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Abstract. We consider nonparametric estimation of marginal density func-

tions of linear processes by using kernel density estimators. We assume that the

innovation processes are i.i.d. and have infinite-variance. We present the asymp-

totic distributions of the kernel density estimators with the order of bandwidths

fixed as h = cn−1/5, where n is the sample size. The asymptotic distributions

depend on both the coefficients of linear processes and the tail behavior of the

innovations. In some cases, the kernel estimators have the same asymptotic dis-

tributions as for i.i.d. observations. In other cases, the normalized kernel density

estimators converge in distribution to stable distributions. A simulation study

is also carried out to examine small sample properties.
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attraction, stable distribution, noncentral limit theorem, martingale central limit
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1. Introduction

Let {Xi}∞i=1 be a linear process defined by

Xi =
∞∑

j=0

bjεi−j, i = 1, 2, . . . ,(1.1)

where {εi}∞i=−∞ is an i.i.d. process, b0 = 1, and bj ∼ c0j
−β, j = 1, 2, . . ., and c0 is a

positive constant. aj ∼ a′j means that aj/a
′
j → 1 as j → ∞. The marginal density

function of {Xi}∞i=1 is denoted by f(x). We will specify the conditions on {εi} and β later

in this section.

In this paper we estimate the marginal density function f(x) by kernel density estima-

tors and present the asymptotic properties when ε1 has infinite variance. The asymptotic

distributions depend on both the tail behavior of ε1 and β.

A lot of authors have examined the asymptotic properties of kernel density estimators

of marginal density functions of dependent observations. Most of them considered density

estimation for mixing processes by imposing assumptions on joint density functions and

the order of mixing coefficients until about the early 1990’s. See Fan and Yao (2003) for

a review of the results for strongly mixing processes. However, it is difficult to ensure

that the order of mixing coefficients satisfies the assumptions unless the coefficients bj

decay sufficiently fast. See Doukhan (1994) for sufficient conditions for linear processes to

be strongly mixing. Therefore attention has been focused on the asymptotic properties

of kernel density estimators for subordinated Gaussian processes {G(Xi)}, where {Xi}

is a stationary Gaussian process, and linear processes, especially subordinated Gaussian

processes and linear processes with long memory since the late 1980’s or the early 1990’s.

Note that Hall and Hart (1990) pointed out that the asymptotic properties depend on

the degree of long memory when we estimate the marginal density functions of linear
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processes with long memory. This is true of subordinated Gaussian processes with long

memory.

As for subordinated Gaussian processes with long memory, there are, for example,

Cheng and Robinson (1991), Csörgő and Mielniczuk (1995), and Ho (1996). See also the

references therein. They examined the asymptotic properties of kernel density estima-

tors by exploiting Hermite expansions. Ho (1996) proved that kernel density estimators

behave asymptotically in the same way as for i.i.d. observations when the degree of long

memory does not exceed a level, or we can say when the degree of long memory is weak.

He proved it by evaluating the moments

Hidalgo (1997) studied the asymptotic properties of kernel density estimators for

linear processes by appealing to Appell expansions. However, very restrictive conditions

are necessary to verify the validity of Appell expansions and the paper does not mention

those conditions at all. See section 6 of Giraitis and Surgailis (1986) for the conditions.

Theoretical studies for linear processes with long memory have developed since the

seminal papers of Ho and Hsing, Ho and Hsing (1996, 1997). They applied the martingale

decomposition method to examine the properties of subordinated linear processes with

long memory. See Koul and Surgailis (2002) for Hermite expansions and the martingale

approach of Ho and Hsing (1996,1997).

