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Abstract
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from the locally best invariant test in Shin (1994). We also propose a modification of
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1. Introduction

This paper considers a single equation cointegrating model and discusses the optimality

of tests for the null hypothesis of cointegration. Following the seminal work of Engle and

Granger (1987), tests of cointegration have been intensively investigated in the econometric

literature. For a single equation model, tests for the null of cointegration are proposed by

Hansen (1992a), Quintos and Phillips (1993), Shin (1994), and Jansson (2005), while the

null of no cointegration is considered in Engle and Granger (1987) and Phillips and Ouliaris

(1990), among others. A system equations approach is also considered in a number of studies,

whereas this paper deals only with a single equation model. See Hubrich, Lütkepohl, and

Saikkonen (2001) for a useful review of system equations methods.

For the null hypothesis of cointegration, Shin (1994) proposes the locally best invariant

(LBI) test for the i.i.d. normal errors, while Jansson (2005) develops the point optimal

invariant (POI) test and derives the asymptotic local power envelope. These optimal tests

are derived for a simple stylized model and modified such that the limiting distributions of

the test statistics become independent of nuisance parameters under general assumptions.

According to Jansson (2005), the POI test performs better than the LBI test in a wide range

of alternatives, both asymptotically and in finite samples.

In Jansson (2005), the analysis of the cointegrating regression model proceeds under

the assumption of the known variance-covariance matrix of the error term, and the optimal

test is derived among a class of tests that are invariant to location shift in the dependent

variable. As the variance-covariance matrix is assumed to be known, it does not consider

scale invariance, and hence only location invariance is considered. Of some interest is that the

limiting distribution of the POI test statistic does not depend on the true variance-covariance

matrix. As a result, it is not too difficult to generalize the POI test to accommodate the

general assumptions of the unknown variance-covariance matrix and the weakly dependent

error term.

In this paper, we assume the unknown variance-covariance matrix and investigate the

POI test for the null of cointegration. Although the properties of the POI test by Jansson
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(2005) are asymptotically independent of the variance-covariance matrix as discussed, in

finite samples they are surely not. Because, in general, we do not know the variance-

covariance matrix for the error term, we proceed with our analysis assuming an unknown

variance-covariance matrix. As the variance-covariance matrix is unknown, it is natural to

introduce scale invariance in addition to location invariance. In fact, the testing problem

considered in this paper is seen to be invariant not only in translations but also in scale

transformations. We develop the point optimal test by taking account of these two kinds of

transformations.

One interesting finding is that our approach leads to a different test statistic to that in

Jansson because we consider a class of tests invariant to scale change as well as location

shift in wider directions, but the asymptotic local power envelope of our test is the same as

that of Jansson’s test. This implies we can impose scale invariance in addition to location

invariance in wider directions without sacrificing local asymptotic power. As a special case of

the POI test, we also investigate the LBI test by considering location and scale invariance.

We show that the first derivative of the log-likelihood function of the maximal invariant

evaluated under the null hypothesis becomes identically equal to zero; we then derive the

LBI and unbiased (LBIU) test. The asymptotic local power of the LBIU test is compared

with that of the LBI test considered in Shin (1994), and we show that the LBIU test is

more powerful in a wider range of local alternatives. The other main finding in this paper

is that Jansson’s and Shin’s tests are greatly affected by the initial value condition on the

stochastic regressors, while our POI and LBIU tests are shown to be free of the initial value

condition. We show that our tests perform better than either Jansson’s or Shin’s tests in

finite samples.

The remainder of the paper is organized as follows. In Section 2 we derive the POI and

LBIU tests for a stylized model with the unknown variance-covariance matrix of the error

term. Location and scale invariance is introduced and the limiting local power function is

obtained. Section 3 generalizes the assumptions by allowing the error term to be weakly de-

pendent; we modify the test statistics such that their limiting distributions are independent
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of nuisance parameters. The finite sample properties of our tests are investigated through

Monte Carlo simulations in Section 4. Section 5 concludes the paper.

2. The POI and LBIU tests

Let us consider the following model:

yt = α′dt + β′xt + vt, (1− L)vt = uy
t − θuy

t−1, (1)

xt = α′xdt + x0
t , (1− L)x0

t = ux
t , (2)

where dt = [1, · · · , tp]′ with p ≥ 0, yt and xt are 1 and k dimensional observations, L is the

lag operator, and v0 = uy
0 = 0. For the error process we consider the following assumption

in this section.

Assumption 1 ut = [uy
t , u

x′
t ]′ ∼ i.i.d.N(0,Σ) with Σ > 0.

We partition Σ conformably with ut as

Σ =

[
σyy σyx

σxy Σxx

]
.

Since (2) includes a constant term we assume x0
0 = 0 without loss of generality. We proceed

with this restricted assumption in this section but we will relax the assumption of normality

and consider the dependent case in the next section.

The model is expressed in the vectorized form as

y = Dα+Xβ + v, L1v = Lθu
y,

X = Dαx + Ψ1/2
0 Ux,

where y = [y1, · · · , yT ]′, D = [d1, · · · , dT ]′, and the other vectors and matrices are defined

similarly, Ψθ = Ψ1/2
θ Ψ1/2′

θ with

Ψ1/2
θ =


1 0

1− θ 1
...

. . . . . .
1− θ · · · 1− θ 1

 , and Lθ =


1 0
−θ 1

. . . . . .
0 −θ 1

 .
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Since L−1
1 Lθ = Ψ1/2

0 Lθ = Ψ1/2
θ because L−1

1 = Ψ1/2
0 , the above system can also be expressed

as

y = Dα+Xβ + Ψ1/2
θ uy,

Ψ−1/2
0 X = Ψ−1/2

0 Dαx + Ux. (3)

Note that the first column of Ψ−1/2
0 D consists of e1 = [1, 0, · · · , 0]′ while the other columns

are obtained by the nonsingular transformation of the first p columns of D, which corre-

sponds to [1, · · · , tp−1].

