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Abstract

Nonlinear drift models of the short-rate are estimated using data on the short-end

of the term structure, where the cross-sectional relation is obtained by an analytical

approximation. We find that (i) nonlinear physical drift is not implied unless it is

strongly affected by cross-sectional dimensions of the data; (ii) nonlinear risk-neutral

drift that allows for fast mean-reversion for high rates is desirable to explain and

predict observed patterns of yield spreads; and (iii) for higher-frequency data from

which transitory shocks are removed, (ii) still remains valid although the nonlinearity

is somewhat reduced.

Key Words: Short-Rate; Nonlinear Drift; Term Structure; Linear Approximation.

∗Address correspondence to: Graduate School of Economics, Hitotsubashi University, Kunitachi Tokyo

186-8601, JAPAN. Phone & Fax: +81–42–580–8524. E-mail: htakamiz@econ.hit-u.ac.jp

1



1 Introduction

The drift of the instantaneous risk-free rate, the short-rate, has a crucial role both in

capturing the time-series behavior and in pricing the cross-section of interest-rate claims.

This has drawn attention to the shape of the drift. In particular, since Aı̈t-Sahalia (1996),

the nonlinearity in the drift has been intensively discussed. Nonlinear drift, having a more

flexible form than linear drift, can produce different speeds of mean-reversion at different

levels of the short-rate. Specifically, fast mean-reversion is generated at very high and low

levels, but little mean-reversion occurs at middle levels. From an economic perspective,

nonlinear drift seems to provide a rationale for the puzzling behavior of interest rates:

in spite of near-unit root behavior, they do not diverge. It can further be rooted in

the behavior of central banks, which adjust interest-rate levels, depending on economic

and market conditions, in a certain range: see Aı̈t-Sahalia (1996, p.407) for discussion

regarding economic aspects of nonlinear drift.

In the estimation, Aı̈t-Sahalia (1996) points out that parametric models adequately

matching a nonparametrically estimated marginal density have nonlinear drift. Jiang

(1997) also utilizes the relation between the marginal density and drift-diffusion functions

to obtain a nonparametric estimator of the drift, which exhibits nonlinearity. Stanton

(1997) finds that while nonparametric estimators of the drift are nearly zero for most of the

observed range of U.S. interest rates, they decrease rapidly at extremely high levels. Conley

et al. (1997) document that in controlling the value of a parameter of constant elasticity

of variance, nonlinear drift more adequately matches data than does linear drift. Ang

and Bekaert (2002) show that nonlinear drift is naturally implied when regime-switching

models with state-dependent transition probabilities are estimated.

Conversely, Pritsker (1998) demonstrates that the nonparametric-based test proposed

by Aı̈t-Sahalia (1996) too often rejects the null of linear drift, due to the extremely slow

rate of convergence of the test statistic given the high persistence of interest rates. Chap-

man and Pearson (2000) perform Monte Carlo simulations, in which both parametric and

nonparametric estimators of the drift are obtained using data generated from a linear

drift model. They show that these estimators tend to be negatively (positively) biased

for very high (low) rates, leading to spurious nonlinearities. 1 Li et al. (2004) report

that when the condition that the short-rate stays in a predetermined range is incorporated

into the estimation of the drift, a linear drift model is not rejected. Recent studies using

simulation-based techniques have reported that there is not sufficient evidence in favor of
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nonlinear drift. Durham (2003), employing the simulated maximum likelihood method,

points out that terms beyond a constant in the drift do little to improve the fit. Jones

(2003), employing the Bayesian MCMC approach, finds that the nonlinearity is not only

an outcome of particular distributional assumptions reflected in chosen priors, but also an

outcome of estimating misspecified models from high-frequency data.

The lack of consensus reflects fundamental difficulties in the estimation of the drift,

which requires data over a long period of time. The high persistence of interest rates

reinforces these difficulties. Besides, when the nonlinearity of the drift is considered, the

problem becomes even more serious. We normally need to show that the speed of mean-

reversion at the high and low levels differs from that in the middle. However, observations

at these extreme levels are usually scarce. It is therefore unavoidable that the shapes of

the drift at these extreme levels are identified with much less precision. The problem is

not easy to solve even though time-series observations over several decades are available.

In this paper, we adopt an alternative approach to estimating the drift. Instead of

relying solely on time-series data, we utilize multiple series of data on the term structure

of interest rates. By further specifying the price of risk, the term structure can be derived.

Part of the information on the short-rate dynamics is then reflected in the cross-section

of discount-bond yields. The drift needs to be consistent with both time-series and cross-

sectional dimensions of the data, which we expect leads to more precise estimators of the

drift.

The estimation, however, is time-consuming. We need both to solve a valuation equa-

tion relating the short-rate to yields in the cross-section and to optimize an objective

function with respect to model parameters for estimation. Since we consider short-rate

models with nonlinear drift, closed-form models of the term structure cannot generally

be obtained, which is a major obstacle to using term structure data. To overcome this

difficulty, we utilize an approximation proposed by Takamizawa and Shoji (2003): a local

linear approximation is applied to the short-rate process with nonlinear drift and diffu-

sion functions, and the partial differential equation valuing a discount bond can be solved

analytically. Once the yield function is obtained in closed form, the estimation is carried

out by the maximum likelihood (ML) method, in which the models are fitted to both

time-series and cross-sectional dimensions of the data.

Since our primary interest is in the drift of the short-rate process, we exclusively focus

on the stochastic behavior of the short-rate. Therefore, in constructing the term structure,
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we also assume a single factor. Accordingly, we fit the models to data on the short-end of

the term structure, short-yield data, where the assumption is not overly restrictive, even

though multiple factors are necessary for describing the entire term structure.

We emphasize that the short-end of the term structure is indeed informative. Figure 1

graphs spreads of the three- and six-month Eurodollar rates over the one-month Eurodollar

rate against the level of the one-month rate on a weekly basis. While there seems no clear

pattern for low to middle rates, large negative spreads, particularly those of the six-month

rate, can be seen for high rates. This may indicate that the drift in the risk-neutral

measure, the risk-neutral drift, is nonlinear. More precisely, suppose the risk-neutral drift

decreases rapidly as the short-rate increases. Then, in the risk-neutral world, the short-

rate at high levels will be more likely to decrease, which reduces the rate of increase in∫ T
t rudu and hence the rate of decrease in exp(− ∫ T

t rudu). Since discount-bond prices are

given by EQt [exp(− ∫ T
t rudu)], where the conditional expectation EQt is taken with respect

to the risk-neutral measure, it follows that the prices are less discounted on average due

to fast mean-reversion. The yields to maturity are then low relative to the short-rate,

resulting in large negative spreads. A desirable specification of the risk-neutral drift is

therefore implied by short-yield data.

A desirable specification of the drift in the physical measure, the physical drift, is also

possibly implied. Through the absence of arbitrage, the physical drift is determined by the

risk-neutral drift and the risk premium. The risk-neutral drift is likely to be restricted by

term structure data, as explained above. The risk-premium function is also restricted by

the absence of arbitrage: see, for example, Cox, Ingersoll, and Ross (CIR) (1985, p.398).

Then, the resulting physical drift may not be determined arbitrarily, either. While this

perspective cannot be achieved using time-series data alone, it can using term structure

data.

Our findings regarding the nonlinearity in both the physical and risk-neutral drifts are

as follows. First, nonlinear physical drift is implied only in cases where nonlinear terms

are strongly affected by cross-sectional dimensions of the data. These cases, however, are

rather restrictive. In general, the goodness-of-fit to time-series dimensions of the data is

not much reduced without nonlinear terms. Second, nonlinear risk-neutral drift is more

desirable. Due to higher-order terms, both large negative spreads for high rates and very

small spreads for low rates are consistently explained. Third, nonlinear risk-neutral drift is

still evident for higher-frequency data from which transitory shocks are removed, although
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the nonlinearity is somewhat reduced.

The rest of the paper is organized as follows. Section 2 specifies parametric models of

the short-rate with nonlinear drift and constant elasticity of variance, and derives an ana-

lytical approximation of the term structure. Section 3 explains the estimation framework.

Section 4 reports empirical results for weekly data. Section 5 examines whether nonlinear

terms in both the physical and risk-neutral drifts contribute to out-of-sample prediction.

Section 6 examines using daily data whether nonlinear risk-neutral drift is still preferable

after controlling transitory shocks probably contained in the daily-observed short-rate.

Section 7 provides concluding remarks.

2 Models

Following Aı̈t-Sahalia (1996, 1999) and Conley et al. (1997), we consider the following

parametric model of the short-rate process with nonlinear drift and constant elasticity of

variance/volatility (CEV), which is standard in the literature when it comes to nonlinear

drift models of the short-rate:

drt = (α−1/rt + α0 + α1rt + α2r
2
t )dt+ σrγt dWt , (1)

where Wt is Brownian Motion in the physical measure.

Next, we specify the price of risk, λ(r), consistently with non-arbitrage. We consider

as a non-arbitrage condition boundedness of λ(r) on {r : σ(r) = 0}, where σ(r) stands

for the diffusion term of the short-rate process. Accordingly, the risk premium given by

λ(r)σ(r) is zero if σ(r) = 0. A similar condition is adopted by, for example, Stanton

(1997) and Jiang (1998). To keep models simple, we also assume that both the physical

and risk-neutral drifts, denoted, respectively, as µ(r) and µQ(r), are of the same functional

form (this assumption is later withdrawn). This leads to an additional restriction on λ(r)

through the following identity:

µQ(r) = µ(r) − λ(r)σ(r) . (2)

Then, possible specifications are 2

λ(rt) = λ2r
2−γ
t (1 < γ ≤ 2) , (3)

λ(rt) = λ1r
1−γ
t + λ2r

2−γ
t (0 < γ ≤ 1) . (4)
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Consequently, the risk-neutral process of the short-rate is modeled by the following stochas-

tic differential equation (SDE):

drt = (α−1/rt + α0 + α1rt + β2r
2
t )dt+ σrγt dW

Q
t (1 < γ ≤ 2) , (5)

drt = (α−1/rt + α0 + β1rt + β2r
2
t )dt+ σrγdWQ

t (0 < γ ≤ 1) , (6)

where WQ
t is Brownian Motion in the risk-neutral measure, and where βi ≡ αi − σλi

(i = 1, 2). In the empirical analysis, we report estimation results of βi, instead of λi, as

the shapes of both µ(r) and µQ(r) are of primary interest.