Recently several authors considered the asymptotic properties of kernel density esti-

mators for linear processes with short memory or long memory by using the martingale

approach initiated by Ho and Hsing (1996, 1997), for example, Honda (2000), Wu and

Mielniczuk (2002), Schick and Wefelmeyer (2004), and Bryk and Mielniczuk (2005). See

also the references therein. Especially Wu and Mielniczuk (2002) fully examined the

asymptotic properties of kernel density estimators for linear processes. However, all of
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them assumed ε1 has finite variance and that the distribution of ε1 satisfies some restric-

tive assumptions, for example, the existence of the bounded and Lipschitz continuous

density function. Under those conditions, Wu and Mielniczuk (2002) proved that kernel

density estimators behave asymptotically in the same way as for i.i.d. observations in the

cases of short memory and weak long memory and that kernel density estimators behave

asymptotically in the same way as the sample means when the degree of long memory

exceeds a level. It is well known that standardized sample means of linear processes with

long memory converge in distribution to the standard normal distribution when ε1 has

finite variance. The standardization is different from that for linear processes with short

memory. See Theorem 5.2.3 of Taniguchi and Kakizawa (2000). Note that Hallin and

Tran (1996) considered kernel density estimation for linear processes with short memory

by appealing to truncation arguments. They assumed that ε1 has finite variance and

β > 4.

From a theoretical point of view, the marginal density function of {Xi}, f(x), exists

without finite variance or the bounded density function of ε1. It is strange that theoretical

studies of kernel density estimators are limited to the cases where ε1 has finite variance

and the bounded density function. Besides recently a lot of attention is paid to heavy

tailed time series data. Therefore it is important to investigate the asymptotic properties

of kernel density estimators in the cases where ε1 does not have finite variance.

We examine kernel density estimators in the cases where ε1 does not have finite vari-

ance by exploiting the results of Hsing (1999), Koul and Surgailis (2001), Surgailis (2002),

and Pipiras and Taqqu (2003). We treat the asymptotic properties in a comprehensive

way. We briefly mention the results of the above papers later in this section. In addition

C2 below also allows unbounded or discontinuous density functions of ε1. When ε1 does
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not have finite variance, the asymptotic distributions depend on both the tail behavior

of ε1 and β. When the effect of the heavy tail of ε1 and dependence among observations

does not appear, the asymptotic distributions are the same as for i.i.d. observations.

When the effect of the heavy tail of ε1 and dependence among observations appears, the

asymptotic distributions are stable distributions. Hereafter we shall call the effect that of

α and β. In order to see the differences between asymptotic properties and small sample

properties, we carried out a simulation study and the result is given in section 3.

We describe the conditions on {εi}. We suppose that 0 < α < 2 in this paper and

G(x) denotes the distribution function of ε1.

C1: limx→−∞ |x|αG(x) = limx→∞ xα(1−G(x)) = c1 > 0. E{ε1} = 0 when 1 < α < 2.

C2: Letting φ(θ) denote the characteristic function of ε1, we have |φ(θ)| < C(1 + |θ|)−δ

for some positive δ.

C stands for generic positive constants whose values change from place to place and are

independent of the sample size n.

C1 implies

E{|ε1|r} < ∞, 0 < r < α, and E{|ε1|r} = ∞, r ≥ α,(1.2)

and that the distribution of ε1 belongs to the domain of attraction of a symmetric α-

stable distribution. The characteristic function of the α-stable distribution Sα(σ, η, µ)

has the form of




exp{−σα|θ|α(1− iη sign(θ) tan(πα/2)) + iµθ} , α 6= 1

exp{−σ|θ|(1 + 2iη sign(θ) log |θ|/π) + iµθ} , α = 1

,(1.3)

where i stands for the imaginary unit. It is called symmetric if η = µ = 0. See Samorod-

nitsky and Taqqu (1994) for more details about stable distributions. C2 is necessary for
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the existence and regularity conditions of both f(x) and joint density functions of some

random variables. See P1-3 in section 2.

We fix x0 and estimate f(x0) by the kernel density estimator f̂(x0) defined below.

f̂(x0) =
1

nh

n∑

i=1

K
(Xi − x0

h

)
,(1.4)

where h is a bandwidth and K(u) is a kernel function. We take h = c2n
−1/5 for some

positive c2 because of simplicity of presentation and partly because this is the optimal

order when f(x) is twice differentiable at x0 and the effect of α and β does not appear.