Let us suppose that we are interested in the following testing problem:

H0 : θ = 1 v.s. H1 : θ < 1.

Under the null hypothesis, vt = uy
t and then yt and xt are cointegrated, while they are not

cointegrated under the alternative because vt is a unit root process when θ 6= 1.

Noting that xt is weakly exogenous for θ, it is sufficient for us to consider the distribution

of y conditional on X as far as the hypothesis about θ is concerned. It is easy to see that

the conditional distribution y|X is given by N(Dα+Xβ + Ψ1/2
θ UxΣ−1

xxσxy, σyy·xΨθ), where

σyy·x = σyy − σyxΣ−1
xxσxy. Using (3) the conditional distribution is also expressed as

y|X ∼ N
(
Dα∗ +Xβ∗ + Ψ−1/2

0 Xγ∗ + e1δ
∗, σyy·xΨθ

)
, (4)

where α∗, β∗, γ∗, and δ∗ are defined appropriately, and we used the relation Ψ1/2
θ Ψ−1/2

0 =

Lθ = θΨ−1/2
0 + (1 − θ)IT . Then, it is seen that the testing problem is invariant under the

group of transformations

y → sy +Da+Xb+ Ψ−1/2
0 Xc+ e1d

(θ, α∗, β∗, γ∗, δ∗, σyy·x) → (θ, sα∗ + a, sβ∗ + b, sγ∗ + c, sδ∗ + d, s2σyy·x),
(Gy)

where a, b, c, d, and s are p+ 1, k, k, 1, and 1 dimensional vectors with 0 < a <∞. Note

that in a classical regression context, location shift in y is considered only in the directions

of the regressors, D and X, while we additionally consider the directions of Ψ−1/2
0 X and e1.

Of importance is that in our model the I(I) regressors, X, are correlated with the error term,
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uy, and then the conditional mean of y depends on Ψ−1/2
0 Xγ∗ and e1δ∗ in addition to Dα∗

and Xβ∗ as is seen in (4). Since it is natural to consider location shift in y in the directions

of the conditional mean, [D,X,Ψ−1/2
0 X, e1] provides appropriate directions of shift in y in

our case. We can also see that invariance in the directions of e1 implies that tests do not

depend on the initial value condition. In the following, we develop the POI test under (Gy).

Let us define M = I − Z(Z ′Z)−1Z ′, where Z = [D,X,Ψ−1/2
0 X, e1], and choose a T ×

(T − q) matrix H such that H ′H = IT−q and HH ′ = M , where q = 2k+ p+2. As H ′Z = 0

we have

H ′y|X ∼ N(0, σyy·xH
′ΨθH).

Then, we can see that the distribution of H ′y|X is free from nuisance parameters α∗, β∗,

γ∗, and δ∗. In addition, it is shown that η = H ′y/
√
y′HH ′y conditional on X is a maximal

invariant under the group of transformations (Gy). In this section we assume σyy·x = 1

without loss of generality because η|X is invariant to scale change in y. As the probability

density function of η|X is given by (see Kariya, 1980, and King, 1980)

f(η|X; θ) =
1
2
Γ
(
T − q

2

)
π−(T−q)/2|H ′ΨθH|−1/2

(
η′(H ′ΨθH)−1η

)−(T−q)/2
, (5)

we can construct invariant tests based on f(η|X; θ). According to the Neyman–Pearson

lemma, the POI test against θ = θ̄ is given by f(η|X; θ̄)/f(η|X; 1), which is normalized to

have a limiting distribution as

RT (θ̄) = T

1−
(
f(η|X; θ̄)
f(η|X; 1)

)−2/(T−q)


= T

{
1−

( |H ′Ψθ̄H|
|H ′Ψ1H|

)1/(T−q) y′H(H ′Ψθ̄H)−1H ′y

y′H(H ′Ψ1H)−1H ′y

}

= T

1−
(
|Z ′Ψ−1

θ̄
Z|

|Z ′Z|

)1/(T−q)
y′(Ψ−1

θ̄
−Ψ−1

θ̄
Z(Z ′Ψ−1

θ̄
Z)−1Z ′Ψ−1

θ̄
)y

y′My

 ,
where the third equality holds using the relations Ψ1 = IT , H ′H = IT−q, HH ′ = M ,

|H ′Ψθ̄H| = |Z ′Ψ−1
θ̄
Z||Z ′Z|−1, and H(H ′Ψθ̄H)−1H ′ = Ψ−1

θ̄
−Ψ−1

θ̄
Z(Z ′Ψ−1

θ̄
Z)−1Z ′Ψ−1

θ̄
(see

Rao, 1973, and Jansson, 2005). The null hypothesis is rejected when RT (θ̄) takes large

values.
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Note that RT (θ̄) has a different expression from the Jansson’s POI test statistic, which

is constructed by considering only location invariance. The latter test statistic is expressed

as

PT (θ̄) = log
|R′R|

|R′Ψ−1
θ̄
R|

+ σ−1
yy·x

[
y(1)′My(1)− y(θ̄)′(Ψ−1

θ̄
−Ψ−1

θ̄
R(R′Ψ−1

θ̄
R)−1R′Ψ−1

θ̄
)y(θ̄)

]
,

where R = [X,D] and y(θ) = y − θΨ−1/2
0 XΣ−1

xxσxy. One of the reasons for the difference

between the two test statistics is the directions of location shift: Jansson (2005) considers

location invariance in the directions of R, while we introduced invariance in the directions

of [Ψ−1/2
0 X, e1] in addition to R. As our analysis is based on the conditional distribution of

y given X as in (4) and the conditional mean of y depends on Z, it is natural to consider

location invariance in the directions of Z. The other reason for the difference comes from

the introduction of scale change, which leads to the distributional difference between the two

maximal invariants: the maximal invariant η in our analysis has a nonnormal distribution

as given by (5), while the maximal invariant with only location invariance has a normal

density as shown in Jansson (2005).

