the mapping f matters.

Take an n-person symmetric binary unanimity game and consider its static best response.

By the unanimity rule, both strategies are best responses to a strategy profile in which everyone

but exactly one chooses the same. In a primitive sense, therefore, the minimum number of

deviations to upset either equilibrium is one. This is definitely one of the forces working

behind the indeterminacy result.15 In order for this feature to translate into the selection

outcome, it seems necessary and sufficient that there is a state z such that the corresponding

distribution f(z) places probability one to the one-deviation profile.

There is such a state in the adaptive play with mistakes. Setting n = m in Figure 6, agents

i = 2, . . . , n are observing the one-deviation profile with certainty. This is also true if the game

is played, as in Young (1998), through a multi-population random matching. In such a model,

there are n different populations, each of which is the set of agents that act as one of the players

in the stage game. Consider a state in which every agent in n−1 populations chooses the same

strategy but every agent in the remaining population chooses the other. Then every agent in

the n− 1 populations is observing the one-deviation profile with probability one. In fact, it is

clear in both models that for each pure strategy profile σ ∈ Σ there is a state z such that f(z)

places the unit mass on σ. This observation leads to the conjecture that results analogous to
14The description covers at least representative models such as the single population random matching, the

multi-population random matching, and the adaptive play with mistakes. For the latter, a state should be

refined to include a profile of sample assignments to the agents.
15We say “one of the forces” here since if it were the only one then the indeterminacy would occur in every

unanimity game.
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ours should be true in a multi-population random matching environment.

By contrast, there is no such state if the game is played, as in Kim (1996), through a single

population random matching mechanism. In such a model, the state space is {0, 1, . . . , N},
where N > n is the population size and each state represents the number of agents who choose

a particular action. Consider state N − 1, in which exactly one agent plays differently. In this

state, everyone except the deviator faces the probability distribution f(N − 1) in which the

unanimous profile has probability
(
N−2
n−2

)
/
(
N−1
n−1

)
and the one-deviation profile has probability(

N−2
n−1

)
/
(
N−1
n−1

)
. It is clear that there is no state z such that f(z) places probability one to the

one-deviation profile.16 This is the source of the difference between the adaptive play and the

multi-population matching on one hand, and the single population random matching on the

other.17 In this way, the range of the mapping f affects the selection outcome of the stochastic

equilibrium selection.

One might be tempted to think that binary coordination games are particularly simple

class of games. As far as equilibrium selection is concerned, such a view may be ill-founded.

The selection outcome of a binary coordination game is by no means obvious.18
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Appendix

A.1 Proof of Proposition 1

Proof. Consider the dual program of (PA):

max s(an − b1)λ1 − sλ2
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s.t. z1λ1 − λ2 ≤ 1, . . . , zkλ1 − λ2 ≤ k, . . . , zn−1λ1 − λ2 ≤ n− 1, (DA)

together with the nonnegativity condition λ1 ≥ 0 and λ2 ≥ 0. By the duality theorem, nonneg-

ative vectors (x1, . . . , xn−1) and (λ1, λ2) are optimal solutions of (PA) and (DA), respectively,

if and only if

• Primal Feasibility: (x1, . . . , xn−1) is a feasible solution of (PA),

• Dual Feasibility: (λ1, λ2) is a feasible solution of (DA),

• Complementary Slackness:

– For each xk, if xk > 0 then zkλ1 − k = λ2,

– If λ1 > 0, then
∑n−1

k=1 zkxk = s(an − b1),

– If λ2 > 0, then
∑n−1

k=1 xk = s.

Since (3) implies (1), it suffices to show the following two implications.

(1) ⇒ (2). Let λ2 = 0. Thus zkλ1 ≤ k. Thus λ1 ≤ k/zk for every zk 6= 0. By complementary

slackness,

λ1 =
k

zk
for every k such that xk 6= 0.

Therefore

λ1 = min
k

zk 6=0

k

zk
> 0.

