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Abstract

This paper examines a point optimal invariant (POI) test for the null hypothesis of
cointegration. Our test is different from Jansson’s (2005) test in that we consider loca-
tion invariance in wider directions and that we assume an unknown variance-covariance
matrix for the error term, while it is assumed to be known in Jansson (2005). As the
variance-covariance matrix is unknown in our paper, we consider the POI test among a
class of tests that are invariant to scale change, as well as location shift, in the dependent
variable. As a special case of the POI test, we also derive the locally best invariant and
unbiased (LBIU) test. We find that our POI test has the same asymptotic distribution
as Jansson’s (2005) test, which is a point optimal test among a class of location invari-
ant tests. On the other hand, our LBIU test is shown to have a different characteristic
from the locally best invariant test in Shin (1994). We also propose a modification of
our tests to accommodate more general assumptions on the error term. Monte Carlo
simulation is conducted to investigate the finite sample properties of the tests, and it is
shown that our modified tests perform better in finite samples than either the Jansson
or Shin tests.
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1. Introduction

This paper considers a single equation cointegrating model and discusses the optimality
of tests for the null hypothesis of cointegration. Following the seminal work of Engle and
Granger (1987), tests of cointegration have been intensively investigated in the econometric
literature. For a single equation model, tests for the null of cointegration are proposed by
Hansen (1992a), Quintos and Phillips (1993), Shin (1994), and Jansson (2005), while the
null of no cointegration is considered in Engle and Granger (1987) and Phillips and Ouliaris
(1990), among others. A system equations approach is also considered in a number of studies,
whereas this paper deals only with a single equation model. See Hubrich, Liitkepohl, and

Saikkonen (2001) for a useful review of system equations methods.

For the null hypothesis of cointegration, Shin (1994) proposes the locally best invariant
(LBI) test for the i.i.d. normal errors, while Jansson (2005) develops the point optimal
invariant (POI) test and derives the asymptotic local power envelope. These optimal tests
are derived for a simple stylized model and modified such that the limiting distributions of
the test statistics become independent of nuisance parameters under general assumptions.
According to Jansson (2005), the POI test performs better than the LBI test in a wide range

of alternatives, both asymptotically and in finite samples.

In Jansson (2005), the analysis of the cointegrating regression model proceeds under
the assumption of the known variance-covariance matrix of the error term, and the optimal
test is derived among a class of tests that are invariant to location shift in the dependent
variable. As the variance-covariance matrix is assumed to be known, it does not consider
scale invariance, and hence only location invariance is considered. Of some interest is that the
limiting distribution of the POI test statistic does not depend on the true variance-covariance
matrix. As a result, it is not too difficult to generalize the POI test to accommodate the
general assumptions of the unknown variance-covariance matrix and the weakly dependent

error term.

In this paper, we assume the unknown variance-covariance matrix and investigate the

POI test for the null of cointegration. Although the properties of the POI test by Jansson



(2005) are asymptotically independent of the variance-covariance matrix as discussed, in
finite samples they are surely not. Because, in general, we do not know the variance-
covariance matrix for the error term, we proceed with our analysis assuming an unknown
variance-covariance matrix. As the variance-covariance matrix is unknown, it is natural to
introduce scale invariance in addition to location invariance. In fact, the testing problem
considered in this paper is seen to be invariant not only in translations but also in scale
transformations. We develop the point optimal test by taking account of these two kinds of

transformations.

One interesting finding is that our approach leads to a different test statistic to that in
Jansson because we consider a class of tests invariant to scale change as well as location
shift in wider directions, but the asymptotic local power envelope of our test is the same as
that of Jansson’s test. This implies we can impose scale invariance in addition to location
invariance in wider directions without sacrificing local asymptotic power. As a special case of
the POI test, we also investigate the LBI test by considering location and scale invariance.
We show that the first derivative of the log-likelihood function of the maximal invariant
evaluated under the null hypothesis becomes identically equal to zero; we then derive the
LBI and unbiased (LBIU) test. The asymptotic local power of the LBIU test is compared
with that of the LBI test considered in Shin (1994), and we show that the LBIU test is
more powerful in a wider range of local alternatives. The other main finding in this paper
is that Jansson’s and Shin’s tests are greatly affected by the initial value condition on the
stochastic regressors, while our POI and LBIU tests are shown to be free of the initial value
condition. We show that our tests perform better than either Jansson’s or Shin’s tests in

finite samples.