To investigate the asymptotic properties of the POI test we localize the parameters θ

and θ̄ such that θ = 1− λ/T and θ̄ = 1− λ̄/T . Then, the limiting distribution of RT (θ̄) is

given in the following theorem, in which an integral such as
∫ 1
0 X(s)dY (s)′ is written simply

as
∫
XdY ′ to achieve notational economy.

Theorem 1 Under Assumption 1, the limiting distribution of RT (θ̄) is given by

RT (θ̄) ⇒ 2λ̄
∫ 1

0
V λ̄

λ dVλ − λ̄2
∫ 1

0
(V λ̄

λ )2ds

+
(∫ 1

0
Qλ̄dV λ̄

λ

)′ (∫ 1

0
Qλ̄Qλ̄′ds

)−1 (∫ 1

0
Qλ̄dV λ̄

λ

)
−
(∫ 1

0
QdVλ

)′ (∫ 1

0
QQ′ds

)−1 (∫ 1

0
QdVλ

)
− log

∣∣∣∣∫ 1

0
Qλ̄Qλ̄′ds

∣∣∣∣+ log
∣∣∣∣∫ 1

0
QQ′ds

∣∣∣∣ ,
where ⇒ signifies weak convergence of the associated probability measures, Q(s) =

[1, s, · · · , sp,W (s)′]′ with W (s) being a k-dimensional standard Brownian motion, Qλ̄(s) =
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∫ s
0 exp(−λ̄(s− r))dQ(r), Vλ(s) = V (s) + λ

∫ s
0 V (r)dr with V (s) being a univariate standard

Brownian motion independent of W (s), and V λ̄
λ (s) =

∫ s
0 exp(−λ̄(s− r))dVλ(r).

Remark 1: Although our test statistic RT (θ̄) is different from Jansson’s PT (θ̄), the lim-

iting distribution of RT (θ̄) is the same as that of PT (θ̄). This is because the additional

deterministic and I(0) regressors, e1 and Ψ−1/2
0 X, do not contribute to the asymptotic local

distribution, as is shown in the proof of the theorem in the Appendix. Our result implies we

can impose scale invariance in addition to location invariance in wider directions without

sacrificing local asymptotic power. However, we will see in Section 4 that these additional

regressors, especially e1, play an important role in finite samples.

In practice, we specify a value of θ̄ or λ̄ to implement the feasible point optimal test of

our version. We follow Elliott et al. (1996) and Jansson (2005) to choose λ̄. Their approach

is to select λ̄ such that the asymptotic local power against the local alternative θ̄ = 1− λ̄/T

is approximately 50% when we use the 5% test based on RT (θ̄). The recommended values

of λ̄ are given by Table 1 in Jansson (2005).

The other possible value of θ̄ is θ̄ → 0, in which case the test becomes the LBI test.

According to Ferguson (1967), the LBI test is given by d log f(η|X; θ)/dθ|θ=1, but it is shown

in the Appendix that d log f(η|X; θ)/dθ|θ=1 = 0. Then, instead of the LBI test, we consider

the LBI and unbiased (LBIU) test, which is, according to Ferguson (1967), given by

d2 log f(η|X; θ)
dθ2

∣∣∣∣∣
θ=1

+
(
d log f(η|X; θ)

dθ

∣∣∣∣
θ=1

)2

> c1 + c2
d log f(η|X; θ)

dθ

∣∣∣∣
θ=1

,

where c1 and c2 are some constants. As shown in the Appendix, the LBIU test statistic is

given by

LT =
y′MΨ0My/T 2

y′My/(T − q)
+

1
T 2

tr
{
(Z ′Z)−1(Z ′Ψ0Z)

}
. (6)

The null hypothesis is rejected when LT takes large values.

Corollary 1 Under Assumption 1, the limiting distribution of LT is given by

LT ⇒
∫ 1

0

{
Vλ −

∫ s

0
Q′dr

(∫ 1

0
QQ′dr

)−1 ∫ 1

0
QdVλ

}2

ds
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+tr

{(∫ 1

0
QQ′dr

)−1 ∫ 1

0

(∫ 1

s
Qdr

)(∫ 1

s
Q′dr

)
ds

}
.

Figure 1 depicts the Gaussian power envelope of the 5% test based on RT (θ) along with

the local asymptotic power functions of four cointegration tests in the constant mean case

with k = 1.3 Two of these are the feasible tests proposed in this paper, denoted by RT

and LT , respectively. The other two are the feasible tests given by Shin (1994) and Jansson

(2005), denoted by ST and PT , respectively. Since it is found out that the asymptotic power

functions of PT and RT are the same, only one line is indicated in Figure 1. ST , which

is the most commonly used test in applications, is locally optimal under his assumptions.

Therefore it becomes a convenient benchmark for assessing our new tests, RT and LT .

The local asymptotic powers of PT and RT are close to the envelope for all values of

λ. Whereas the local asymptotic powers of ST and LT are close to the envelope for small

values of λ due to their local optimal properties, they are well below the envelope as are

those of PT and RT for large values of λ. The local asymptotic power of LT is closer to the

envelope than that of ST for large values of λ. Figure 2 shows the linear trend case. What

we observed for the constant mean case is also true for this case, although the magnitude

of the differences is dampened.