Many previous studies, using long time-series data on U.S. interest rates, report that

the estimate of the CEV parameter, γ, is more than one but less than two: see Chan,

Karolyi, Longstaff, and Sanders (CKLS) (1992) among others. Therefore, when we treat

γ as a free parameter, we conservatively adopt the model given by (1) and (3) (or (5)).

On the other hand, when we wish to increase the number of parameters in λ(r), we may

have to restrict the value of γ. The alternative model given by (1) and (4) (or (6)) allows

us to examine whether estimated shapes of µ(r) and µQ(r) differ between the two models.

Of particular interest is whether the difference in the number of shared parameters (three

for the former and two for the latter) has a nontrivial impact on the shape of µ(r).

Next, we derive the price of a default-free discount bond. Let P (rt, t, T ) denote the

price at time t with maturity time T . Then, by the standard non-arbitrage argument, it

is the solution to the following partial differential equation (PDE):

1
2
(σrγt )

2 ∂
2P

∂r2t
(rt, t, T ) + µQ(rt)

∂P

∂rt
(rt, t, T ) +

∂P

∂t
(rt, t, T ) − rtP (rt, t, T ) = 0 , (7)

with the boundary condition, P (rT , T, T ) = 1. Since the PDE cannot generally be

solved in closed form, we employ an analytical approximation for P (rt, t, T ) proposed

by Takamizawa and Shoji (2003) to keep the computational burden manageable. The

approximate solution, denoted as P̃ (rt, τ) with τ = T − t, is derived as

P̃ (rt, τ) = exp{−A(τ ; rt) −B(τ ; rt)rt} , (8)

where A(τ ; rt) and B(τ ; rt) are given in Appendix. The yield to maturity of a discount

bond is then given by Ỹ (rt, τ) = 1
τ {A(τ ; rt) +B(τ ; rt)rt}.

The accuracy of the approximation decreases with maturity length, τ . However, we

have verified that the approximation does not cause serious estimation problems, as long

as standard nonlinear drift models are estimated using data on U.S. interest rates with

short maturities: the details of the accuracy analysis are available upon request.

6



3 Estimation Framework

3.1 Data

We use weekly data on the one-, three-, and six-month Eurodollar deposit rates, which

are available at H-15 Federal Reserve Statistical Release (Selected Interest Rate Series).

Although weekly data (on a Friday basis) is downloadable, we construct it from daily data

by picking up every set of Wednesday observations. If it is missing on a particular week,

we choose it from another day of the week in order of Tuesday, Thursday, Friday, and

Monday. Exceptionally, we replace two sets of Wednesday observations that are possibly

outliers with other sets within the same week: 12/24/1980 is replaced with 12/23 (Tue.),

and 12/26/1990 with 12/28 (Fri.). We use for estimation data from January 6, 1971 to

December 29, 1999 (1513 obs.), and for out-of-sample prediction data from January 5,

2000 to December 28, 2005 (313 obs.). We also use an alternative dataset consisting of

U.S. Treasury bill yields with maturities of three, six, and twelve months, covering the

period from July 15, 1959 to August 22, 2001. The estimation results are broadly similar

to those for the Eurodollar data. Hence, they are not reported in this paper, but are

available upon request.

3.2 Objective function for estimation

We employ the ML method to estimate the models, where they are fitted to both time-

series and cross-sectional dimensions of the data. 3 The density function at a given point

in time is decomposed into two parts, denoted as fT and fC : fT is the transition density

for the time-series behavior of the short-rate, whereas fC is the density for measurement

errors added to term structure models.

For the short-rate model given by (1), no analytical expression is known for fT . To

compute it, therefore, we employ the method proposed by Aı̈t-Sahalia (1999, 2002). The

method provides an analytical approximation of fT , expressed as the multiplication of the

normal density and correction terms given by power series in an observation interval, ∆.

We truncate the series at the first order, since, according to Aı̈t-Sahalia (1999), sufficient

accuracy is achieved by the first-order approximation for regular financial data.

fC , on the other hand, is based on the following regression model:
 y3M,t

y6M,t


 =


 Ỹ (rt, 0.25)

Ỹ (rt, 0.50)


 +


 v1 0

v2ρ v2
√

1 − ρ2





 u1,t

u2,t


 , (9)
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where

ui,t = φiui,t−∆ +
√

1 − φ2
i zi,t , zi,t ∼ i.i.d. N(0, 1) (i = 1, 2) , (10)

and where z1,t and z2,t are independent from rt. We note that each unconditional vari-

ance of ui is set to one given |φi| < 1. The magnitude of the measurement errors is then

captured by (v1, v2). By incorporating the first-order autocorrelations as well as the con-

temporaneous correlation, distributional features of the measurement errors become more

realistic. In fact, the log-likelihood value increases dramatically by assuming the autocor-

relations. This does not necessarily mean, however, that the descriptive power of term

structure models is improved. Nevertheless, we adopt this assumption to prevent both

µ(r) and µQ(r) from being excessively affected by cross-sectional dimensions. In other

words, we wish to avoid a situation where nonlinear terms, which do not originally exist,

would become significant due to poor assumptions for the measurement error distribution.

Let θT and θC be parameter vectors on which fT and fC depend: θT = ((αj)2j=−1, σ, γ),

and θC = ((αj)Jj=−1, (βj)
2
j=J+1, σ, γ, ρ, (vj , φj)

2
j=1), where J = 0 for 0 < γ ≤ 1 and J = 1

for 1 < γ ≤ 2. Then, an objective function for estimation is

∑
t

{ln fT (rt; rt−∆, θT ) + ln fC(yt; rt, θC)} , (11)

where yt = (y3M,t, y6M,t). We note that in estimating all the parameters, both φ1 and φ2

approach one, and that the structural parameters of interest take on unreasonable values.

To avoid this problem, we fix (φ1, φ2). To obtain the reasonable values, we first estimate

two representative models with (φ1, φ2) set to zero, and then estimate (φ1, φ2) from the

residual series of each model. The two representative models, which we later label (GF

*) and (G1 ****), are distinguished mainly by the value of γ: it is a free parameter for

the former while it is fixed at one for the latter. The resulting estimates for (GF *) and

(G1 ****) are (0.851, 0.819) and (0.853, 0.824), respectively. The former (latter) values

are repeatedly used for estimating other models with γ free (fixed at one).

4 Empirical Results for Weekly Data

4.1 Estimation results for models with γ free

We begin with estimation of the short-rate model given by (1) using time-series data on

the one-month rate alone. That is, only the first component of (11),
∑
t ln fT (rt; rt−∆, θT ),

is maximized over θT . The column of Table 1 labeled (Time) presents the results. First,
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the estimate of γ is 1.31, which is significantly different from one. Hence, as long as we

estimate parsimonious models using long-term data on U.S. interest rates, the conservative

specification of λ(r) given by (3) may be acceptable. Second, neither α−1 nor α2 is

estimated precisely. The result agrees with that of Aı̈t-Sahalia (1999, Table VI), whose

ML technique we follow. While the data used in his study (monthly data on the Fed

funds rate over 1963/01–1998/12) are different from ours, the estimates (standard errors)

of α−1 × 102 and α2 are similar: 0.069 (0.2) and −4.059 (6.4), respectively. These results

indicate the difficulty of the precise estimation of the nonlinear terms using time-series

data alone.

Given the imprecise estimates, the null hypothesis of α−1 = α2 = 0 is not rejected

at any conventional significance level: the likelihood-ratio statistic (p-value, d.f.) is 0.67

(0.72, 2). Furthermore, the null of zero drift is not rejected, either: the likelihood-ratio

statistic (p-value, d.f.) is 5.36 (0.25, 4). That is, the precise estimation of the drift itself

is difficult in our data.

We now estimate using short-yield data the model given by (1) and (5), which we label

(GF *) (the model with γ free). The asterisk denotes that α−1 is a free parameter. When

we restrict α−1 = 0, it is replaced with 0. The column of Table 1 labeled (GF *) presents

the results. First, the estimate of α2 is −7.09 and now significant, the reason for which is

explained below. Second, the estimate of α−1 is still insignificant even after introducing

cross-sectional constraints. Third, the estimates of the volatility parameters, (σ, γ), are

(0.72,1.30), which are little changed from those using time-series data alone, (0.73,1.31).

The result indicates that time-series dimensions of the data almost exclusively determine

the values of the volatility parameters. Also, this is consistent with the fact that the

volatility is invariant to changes of probability measures. Fourth, the estimate of β2 is

−4.04 and significant, which is in line with our expectations as mentioned in Introduction.

A positive term premium is implied, as the resulting estimate of λ2 = (α2 − β2)/σ is

negative. This, in fact, is the key to the significant estimate of α2. Specifically, although

α2 is the only unshared parameter in µ(r), and hence supposed to be adjusted to time-

series dimensions of the data, it is also constrained by cross-sectional dimensions through

the term premium: for the term premium to be positive α2 < β2 is required given σ > 0.

In addition, by taking account of β2 < 0, which is supported by short-yield data, the

constraint on α2 is actually α2 < β2 < 0.

Next, we test for α−1 = 0. The likelihood-ratio statistic is 0.07, and the null is not
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rejected at the 5% significance level. Strong evidence in favor of fast mean-reversion at

low levels cannot therefore be obtained in either the physical or the risk-neutral measure.

Parameter estimates for (GF 0) are also presented in Table 1. The estimates of α2 and β2

are both significant, and similar in magnitude to those for (GF *). Further constraints on

nonlinear terms are therefore not supported by short-yield data. In particular, the rejection

of β2 = 0 is extremely strong. In actually estimating the model with α−1 = β2 = 0, the

slope of µQ(r) is negative, indicating that the short-rate in the risk-neutral measure mean-

reverts for both high and low rates at a constant speed. However, this behavior is not

consistent with either large negative spreads for high rates or small spreads for low rates.

Due to the quadratic term in µQ(r), interest rates at both extreme levels can adequately

be explained. In other words, it indeed gives an additional degree of freedom in fitting

models to short-yield data.