The remainder of the paper is organized as follows. In Section 2 we derive the POI and
LBIU tests for a stylized model with the unknown variance-covariance matrix of the error
term. Location and scale invariance is introduced and the limiting local power function is
obtained. Section 3 generalizes the assumptions by allowing the error term to be weakly de-

pendent; we modify the test statistics such that their limiting distributions are independent



of nuisance parameters. The finite sample properties of our tests are investigated through

Monte Carlo simulations in Section 4. Section 5 concludes the paper.

2. The POI and LBIU tests

Let us consider the following model:

ye = o/ dy + 'y + vy, (1—L)v = U%f/ - 9“%_17 (1)
v = ajdy +ay, (11— L)} =uf, (2)
where d; = [1,---,#"]" with p > 0, y; and z; are 1 and k dimensional observations, L is the

lag operator, and vy = uf = 0. For the error process we consider the following assumption

in this section.
Assumption 1 w; = [u,u¥') ~ i.i.d.N(0,3) with X > 0.

We partition ¥ conformably with u; as

(oF a
s | Pw Tyz |
[ Ozy Yz ]

Since (2) includes a constant term we assume z{) = 0 without loss of generality. We proceed
with this restricted assumption in this section but we will relax the assumption of normality

and consider the dependent case in the next section.

The model is expressed in the vectorized form as
y=Da+ XpB+v, Liv=LyuY,

X = Da, + VU7,

where y = [y1, - -,yr), D = [d1,---,dr], and the other vectors and matrices are defined

similarly, ¥y = \I/;ﬂ\l/é/m with



Since Lfng = \11[13/2L9 = \Ifém because Lfl = \11(1)/2, the above system can also be expressed

as
y=Da+ X3+,

v, "*X = vy *Da, + U”. (3)

Note that the first column of ¥ 2D consists of e1 = [1,0,---,0]" while the other columns

are obtained by the nonsingular transformation of the first p columns of D, which corre-
sponds to [1,---, P~ 1.

Let us suppose that we are interested in the following testing problem:
Hy: 6=1 vs. Hi: 0<1.

Under the null hypothesis, v; = u and then y; and z; are cointegrated, while they are not

cointegrated under the alternative because vy is a unit root process when 6 # 1.

Noting that x; is weakly exogenous for 6, it is sufficient for us to consider the distribution
of y conditional on X as far as the hypothesis about # is concerned. It is easy to see that
the conditional distribution y|X is given by N(Da + X3 + \Ilé/ZU”E;;axy, oyyz V), where

Oyys = Oyy — OyaXpa Ozy. Using (3) the conditional distribution is also expressed as

Y[ X ~ N (Da* + X5 + 0 X7 + 18", 0000 (4)

where o*, 0%, v*, and ¢6* are defined appropriately, and we used the relation \Ilé/ 2\I/(; 1z _

Ly =0T, 1/2 + (1 — @)Ip. Then, it is seen that the testing problem is invariant under the
group of transformations

1/2

y—sy+Da+Xb+V¥, " "Xc+ed

(Gy)
(0,0, 8,7, 0%, 0yyz) = (0,50 +a,sB" +b,s7" + ¢, 50" +d, SQO'yy.;E),

where a, b, ¢, d, and s are p+ 1, k, k, 1, and 1 dimensional vectors with 0 < a < co. Note
that in a classical regression context, location shift in ¥ is considered only in the directions
of the regressors, D and X, while we additionally consider the directions of ¥, Y2X and e1.

Of importance is that in our model the I(I) regressors, X, are correlated with the error term,



u¥Y, and then the conditional mean of y depends on \I/al/sz* and e10* in addition to Da*
and X 0* as is seen in (4). Since it is natural to consider location shift in y in the directions
of the conditional mean, [D, X, ¥ 2y ,e1] provides appropriate directions of shift in y in
our case. We can also see that invariance in the directions of e; implies that tests do not
depend on the initial value condition. In the following, we develop the POI test under (G,).

Let us define M = I — Z(Z'Z)"1Z', where Z = [D, X, \Ilal/QX, e1], and choose a T' x
(T — q) matrix H such that H'H = Ip_, and HH' = M, where ¢ =2k+p+2. AsH'Z =0
we have

H'y|X ~ N(0,0y,.HYsH).