3. Extension to general cases

The POI and LBIU tests in the previous section are based on the assumption that the error

process is normal and serially independent. However, this assumption is too restrictive

in practice and so we consider more general assumptions where the error term is weakly

dependent. The purpose of this section is to construct test statistics that have the same local

asymptotic properties as given in Theorem 1 and Corollary 1 under general assumptions.

To construct the feasible test statistics we define the long-run variance of ut and its
3The curves are obtained from 20,000 replications from the distribution of the discrete approximation

based on 2,000 steps to the limiting distribution given in Theorem 1.
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one-sided version as

Ω = Σ + Π + Π′ and Γ = Σ + Π,

where Σ = lim
T→∞

T−1
T∑

t=1

E[utu
′
t] and Π = lim

T→∞
T−1

T−1∑
j=1

T−j∑
t=1

E[utu
′
t+j ].

We partition these matrices conforming with ut, as in the previous section. We also define

the last k rows of Γ as Γx; that is, Γx = [0, Ik]Γ.

Assumption 2 (a) {ut} is mean-zero and strong mixing with mixing coefficients of size

−pα/(p− α) and E|ut|p <∞ for some p > α > 5/2.

(b) The matrix Ω exists with finite elements, Ω > 0, ωyy > 0, and Ωxx > 0.

Assumption 2 ensures that the functional central limit theorem can be applied to the partial

sums of ut.

Let u∗t = [uy·x
t , ux′

t ] where uy·x
t = κ′ut = uy

t − ωyxΩ−1
xxu

x
t with κ′ = [1,−ωyxΩ−1

xx ], and let

û∗t = [ûy·x
t , ûx′

t ]′ where ûy·x
t and ûx

t are the regression residuals of yt on zt and xt on dt. We

define Ω∗, Σ∗, Π∗, and Γ∗ from u∗t analogously to Ω, Σ, Π, and Γ, which are defined from ut,

and partition them conformably with u∗t such that ω∗11, ω
∗
12, and Ω∗

22 are (1, 1), (1, 2), and

(2, 2) blocks of Ω∗ and Γ∗x is the last k rows of Γ∗. Let ω̂∗11, Σ̂∗, π̂∗11, and Γ̂∗x be consistent

estimators of ω∗11, Σ∗, π∗11, and Γ∗x, which can be obtained by the typical kernel estimators

as investigated in Andrews (1991). The proposed test statistics are

R+
T (θ̄) = ω̂∗−1

11

{
y′M+y − y′(Ψ−1

θ̄
−Ψ−1

θ̄
Z+(Z+′Ψ−1

θ̄
Z+)−1Z+′Ψ−1

θ̄
)y − 2λ̄π̂∗11

}
− log

∣∣∣Z+′Ψ−1
θ̄
Z+
∣∣∣+ log

∣∣Z+′Z+
∣∣ ,

L+
T =

1
T 2
ω̂∗−1

11 y′M+Ψ0M
+y +

1
T 2

tr
{
(Z+′Z+)−1(Z+′Ψ0Z

+)
}
,

where M+ = IT − Z+(Z+′Z+)−1Z+′ and Z+ = [D,X+,Ψ−1/2
0 X, e1] with the transpose of

the t-th row of X+ defined by x+
t = xt−Γ̂∗xΣ̂∗−1û∗t . The following theorem gives the limiting

distributions of these test statistics.

Theorem 2 Under Assumption 2, R+
T (θ̄) and L+

T have the same limiting distributions as

RT (θ̄) and LT .
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Although our correction of the test statistics is basically the same as that proposed by

Phillips and Hansen (1990), Park (1992), and Jansson (2005), we do not have to modify

yt to obtain the test statistics that are asymptotically independent of nuisance parameters;

therefore our correction of the test statistics is relatively simple. This is because, as explained

in the proof of Theorem 2, we can replace yt in the test statistics by v∗θt where v∗θt = θuy·x
t +

(λ/T )
∑t

j=1 u
y·x
j . As uy·x

t are (asymptotically) uncorrelated with ux
t , Brownian motions

induced by the partial sums of them are independent of each other and hence we do not

need a “simultaneous bias correction” for our test statistics.

4. Finite sample evidence

In this section we investigate the finite sample properties of the tests proposed in Section

3. The data-generating process we consider is the same as in Jansson (2005). The data are

generated according to the system of (1) and (2) with α, β, and αx normalized to zero. The

error term ut is generated by

ut = ψ(L)Θ(ρ)εt, (7)

where εt = (εxt , ε
y
t )
′ ∼ i.i.d.N(0, I2), ψ(L) = (1− a)

∑∞
i=0 a

iLi and

Θ(ρ) =

[
1 0
ρ
√

1− ρ2

]
.

The parameters a and ρ control the persistence of the error and the endogeneity of the

regressor, respectively. We set a = 0, 0.5, 0.8, ρ = 1, 0.975, 0.95, 0.925, 0.90, and sample size

T = 200. The initial value, u0, is drawn from its stationary distribution, and y0 is set equal

to zero. We experiment with two kinds of initial values for x0, which is set to 0 or 10.

We also use the same estimation method for Σ, Ω, and Γ as in Jansson (2004)4. We

estimate Σ using Σ̂ = T−1∑T
t=1 û

∗
t û

∗′
t and Ω and Γ using the VAR(1) prewhitened kernel

estimator. Rejection frequencies for the 5% level tests are reported in Tables 2 and 3 for

the case of the constant mean and linear trend, respectively (we suppress the superscript
+ and the argument θ̄ from the test statistics). Case 1 describes the result for the case of

4The Matlab code provided by Michael Jansson was very helpful in conducting our simulation experiments.
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x0 = 0 and Case 2 for the case o x0 = 10. We also show the results for the feasible versions

of PT and ST for the sake of comparison. ST is based not on the parametric approach by

Shin (1994) but on the nonparametric approach by Choi and Ahn (1995).