In Panels (a) and (b) of Figure 2, µ(r) and µQ(r) are plotted against the level of

r. The shape of µ(r) estimated using time-series data alone appears to differ from that

estimated using short-yield data. However, the difference may actually be minor, as the

estimates using time-series data alone are imprecise. If this is the case, we could say that

a desirable shape of µ(r) is identified from short-yield data. We then test for whether the

identified drift is restrictive for time-series data alone. Specifically, the null hypothesis is

(α−1, α0, α1, α2) = (0.000, 0.015, 0.358, −6.830) taken from (GF 0). Then, the rest of the

parameters, (σ, γ), are estimated using time-series data to compute the likelihood value.

The likelihood-ratio statistic (p-value, d.f.) is 10.92 (0.03, 4). Identifying the shape of

µ(r) by introducing cross-sectional constraints is therefore not costless for the GF-type

models. We further test in the next section for whether the identified drift is useful for

out-of-sample prediction. Between (GF *) and (GF 0), there is little difference in the

shapes of µ(r) and µQ(r). A small deviation observed for r < 0.03 may be spurious,

taking account of the fact that the in-sample minimum of r is 0.03.

4.2 Estimation results for models with γ = 1

When we increase terms in λ(r) as given in (4), we actually have to restrict the value of

γ as long as the parsimony assumption is maintained that both µ(r) and µQ(r) are of the

same functional form. Based on the actual estimate exceeding one, we set γ = 1. We note,

however, that the constraint is strongly rejected, as we see below.

We also begin with estimation of the short-rate model with γ = 1 using time-series
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data alone. The column of Table 2 labeled (Time) presents the results. First, the null

hypothesis of γ = 1 is strongly rejected: the likelihood-ratio statistic is 53. Second,

none of the estimates are significant. Again, the null of zero drift is not rejected at any

conventional significance level: the likelihood-ratio statistic (p-value, d.f.) is 5.66 (0.23,

4).

We next estimate the model given by (1) and (6), which we label (G1 ****) (the model

with γ fixed at one). The asterisks denote that the parameters in order of (α−1, α2, λ1, λ2)

are free. When one or more of them are set to zero, the corresponding asterisks are

replaced with 0s. The column of Table 2 labeled (G1 ****) presents the results. First,

neither α−1 nor α2 is estimated precisely, as is the case for time-series data alone. The

insignificant estimate of α2 contrasts sharply with the previous result for (GF *). This is

because for (G1 ****) neither the sign nor the magnitude of α2 is crucial for explaining

the term premium. More specifically, for a positive term premium, λ(r) = λ1 + λ2r < 0 is

required given σ(r) > 0. However, the inequality possibly holds even for λ2 > 0 (α2 > β2),

when λ1 is sufficiently negative. Indeed, the estimates of α1 and β1 are 0.37 and 1.08,

respectively, leading to λ1 = (α1 − β1)/σ < 0. Moreover, in computing λ(r), it is negative

until the short-rate is slightly below 0.14, and then becomes positive. We notice in Figure

1 that the proportion of negative spreads increases for r > 0.14. Hence, λ(r) > 0, or

equivalently a negative term premium, for high rates is more consistent with the actual

data.

We next test for α−1 = α2 = 0, the linearity in µ(r). The likelihood-ratio statistic

(p-value, d.f.) is 5.17 (0.08, 2), and the null is not rejected at the 5% significance level.

The estimation results for the null model, (G1 00**), are also presented in Table 2. The

estimates of α0 and α1 are now significant, implying that the short-rate mean-reverts in

the physical measure at a constant speed. 4 We also test for whether the identified drift

is restrictive for time-series data alone. Similarly, the null hypothesis is (α−1, α0, α1, α2) =

(0.000, 0.025, −0.345, 0.000) taken from (G1 00**), and the rest of the parameter, σ, is

estimated using time-series data. The likelihood-ratio statistic is 0.30, and the null is not

rejected at any conventional significance level. Identifying the shape of µ(r) by introducing

cross-sectional constraints does not therefore entail cost for the G1-type models. This can

also be confirmed in Figure 2(c). The shape of µ(r) estimated using time-series data

indeed resembles that for (G1 00**).

The estimates of β2, on the other hand, are significant for both (G1 ****) and (G1
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00**): −6.05 and −3.37, respectively. While they appear to differ, the difference does not

yet arise in a practical sense for the reasonable range of r. Looking at Figure 2(d), both

shapes almost coincide, except at the very low level of r where the discrepancy appears to

be exaggerated for the following reasons: the estimate of α−1 for (G1 ****) is imprecise

and there is no observation of r below 0.03 in the in-sample data. Furthermore, comparing

the shape of µQ(r) for (G1 00**) to that for (GF 0), i.e., the dotted lines between Panels

(b) and (d), we see little difference. Nonlinear risk-neutral drift indeed seems robust.

(G1 ****) allows us to test for whether a single term in λ(r) is sufficient for explaining

short-yield data. If this is the case, the specification of λ(r) for (GF *) turns out to be

not so restrictive. Then, the resulting nonlinear physical drift, though it is more or less

restrictive for time-series data alone, can be justified in terms of a better fit to short-yield

data.

First, we test for λ1 = 0, which is equivalent to α1 = β1. The model labeled (G1**0*)

is also a special case of (GF *) where γ = 1 is placed. The result of the likelihood-ratio

test is that (G1 **0*) is strongly rejected against (G1 ****): the test statistic is 15.7.

Of particular note is the significantly negative estimate of α2, −7.67, shown in Table 2.

Nonlinear physical drift is thus implied, however, as an outcome of the constraint that is

hardly supported by the data. Next, we test for λ2 = 0, which is equivalent to α2 = β2.

Hence, we at the same time test for whether the speed of mean-reversion for high rates is

identical in both measures. The test statistic (p-value, d.f.) is 5.97 (0.015, 1). The null

is therefore rejected at the 5% significance level but not at the 1% level. The estimation

results for (G1 ***0) are also presented in Table 2. The estimate of α2 is −5.50 and

significant, which is in line with our expectations, as β2 < 0 is consistently supported by

the data. Nonlinear physical drift is thus implied with the constraint not as strong as that

of λ1 = 0.

The reason for the difference in the test results can be explained as follows. By setting

λ1 = 0 (α1 = β1), α2 is the only unshared parameter in µ(r), and hence supposed to be

adjusted to time-series dimensions of the data. However, α2 is constrained as α2 < β2 < 0

due to a positive term premium implied by the data. The lack of flexibility in α2 results in

the strong rejection. On the other hand, α1 is the analogous parameter in µ(r) by setting

λ2 = 0 (α2 = β2). The extent to which α1 is constrained by cross-sectional dimensions is

weaker: α1 < β1. The strong rejection is therefore avoided.

Apart from the inverse term, the statistical significance of which cannot be obtained

12



in our data, the nonlinearity in µ(r) depends on the significance of the quadratic term. At

present, the conditions under which α2 becomes significant can be summarized as follows:

[C1 ] α2 is linked to the coefficient of the lower-order term in λ(r), and

[C2 ] α2 = β2.

[C1] holds for (GF *) and (G1 **0*), while [C2] holds for (G1 ***0). In both cases, the

quadratic term in µ(r) is strongly linked to cross-sectional dimensions of the data. As we

have seen, however, these links are more or less restrictive. Conversely, if these links are

removed, the significance of α2 depends largely on time-series dimensions of the data. If

the significance were indeed obtained from time-series data alone, it would become more

pronounced for short-yield data. Otherwise, the significance cannot be expected even

though cross-sectional constraints are introduced, as is the case for (G1 ****)

4.3 Estimation results for more general models

We further examine whether α2 is indeed significant under [C1] or [C2], using more general

models where the parsimony assumption that µ(r) and µQ(r) are of the same functional

form is withdrawn. First, we add a linear term to (3) while treating γ as a free parameter,

i.e., λ(r) = λ2r
2−γ + λ3r. Then, the SDE for the risk-neutral process of the short-rate is

drt = (α−1/rt + α0 + α1rt + β2r
2
t + β3r

γ+1
t )dt+ σrγt dW

Q
t , (12)

where β2 = α2 − σλ2 and β3 = −σλ3. [C1] holds for this model. The estimate (standard

error) of α2 is 11.64 (6.94), and not significant. Thus, [C1] does not seem to be decisive

in general. The insignificant estimate is actually preferable in this case, as the positive

value of α2 leads to the possibility that the short-rate in the physical measure diverges.

The result of α2 > 0 is due to cross-sectional constraints. Specifically, although α2 is

still constrained by a positive term premium, the constraint is no longer α2 < β2 < 0, as

previously implied for (GF *) and (G1 **0*). But rather, it is α2 < β2. This is because

µQ(r) has the term of higher than quadratic order, so fast mean-reversion at high levels

in the risk-neutral measure is possible without β2 < 0. Indeed, the estimates of β2 and β3

are 39.41 and −52.50, respectively. Both positive term premium and fast mean-reversion

are thus implied, however, at the cost of the unfavorable shape of µ(r).

By placing λ2 = 0 on the above model, [C2] holds. The estimate (standard error)

of α2 is −8.30 (3.00). Nonlinear physical drift is thus implied under [C2]. The estimate
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of β3 is 4.99, which is consistent with a positive term premium. However, µQ(r) is now

increasing for high rates, leading to the possibility that the short-rate in the risk-neutral

measure diverges. Not surprisingly, the null of λ2 = 0 is strongly rejected, indicating that

the significance of α2 is an outcome of the undesirable constraint.

Conversely, we remove [C1] and [C2]. We add a constant term to (3) while treating γ

as a free parameter, i.e., λ(r) = λ1 + λ2r
2−γ. Then, the SDE for the risk-neutral process

of the short-rate is

drt = (α−1/rt + α0 + α1rt + β1r
γ
t + β2r

2
t )dt+ σrγt dW

Q
t , (13)

where β1 = −σλ1 and β2 = α2 − σλ2. We note that α2 is no longer linked to λ1, the

coefficient of the lower-order term in λ(r). We label the model (GF-GEN ****) (the γ-free

general model). The asterisks are defined analogously to those for (G1 ****). Table 3

presents the estimation results, which are indeed similar to those for (G1 ****). First, the

estimate of α2 is 2.23 and insignificant. Second, the null hypothesis of α−1 = α2 = 0 is

not rejected at any conventional significance level. Third, the null of λ1 = 0 is strongly

rejected. It is noted that the null model, (GF-GEN **0*), is equivalent to (GF *). Then,

nonlinear physical drift implied for (GF *), which satisfies [C1], is also an outcome of the

undesirable constraint. Fourth, the null of λ2 = 0 is also rejected, but not as strongly

as that of λ1 = 0: the likelihood-ratio statistic (p-value, d.f.) is 6.96 (0.008, 1). The

estimation results for the null model, (GF-GEN ***0), are presented in Table 3. The

estimate of α2 is −4.66 and significant. Nonlinear physical drift is thus implied under

[C2], however, as an outcome of the undesirable constraint.