Then, we can see that the distribution of H'y|X is free from nuisance parameters a*, 3*,
v*, and 6*. In addition, it is shown that n = H'y/+/y"HH'y conditional on X is a maximal
invariant under the group of transformations (G,). In this section we assume oy, = 1
without loss of generality because n|X is invariant to scale change in y. As the probability
density function of n|X is given by (see Kariya, 1980, and King, 1980)

L /T—a\ B L\ -T2
falxi0) = 5T (1) TR e (v ) (s)

we can construct invariant tests based on f(n|X;#). According to the Neyman—Pearson
lemma, the POI test against § = 0 is given by f(n|X;0)/f(n|X;1), which is normalized to

have a limiting distribution as

\ —2/(T—q)
N f(nX;0)
R0 = T{l (f(n\X;l)
= T{1- (H/‘l’ém)l/(Tq) y H(H"WH) " H'y
N |H' U H| vH(H' U H)"H'y

- 11— 12'9;'2| YOyt — w22y 2) 7 2y
2/ Z] My ,

where the third equality holds using the relations ¥y = Ip, H'H = Ir_,, HH' = M,
|H'UGH| = |Z'V; ' Z||Z'Z| 7', and H(H'U;H)'H' = U3 — W Z(2'0 ;' 2) 7 2/ (see

Rao, 1973, and Jansson, 2005). The null hypothesis is rejected when Rp(#) takes large

values.



Note that Rr(6) has a different expression from the Jansson’s POI test statistic, which
is constructed by considering only location invariance. The latter test statistic is expressed
as
Pr(B) —log 0B oot [y(1YMy(1) - y(@) (V5! — U5 RGRW;R) VRS )y(d)]

‘R/\Ilé R’ vy 0 0 0 0
where R = [X, D] and y(0) = y — 9‘1'(;1/2)(2;3510’@- One of the reasons for the difference
between the two test statistics is the directions of location shift: Jansson (2005) considers
location invariance in the directions of R, while we introduced invariance in the directions
of [, 12x ,e1] in addition to R. As our analysis is based on the conditional distribution of
y given X as in (4) and the conditional mean of y depends on Z, it is natural to consider
location invariance in the directions of Z. The other reason for the difference comes from
the introduction of scale change, which leads to the distributional difference between the two
maximal invariants: the maximal invariant 7 in our analysis has a nonnormal distribution
as given by (5), while the maximal invariant with only location invariance has a normal

density as shown in Jansson (2005).

To investigate the asymptotic properties of the POI test we localize the parameters 6
and 6 such that # = 1 — \/T and § = 1 — A\/T. Then, the limiting distribution of Ry () is
given in the following theorem, in which an integral such as fol X (s)dY (s)" is written simply

as [ XdY' to achieve notational economy.

Theorem 1 Under Assumption 1, the limiting distribution of Ry () is given by

Rr(0) = 25\/01 VAV — A2 /OI(V)\/\)2dS
' ( /01 QXdVAX>, ( / 1 Q’_\Qj‘/ds>_1 ( / 1 QMV/\Z\)
([ Qd%)l ([ QQ’ds>_1 ([ @in) -0

where = signifies weak convergence of the associated probability measures, Q(s) =

1 _ 1
/ Q'QVds| + log / QQ'ds|,
0 0

[1,s,---,s°, W(s)'] with W(s) being a k-dimensional standard Brownian motion, Q*(s) =



Jo exp(=A(s —1))dQ(r), Va(s) = V(s) + A [g V(r)dr with V(s) being a univariate standard
Brownian motion independent of W (s), and V)\j‘(s) = [ exp(=A(s — r))dVi(r).

Remark 1: Although our test statistic Rp(f) is different from Jansson’s Pr(6), the lim-

iting distribution of Rz (f) is the same as that of Pr(#). This is because the additional

2y , do not contribute to the asymptotic local

deterministic and I(0) regressors, e; and ¥
distribution, as is shown in the proof of the theorem in the Appendix. Our result implies we
can impose scale invariance in addition to location invariance in wider directions without
sacrificing local asymptotic power. However, we will see in Section 4 that these additional

regressors, especially ej, play an important role in finite samples.

In practice, we specify a value of  or A to implement the feasible point optimal test of
our version. We follow Elliott et al. (1996) and Jansson (2005) to choose A. Their approach
is to select A such that the asymptotic local power against the local alternative § = 1 — /T

is approximately 50% when we use the 5% test based on Rp(#). The recommended values

of A are given by Table 1 in Jansson (2005).