For Case 1, the results are consistent with the analysis of the local asymptotic powers

shown in Figures 1 and 2 when the persistence and the endogeneity are moderate, i.e.

a ≤ 0.5 and ρ ≤ 0.5. The empirical sizes of all the tests are satisfactorily close to the

nominal one and PT and RT dominate LT and ST in the case of the moderate persistence

a ≤ 0.5. When the persistence is not present, i.e. a = 0, the robustness of RT and LT to

the endogeneity is pronounced. For ρ = 0.8 the results show nontrivial power gain by RT

and LT . This is because RT and LT are invariant under (Gy), which takes the location shift

in the direction of Ψ−1/2
0 X into account, although the advantage of RT and LT is obscured

when the persistence is present. For a = 0.8, all tests have an empirical size far from the

nominal one and low power, except that the empirical size of LT is highly stable for all cases

considered.

For Case 2, the observations of RT and LT for Case 1 are still true although all the nice

properties of PT and ST remarked for Case 1 are lost unless the endogeneity is absent, i.e.

ρ=0. This shows the importance of considering the group of transformations that contains

the term involving “e1” such as (Gy). This is the term which makes our test robust to

changes in initial values. Although we could ignore it asymptotically as Jansson (2005)

does, it can play an important role in finite samples as illuminated in Tables 2 and 3. Since

the exact meaning of these initial values in economic applications is still open to discussion,

the properties of RT and LT are clearly more desirable than other tests whose performance

is largely affected by changes in initial values.

5. Conclusions

In this paper we investigate POI tests for the null hypothesis of cointegration when the

variance-covariance matrix is unknown. We derive the POI and LBIU tests among a class of

tests that are invariant to scale change, as well as location shift, in the dependent variable.

11



We find that although our POI test is different from Jansson’s (2005) test, they have the

same local limiting distribution. We observe that the local asymptotic power of the POI

test is relatively close to the local asymptotic power envelope as shown by Jansson (2005),

while the LBIU test performs better than the LBI test proposed by Shin (1994) in a wide

range of local alternatives. In finite samples, we show that our tests perform better than

either Jansson’s or Shin’s tests in view of the empirical sizes of the tests. In particular, the

size of the LBIU test proposed in our paper is very close to the nominal one, even when the

data generating process is relatively persistent.
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Appendix

Proof of Theorem 1

The POI test statistic can be written as

RT (θ̄) = T
(
1−R1/T

1T (θ̄)R2T (θ̄)
)

= R1/T
1T (θ̄)× T

(
1−R2T (θ̄)

)
+ T

(
1−R1/T

1T (θ̄)
)
,

where R1T (θ̄) =
|Z ′Ψ−1

θ̄
Z|

|Z ′Z|
, R2T (θ̄) =

y′(Ψ−1
θ̄
−Ψ−1

θ̄
Z(Z ′Ψ−1

θ̄
Z)−1Z ′Ψ−1

θ̄
)y

y′My
,

and we replaced T − q with T for simplicity without loss of generality. We first show that

R1T (θ̄) ⇒ |
∫ 1
0 Q

λ̄Qλ̄′ds|
|
∫ 1
0 QQ

′ds|
. (A.1)

To show (A.1), notice from (3) that there exist a k × (p + 1) matrix G31 and a k × 1

vector g34 such that ux
t = G31dt +(1− (1−1t)L)xt + g341t where 1t = 1 for t = 1 and 1t = 0

otherwise. Then, we can transform zt using a q × q nonsingular matrix G such that

z∗t = Gzt where G =


Ip 0 0 0

−Σ−1/2
xx α′x Σ−1/2

xx 0 0
Σ−1/2

xx G31 0 Σ−1/2
xx Σ−1/2

xx g34
0 0 0 1

 ,

and z∗t = [z∗′1t, z
∗′
2t]

′ with z∗1t = [d′t, (Σ
−1/2
xx x0

t )
′]′ and z∗2t = [(Σ−1/2

xx ux
t )′, 1t]′. This is also

expressed as ZG′ = Z∗ = [Z∗1 , Z
∗
2 ] in the matrix form. Then, we have

R1T (θ̄) =
∣∣∣∣ 1T Υ−1

T GZ ′Ψ−1
θ̄
ZG′Υ−1

T

∣∣∣∣/∣∣∣∣ 1T Υ−1
T GZ ′ZG′Υ−1

T

∣∣∣∣
=

∣∣∣∣ 1T Υ−1
T Z θ̄′Z θ̄Υ−1

T

∣∣∣∣/∣∣∣∣ 1T Υ−1
T Z∗′Z∗Υ−1

T

∣∣∣∣ ,
where ΥT = diag{Υ1T ,Υ2T } with Υ1T = diag{1, T, · · · , T p, T 1/2Ik} and Υ2T = diag{Ik, T−1/2}

and Z θ̄ = Ψ−1/2

θ̄
Z∗. Note that the transpose of the t-th row of Z θ̄ is expressed as

zθ̄
t = θ̄zθ̄

t−1 + (1− L)z∗t with zθ̄
1 = z∗1 .

We partition zθ̄
t into zθ̄

1t and zθ̄
2t conformably with z∗1t and z∗2t.
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Lemma A.1 For 0 ≤ s ≤ 1, the following convergences hold jointly.

(i) Υ−1
1T z

∗
1[Ts] ⇒ Q(s),

(ii) Υ−1
1T z

θ̄
1[Ts] ⇒ Qλ̄(s).

Proof of Lemma A.1: (i) is obtained using the functional central limit theorem (FCLT).