Let

arg min
k

zk 6=0

k

zk
= {k1, . . . kl}.

Assume that kj < kA for every j = 1, . . . , l. Then zkj
< an − b1 by the definition of kA. Thus

zk1xk1 + · · ·+ zkl
xkl

< (an − b1)xk1 + · · ·+ (an − b1)xkl

= (an − b1)(x1 + · · ·+ xn) ≤ s(an − b1).

Therefore
∑

k zkxk < s(an − b1) since xk > 0 implies k = kj for some j = 1, . . . , l. But this

contradicts the complementary slackness since λ1 > 0. Therefore there is k∗ ≥ kA such that

k∗/zk∗ = mink,zk 6=0 k/zk.

(2) ⇒ (3). Consider the solution given in (3). Nonnegativity constraints are all satisfied.

Since an−k∗ ≤ bk∗+1, zk∗ ≥ an − b1, which implies xk∗ ≤ s. Thus (x1, . . . , xn−1) is primal

feasible. Since λ∗2 = 0, the dual constraint is given by zkλ
∗
1 ≤ k, which is satisfied by the

definition of λ∗1. Thus (λ∗1, λ
∗
2) is dual feasible. It is straightforward to verify complementary

slackness. Thus the solution is optimal by the duality theorem.
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A.2 Proof of Proposition 3

To prove Proposition 3, we use the following lemma.

Lemma 1. Consider a parameter set (am, am+1, . . . , an : bm, bm+1, . . . , bn) for an (n, m)-

coordination game such that m ≥ (n + 3)/2. (M) in Section 4.3 holds true if and only if

ηn−kan ≤ ak ≤ ηk−1bn and ηn−kbn ≤ bk ≤ ηk−1an (†)

for k = m,m + 1, . . . , n, where

ηj =
|n−m + 1− j|

n−m + 1
, j ∈ {0, 1, . . . , n−m} ∪ {m− 1, . . . , n− 1}.19

Proof. It suffices to consider (PA) only. We are looking for a necessary and sufficient condition

for
n−m + 1

an
≤ min

k
zk 6=0

k

zk
. (A.1)

We have discussed unanimity games in Section 4.2. In what follows, thus, we assume n−m ≥ 1.

In an (n, m)-coordination game with m ≥ (n + 3)/2,

zk =


an − an−k, for k = 1, . . . , n−m,

an, for k = n−m + 1, . . . ,m− 2,

an + bk+1, for k = m− 1, . . . , n− 1.

Assume (A.1). Then for every k ≤ n−m such that an > an−k,

n−m + 1
an

≤ k

an − an−k
,

which is equivalent to

(n−m + 1− k)an ≤ (n−m + 1)an−k.

Hence,

ηkan ≤ an−k, where ηk =
n−m + 1− k

n−m + 1
. (A.2)

Since ηk ≤ 1, (A.2) is true, a posteriori, every k ≤ n−m such that an = an−k. Thus we have

(A.2) for every k = 1, . . . , n − m. By changing the variable and noting that η0 = 1, we have

ηn−kan ≤ ak for every k = m, . . . , n.

Similarly, (A.1) implies
n−m + 1

an
≤ k

an + bk+1

19Since m ≥ (n + 3)/2, n−m + 1 < m− 1. Thus the numerator of ηj never be zero.
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for every k = m− 1, . . . , n− 1,20 which is equivalent to

(n−m + 1)bk+1 ≤ (k − n + m− 1)an.

Thus

bk+1 ≤ ηkan, where ηk =
k − n + m− 1

n−m + 1
for every k = m − 1, . . . , n − 1. By changing the variable, we have bk ≤ ηk−1an for every

k = m, . . . , n. Thus we have ηn−kan ≤ ak and bk ≤ ηk−1an for every k = m, . . . , n, the half of

the inequalities in (†). Conversely, it is clear that these two imply (A.1).

We are now ready to prove Proposition 3.