The other possible value of § is # — 0, in which case the test becomes the LBI test.
According to Ferguson (1967), the LBI test is given by dlog f(n|X;6)/df|s=1, but it is shown
in the Appendix that dlog f(n|X;6)/df|p=1 = 0. Then, instead of the LBI test, we consider
the LBI and unbiased (LBIU) test, which is, according to Ferguson (1967), given by

N (dlogf(an;H) dlog f(n| X; 0)
- df df

d?log f(n|X;0)
62

)

=1

2
) >c1+ e
=1

where ¢; and co are some constants. As shown in the Appendix, the LBIU test statistic is
given by
Y MY My/T? 1

ET = m + ﬁtr {(Z,Z)_I(Z/\Ifoz)} . (6)

The null hypothesis is rejected when L1 takes large values.

Corollary 1 Under Assumption 1, the limiting distribution of Lt is given by

Lr = /OI{VA—/OSQ’dr (/OIQQ’dr)l/OleVA}st
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—i—tr{(/ol QQ’dr>_l/01 (/1 er> (/1 Q’dr) ds}.

Figure 1 depicts the Gaussian power envelope of the 5% test based on Rp(#) along with
the local asymptotic power functions of four cointegration tests in the constant mean case
with & = 1.2 Two of these are the feasible tests proposed in this paper, denoted by Ry
and L, respectively. The other two are the feasible tests given by Shin (1994) and Jansson
(2005), denoted by Sy and Pr, respectively. Since it is found out that the asymptotic power
functions of Pr and Ry are the same, only one line is indicated in Figure 1. Sp, which
is the most commonly used test in applications, is locally optimal under his assumptions.

Therefore it becomes a convenient benchmark for assessing our new tests, R and Lr.

The local asymptotic powers of Pr and R are close to the envelope for all values of
A. Whereas the local asymptotic powers of St and L1 are close to the envelope for small
values of A due to their local optimal properties, they are well below the envelope as are
those of Pr and R for large values of A. The local asymptotic power of Lt is closer to the
envelope than that of St for large values of A. Figure 2 shows the linear trend case. What
we observed for the constant mean case is also true for this case, although the magnitude

of the differences is dampened.

3. Extension to general cases

The POI and LBIU tests in the previous section are based on the assumption that the error
process is normal and serially independent. However, this assumption is too restrictive
in practice and so we consider more general assumptions where the error term is weakly
dependent. The purpose of this section is to construct test statistics that have the same local

asymptotic properties as given in Theorem 1 and Corollary 1 under general assumptions.

To construct the feasible test statistics we define the long-run variance of u; and its

3The curves are obtained from 20,000 replications from the distribution of the discrete approximation
based on 2,000 steps to the limiting distribution given in Theorem 1.



one-sided version as

Q=X +I+1II' and T =X +1I,

T-1T—j
where X = hm T 1ZEUtUt and Il = hm T 12 ZE“WHJ]
= j=1t=1

We partition these matrices conforming with u, as in the previous section. We also define

the last k rows of I' as I'y; that is, I',, = [0, [;]T.

Assumption 2 (a) {u;} is mean-zero and strong mizing with mizing coefficients of size
—pa/(p — @) and Elw|P < oo for some p > o> 5/2.

(b) The matriz Q exists with finite elements, Q > 0, wyy > 0, and Qyzy > 0.

Assumption 2 ensures that the functional central limit theorem can be applied to the partial
sums of u;.

Let uj = [u}", uf'] where u}" = k'uy = u} — wy,Qtuf with k' = [1, —w,,Q1], and let
ay = [0y, af"]" where 4f" and 4f are the regression residuals of y; on 2; and z¢ on d;. We
define 2, ¥*, IT*, and I'* from u; analogously to 2, X, II, and I', which are defined from wuy,
and partition them conformably with u; such that wi;, w}y, and Q3, are (1,1), (1,2), and
(2,2) blocks of Q* and I'* is the last k rows of I'*. Let &, 3%, 4%, and I'* be consistent

estimators of wj;, ¥*, 7, and I'}, which can be obtained by the typical kernel estimators

as investigated in Andrews (1991). The proposed test statistics are

REO) = ot {;/MW —y (U =z (2 2T Ty - 2%{1}
~log |Z+'05 2| + log |2+ 27,

Lo

ﬁ'-li: = T2 11 Yy

1
'MW M Ty + ?tr{(z+’z+)*1(z+’woz+)},

where M+ = Iy — ZH(ZY'Zt) 1 Z* and Z+ = [D,X+, \PSI/QX, e1] with the transpose of
the t-th row of X T defined by = = z; —F* $*14%. The following theorem gives the limiting

distributions of these test statistics.