An exposition of the effect of bandwidths is given in section 2. We assume that K(u) is

a symmetric bounded density function with compact support.

We examine the asymptotic properties of f̂(x0) − E{f̂(x0)} in the following three

cases.

Case 1: 1 < α < 2 and 1/α < β < 1

Case 2: 1 < α < 2 and 1 < β < 2/α

Case 3: 0 < α < 2 and 2/α < β

When 1 < α < 2, we have by the von Bahr and Esseen inequality that

E{|X1|r} ≤ C
∞∑

j=1

j−βr < ∞

for any r such that βr > 1 and 1 < r < α. Note that X1 has infinite variance. X1 is well

defined in Case 3, too. See the proof of Theorem 2.2 of Pipiras and Taqqu (2003). Some

authors say that {Xi} has long memory in Case 1.

Koul and Surgailis (2001) deals with Case 1 and the weak convergence of empirical

distribution functions is proved. The asymptotics of M-estimators of linear regression

models are also examined there. Surgailis (2002) deals with Case 2. The asymptotic

properties of empirical distribution functions of Xi and partial sums of H(Xi), where
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H(x) is any bounded function, are given there. Hsing (1999) and Pipiras and Taqqu

(2003) examined the asymptotic properties of partial sums of H(Xi), where H(x) is any

bounded function, in Case 3. Those papers are crucial to our results and those papers

are also based on the martingale decomposition method of Ho and Hsing (1996, 1997).

We have to obtain necessary theoretical results to deal with the cases of infinite variance

other than Cases 1-3 above. It is a subject of future research. Peng and Yao (2004)

applied Hsing (1999), Koul and Surgailis (2001), and Surgailis (2002) to nonparametric

estimation of trend functions, i.e. nonparametric regression with fixed design. There is a

close similarity between nonparametric regression with random design and kernel density

estimation. However, nonparametric estimation of trend functions and kernel density

estimation are different problems.

In Case 1, the effect of the heavy tail of ε1 and the dependence among observations,

which we call that of α and β, appears when β < 1/α + 2/5. In Case 2 when αβ <

5/3. However, we see no effect of α and β in Case 3. We repeat that the asymptotic

distributions are the same as for i.i.d. observations when the effect of α and β does not

appear. In Peng and Yao (2004), the effect of α and β always appears.

The paper is organized as follows. In section 2, we decompose f̂(x0)−E{f̂(x0)} into

two components and give a heuristic argument of the asymptotic asymptotic properties

of f̂(x0)− E{f̂(x0)}. Then the main theorems of this paper are presented. We state the

result of a simulation study in section 3. The main theorems are proved in section 4.

The proofs of technical lemmas are confined to section 5.
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2. The asymptotic distributions

We state the main results of this paper in Theorems 2.1-3. First we give definitions

and notations. Then necessary properties of density functions are described. We present

the asymptotic distributions of kernel density estimatiors after a heuristic argument. The

proofs of the theorems are deferred to section 4.

Let
d→ and

p→ stand for convergence in distribution and convergence in probability,

respectively. We omit n →∞ and a.s. for brevity.

We rewrite Xi as

Xi = Xi,j + X̃i,j,(2.1)

where

Xi,j =
j−1∑

l=0

blεi−l and X̃i,j =
∞∑

l=j

blεi−l.

We denote the distribution functions of Xi,j and X̃i,j by Fj(x) and F̃j(x), respectively.

C2 and Lemma 1 of Giraitis et al. (1996) imply the existence of the density functions

and we denote them by fj(x) and f̃j(x), respectively.

We state necessary properties of density functions, which can be verified by using C1

and C2. P1 and P2 are derived by following the proof of Lemmas 1-2 of Giraitis et al.

(1996). P3 is part of Lemma 4.2 of Koul and Surgailis (2001).

There exists a positive integer s1 for which P1, P2, and P3 hold.

P1: fs(x) is twice continuously differentiable and fs(x) and all the derivatives up to the

second order are uniformly bounded for s ≥ s1. Note that we can take s = ∞.