Proof. Let us say that a sequence of nonempty open intervals δ1, δ2, . . . , δK in R is weakly

increasing if inf δk < inf δk+1. It is clear that if δ1, δ2, . . . , δK is weakly increasing then there

are nonempty open intervals γk ⊂ δk such that γ1, γ2, . . . , γK is strictly increasing.

By the preceding observation and Lemma 1, it suffices to construct weakly increasing

sequences of nonempty open intervals αm, . . . , αn and βm, . . . , βn of positive numbers that

satisfy the following.

(B.1) an ≤ ηn−1bn and bn ≤ ηn−1an for every (an, bn) ∈ αn × βn.

(B.2) For every (an, bn) ∈ αn × βn,

αk ⊂ [ηn−kan, ηk−1bn] and βk ⊂ [ηn−kbn, ηk−1an]

for every k = m,m + 1, . . . , n− 1.

Let m > (n + 3)/2. Then

η1 =
n−m

n−m + 1
< 1 <

m− 2
n−m + 1

= ηn−1.

One can verify that under this condition we can choose e > e > 0 such that

(B.3) η1e < e,

(B.4) max
{

an

bn
,

bn

an

}
< ηn−1 for every an, bn ∈ (e, e).

Letting αn = βn = (e, e), we obtain (B.1). One can verify that

ηk−1

ηn−k
=

k − n + m− 2
k −m + 1

20Note that m− 1 > kA.
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is strictly decreasing in k ≥ m. Note that ηn−1/η0 = ηn−1. Then by (B.4),
e

e
≤ ηn−1 <

ηk−1

ηn−k

for every k = m, . . . , n− 1. Therefore

ηn−kan < ηn−ke < ηk−1e < ηk−1bn

for every k = m, . . . , n− 1 and every (an, bn) ∈ αn × βn. Setting

αk = βk = (ηn−ke, ηk−1e),

we have (B.2).

It remains to show that αm, . . . , αn is weakly increasing. Since ηn−k is strictly increasing

in k, inf αk = ηn−ke < ηn−k−1e = inf αk+1 for k = m, . . . , n− 2. Together with (B.3), it follows

that αm, . . . , αn is weakly increasing.

A.3 Proof of Proposition 4

Proof. Let a simple (n, m)-coordination game with generic payoff be given. Assume that the

optimal values vA and vB of (PA) and (PB) to be equal. In Section 4.1 we saw that vA is

a decreasing function of bk∗+1, where k∗ is the single support optimal solution of (PA). If

k∗ + 1 ≥ m, then by generic payoff bk∗+1 < bk∗+2. Thus we can increase bi
k∗+1 to decrease vA

but to weakly increase vB.21 Hence it suffices to show that k∗ ≥ m− 1.

If m ≤ (n + 2)/2, then n − (m − 2) ≥ m. Thus bi
(m−2)+1 < ai

n−(m−2) by generic payoff.

Therefore the definition of kA implies that m− 1 ≤ kA ≤ k∗. The case that m = (n+3)/2 only

remains. In this case, kA = n−m+1 = m−2 = (n−1)/2 (see (?) in the opening paragraph of

Section 4.3). Assume that k∗ = m− 2. Then it follows from the first equation in (M) (Section

4.3) that for every i ∈ I,
n− 1
2ai

n

=
n−m + 1

ai
n

≤ (n− 1)
ai

n + bi
n

,

which implies bi
n ≤ ai

n. Thus if, in addition, k∗∗, the support of (PB), is also m − 2, then

ai
n = bi

n for every i ∈ I. But such a case is excluded by generic payoff assumption. Thus

max{k∗, k∗∗} ≥ m− 1. By renaming the payoff parameters if necessary, we can conclude that

k∗ ≥ m− 1.