Theorem 2 Under Assumption 2, RE(0) and L+ have the same limiting distributions as

RT(g) and ﬁT.



Although our correction of the test statistics is basically the same as that proposed by
Phillips and Hansen (1990), Park (1992), and Jansson (2005), we do not have to modify
Yt to obtain the test statistics that are asymptotically independent of nuisance parameters;
therefore our correction of the test statistics is relatively simple. This is because, as explained
in the proof of Theorem 2, we can replace y; in the test statistics by vj, where vy, = Ou™ +
(NT) 3-:1 uf". As u/™ are (asymptotically) uncorrelated with uf, Brownian motions
induced by the partial sums of them are independent of each other and hence we do not

need a “simultaneous bias correction” for our test statistics.

4. Finite sample evidence

In this section we investigate the finite sample properties of the tests proposed in Section
3. The data-generating process we consider is the same as in Jansson (2005). The data are
generated according to the system of (1) and (2) with «, 3, and o, normalized to zero. The

error term wu; is generated by
ut = ¢(L)@(P)5ta (7)

where g, = (¢¥7,¢}) ~ i.i.d.N(0,I3), ¥(L) = (1 —a) >.3°,a’L* and

O(p) = [ . ] .
p V1—p?
The parameters a and p control the persistence of the error and the endogeneity of the
regressor, respectively. We set a = 0,0.5,0.8, p = 1,0.975,0.95,0.925,0.90, and sample size
T = 200. The initial value, ug, is drawn from its stationary distribution, and g is set equal

to zero. We experiment with two kinds of initial values for xg, which is set to 0 or 10.

We also use the same estimation method for 3, Q, and T' as in Jansson (2004)%. We
estimate ¥ using ¥ = T~ .7 44} and Q and T using the VAR(1) prewhitened kernel
estimator. Rejection frequencies for the 5% level tests are reported in Tables 2 and 3 for
the case of the constant mean and linear trend, respectively (we suppress the superscript

* and the argument # from the test statistics). Case 1 describes the result for the case of

4The Matlab code provided by Michael Jansson was very helpful in conducting our simulation experiments.
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xo = 0 and Case 2 for the case o g = 10. We also show the results for the feasible versions
of Pr and Sy for the sake of comparison. Sy is based not on the parametric approach by

Shin (1994) but on the nonparametric approach by Choi and Ahn (1995).

For Case 1, the results are consistent with the analysis of the local asymptotic powers
shown in Figures 1 and 2 when the persistence and the endogeneity are moderate, i.e.
a < 0.5 and p < 0.5. The empirical sizes of all the tests are satisfactorily close to the
nominal one and Pr and R dominate L7 and Sy in the case of the moderate persistence
a < 0.5. When the persistence is not present, i.e. a = 0, the robustness of Ry and L to
the endogeneity is pronounced. For p = 0.8 the results show nontrivial power gain by R
and Lp. This is because Ry and Lr are invariant under (G, ), which takes the location shift
in the direction of ¥y 12X into account, although the advantage of Ry and Lp is obscured
when the persistence is present. For a = 0.8, all tests have an empirical size far from the
nominal one and low power, except that the empirical size of L is highly stable for all cases

considered.

For Case 2, the observations of Ry and L for Case 1 are still true although all the nice
properties of Pr and S remarked for Case 1 are lost unless the endogeneity is absent, i.e.
p=0. This shows the importance of considering the group of transformations that contains
the term involving “e;” such as (G,). This is the term which makes our test robust to
changes in initial values. Although we could ignore it asymptotically as Jansson (2005)
does, it can play an important role in finite samples as illuminated in Tables 2 and 3. Since
the exact meaning of these initial values in economic applications is still open to discussion,
the properties of R and L1 are clearly more desirable than other tests whose performance

is largely affected by changes in initial values.