As we have seen, [C1] and [C2] are easily removed by simply adding a constant term

to (3). Then, with more flexible specifications of λ(r), models that are free from [C1]

and [C2] can also easily be created. While nonlinear physical drift is implied for some

parsimonious (restricted) models, it does not seem compulsory in general.

4.4 Sub-sample analysis

We check the robustness of the results using sub-sample data for the following three

sub-periods: (i) 01/1971–12/1989 (991 obs.), (ii) 01/1990–12/1999 (522 obs.), and (iii)

06/1973–02/1995 (1134 obs.). The choice of period (i) is based on CKLS (1992), in which

the sample period is chosen by the end of 1989. Period (ii) can be referred to as the post-

CKLS period. Period (iii) is taken from Aı̈t-Sahalia (1996). Due to space limitations, the

estimation results are briefly reported, but the details are available upon request.
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For period (i), both µ(r) and µQ(r) are nonlinear due to a positive and significant

estimate of α−1, indicating that the short-rate mean-reverts for low rates in both measures.

The result is not surprising, as interest rates observed in this period do not remain at low

levels, which can naturally be interpreted as a consequence of mean-reversion. As for

the quadratic terms, on the other hand, similar results are obtained: the estimates of

β2 are consistently negative and significant, whereas the estimates of α2 are significant

for parsimonious models satisfying [C1] or [C2]. For period (ii), neither µ(r) nor µQ(r)

is estimated to be nonlinear. The result is not surprising, either, as both the short-rate

and spread are in the middle range, which can reasonably be explained without nonlinear

terms that generate faster mean-reversion at the extreme levels of the short-rate. For

period (iii), the results are very similar to those using the full-sample data. Overall, while

the extent to which the nonlinearities are implied depends on sample periods, the results

of the sub-sample analysis are basically in line with our claims. In particular, although

the estimate of β2 is not significant for period (ii), this is not contradictory to the claim

that the quadratic term in µQ(r) provides an additional degree of freedom in explaining

interest rates at the extreme levels.

5 Out-of-Sample Prediction

We examine whether nonlinear drifts contribute to the prediction of future interest-rate

levels using out-of-sample data from January 5, 2000 to December 28, 2005 (313 obs.).

This period includes both easing and tightening cycles, so reliable results concerning the

predictive power of models are expected. Figure 3(a) graphs the time-series of the one-

month rate, a proxy for the short-rate, and the spread between the one- and six-month

rates in the out-of-sample period. We see clearly that there are periods in which the

level of the short-rate is rapidly changing and those in which it is relatively stable. Of

particular note is that during the entire 2001 the short-rate continues to decrease to the

level of below 0.02, which is lower than the in-sample minimum, 0.03. In the subsequent

period, it gradually decreases further to around 0.01, and remains at this extremely low

level. We then expect that models with mean-reversion will forecast poorly. The short-

rate finally starts to rise in June 2004, and the rapid rise continues during the rest of the

out-of-sample period.

The levels of the spread, on the other hand, are relatively stable compared with those

of the short-rate. Large negative spreads are observed around early 2001 when the short-
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rate starts to decrease. The spread fluctuates around zero in the subsequent period when

the short-rate further decreases and remains at very low levels. Just before the short-rate

starts to rise, the level of the spread rises, and then becomes stable over the period of

rapid rise in the short-rate. We then expect that models with nonlinear risk-neutral drift,

which allows for keeping spreads small, will forecast accurately.

5.1 Comparison criteria

We consider the following h-step ahead model prediction errors:

e1,t+h∆ = rt+h∆ − Et[rt+h∆] , (14)

e2,t+h∆ = r2t+h∆ − Et[r2t+h∆] , (15)

e3, τ, t+h∆ = yτ, t+h∆ − Et[Y (rt+h∆, τ)] , (16)

e4, τ, t+h∆ = y2
τ,t+h∆ − Et[Y (rt+h∆, τ)2] , (17)

where the conditional expectation is taken with respect to the physical measure for each

model. First, e1 and e2 are prediction errors for the level and squared level of the short-

rate. The reason for examining e2 is to pay attention also to the impact of volatility

specification on the prediction. Second, e3 and e4 are prediction errors for the level and

squared level of a τ -maturity yield. The total predictive power of a model can be measured

by the magnitude of e3 and e4. When it is small, it follows that predictions of both the

short-rate and yields in the cross-section are precise. On the other hand, when we wish

to focus solely on the descriptive power of term structure models, we examine

e5, τ, t = yτ,t − Y (rt, τ) , (18)

where rt is taken from out-of-sample data, not a predicted value of a model.

When analytical expressions of the conditional moments are unavailable, we also em-

ploy the method proposed in Aı̈t-Sahalia (2002, eq.(4.3)), maintaining the consistency in

the evaluation of the density and moments. Here, we truncate the series at the second or-

der, because we consider forecasting periods of up to six months, much longer than a week

in computing the transition density function. We further note that the approximation,

Ỹ (rt+h∆,τ ), is used instead of Y (rt+h∆,τ ) when the latter is unavailable in closed form.

This seems justified given the accuracy of the approximation for short maturities.

To measure the magnitude of these prediction errors, we consider the following criteria:

mean absolute error (MAE), mean absolute percentage error (MAPE), root mean squared
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error (RMSE), and root mean squared percentage error (RMSPE). Since the performance

rankings based on the MAE (MAPE) criterion generally agree with those based on the

RMSE (RMSPE) criterion, we report the results based on the MAE and MAPE criteria.

The MAE and MAPE are computed as

MAE :
1

N − h

∑
t

|ei, τ, t+h∆| , MAPE :
1

N − h

∑
t

∣∣∣∣∣ ei, τ, t+h∆xi, τ, t+h∆

∣∣∣∣∣ , (19)

where i = 1, ..., 5 and τ = (0, 0.25,0.5) (τ = 0 corresponds to the short-rate), and where

(x1, x2, x3, x4, x5) = (r, r2, yτ , y2
τ , yτ ).

5.2 Competing models

Among the nonlinear drift models estimated from weekly data, we choose (GF 0) and

(G1 00**): both µ(r) and µQ(r) are nonlinear for the former and only µQ(r) is nonlinear

for the latter. We also consider as benchmarks simpler models that are arbitrage-free.

Specifically, we adopt the models proposed by Vasicek (1977), and CIR (1985):

(Vasicek) drt = (α0 + α1rt)dt+ σdWt and λ(rt) = λ0 + λ1rt , (20)

(CIR) drt = (α0 + α1rt)dt+ σ
√
rt dWt and λ(rt) = λ1

√
rt . (21)

Parameters of these models, which are estimated by the same procedure as outlined in

Section 3.2, are as follows:

(Vasicek) (α0, α1, σ, λ0, λ1) = (0.034, −0.448, 0.030, −0.868, 3.069) ,

(CIR) (α0, α1, σ, λ1) = (0.057, −0.761, 0.096, −2.605) .

We also consider models in which the short-rate in the physical measure follows a

martingale, i.e., µ(r) = 0. Such models are worth considering, as the null of µ(r) = 0

is not rejected at conventional significance levels using time-series data alone. Besides,

taking the short-rate behavior observed in the out-of-sample period into consideration,

zero physical drift (ZPD) may actually be appropriate for prediction. 5 The ZPD models

are obtained as special cases of (Vasicek) and (G1 00**), which are labeled as (Vas. ZPD)

and (G1 ZPD) for brevity, respectively. 6 For (Vas. ZPD), we further set λ1 = 0 to

distinguish it from (Vasicek) also with respect to whether or not the short-rate in the risk-

neutral measure mean-reverts. 7 Parameter estimates for (Vas. ZPD) and (G1 ZPD) are

as follows:

(Vas. ZPD) (σ, λ0) = (0.030, −0.562) ,

(G1 ZPD) (β1, β2, σ) = (0.723, −5.666, 0.324) .
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5.3 Comparison results of the forecasting performance

We consider h = 1, 4, 13, and 26, i.e., the one-week, four-week, three-month, and six-

month forecasting periods. Tables 4 and 5 present MAEs (×104) and MAPEs (×102),

respectively. In each row, the smallest and second smallest numbers are expressed in bold

and italic. To ease interpretation of the results, Panels (b) through (f) of Figure 3 graph

the time-series of some prediction errors, e1,t+h∆, e2,t+h∆, e3,τ,t+h∆, e4,τ,t+h∆, and e5,τ,t

for τ = 0.5 and h = 26, from (Vasicek), (Vas. ZPD), and (G1 ZPD).

First, the results of the forecasting performance on the short-rate level are presented

in Panel A of Tables 4 and 5. For all forecasting periods, the ZPD models, (Vas. ZPD)

and (G1 ZPD), outperform the other models with mean-reversion. The result is in fact

not surprising. The mean-reverting models predict that the short-rate will rise when it

is currently at around the in-sample minimum, 0.03. In reality, however, the short-rate

changes in the opposite direction and remains at the extremely low level, as shown in Figure

3(a). As a result, these models forecast poorly compared to the ZPD models that do not

predict increase (nor decrease) in the short-rate. Indeed, looking at Figure 3(b), the gap

in the forecasting performance between (G1 ZPD) and (Vasicek) is most pronounced when

the short-rate is extremely low. Conversely, limiting our attention to the period of rapid

rise in the short-rate, the mean-reverting models have a superior forecasting performance.

If this period further continues, the gap in the forecasting performance between the ZPD

and mean-reverting models will narrow. Otherwise, the gap will remain, as both models

perform equally well when the short-rate fluctuates around the long-term mean.

Taking into consideration the forecasting performance on the squared short-rate level,

(G1 ZPD) is preferable to (Vas. ZPD). Panels B show that (G1 ZPD) outperforms (Vas.

ZPD) for all forecasting periods. In particular, the superior performance is more pro-

nounced in the MAPE criteria, as the magnitude of e2 is much smaller when the (squared)

short-rate level is extremely low, as shown in Figure 3(c). Moreover, (GF 0) and (G1

00**) also outperform (Vas. ZPD) for all forecasting periods in both criteria, except for

one case where (GF 0) is outperformed in the MAE criteria for h = 26. These results

indicate that level-dependent volatility is desirable also for the out-of-sample prediction.