(ii) From the definition of zθ̄
1t, we can express zθ̄

1t as

zθ̄
1t = z∗1t −

λ̄

T

t−1∑
j=1

(
1− λ̄

T

)t−j−1

z∗1j . (A.2)

See also the proof of Lemma 7 in Jansson (2004). Then, according to (i) and the continuous

mapping theorem (CMT), we have

Υ−1
1T z

θ̄
1[Ts] ⇒ Q(s)− λ̄

∫ s

0
e−λ̄(s−r)Qdr

=
∫ s

0
e−λ̄(s−r)dQ(r),

where the last equality holds by the partial integration formula.2

From Lemma A.1 (ii) and the CMT we have

1
T

Υ−1
1TZ

θ̄′
1 Z

θ̄
1Υ−1

1T ⇒
∫ 1

0
Qλ̄Qλ̄′ds. (A.3)

In exactly the same way as (A.2) zθ̄
2t is expressed as

zθ̄
2t = z∗2t −

λ̄

T

t−1∑
j=1

(
1− λ̄

T

)t−j−1

z∗2j

=


Σ−1/2

xx

ux
t −

λ̄

T

t−1∑
j=1

(
1− λ̄

T

)t−j−1

ux
j


1t − (1− 1t)

λ̄

T

(
1− λ̄

T

)t−2

 . (A.4)

Then, according to the weak law of large numbers (WLLN) and Theorem 4.1 in Hansen

(1992b) we have
1
T

Υ−1
2TZ

θ̄′
2 Z

θ̄
2Υ−1

2T
p−→ Ik+1, (A.5)
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where
p−→ signifies convergence in probability and

1
T

Υ−1
1TZ

θ̄′
1 Z

θ̄
2Υ−1

2T
p−→ 0. (A.6)

Combining (A.3), (A.5), and (A.6) we obtain

1
T

Υ−1
T Z θ̄′Z θ̄Υ−1

T ⇒
[ ∫ 1

0 Q
λ̄Qλ̄′ds 0
0 Ik+1

]
. (A.7)

In a similar manner we have T−1Υ−1
T Z∗′Z∗Υ−1

T ⇒ diag{
∫ 1
0 Q(s)Q(s)′ds, Ik+1}. We then

obtain (A.1).

Using (A.1), we can show that

R1/T
1T

p−→ 1 and T
(
1−R1/T

1T (θ̄)
)
⇒ − log

∣∣∣∣∫ 1

0
Qλ̄Qλ̄′ds

∣∣∣∣+ log
∣∣∣∣∫ 1

0
QQ′ds

∣∣∣∣ (A.8)

because a1/T → 1 and T (1− a1/T ) → − log a for a given a > 0 as T →∞.

Next, we investigate the asymptotic behavior of T (1−R2T (θ̄)). To do this, we decompose

vt as

vt = uy
t + (1− θ)

t−1∑
j=1

uy
j

= θuy
t +

λ

T

t∑
j=1

uy
j

= v∗θt + rθt,

where v∗θt = θuy·x
t + (λ/T )

∑t
j=1 u

y·x
j with uy·x

t = uy
t − σyxΣ−1

xxu
x
t and rθt = θσyxΣ−1

xxu
x
t +

(λ/T )σyxΣ−1
xx

∑t
j=1 u

x
j . Let v∗θ and rθ be the vectorized forms of v∗θt and rθt. Since

rθ =
{
θUx + (λ/T )Ψ1/2

0 Ux
}

Σ−1
xxσxy

=
{
θ
(
Ψ−1/2

0 X −Ψ−1/2
0 Dαx

)
+ (λ/T ) (X −Dαx)

}
Σ−1

xxσxy,

the conditional likelihood is independent of change in the direction of rθ, so that we can

replace y in the test statistic by v∗θ . Then, we can observe that

T
(
1−R2T (θ̄)

)
= T

(
1−

v∗′θ (Ψ−1
θ̄
−Ψ−1

θ̄
Z(Z ′Ψ−1

θ̄
Z)−1Z ′Ψ−1

θ̄
)v∗θ

v∗′θ Mv∗θ

)

=
R21T (θ̄) +R22T (θ̄)

v∗′θ Mv∗θ/T
, (A.9)
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where

R21T (θ̄) = 2
(
v∗θ −Ψ−1/2

θ̄
v∗θ

)′
v∗θ −

(
v∗θ −Ψ−1/2

θ̄
v∗θ

)′ (
v∗θ −Ψ−1/2

θ̄
v∗θ

)
= 2

(
v∗θ − vθ̄

θ

)′
v∗θ −

(
v∗θ − vθ̄

θ

)′ (
v∗θ − vθ̄

θ

)
and

R22T (θ̄) = v∗′θ Ψ−1
θ̄
Z(Z ′Ψ−1

θ̄
Z)−1Z ′Ψ−1

θ̄
v∗θ − v∗′θ Z(Z ′Z)−1Z ′v∗θ

=
(

1√
T
vθ̄′
θ Z

θ̄Υ−1
T

)(
1
T

Υ−1
T Z θ̄′Z θ̄Υ−1

T

)−1 ( 1√
T

Υ−1
T Z θ̄′vθ̄

θ

)
−
(

1√
T
v∗′θ Z

∗Υ−1
T

)(
1
T

Υ−1
T Z∗′Z∗Υ−1

T

)−1 ( 1√
T

Υ−1
T Z∗′v∗θ

)

with vθ̄
θ = Ψ−1/2

θ̄
v∗θ . As the denominator in (A.9) is shown to converge to σyy·x = 1 in

probability by the WLLN under the local alternative, we concentrate on the derivation of

the limiting distributions of R21T (θ̄) and R22T (θ̄) in the following.

Lemma A.2 For 0 ≤ s ≤ 1, the following convergences hold jointly.