5. Conclusions

In this paper we investigate POI tests for the null hypothesis of cointegration when the
variance-covariance matrix is unknown. We derive the POI and LBIU tests among a class of

tests that are invariant to scale change, as well as location shift, in the dependent variable.
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We find that although our POI test is different from Jansson’s (2005) test, they have the
same local limiting distribution. We observe that the local asymptotic power of the POI
test is relatively close to the local asymptotic power envelope as shown by Jansson (2005),
while the LBIU test performs better than the LBI test proposed by Shin (1994) in a wide
range of local alternatives. In finite samples, we show that our tests perform better than
either Jansson’s or Shin’s tests in view of the empirical sizes of the tests. In particular, the
size of the LBIU test proposed in our paper is very close to the nominal one, even when the

data generating process is relatively persistent.
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Appendix
Proof of Theorem 1
The POI test statistic can be written as
Rr(0) = T(1-Ry (O)Rr(7))
= R (O)xT (1= Ror(0) + T (1 =Ry} (9)),

VAP (Y = 22 2) T 2y
W, RZT(Q) = )

where Rir(0) = Iy

and we replaced T' — ¢ with T for simplicity without loss of generality. We first show that
o @*QVds|
| fol QQ'ds|

To show (A.1), notice from (3) that there exist a £ x (p + 1) matrix G3; and a k x 1

Rz (0) = (A.1)

vector gs4 such that uf = Gs1dy+ (1— (1 —1;) L)z + g341; where 1, = 1 fort =1 and 1, =0

otherwise. Then, we can transform z; using a ¢ X ¢ nonsingular matrix GG such that

I, 0 0 0
-1/2 , —1/2
=5 >
z; = Gz where G = _i% Yo Sao _01/2 _1(/)2 )
Yz "Gl 0 Yox Yrx 934
0 0 0 1
and z = [21, 23] with 2%, = [d}, (Sea’?20)] and 25, = [(Sea’*u?)’,1,]'. This is also

expressed as ZG' = Z* = [Z{, Z3] in the matrix form. Then, we have

_ 1 1
Rir(0) = ‘T;lcz’wrlz(}’r;l fr;lc;z’zc;’r;l
= ‘ 1 IZG/ZH IZ*/Z*
T

where Y7 = diag{ Y17, Tor} with T17 = diag{1, T, ---, T?, T'/?I};} and Tor = diag{Iy, T~/?}
and 29 = \11951/22*. Note that the transpose of the ¢t-th row of AT expressed as
zf = ézf,l +(1—L)z; with zf_ = 2.

We partition 2! into 2%, and 2§, conformably with 2%, and z3,.
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Lemma A.1 For 0 <s <1, the following convergences hold jointly.

(1) Tirziry = Qs),
(@) Yipalry = Q).
Proof of Lemma A.1: (i) is obtained using the functional central limit theorem (FCLT).
(ii) From the definition of zft, We can express z?t as
_ P, by t—j—1
0 _ _x *
21 = Rt — T; (1 — T) le. (AQ)
See also the proof of Lemma 7 in Jansson (2004). Then, according to (i) and the continuous
mapping theorem (CMT), we have

s

T‘%zf[Ts] = Q(s)— A\ e Qdr

= [ g,
0

S—

where the last equality holds by the partial integration formula.O
From Lemma A.1 (ii) and the CMT we have

1

_ 1 - -
TT;%Z{”Z{’T;%: /0 Q*QVds. (A.3)

In exactly the same way as (A.2) zgt is expressed as

_ . 3 =l by t—j—1 .
th = 2T Z (1 - T) %2j
(A.4)

Then, according to the weak law of large numbers (WLLN) and Theorem 4.1 in Hansen
(1992b) we have

L 1 8 fme—

TTQ;‘ZQHIZ%TQ% — Ty, (A.5)
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where - signifies convergence in probability and

1 — —
TT;%Z?’Z;’T;; 0. (A.6)
Combining (A.3), (A.5), and (A.6) we obtain
1 - L HxON
711272007 = [ Jo QOQ ds IO 1 : (A.7)
k+1

In a similar manner we have T~1Y;'Z¥Z*Y ;! = diag{ [y Q(s)Q(s)'ds, I54+1}. We then

obtain (A.1).
Using (A.1), we can show that
R%T 2.1 and T (1 — R%T(é)) = —log + log

/0 " AQVds (A8)

because a*/T — 1 and T(1 — a"/T) — —loga for a given a > 0 as T — oo.