This, of course, holds true as long as the prediction of the short-rate level is moderately

accurate. Despite level-dependent volatility, the forecasting performance of (CIR) is also

poor, owing to the poor predictive power for the short-rate level.

The results of the forecasting performance on the level of the three- and six-month
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rates are presented in Panels C and D. (G1 ZPD) exhibits the best performance for all

forecasting periods. (Vas. ZPD) ranks second. Predictions for (GF 0) and (G1 00**) are

similar, and more accurate than those for (Vasicek) and (CIR). Looking at Figure 3(d),

the superior performance of the ZPD models over (Vasicek) is also pronounced after the

short-rate falls below the in-sample minimum.

The results of the forecasting performance on the squared level of the three- and six-

month rates are presented in Panels E and F. (G1 ZPD) also ranks first, except e4,0.5 for

h = 1 in the MAE criterion. The superior performance is more pronounced in the MAPE

criterion for the same reason as for e2, which is also confirmed in Figure 3(e). (Vas. ZPD)

generally ranks second. In the MAPE criterion, (GF 0) outperforms (Vas. ZPD) in some

cases: e4,0.25 for h = 4, 13. This is attributable to the superior forecasting performance of

(GF 0) on the squared short-rate level for h = 4, 13, shown in Panel B.

The descriptive power of term structure models also has a crucial role in the prediction

of yields. Looking at the magnitude of e5 shown in Panels G, (G1 ZPD) exhibits the

best performance and (Vas. ZPD) follows. The reason for the superior performance is

attributable to little mean-reversion at low levels in the risk-neutral measure, which allows

for capturing very small spreads for low rates actually observed throughout the out-of-

sample period. In fact, the smaller the value of µQ(r) at r = 0.01, the smaller the MAE

of e5. For example, both values are smallest for (G1 ZPD) and largest for (Vasicek). We

also confirm in Figure 3(f) the superior performance of (G1 ZPD) over (Vasicek), which is

pronounced in the period when the short-rate is extremely low and the spread is around

zero. Of particular note is that (G1 ZPD) still outperforms (Vasicek), even in the period

of rapid rise in the short-rate when the latter outperforms the former in the prediction of

the short-rate level. It then follows that a desirable shape of µQ(r) is robust throughout

the in- and out-of-sample periods, in contrast with a desirable shape of µ(r) which seems

to vary in different sub-periods.

In view of the out-of-sample prediction of both the short-rate and yields in the cross-

section, the role of nonlinear risk-neutral drift is reconfirmed as decisive. On the other

hand, zero physical drift seems more appropriate than mean-reverting drift when a rel-

atively long out-of-sample period is chosen in our data. This suggests that caution is

required in identifying the shape of µ(r) by introducing cross-sectional constraints.
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6 Estimation Using Daily Data

To further examine the robustness of the previous findings, we estimate nonlinear drift

models of the short-rate using daily data. One notable feature of higher-frequency data

is that while on the one hand observations remain at a certain level for a while, they

can change instantly and drastically on the other. Behind this behavior, there seems to

exist a transitory component. If so, the nonlinearity may be exaggerated when the drift is

estimated directly from daily observations, as pointed out by Jones (2003). In his study, a

nonlinear drift model is estimated after controlling transitory shocks: the observed short-

rate can deviate from, but mean-reverts to, an unobserved true rate that is free from

transitory shocks, while the true rate is also a stochastic process with possibly nonlinear

drift.

We also model transitory shocks explicitly, but differently from Jones (2003), as ex-

plained below. Of particular interest here is whether nonlinear risk-neutral drift is still

preferable. As we have seen in previous sections using weekly data, the quadratic term in

the risk-neutral drift provides an additional degree of freedom in explaining interest rates

at the extreme levels. However, these rates are more likely affected by transitory shocks

than are middle rates. Then, explicitly modeling the transitory component may be more

effective than considering nonlinear risk-neutral drift.

The source of daily data is the same as that of weekly data. The sample period for

estimation is from January 4, 1971 to December 30, 2005. Aside from the reason that

we do not perform the out-of-sample prediction using daily data, we are interested in

how parameter estimates, especially that of the inverse term in the drifts, are affected by

including recent observations that exhibit mean-reverting behavior at low levels, as shown

in Figure 3(a). If one or more of (rt, y3M,t, y6M,t) are missing at time t, we discard the

whole time-t observations. We further exclude as outliers the observations on 12/30/1971

and 12/31/1971. Special treatments are not made for weekends, holidays, and missing

observations. The time interval between successive observations is assumed to be constant

and set to 1/252.

6.1 Model for daily data

We assume that the short-rate rt is observed with noise, which is modeled by simply

adding a noise process εt to the true, or smoothed, short-rate process r∗t :

rt = r∗t + εt . (22)
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We naturally treat {r∗t , εt} as latent processes. The physical process of r∗t is modeled by

the SDE of the same form as before:

dr∗t = (α−1/r
∗
t + α0 + α1r

∗
t + α2r

∗ 2
t )dt+ σr∗γt dW1, t , (23)

where W1, t is Brownian motion in the physical measure. The physical process of εt is

modeled as simply as possible, because its role is merely to separate transitory shocks

from a daily-observed proxy for rt. That is,

dεt = κ εt dt+ ξ dW2, t , (24)

where W2, t is Brownian motion in the physical measure. We assume that W1, t and W2, t

are mutually independent, for r∗t and εt to be mutually independent. Also, we set the

unconditional mean of εt to zero given κ < 0. The price of risk attributed to uncertain

variation in r∗t is also given by (3) or (4), where rt is replaced by r∗t . On the other hand, we

assume that investors do not require the risk premium attributed to uncertain variation

in εt. That is, the price of risk for εt is assumed to be zero.

It is more natural to consider that the yields in the cross-section are also affected by

transitory shocks at a daily frequency. This impact, however, may decrease with increase

in the maturity, as the one-month rate is the most volatile and the six-month rate is the

least in our data. To incorporate this feature, we model the price of a discount bond as

P (r∗t , εt, t, T ) = EQt

[
exp

{
−

∫ T

t
rudu

}]

= EQt

[
exp

{
−

∫ T

t
(r∗u + εu)du

}]

= EQt

[
exp

{
−

∫ T

t
r∗udu

}]
EQt

[
exp

{
−

∫ T

t
εudu

}]
, (25)

where EQt stands for the conditional expectation with respect to the risk-neutral measure,

and where the last equality follows from the assumption that r∗t and εt are mutually

independent. In contrast with one-factor models, the noise process systematically enters

into the stochastic discount factor, which leads to the desired property, as explained below.

The first expectation on the right-hand side of (25) is further developed to the analyt-

ical approximation for estimation. The second expectation has a closed-form expression

as the Vasicek model. Then, the approximation of a τ -maturity yield is given by

Ỹ (r∗t , εt, τ) =
1
τ
{A(τ ; r∗t ) +B(τ ; r∗t )r

∗
t + C(τ) +D(τ)εt} , (26)
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where A(τ ; r∗t ) and B(τ ; r∗t ) are given in Appendix, and C(τ) and D(τ) are given by

D(τ) = −1 − eκτ

κ
, (27)

C(τ) = −
(
ξ

2κ

)2 {
κD(τ)2 − 2D(τ) + 2τ

}
. (28)

We note that given κ < 0, D(τ)/τ approaches zero as τ increases. Therefore, the longer

the maturity, the less the yield is affected by εt. The constant term, C(τ)/τ , remains,

however.

6.2 Inversion and estimation method

We recover (r∗t , εt) from observed variables through the two equations. One is (22) with

the one-month rate used as a proxy for rt, and the other is (26) with the left-hand side

replaced with an observed yield. That is, we assume that either the three-month or the

six-month rate is explained exactly by the model at any point in time. For simplicity,

we denote the yield used for inversion as yt. Since (26) is nonlinear in r∗t , we have to

numerically solve the two equations for (r∗t , εt), but the convergence is achieved with a few

iterations.

We also employ the ML method. The density for a time-series part is based on (23)

and (24). The density for a cross-sectional part is based on the following regression model:

ŷt = Ỹ (r∗t , εt, τ̂) + v ut, where ŷt stands for the yield not used for inversion, and where

ut = φut−∆ +
√

1 − φ2zt , zt ∼ i.i.d. N(0, 1). The unconditional variance of ut is set to

one given |φ| < 1, for v to represent the magnitude of the measurement error. 8

The density function at time t conditioned on time t− ∆ is expressed as

f(rt, yt, ŷt | rt−∆, yt−∆) = f(r∗t , εt, ŷt | r∗t−∆, εt−∆)

∣∣∣∣∣∣∣∣
drt
dr∗t

dyt
dr∗t

drt
dεt

dyt
dεt

∣∣∣∣∣∣∣∣

−1

= fT (r∗t , εt | r∗t−∆, εt−∆)
∣∣∣∣dytdεt

− dyt
dr∗t

∣∣∣∣
−1

fC(ŷt | r∗t , εt)

= fT,r∗(r∗t | r∗t−∆)fT,ε(εt | εt−∆)
∣∣∣∣dytdεt

− dyt
dr∗t

∣∣∣∣
−1

fC(ut | r∗t , εt)|v|−1. (29)

The second equality follows from the decomposition into the time-series (marginal) and

cross-sectional (conditional) components and from the fact that ŷt is explained by (r∗t , εt),

which are Markovian. In addition, drt/dr∗t = drt/dεt = 1 holds from (22). The last

equality follows from the assumption that r∗t and εt are mutually independent.

The transition density fT,r∗ is computed after discretizing (23) by the Euler method.

At a daily frequency, the crude first-order approximation is reported to work well: see, for
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example, Jones (2003, Appendix C). As for fT,ε and fC , the closed-form expressions are

available. Finally, dyt/dεt and dyt/dr∗t in the Jacobian have been evaluated and stored in

the iteration procedure for recovering (r∗t , εt).

6.3 Empirical results for daily data

To focus on the extent to which the nonlinearities will change for the smoothed short-rate,

we report the estimation results for the model with γ free, where both the physical and risk-

neutral drifts exhibit marked nonlinearities for weekly data. For notational convenience,

we label the model with the three-month (six-month) rate used for inversion (GF-TC 3)

((GF-TC 6)) (the model with γ free and with the transitory component). For comparison,

we also estimate (GF *). That is, we directly estimate the behavior of the daily-observed

short-rate using the model adopted for weekly data.