P2: (X1,s1 , Xi,s1+i−1) has the bounded joint density function for any i ≥ 2.

P3: When 1 < α < 2, 1 < r < α, and rβ > 1, there exists a constant C such that

|f ′(x)− f ′s(x)| ≤ C|s|1/r−β for any s ≥ s1. Note that C depends on α, β, and r.
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When we use P3 in the proofs of Lemmas 4.2 and 4.4, r is specified and satisfies the

conditions in P3.

Before we state Theorems 2.1-3, we give a heuristic argument of the asymptotics of

f̂(x0). We need to decompose f̂(x0)− E{f̂(x0)} into two components for the argument.

Let be s2 a large positive integer and put s0 = s1 + s2. We will be more specific about s2

in the proofs of Theorems 2.1-3. We write Si for the σ-field generated by {εj | j ≤ i}.

f̂(x0)− E{f̂(x0)} = Sa + Sb,(2.2)

where

Sa =
1

nh

n∑

i=1

[
K

(Xi − x0

h

)
− E

{
K

(Xi − x0

h

)∣∣∣Si−s0

}]
(2.3)

=
1

n

n∑

i=1

[1

h
K

(Xi − x0

h

)
−

∫
K(ξ)fs0(x0 + ξh− X̃i,s0)dξ

]

Sb =
1

nh

n∑

i=1

[
E

{
K

(Xi − x0

h

)∣∣∣Si−s0

}
− E

{
K

(Xi − x0

h

)}]
(2.4)

=
1

n

n∑

i=1

[ ∫
K(ξ)fs0(x0 + ξh− X̃i,s0)dξ − 1

h
E

{
K

(Xi − x0

h

)}]
.

The domain of integration is (−∞,∞) when it is omitted. Remember that Xi,j =

∑j−1
l=0 blεi−l and that fj(x) is the density function of Xi,j. Similar expressions can be

found in (3)-(5) of Wu and Mielniczuk (2002). In Wu and Mielniczuk (2002) and Bryk

and Mielniczuk (2005), s0 = 1 and the Lipschitz continuous density function of ε1 is as-

sumed. They applied the martingale central limit theorem to Sa. A technique is devised

to avoid such assumptions on ε1 in this paper.

The asymptotic properties of Sa are examined in Lemma 4.1 below. We investigate

the asymptotic properties of Sb in section 4 by using the results of Hsing (1999), Koul

and Surgailis (2001), Surgailis (2002), and Pipiras and Taqqu (2003). The asymptotic

distribution of (2.2) depends on which of Sa and Sb is stochastically larger.
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We put h = c2n
−γ(γ > 0) only in this heuristic argument. In either case, we have

Sa = Op((nh)−1/2) and E{f̂(x0)} − f(x0) ∼ h2

2
f ′′(x0)ν,(2.5)

where ν =
∫

u2K(u)du. The asymptotic properties of Sb are independent of h and depend

only on α and β. In addition we have

Sb = Op(n
1/α−β) in Case 1, Sb = Op(n

−1+1/(αβ)) in Case 2, Sb = Op(n
−1/2) in Case 3.

The stochastic order is exact in all the above expressions. Then (2.5) and a simple

calculation imply that we cannot improve the rate of convergence of f̂(x0) by choosing

γ other than 1/5. If there are three parameters, α, β, and γ, things may be complicated

and we present the theorems with γ = 1/5 to avoid possible complications.

When Sb is stochastically larger in Sa, the effect of α and β appears in the asymptotic

properties of f̂(x0). Since the asymptotic properties of Sb are independent of h and

depend only on α and β, we have no optimal bandwidth and we can choose larger

bandwidths without affecting the asymptotic properties of f̂(x0).

When Sa and Sb have the same stochastic order, we can say that the effect of α and

β still appears. However, we have no result on the joint distribution of Sa and Sb and we

do not refer to this case in this paper.