/0 L QQuds

Next, we investigate the asymptotic behavior of T'(1—Ra7(f)). To do this, we decompose

V¢ aS

t—1

o= ul+(1-0)> u
=1

A t
— gD y
= Oui + T Zuj
Jj=1
. *
= vy + Tot,
where vg, = Ouf™ + (A/T) X'y uf™ with uf™ = uf — 0.2 uf and re = 00y, X, uf +

(NT)oy X5} ;-:1 uf. Let vy and rp be the vectorized forms of vg, and rg;. Since

rg = {0U"+ (/)00 Sl o
= {0(95"*X - 9;'2Day ) + (A/T) (X = Day) | Solowy,

the conditional likelihood is independent of change in the direction of 7y, so that we can

replace y in the test statistic by vy. Then, we can observe that

* —1 —1 —1 -1 —1\, %
T<1_v9’(\11— B AV T A YA )v(,>

T (]‘ - RQT(G_)) = : v Mu*
0 0

Ro17(0) + Roor(6)
vy M /T ’
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where

Rour(®) = 2 (vj— 05" 05) vj — (v — 0703 (v — w5 05)
= 2 (v; - vg)/v; - (vb" - vg)/ (1)3 - vg)
and
Roor(0) = v’V Z(2'V; 2) 7 2" oy — op 2(2' 2) 71 21

1 1 5 o 5 g
— Z@fr 7T7120/Ze'r71 T*lzelvﬁ
VT ><T ! ! vT T
1 -1/
(gpzs) (privwaat)(gpre )

with vg = \Ifé_l/zvé‘. As the denominator in (A.9) is shown to converge to oyy., = 1 in
probability by the WLLN under the local alternative, we concentrate on the derivation of

the limiting distributions of Ro17(f) and Roer(6) in the following.

Lemma A.2 For (0 <s <1, the following convergences hold jointly.

L s
(4) \ﬁzvm = Vi(s),
(5]

(i1) \}Zvet = V),

(Y,ZZ) \/T (U;[TS] — U@[Ts}) = S\V)\:\(S)

Proof of Lemma A.2: (i) is obtained from the definition of vj,, the FCLT, and the CMT.

(ii) From the definition of UGt we have



Using (i), the CMT, and the partial integration formula, we obtain (ii).

(iii) From the definition of vgt we have

Vg — Uet = Z UG]
Then, (iii) is obtained using (ii).0

Using Lemma A.2, the CMT, and Theorem 4.1 in Hansen (1992b) we have

_ _ ol _ 1 -

Roir(f) = 2\ /0 VdVy, — A2 /O (V{)2ds. (A.10)
For Raor(f), we can see that
1 o 1 .
g = [ Qv (A1)
using Lemmas A.1, A.2, and Theorem 4.1 in Hansen (1992b), while
1 1/2 0
= Uy )Uat

ifr—lzél 0 _ VT t=1
JT o2 Vo = B )

T
Z?g

where u#? is the transpose of the t-th row of \Ilefl/ U”. In exactly the same way as (A.2) we

have .
- N =L by i—j-1
VY, = v — = > (1 - T) V3 (A.12)
7=1
Then, from (A.4) and (A.12) we can see that
L (517200, L N1/ /
L $-1/2,20\, 0 _ 125 4O (T2
\/T;( T t ) ot T; t P( )
= N(1), (A.13)

by the FCLT, where N(s) is a k dimensional standard Brownian motion that is independent
of W(s) and V(s).
On the other hand, using (A.4) we have
T ;7T 1\ =2
- )\ )\ _
198, = o) -2 1— = o
; t Vot Vg1 T z ( T) Vot

R (A.14)



Then, combining (A.7), (A.11), (A.13), and (A.14) we have

1 4.4 1 51 g i 3 g
(\/Tvglze'r;l> <TT;129/Z9T;1> (\/Tr%lzg/vg>

= ([ QMV?)l ([ QAQ*’ds>_1 ([ @)+ vy + it

In exactly the same way we have
1 */ rzxAn—1 1 —1 7%t rpkpn—1 -1 1 —1 7%/ %
ﬁve A TT TTT YA TT ﬁTT A Vg

- (/ 1 deA)/ (/ 1 QQ’ds>_1 (/ 1 QaVA ) + N1 +vif.