Table 6 presents the results. The behavior of rt is more mean-reverting for daily data

than for weekly data. The estimates of α2 and β2 for (GF *) are −9.43 and −6.65, which

are larger in absolute value than those using weekly data, −7.09 and −4.04. In addition,

the estimate of γ is 1.51, which is significantly increased from 1.30. That is, the short-rate

mean-reverts more rapidly for high rates and the volatility is more elastic to changes in

rt. The same can be said for the case in which weekly data over the same period, 1971–

2005, are used for estimating (GF *): the estimates of α2, β2, and γ are −8.36, −5.28,

and 1.28, respectively. These results are in line with the aforementioned properties of

higher-frequency data, and hence suggest the presence of the transitory component, which

is supposed to dissipate at a weekly frequency. This is indeed the case, as we see below.

Another important result is the positive and significant estimate of α−1, 0.00011. We

note that using weekly data over the same period, the estimate of α−1 is −0.00006 and

insignificant. Figure 4 graphs the drift functions estimated from daily data. They, however,

do not imply fast mean-reversion at the sample minimum, 0.0094. The result is actually

preferable in both statistical and economic senses: the observed patterns of the spread

can be explained, yet the short-rate does not reach zero in finite time.

When the noise process is explicitly modeled and the three-month rate is used for

inversion, both the speed of mean-reversion for high rates and the elasticity of volatility

return to the level implied by weekly data. First, the estimates of α2 and β2 are −6.40 and

−3.53, which are slightly decreased from those using weekly data, shown in Table 1. We

see clearly in Figure 4 that compared with the case in which the model is fitted directly
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to rt, the rate of decrease in both the physical and risk-neutral drifts at high levels of r∗

is moderate. At the very low level, both drifts for (GF-TC 3) become negative due to the

negative estimate of α−1. The negative estimate of α−1 is undesirable, as the smoothed

short-rate possibly goes through the lower boundary of zero. We note, however, that the

negative estimate, with various precisions, is also reported by previous studies: Durham

(2003, Table 7) when bond yield data are used, and Jones (2003, Tables 1 and 4) when

the Jeffreys prior is used. At least, evidence in favor of fast mean-reversion at low levels

cannot be obtained for r∗t , either. Second, the estimates of σ and γ are 0.71 and 1.33,

which are also close to those using weekly data. Thus, the volatility of changes in r∗t is

similar to, but actually slightly lower than, that of changes in rt observed at a weekly

frequency.

The behavior of the noise process, εt, on the other hand, is indeed transitory. The

estimate of κ, which measures the speed of mean-reversion, is −83.25. The mean half-life

is about 0.0083, or equivalently 2.10 days by multiplying 252. At a weekly frequency,

therefore, the impact of εt on rt is minor. The mean half-life is nonetheless longer than

that estimated by Jones (2003) using the seven-day Eurodollar rate, the reason for which

is explained as follows. We use for estimation the longer-term rates and model the noise

process such that it can affect these rates. The noise process does not therefore die out

too quickly.

When the six-month rate is used for inversion, the overall picture of the results changes

from that for (GF-TC 3). First, although the estimates of α2 and β2 are both significant,

their absolute magnitude becomes smaller: −2.82 and −0.54. In particular, the reduction

in the absolute value of β is substantial, and the risk-neutral drift does not become negative

even at the sample maximum of r∗, 0.1981, as shown in Figure 4(b). At the very low level

of r∗, on the other hand, we notice that both µ(r∗) and µQ(r∗) for (GF-TC 6) become

more negative. This problem may not be as serious as it seems, however, as r∗ implied

by (GF-TC 6) does not become too small: the sample minimum is 0.0135, which is larger

than that implied by (GF-TC 3), 0.0103. Second, while the estimate of γ is little changed,

that of σ is significantly decreased, suggesting that the smoothing is excessive. Third,

and related to the oversmoothing of rt, the persistence of εt is significantly increased.

The estimate of κ is −23.11, indicating that the mean half-life is increased to 0.030, or

equivalently 7.56 days.

In Figure 5, the time-series of {r∗t , εt} are plotted for both (GF-TC 3) and (GF-TC 6).
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We note that rt = r∗t + εt holds by construction, and hence that the time-series of the one-

month rate is recovered for the entire period. Although it is difficult to visually observe

differences between the two figures, the smoothed short-rate for (GF-TC 6) appears to be

less volatile, particularly at high levels of r∗. To compensate for this smaller variation,

the noise process appears to be more volatile.

Behind the difference in the persistence of εt is the difference in statistical properties

between the three- and six-month rates. Specifically, the six-month rate behaves more

differently from the one-month rate than does the three-month rate, as partly reflected

in Figure 1. In addition, we have observed in Tables 1–3 that the estimates of v2 are

always larger than those of v1. These indicate that the six-month rate requires larger

measurement errors when explained by the one-month rate. Nevertheless, when a model

is fitted exactly to the six-month rate, the noise process behaves more like an alternative

factor for explaining the cross-sectional relation, rather than like transitory shocks affecting

the time-series variation in rt. Thus, the noise process does not die out quickly to be an

effective explanatory variable for the six-month rate. The difference in the behavior of

r∗t can be explained in line with this argument. In particular, since the noise process for

(GF-TC 6) more effectively helps explain the cross-sectional relation, the significance of

β2 is reduced more pronouncedly.

In terms of separating transitory shocks from the short-rate observed at a daily fre-

quency, using the three-month rate for inversion seems more appropriate, as the resulting

behavior of the smoothed short-rate is not much changed from that of the short-rate

observed at a weekly frequency.

7 Concluding Remarks

We have estimated the behavior of the short-rate using data on the one-, three-, and

six-month Eurodollar deposit rates with the method of maximum likelihood. The cross-

sectional relation between the short-rate and yields was obtained by an analytical approx-

imation, which is accurate for short maturities.

We found that nonlinear physical drift is implied when nonlinear terms are strongly

linked to cross-sectional dimensions of the data. Specifically, the quadratic term becomes

significant to be consistent with both the time-series behavior of the short-rate and a

positive term premium in the cross-section of yields. The links, however, are more or less

restrictive. Besides, they can be easily removed. Without the links, the nonlinearity is
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difficult to identify with precision. In view of the out-of-sample prediction, zero physical

drift is actually preferable. Although zero physical drift may be better recognized as a part

of nonlinear drift that produces strong mean-reversion outside the historically observed

range of the short-rate, it is difficult to find strong evidence supporting for nonlinear

physical drift from a statistical perspective. Nonlinear risk-neutral drift, on the other

hand, is strongly supported by the data. In particular, the quadratic term is the key to

explaining both large spreads for high rates and small spreads for low rates, which linear

drift models cannot adequately explain. Evidence supporting for nonlinear risk-neutral

drift is also confirmed by daily data, where transitory shocks are removed, although the

nonlinearity is somewhat reduced.

While this study presented an attempt to estimate nonlinear drift models of the short-

rate using data on the short-end of the term structure, there are a number of limitations,

which indicate the necessity of further studies. First, we limit the maturity spectrum to

the short-end. Of more fundamental interest is whether nonlinear drift is implied by the

entire term structure. For the analysis, multi-factor models are preferable, which allow

for more interesting (but certainly more complicated) tests for the (non)linearity in the

drift of the short-rate process together with the (non)linearity in the drifts of other factor

processes. Second, we limit the volatility specification by assuming the constant elasticity

of volatility. More realistic specifications of the volatility, such that it is driven by another

Brownian motion, are expected to significantly improve the time-series fit. Whether or not

they can contribute to a better fit to the cross-section of yields is of interest. Furthermore,

the volatility behavior implicit in term structure data may be worth exploring. Third,

we limit the number of regimes to one. In other words, model parameters are fixed

throughout the sample period. It is more realistic to consider different regimes of interest

rates, specifically high and low volatility regimes: see, for example, Gray (1996), Ang

and Bekaert (2002), and Bansal and Zhou (2002). When cross-sectional data are also

included, the length of the data is not very crucial for efficient estimation, which alleviates

the difficulties in regime-switching models.
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Appendix: Approximation of the Nonlinear Term Structure

We briefly explain how to derive an approximation of the nonlinear term structure pro-

posed by Takamizawa and Shoji (2003). First, we approximate the short-rate process in

the risk-neutral measure. By applying the Ito formula to µQ(ru, u) where u ∈ [t, t+ τ ] for

τ > 0, we have

µQ(ru, u) = µQ(rt, t) +
∫ u

t

∂µQ

∂r
(rs, s)drs +

∫ u

t

{
1
2
∂2µQ

∂r2
(rs, s)σ2(rs, s) +

∂µQ

∂s
(rs, s)

}
ds .

(30)

Fixing integrands at time t leads to

µ̃Q(ru, u) = µQ(rt, t) +
∂µQ

∂r
(rt, t)(ru− rt) +

{
1
2
∂2µQ

∂r2
(rt, t)σ2(rt, t) +

∂µQ

∂t
(rt, t)

}
(u− t) ,

(31)

where µ̃Q on the left-hand side clarifies the approximation. Collecting terms provides

µ̃Q(ru, u) = a2(t)ru + a1(t)u+ a0(t) , (32)

where

a2(t) =
∂µQ

∂r
(rt, t) , (33)

a1(t) =
1
2
∂2µQ

∂r2
(rt, t)σ2(rt, t) +

∂µQ

∂t
(rt, t) , (34)

a0(t) = µQ(rt, t) − a2(t)rt − a1(t)t . (35)

Similarly, we approximate σ2(ru, u) as σ̃2(ru, u) = b2(t)ru + b1(t)u+ b0(t), where bi(t)

is provided analogously to ai(t) with µQ replaced by σ2.

Let {r̃u : u ∈ [t, t+ τ ]} be an approximate process of the short-rate having µ̃Q and σ̃2.