(i)
1√
T

[Ts]∑
t=1

v∗θt ⇒ Vλ(s),

(ii)
1√
T

[Ts]∑
t=1

vθ̄
θt ⇒ V λ̄

λ (s),

(iii)
√
T
(
v∗θ[Ts] − vθ̄

θ[Ts]

)
⇒ λ̄V λ̄

λ (s).

Proof of Lemma A.2: (i) is obtained from the definition of v∗θt, the FCLT, and the CMT.

(ii) From the definition of vθ̄
θt we have

t∑
j=1

vθ̄
θj − θ̄

t−1∑
j=1

vθ̄
θj = v∗θt.

Then, in exactly the same way as (A.2), it is seen that

t∑
j=1

vθ̄
θj =

t∑
j=1

v∗θj −
λ̄

T

t−1∑
j=1

(
1− λ̄

T

)t−j−1
 j∑

i=1

v∗θi

 .
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Using (i), the CMT, and the partial integration formula, we obtain (ii).

(iii) From the definition of vθ̄
θt we have

v∗θt − vθ̄
θt = (1− θ̄)

t−1∑
j=1

vθ̄
θj .

Then, (iii) is obtained using (ii).2

Using Lemma A.2, the CMT, and Theorem 4.1 in Hansen (1992b) we have

R21T (θ̄) ⇒ 2λ̄
∫ 1

0
V λ̄

λ dVλ − λ̄2
∫ 1

0
(V λ̄

λ )2ds. (A.10)

For R22T (θ̄), we can see that

1√
T

Υ−1
1TZ

θ̄′
1 v

θ̄
θ ⇒

∫ 1

0
Qλ̄dV λ̄

λ , (A.11)

using Lemmas A.1, A.2, and Theorem 4.1 in Hansen (1992b), while

1√
T

Υ−1
2TZ

θ̄′
2 v

θ̄
θ =


1√
T

T∑
t=1

(Σ−1/2
xx uxθ̄

t )vθ̄
θt

T∑
t=1

1θ̄
t v

θ̄
θt

 ,

where uxθ̄
t is the transpose of the t-th row of Ψ−1/2

θ̄
Ux. In exactly the same way as (A.2) we

have

vθ̄
θt = v∗θt −

λ̄

T

t−1∑
j=1

(
1− λ̄

T

)t−j−1

v∗θj . (A.12)

Then, from (A.4) and (A.12) we can see that

1√
T

T∑
t=1

(Σ−1/2
xx uxθ̄

t )vθ̄
θt =

1√
T

T∑
t=1

(Σ−1/2
xx )ux

t u
y·x
t +Op(T−1/2)

⇒ N(1), (A.13)

by the FCLT, where N(s) is a k dimensional standard Brownian motion that is independent

of W (s) and V (s).

On the other hand, using (A.4) we have

T∑
t=1

1θ̄
t v

θ̄
θt = vθ̄

θ1 −
λ̄

T

T∑
t=2

(
1− λ̄

T

)t−2

vθ̄
θt

p−→ vθ̄
θ1 = v∗θ1. (A.14)
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Then, combining (A.7), (A.11), (A.13), and (A.14) we have(
1√
T
vθ̄′
θ Z

θ̄Υ−1
T

)(
1
T

Υ−1
T Z θ̄′Z θ̄Υ−1

T

)−1 ( 1√
T

Υ−1
T Z θ̄′vθ̄

θ

)
⇒

(∫ 1

0
Qλ̄dV λ̄

λ

)′ (∫ 1

0
Qλ̄Qλ̄′ds

)−1 (∫ 1

0
Qλ̄dV λ̄

λ

)
+N(1)2 + v∗2θ1 .

In exactly the same way we have(
1√
T
v∗′θ Z

∗Υ−1
T

)(
1
T

Υ−1
T Z∗′Z∗Υ−1

T

)−1 ( 1√
T

Υ−1
T Z∗′v∗θ

)
⇒

(∫ 1

0
QdVλ

)′ (∫ 1

0
QQ′ds

)−1 (∫ 1

0
QdVλ

)
+N(1)2 + v∗2θ1 .

Then, we can see that

R22T (θ̄) ⇒
(∫ 1

0
Qλ̄dV λ̄

λ

)′ (∫ 1

0
Qλ̄Qλ̄′ds

)−1 (∫ 1

0
Qλ̄dV λ̄

λ

)
−
(∫ 1

0
QdVλ

)′ (∫ 1

0
QQ′ds

)−1 (∫ 1

0
QdVλ

)
. (A.15)

By combining (A.10) and (A.15), we have

T
(
1−R2T (θ̄)

)
⇒ 2λ̄

∫ 1

0
V λ̄

λ dVλ − λ̄2
∫ 1

0
(V λ̄

λ )2ds

+
(∫ 1

0
Qλ̄dV λ̄

λ

)′ (∫ 1

0
Qλ̄Qλ̄′ds

)−1 (∫ 1

0
Qλ̄dV λ̄

λ

)
−
(∫ 1

0
QdVλ

)′ (∫ 1

0
QQ′ds

)−1 (∫ 1

0
QdVλ

)
. (A.16)

The required distribution is obtained from (A.8) and (A.16).2

Proof of Corollary 1

We first derive the LBIU test statistic (6). Note that

dΨθ

dθ
= (IT −Ψ1/2

0 )Ψ1/2′
θ + Ψ1/2

θ (IT −Ψ1/2′
0 )

d2Ψθ

dθ2
= 2(IT −Ψ1/2

0 )(IT −Ψ1/2′
0 ) = 2(Ψ0 − iT i

′
T ),

where iT = [1, · · · , 1] is a T × 1 vector and we used the relation IT −Ψ1/2
0 −Ψ1/2′

0 = −iT i′T .