A.4 An upper bound of the resistance

Even if the resistance r(A,B) and the optimal value of (PA) differ the latter is still useful in

deriving an upper bound of the former if the game is symmetric.
21If (PA) and (PB) belong to the same player i ∈ I, as they would in a symmetric game, then an increase of

bk∗+1 would change vB as well. But we know that ∂LB/∂bk, the partial of the Lagrangian of (PB), is nonnegative.
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Phase 1 Phase 2t Phase 21−t Phase 3 Phase 4
s−x︷ ︸︸ ︷ tx︷ ︸︸ ︷

(1−t)x
︷ ︸︸ ︷ s−x︷ ︸︸ ︷ x︷ ︸︸ ︷

σ1 A · · · A B∗ · · · B∗ B∗ · · · B∗ A · · · A B · · · B
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

σk−1 A · · · A B∗ · · · B∗ B∗ · · · B∗ A · · · A B · · · B

σk A · · · A B∗ · · · B∗ B∗ · · · B∗ A · · · A B · · · B

σk+1 A · · · A B∗ · · · B∗ A · · · A B · · · B B · · · B

σk+2 A · · · A A · · · A A · · · A B · · · B B · · · B
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

... · · ·
...

σn A · · · A A · · · A A · · · A B · · · B B · · · B

Figure 7: A path from A to B.

To derive the upper bound, take a simple and symmetric binary population game and let

the unique support solution be given by x = s(an − b1)/zk. Consider the sequence of events

depicted in Figure 7. At the beginning of Phase 1, the current state of the adaptive play is

A, which we call Phase zero. In Phase 1, everyone best responds to Phase zero, plays A. In

Phase 2, players i = 1, . . . , k make mistakes as exactly as the solution of (PA) indicates. Players

i = k +2, . . . , n best respond to Phase zero. Pay a special attention to player k +1, who makes

mistakes in Phase 2t but best responds in Phase 21−t, where t ∈ [0, 1]. In Phase 3, each player

samples Phases 1 and 2 and best responds. The number of Bs that players i = 1, . . . , k face

is weakly less than the optimal value of (PA).22 Thus they can choose A. Player k + 1 faces

the solution of (PA). Thus she can chooses B. Players i = k + 2, . . . , n face the solution of

(PA) with some extra Bs. Therefore they choose B. In Phase 4, each player samples Phases

2 and 3 and best responds. Since players i = k + 1, . . . , n see more Bs than in Phase 3, they

continue playing B. In contrast, what players i = 1, . . . , k choose depends on t. They choose B

if g(t) ≥ 0, where

g(t) = {(s− x)bn−k+1 + txbk+1 + (1− t)xbk} − {(s− x)ak + txan−k + (1− t)xan−k+1} .

It may well be the case that g(0) ≥ 0. In this case, the resistance r(A,B) is equal to the

optimal value of (PA). Even if g(0) < 0, there is t ∈ (0, 1] such that g(t) ≥ 0. This is because

by plugging x = s(an − b1)/zk in , we have

(s− x)b1 + xbk+1 = (s− x)an + xan−k.

By monotonicity of payoff parameters, it follows that

(s− x)bn−k+1 + xbk+1 ≥ (s− x)ak + xan−k,

22In other words, if t < 1 they face a strictly less number of Bs so that they must choose A. If t = 1, they

face the optimal solution so that A and B are alternative best responses. Recall that we ignore rounding issues.

22



which means that g(1) ≥ 0. Therefore if t ≥ t∗ = min { t ∈ [0, 1] | g(t) ≥ 0 }, everyone can play

B in Phase 4. In Phase 5, each player samples Phases 3 and 4. By monotonicity again, everyone

continues playing B. Note that this sequence of events can happen with positive probability

under the assumption that s ≤ T/2. Now it is clear that we can bound the resistance as

sk(an − b1)
zk

≤ r(A,B) ≤ s(k + t∗)(an − b1)
zk

.

It does not appear to be straightforward to bound the resistance any tighter. Note that the

argument that leads to this inequality depends on the symmetric payoff assumption in several

steps.
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