By construction, r̃t = rt holds. The SDE is then

dr̃u = {a2(t)r̃u + a1(t)u+ a0(t)} du+
√
b2(t)r̃u + b1(t)u+ b0(t) dWQ

u . (36)

Under the approximate process, the price of a discount bond, P̃ (r̃u, u, t+τ), is the solution

to the following PDE (the coefficients are abbreviated as ai and bi (i = 0, 1, 2)):

1
2
{b2r̃u + b1u+ b0} ∂

2P̃

∂r̃2u
(r̃u, u, t+ τ) + {a2r̃u + a1u+ a0} ∂P̃

∂r̃u
(r̃u, u, t+ τ)

+
∂P̃

∂u
(r̃u, u, t+ τ) − r̃uP̃ (r̃u, u, t+ τ) = 0 , (37)

with the boundary condition P̃ (r̃t+τ , t + τ, t + τ) = 1. Since all the coefficients of the

partial derivatives become linear in r̃u, the closed-form solution can be derived as for
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affine term structure models. Specifically, we assume the solution to be P̃ (r̃u, u, t + τ) =

exp{−A(u, t + τ) −B(u, t+ τ)r̃u}. By appropriately differentiating the above expression

and then substituting the resulting derivatives into the above PDE, we obtain ordinary

differential equations for A(u, t+ τ) and B(u, t+ τ) with boundary conditions A(t+ τ, t+

τ) = B(t+ τ, t+ τ) = 0. Through somewhat tedious calculation, the solution is

P̃ (rt, τ) = exp{−A(τ ; rt) −B(τ ; rt)rt} , (38)

where

B(τ ; rt) =
2(eψτ − 1)

g(τ)
, (39)

A(τ ; rt) =
2
b22

(b2µQ(r, t) − a2σ
2(r, t) + b1)(ln g(τ) − ln 2ψ − k1τ

2
) − 2k3τ

b22
ln 2ψ

+
1
b2

(σ2(r, t) − b2r)(B(τ) − τ) − τ2

2b22
(b1b2 + k1k3) +

2k3

b22

∫ τ

0
ln g(u)du , (40)

and where ψ = (2b2 + a2
2)

0.5, g(τ) = k1e
ψτ + k2, k1 = ψ − a2, k2 = ψ + a2, and k3 =

b2a1 − b1a2.
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Endnote

1 It is noted that caution is required in interpreting their results. Regardless of estimation

techniques involved, it is originally unrealistic to obtain linear drift estimators from the

artificial data. In the parametric case, for example, the linear drift is obtained only when

the coefficients of nonlinear terms, such as α−1 and α2 of the inverse and quadratic terms,

are exactly zero, which, however, is unlikely in the numerical experiments. Nevertheless,

when estimated drift functions are plotted against the level of the short-rate, nonlinear

shapes are exaggerated. This is true even though α−1 is almost negligible but non-zero

(say, 10−8) when the horizontal axis begins at sufficiently near zero.

2 More than two terms in λ(r) seem unnecessary for explaining short-yield data used

here. We also specify λ(r) = λ1r
1−γ + λ2r

2−γ + λ3r
3−γ. We estimate models with and

without the last term in λ(r) while setting γ = 1, and then test for λ3 = 0 based on the

likelihood ratio. The null is not rejected at any conventional significance level.

3 This estimation framework is similar to one of those commonly used for affine term

structure models: see, for example, Chen and Scott (1993), Pearson and Sun (1994), and

Duffee (2002).

4 We note that for the G1-type models µ(r) is not necessarily estimated precisely.

In the previous version of this paper, we estimated the models using data over the pe-

riod 1971–2003. The result is that the null of µ(r) = 0 is not rejected at conventional

significance levels.

5 It may be more appropriate to state that zero physical drift is effective for the

historically observed range of the short-rate. Outside this range, (strong) mean-reversion

may be more desirable from an economic perspective, as mentioned in Introduction.

6 We do not consider the ZPD models based on (CIR) or (GF 0), as the assumption

of ZPD is too restrictive. For (CIR), the assumption leads to µQ(r) = −λσr, which is

increasing for λ < 0 implied by a positive term premium. For (GF 0), only the quadratic

term is left in µQ(r).

7 We do not consider a model in which the short-rate in the risk-neutral measure

follows a martingale, i.e., drt = σdWQ
t , as we can hardly recognize it as a basis for a term

structure model. Since σ is determined exclusively by time-series dimensions of the data,

as is noted earlier, the model has virtually no descriptive power for the cross-section of

yields.

8 We also pin down the autocorrelation parameter, φ, by the same procedure as

outlined in Section 3.2. When the three-month (six-month) rate is exactly fitted, the

estimate of φ is 0.926 (0.858).

29



Reference

Aı̈t-Sahalia, Y. (1996), “Testing continuous-time models of the spot interest rate,” Review

of Financial Studies, 9, 385-426.

Aı̈t-Sahalia, Y. (1999), “Transition densities for interest rate and other nonlinear diffu-

sions,” Journal of Finance, 54, 1361-1395.

Aı̈t-Sahalia, Y. (2002), “Maximum-likelihood estimation of discretely-sampled diffusions:

a closed-form approximation approach,” Econometrica, 70, 223-262.

Ang, A., and Bekaert, G. (2002), “Short rate nonlinearities and regime switches,” Journal

of Economic Dynamics and Control, 26, 1243-1274.

Bansal R., and Zhou, H. (2002), “Term structure of interest rates with regime shifts,”

Journal of Finance, 57, 1997-2043.

Chan, K. C., Karolyi, G. A., Longstaff, F. A., and Sanders, A. B. (1992), “An empirical

comparison of alternative models of the short-term interest rate,” Journal of Finance, 47,

1209-1227.

Chapman, D. A., and Pearson, N. D. (2000), “Is the short rate drift actually nonlinear?,”

Journal of Finance, 55, 355-388.

Chen, R., and Scott, L. (1993), “Maximum likelihood estimation for a multifactor equi-

librium model of the term structure of interest rates,” Journal of Fixed Income, 3, 14-31.

Conley, T. G., Hansen, L. P., Luttmer, E. G. J., and Scheinkman, J. A. (1997), “Short-

term interest rates as subordinated diffusions,” Review of Financial Studies, 10, 525-577.

Cox, J. C., Ingersoll, J. E. Jr., and Ross, S. A. (1985), “A theory of the term structure of

interest rates,” Econometrica, 53, 385-407.

Duffee, G. R. (2002), “Term premia and interest rate forecasts in affine models,” Journal

of Finance, 57, 405-443.

Durham, G. B. (2003), “Likelihood-based specification analysis of continuous-time models

of the short-term interest rate,” Journal of Financial Economics, 70, 463-487.

Gray, S. F. (1996), “Modeling the conditional distribution of interest rates as a regime-

switching process,” Journal of Financial Economics, 42, 27-62.

30



Jiang, G. J. (1998), “Nonparametric modeling of U.S. interest rate term structure dy-

namics and implications on the prices of derivative securities,” Journal of Financial and

Quantitative Analysis, 33, 465-497.

Jones, C. S. (2003), “Nonlinear mean reversion in the short-term interest rate,” Review of

Financial Studies, 16, 793-843.

Li, M., Pearson, N. D., and Poteshman, A. M. (2004), “Conditional estimation of diffusion

processes,” Journal of Financial Economics, 74, 31-66.

Pearson, N. D., and Sun, T. (1994), “Exploiting the conditional density in estimating

the term structure: An application to the Cox, Ingersoll, and Ross model,” Journal of

Finance, 49, 1279-1304.

Pritsker, M. (1998), “Nonparametric density estimation and tests of continuous time in-

terest rate models,” Review of Financial Studies, 11, 449-487.

Stanton, R. (1997), “A nonparametric model of term structure dynamics and the market

price of interest rate risk,” Journal of Finance, 52, 1973-2002.

Takamizawa, H., and Shoji, I. (2003), “Modeling the term structure of interest rates with

general short-rate models,” Finance & Stochastics, 7, 323-335.

Vasicek, O. A. (1977), “An equilibrium characterization of the term structure,” Journal

of Financial Economics, 5, 177-188.

31



(Time) (GF *) (GF 0)

α−1 × 102 0.056 (0.191) 0.019 (0.061) 0.000
α0 −0.027 (0.107) 0.008 (0.026) 0.015 (0.008)
α1 0.709 (1.777) 0.439 (0.336) 0.358 (0.184)
α2 −5.270 (8.818) −7.085 (1.558) −6.830 (1.350)
β2 −4.035 (1.321) −3.782 (0.954)
σ 0.734 (0.190) 0.720 (0.184) 0.723 (0.180)
γ 1.311 (0.103) 1.301 (0.101) 1.303 (0.099)
v1 × 102 0.408 (0.020) 0.408 (0.020)
v2 × 102 0.450 (0.018) 0.450 (0.018)

∑
ln fT 6607.7 6601.99 6602.25∑
ln fC 15105.81 15105.51

LogL 6607.7 21707.80 21707.76

Table 1: Parameter estimates (standard errors) are presented. The SDE for the
short-rate process in the physical measure is given by

drt = (α−1/rt + α0 + α1rt + α2r
2
t )dt+ σrγt dWt ,

with the risk-neutral drift given as α−1/rt +α0 +α1rt + β2r
2
t . The data consist of weekly

observations for the one-, three-, and six-month Eurodollar deposit rates covering the
period from January 6, 1971 to December 29, 1999 (1513 obs.).
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(GF-GEN ****) (GF-GEN 00**) (GF-GEN ***0)

α−1 × 102 0.062 (0.160) 0.000 0.033 (0.155)
α0 0.009 (0.063) 0.027 (0.006) 0.008 (0.059)
α1 −0.438 (0.784) −0.384 (0.120) 0.158 (0.652)
α2 2.230 (3.916) 0.000 −4.663 (2.072)
β1 2.039 (1.095) 1.498 (0.638) 0.640 (0.232)
β2 −6.048 (2.073) −5.004 (1.552) −4.663
σ 0.715 (0.199) 0.721 (0.175) 0.704 (0.189)
γ 1.301 (0.111) 1.304 (0.097) 1.294 (0.107)
v1 × 102 0.407 (0.020) 0.408 (0.020) 0.408 (0.020)
v2 × 102 0.449 (0.018) 0.449 (0.018) 0.450 (0.018)