Then, we can see that
Rert) = ([ @) ([ @evas) ([ @ay)
([ ([ee) ([am). o

By combining (A.10) and (A.15), we have

T (1—-Ryp(6)) = 2)\/01 VXAV, — N2 /{)1(V)\5‘)2ds
() @) ([ @) ([ @)
. ( /0 ' deA>/ ( /0 ' QQ’ds)l ( /0 ' QdV,\> . (A.16)

The required distribution is obtained from (A.8) and (A.16).0

Proof of Corollary 1

We first derive the LBIU test statistic (6). Note that

d¥y 1/24 3,1/2 1/2 1/2
= U= w1 )
d*V .
S = 20— (I — B = 230 — iriy),
where ip = [1,---,1] is a T' x 1 vector and we used the relation Iz — \11(1)/2 - \I/é/w = —ipinm.
Then, as U\/* = Iy, H'H = Ir_,, and H'ip = 0, we have
d(H'UyH)

= H'(Ip —irip)H = Ip—, (A.17)
do 9—1
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d*(H'VyH)

g = 2H'UoH. (A.18)

0=1

From (A.17) and the standard matrix differential calculus we can show that

dlog f(n| X;0) , d(H'" Vo H) }
0=1

a9 ot a0
7o H G H) T R )
i o (0 H) A
For the second derivative, note that
d?log |H'VyH|
T i)
=1
= —(T—q)+2tr {M¥y}
= (TP +q) -2 {(22)712'0y2}, (A.20)
which is obtained using (A.17), (A.18), and HH' = M, and
d?log{n'(H'VyH) 1n
=1
/
- 1- QM. (A.21)
y' My
Then, from (A.20) and (A.21) we have
d*log f(n|X; 0) y' MPoMy I
=const+ ———— +tr (L' Z2) " Z'VyZ },
dg? o1 y'My/(T — q) {72 o)

so that we obtain (6).

Next, we derive the limiting distribution of the LBIU test statistic. For the same reason

as in the proof of Theorem 1 we can replace y in the test statistic by v; and then we

have \111/2 My 1/2,Mv9 Noting that ¥, el = ipilp — U, 2 Shere v, Y245 a T x T lower
triangular matrix with diagonal elements 0 and the other lower elements 1, we have
1/21 ., =12 X
—\If My = —(ipip — V" )Mvy
_ L g g2y (g gy
= —ﬁ{‘lfo vi =032 (2'2)7 Z'v;
1 _1/2 * 1_1/2 * —1(1 —1 7%l 7% —1>_1 1 —1 7%/ %
= —q—=V"vy — =V, 27T =X 27T — Y Z vy
{ 70 YT o T \pT T JT T 9
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where the second equality holds because .M = 0. As the ¢-th rows of \If(l)/ 211; and \Ifé/ 2 7
are Z;;ll v;j and Z;;ll zf!, we have, using Lemmas A.1, A.2, the FCLT, and the CMT,

Z%‘fjj‘g@_/g - [ 1{%(8) - [faur ([ eqar)

Similarly, we can also see that

-1

1 2
/0 QdVA} ds.  (A.22)

1 1 .
ﬁtr {(Z/Z)_I(Z/\I’OZ)} =1tr { <TTT12*/Z*TT1> <z-,3Tle*/\I’Oz*YTl> } .

Noting that the transpose of the t-th row of \11[1)/ AR given by ZJT:t z;, we have, from

Lemma A.1 and the CMT,
/01 (/81 er) </Sl Q'dr) ds} . (A.23)

%tr {(Z’Z)—I(Z’\IJOZ)} = tr { (/01 QQ%)

From (A.22) and (A.23) we obtain the result.O

-1

Proof of Theorem 2

The proof proceeds in the same way as the proof of theorem 1 and the proof of Theorem 2
in Jansson (2005); therefore we provide only an outline. First, note that we can obtain the
same results in Lemma A.1 by replacing o /% in G with Qe /2 We can also see that, as in

the proof of Theorem 1, y; in the test statistics can be replaced by vg, where under general

assumptions uf ¥ is defined as u” = uf — w,, O lu¥, so that the limiting distributions in
1/2

Lemma A.2 should be multiplied by wikl . Then, applying Lemma 1 in Sims, Stock, and

Watson (1990) and Lemma 7 in Jansson (2004), we can see that
_ _ 1. _
2(vp — v9) v = 22wh / VAV + 277,
0
and then
_ o o B
Ror(8) = why <2>\ / Vv, — 32 / (V;)st) +2hn.
0 0
Similarly, we can see that
1
VT
1
VT

By combining these results we obtain the theorem.O

o 1.
—1 7401, 0 *1/2 X T/
TirZ7vg = wpy /0 Q" dVy

—1 skt % *1/2 1
TirZi vy = wyy /OQdVA~
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