Then, as Ψ1/2
1 = IT , H ′H = IT−q, and H ′iT = 0, we have

d(H ′ΨθH)
dθ

∣∣∣∣
θ=1

= H ′(IT − iT i
′
T )H = IT−q (A.17)
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d2(H ′ΨθH)
dθ2

∣∣∣∣∣
θ=1

= 2H ′Ψ0H. (A.18)

From (A.17) and the standard matrix differential calculus we can show that

d log f(η|X; θ)
dθ

∣∣∣∣
θ=1

= −1
2
tr
{

(H ′Ψ1H)−1 d(H
′ΨθH)
dθ

∣∣∣∣
θ=1

}

+
T − q

2

η′(H ′Ψ1H)−1 d(H′ΨθH)
dθ

∣∣∣
θ=1

(H ′Ψ1H)−1η

η′(H ′Ψ1H)−1η
= 0.(A.19)

For the second derivative, note that

d2 log |H ′ΨθH|
dθ2

∣∣∣∣∣
θ=1

= tr
{
−IT−q + 2H ′Ψ0H

}
= −(T − q) + 2tr {MΨ0}

= (T 2 + q)− 2tr
{
(Z ′Z)−1Z ′Ψ0Z

}
, (A.20)

which is obtained using (A.17), (A.18), and HH ′ = M , and

d2 log{η′(H ′ΨθH)−1η}
dθ2

∣∣∣∣∣
θ=1

= 1− 2η′HΨ0Hη

= 1− 2
y′MΨ0My

y′My
. (A.21)

Then, from (A.20) and (A.21) we have

d2 log f(η|X; θ)
dθ2

∣∣∣∣∣
θ=1

= const+
y′MΨ0My

y′My/(T − q)
+ tr

{
(Z ′Z)−1Z ′Ψ0Z

}
,

so that we obtain (6).

Next, we derive the limiting distribution of the LBIU test statistic. For the same reason

as in the proof of Theorem 1 we can replace y in the test statistic by v∗θ and then we

have Ψ1/2′
0 My = Ψ1/2′

0 Mv∗θ . Noting that Ψ1/2′
0 = iT i

′
T − Ψ̄1/2

0 where Ψ̄1/2
0 is a T × T lower

triangular matrix with diagonal elements 0 and the other lower elements 1, we have

1√
T

Ψ1/2′
0 My =

1√
T

(iT i′T − Ψ̄1/2
0 )Mv∗θ

= − 1√
T

{
Ψ̄1/2

0 v∗θ − Ψ̄1/2
0 Z

(
Z ′Z

)−1
Z ′v∗θ

}
= −

{
1√
T

Ψ̄1/2
0 v∗θ −

1
T

Ψ̄1/2
0 Z∗Υ−1

T

(
1
T

Υ−1
T Z∗′Z∗Υ−1

T

)−1 1√
T

Υ−1
T Z∗′v∗θ

}
,
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where the second equality holds because i′TM = 0. As the t-th rows of Ψ̄1/2
0 v∗θ and Ψ̄1/2

0 Z∗

are
∑t−1

j=1 v
∗
θj and

∑t−1
j=1 z

∗′
t , we have, using Lemmas A.1, A.2, the FCLT, and the CMT,

v∗′θ MΨ0Mv∗θ/T
2

v∗′θ Mv∗θ/(T − q)
⇒
∫ 1

0

{
Vλ(s)−

∫ s

0
Q′dr

(∫ 1

0
QQ′dr

)−1 ∫ 1

0
QdVλ

}2

ds. (A.22)

Similarly, we can also see that

1
T 2

tr
{
(Z ′Z)−1(Z ′Ψ0Z)

}
= tr

{(
1
T

Υ−1
T Z∗′Z∗Υ−1

T

)(
1
T 3

Υ−1
T Z∗′Ψ0Z

∗Υ−1
T

)}
.

Noting that the transpose of the t-th row of Ψ1/2′
0 Z∗ is given by

∑T
j=t z

∗
j , we have, from

Lemma A.1 and the CMT,

1
T 2

tr
{
(Z ′Z)−1(Z ′Ψ0Z)

}
⇒ tr

{(∫ 1

0
QQ′dr

)−1 ∫ 1

0

(∫ 1

s
Qdr

)(∫ 1

s
Q′dr

)
ds

}
. (A.23)

From (A.22) and (A.23) we obtain the result.2

Proof of Theorem 2

The proof proceeds in the same way as the proof of theorem 1 and the proof of Theorem 2

in Jansson (2005); therefore we provide only an outline. First, note that we can obtain the

same results in Lemma A.1 by replacing Σ−1/2
xx in G with Ω−1/2

xx . We can also see that, as in

the proof of Theorem 1, yt in the test statistics can be replaced by v∗θt where under general

assumptions uy·x
t is defined as uy·x

t = uy
t − ωyxΩ−1

xxu
x
t , so that the limiting distributions in

Lemma A.2 should be multiplied by ω
∗1/2
11 . Then, applying Lemma 1 in Sims, Stock, and

Watson (1990) and Lemma 7 in Jansson (2004), we can see that

2(v∗θ − vθ̄
θ)
′v∗θ ⇒ 2λ̄ω∗11

∫ 1

0
V λ̄

λ dVλ + 2λ̄π∗11,

and then

R2T (θ̄) ⇒ ω∗11

(
2λ̄
∫ 1

0
V λ̄

λ dVλ − λ̄2
∫ 1

0
(V λ̄

λ )2ds
)

+ 2λ̄π∗11.

Similarly, we can see that

1√
T

Υ−1
1TZ

+θ̄′
1 vθ̄

θ ⇒ ω
∗1/2
11

∫ 1

0
Qλ̄dV λ̄

λ

1√
T

Υ−1
1TZ

+∗′
1 v∗θ ⇒ ω

∗1/2
11

∫ 1

0
QdVλ.

By combining these results we obtain the theorem.2
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