∑
ln fT 6605.4 6606.5 6604.1∑
ln fC 15109.5 15107.6 15107.3

LogL 21714.9 21714.1 21711.4

Table 3: Parameter estimates (standard errors) are presented. The SDE for the
short-rate process in the physical measure is given by

drt = (α−1/rt + α0 + α1rt + α2r
2
t )dt+ σrγt dWt ,

with the risk-neutral drift given as α−1/rt + α0 + α1rt + β1r
γ
t + β2r

2
t . The data consist of

weekly observations for the one-, three-, and six-month Eurodollar deposit rates covering
the period from January 6, 1971 to December 29, 1999 (1513 obs.).
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(Vasicek) (CIR) (GF 0) (G1 00**) (Vas. ZPD) (G1 ZPD)
Panel A: Prediction errors for the short-rate: e1
h = 1 5.84 7.98 5.30 5.25 4.18 4.18
h = 4 20.42 29.41 18.18 18.06 13.78 13.78
h = 13 62.10 90.21 55.50 54.47 41.21 41.21
h = 26 118.89 169.14 109.97 104.77 79.71 79.71

Panel B: Prediction errors for the squared short-rate: e2
h = 1 0.48 0.47 0.36 0.34 0.37 0.31
h = 4 1.72 1.72 1.20 1.14 1.25 1.00
h = 13 5.41 5.72 3.73 3.52 3.85 3.03
h = 26 10.68 11.85 7.64 7.05 7.50 5.80

Panel C: Prediction errors for the three-month rate: e3,0.25
h = 1 51.17 51.66 24.97 31.76 17.89 15.77
h = 4 64.21 72.05 37.08 42.49 26.29 24.26
h = 13 103.09 129.73 73.27 76.25 54.30 52.90
h = 26 157.35 205.39 127.77 124.21 92.62 92.14

Panel D: Prediction errors for the six-month rate: e3,0.50
h = 1 89.66 88.40 42.93 56.33 30.66 27.87
h = 4 102.10 107.81 54.85 66.77 38.80 35.66
h = 13 138.93 162.59 90.13 98.36 66.76 64.64
h = 26 191.27 235.53 144.36 144.33 104.29 103.87

Panel E: Prediction errors for the squared three-month rate: e4,0.25
h = 1 2.96 2.87 1.59 1.91 1.23 1.19
h = 4 4.23 4.26 2.46 2.64 2.10 1.83
h = 13 7.97 8.53 5.07 5.02 4.77 3.99
h = 26 13.41 15.05 9.25 8.65 8.48 6.86

Panel F: Prediction errors for the squared six-month rate: e4,0.50
h = 1 5.54 5.35 2.86 3.58 2.07 2.17
h = 4 6.82 6.83 3.77 4.35 2.96 2.77
h = 13 10.61 11.35 6.49 6.74 5.69 4.99
h = 26 16.18 18.15 10.92 10.52 9.50 7.98

Panel G: Errors for yields given actual short-rate data
e5,0.25 46.92 44.82 20.43 27.56 16.05 13.59
e5,0.50 85.66 81.95 38.44 52.26 28.84 25.86

Table 4: Mean absolute errors (MAE, ×104) for the out-of-sample prediction are
presented. In each row, the smallest and second smallest numbers are expressed in bold
and italic. e1 and e2 are prediction errors for the level and squared level of the short-rate.
e3,τ and e4,τ are prediction errors for the level and squared level of a τ -maturity yield.
e5,τ is the difference between observed and theoretical τ -maturity yields, given data on
the short-rate. The out-of-sample period is from January 5, 2000 to December 28, 2005
(313 obs.).
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(Vasicek) (CIR) (GF 0) (G1 00**) (Vas. ZPD) (G1 ZPD)
Panel A: Prediction errors for the short-rate: e1
h = 1 2.92 4.36 2.41 2.49 1.61 1.61
h = 4 10.84 16.87 8.75 9.05 5.22 5.22
h = 13 34.77 53.41 28.73 28.84 15.64 15.64
h = 26 70.17 103.19 61.83 58.92 31.83 31.83

Panel B: Prediction errors for the squared short-rate: e2
h = 1 11.43 9.89 5.01 5.23 7.12 3.31
h = 4 46.23 42.31 19.31 20.19 27.92 10.94
h = 13 160.98 166.47 73.40 75.03 95.75 35.19
h = 26 353.07 400.41 190.58 186.12 211.53 79.89

Panel C: Prediction errors for the three-month rate: e3,0.25
h = 1 28.93 29.28 12.29 16.57 8.99 6.39
h = 4 36.34 41.09 18.44 22.57 12.07 9.70
h = 13 59.07 75.42 38.17 41.64 22.79 20.82
h = 26 92.69 122.20 71.03 70.71 39.09 37.60

Panel D: Prediction errors for the six-month rate: e3,0.50
h = 1 49.33 48.71 20.88 28.81 15.51 11.13
h = 4 56.30 59.65 26.90 34.65 18.44 14.31
h = 13 77.52 91.35 46.03 52.79 28.98 25.58
h = 26 108.83 134.53 77.67 80.26 44.76 42.20

Panel E: Prediction errors for the squared three-month rate: e4,0.25
h = 1 76.08 72.97 27.10 37.65 24.29 13.53
h = 4 113.31 112.44 43.13 54.54 44.77 21.22
h = 13 234.02 252.22 103.41 116.53 112.70 48.80
h = 26 431.21 496.93 229.70 236.19 228.24 97.81

Panel F: Prediction errors for the squared six-month rate: e4,0.50
h = 1 142.41 136.93 49.10 71.24 39.91 24.19
h = 4 180.08 180.01 66.63 90.14 59.70 32.14
h = 13 300.41 325.40 130.76 156.50 125.62 61.47
h = 26 492.46 566.76 259.62 278.66 236.68 112.07

Panel G: Errors for yields given actual short-rate data
e5,0.25 26.51 25.33 10.02 14.25 8.33 5.45
e5,0.50 47.05 45.05 18.64 26.54 14.83 10.21

Table 5: Mean absolute percentage errors (MAPE, ×102) for the out-of-sample
prediction are presented. In each row, the smallest and second smallest numbers are
expressed in bold and italic. e1 and e2 are prediction errors for the level and squared
level of the short-rate. e3,τ and e4,τ are prediction errors for the level and squared level
of a τ -maturity yield. e5,τ is the difference between observed and theoretical τ -maturity
yields, given data on the short-rate. The out-of-sample period is from January 5, 2000 to
December 28, 2005 (313 obs.).
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(GF *) (GF-TC 3) (GF-TC 6)

α−1 × 102 0.011 (0.002) −0.026 (0.002) −0.047 (0.008)
α0 −0.020 (0.002) 0.014 (0.001) 0.024 (0.006)
α1 1.006 (0.042) 0.395 (0.0004) 0.021 (0.074)
α2 −9.431 (0.347) −6.401 (0.716) −2.815 (0.606)
β2 −6.651 (0.218) −3.525 (0.091) −0.540 (0.152)
σ 0.919 (0.034) 0.713 (0.029) 0.595 (0.053)
γ 1.512 (0.013) 1.334 (0.014) 1.331 (0.031)
κ −83.25 (2.463) −23.11 (0.787)
ξ 0.046 (0.0004) 0.048 (0.0004)
v × 102 0.252 (0.002) 0.181 (0.001)
v1 × 102 0.321 (0.002)
v2 × 102 0.356 (0.003)

LogL 134029 138811 138747

Table 6: Parameter estimates (standard errors) are presented. (GF *) is a model
adopted for weekly data. In (GF-TC), the observed short-rate is modeled as rt = r∗t + εt.
The SDEs for r∗t and εt in the physical measure are given by

dr∗t = (α−1/r
∗
t + α0 + α1r

∗
t + α2r

∗ 2
t )dt+ σr∗γt dW1, t , and dεt = κ εt dt+ ξ dW2, t ,

where W1, t and W2, t are mutually independent Brownian motions. The risk-neutral drift
of r∗t is given as α−1/r

∗
t + α0 + α1r

∗
t + β2r

∗ 2
t . The latent processes, {r∗t , εt}, are recovered

from the one-month rate and either the three-month rate (GF-TC 3) or the six-month
rate (GF-TC 6). The daily data covers the period from January 4, 1971 to December 30,
2005 (8883 obs.).
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Figure 1: Spreads of the three-month (above) and six-month (below) Eurodollar deposit

rates over the one-month rate are plotted against the level of the one-month rate. Weekly data

(on a Wednesday basis) covers the period from January 6, 1971 to December 28, 2005 (1825

obs.).
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(a) GF-type models: Physical drift
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(c) G1-type models: Physical drift
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(b) GF-type models: Risk-neutral drift
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(d) G1-type models: Risk-neutral drift
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Figure 2: The physical and risk-neutral drift functions are plotted for the GF-type mod-

els (upper panels) and the G1-type models (lower panels). The dotted lines labeled “time”

correspond to the physical drift estimated using time-series data alone.
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(a) r and y6M − r
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(c) e2 for h = 26

-45

-30

-15

0

15

2000 2001 2002 2003 2004 2005

P
re

d
ic

ti
o
n

 e
rr

o
rs

 (
*
1
0
ˆ
4
)

(Vasicek)

(Vas. ZPD)

(G1 ZPD)

(e) e4 for τ = 0.5 and h = 26
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(b) e1 for h = 26
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(d) e3 for τ = 0.5 and h = 26
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(f) e5 for τ = 0.5
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Figure 3: Panel (a) plots the time-series of the one-month rate, a proxy for r, and the spread
between the one- and six-month rates. Panels (b) through (f) plot the time-series of some prediction
errors from (Vasicek), (Vas. ZPD), and (G1 ZPD) for the 26-week prediction period (h = 26). The
selected errors are those for (b) the short-rate, (c) the squared short-rate, (d) the six-month-rate, (e) the
squared six-month rate, and (f) the six-month rate given short-rate data.
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(a) Physical drift
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(b) Risk-Neutral drift
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Figure 4: The physical and risk-neutral drift functions are plotted for (GF *), (GF-TC

3), and (GF-TC 6). (GF *) is a model adopted for weekly data. (GF-TC 3) and (GF-TC 6)

accommodate a transitory component: the former (latter) uses for inversion the three-month

(six-month) rate.
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(a) (GF-TC 3)
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(b) (GF-TC 6)
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Figure 5: The time-series of the smoothed short-rate and the noise process are plotted

for (GF-TC3) and (GF-TC6): the former (latter) uses the three-month (six-month) rate for

extracting the latent processes. The sum of the two processes provides the time-series of the

observed one-month rate by construction. The daily data cover the period from January 4, 1971

to December 30, 2005 (8883 obs.)
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