When E{|ε1|2+δ} < ∞ for some positive δ and h = c2n
−1/5, the effect of dependence

among observations does not appear in the case of β > 9/10 in contrast to Case 2 below.

Here we state the main results of this paper.

Case 1: When β is smaller than 1 ∧ (1/α + 2/5), the effect of α and β appears in the

asymptotic properties. When α is smaller than 5/3, the effect of long memory always

appears.

Theorem 2.1. Suppose that C1 and C2 hold and that 1 < α < 2 and 1/α < β < 1.
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Then we have

1/α− β < −2/5:
√

nh(f̂(x0)− E{f̂(x0)}) d→ N(0, κf(x0)),

1/α− β > −2/5: nβ−1/α(f̂(x0)− E{f̂(x0)}) d→ −f ′(x0)cAZ,

where κ =
∫

K2(u)du,

cA = c0

(
2c1

Γ(2− α) cos(απ/2)

1− α

∫ 1

−∞

∫ 1

0
(t− s)−β

+ dtds
)1/α

,

x+ = x∨ 0, and Z is a random variable whose distribution is Sα(1, 0, 0). The asymptotic

joint distributions of the kernel density estimators at different points are independent in

case of 1/α− β < −2/5 and degenerate in case of 1/α− β > −2/5, respectively.

Case 2: When 1 < β < 5/(3α), the effect of α and β appears in the asymptotic

properties. When α is larger than 5/3, the effect does not appear.

Theorem 2.2. Suppose that C1 and C2 hold and that 1 < α < 2 and 1 < β < 2/α.

Then we have

1/(αβ) < 3/5:
√

nh(f̂(x0)− E{f̂(x0)}) d→ N(0, κf(x0)),

1/(αβ) > 3/5: n1−1/(αβ)(f̂(x0) − E{f̂(x0)}) d→ (c1c
α
0/(σαββαβ))1/(αβ)(c+

f L+ + c−f L−),

where L+ and L− are mutually independent random variables whose distributions are

Sαβ(1, 1, 0),

c+
f =

∫ ∞

0
(f(x0 − t)− f(x0))t

−1−1/βdt,

c−f =
∫ ∞

0
(f(x0 + t)− f(x0))t

−1−1/βdt,

σαβ = Γ(2− αβ)| cos(παβ/2)|/(αβ − 1).

The asymptotic joint distributions of the kernel density estimators at different points are

independent in case of 1/(αβ) < 3/5 and degenerate in case of 1/(αβ) > 3/5, respectively.
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Case 3: In this case, we see no effect of α and β in the asymptotic properties.

Theorem 2.3. Suppose that C1 and C2 hold and that 0 < α < 2 and 2/α < β.

Then we have

√
nh(f̂(x0)− E{f̂(x0)}) d→ N(0, κf(x0)).

The asymptotic joint distributions of the kernel density estimators at different points are

independent.

When the effect of α and β does not appear, we can define the asymptotically optimal

bandwidth in the same way as for i.i.d. observations.

By combining Theorems 2.1-2, we know the effect of α and β appears in the following

cases.

•1 < α < 5/3

1/α < β < 1 in Case 1 and 1 < β < 5/(3α) in Case 2

•5/3 < α < 2

1/α < β < 1/α + 2/5 in Case 1

Then we can only say that larger bandwidths will improve small sample properties and

it will be difficult to conduct statistical inference. The same problem happens for lin-

ear processes with long memory, too. However, it is important to know the statistical

properties of such often used estimators as kernel density estimators.

3. Simulation study

We carried out a simulation study to examine the small sample properties. The result

is presented in Tables 1-3 below. In this simulation study ε1 follows a standard symmetric

α-stable distribution, Sα(1, 0, 0). We estimate f(x0) by using the Epanechnikov kernel.
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We took

α = 1.2, 1.5, 1.8, β = 0.9, 1.3, 1.7, 2.1, ∞,

bj =





c0(j + 1)−β, 0 ≤ j ≤ 999

0, 1000 ≤ j

.

We mean i.i.d. observations by β = ∞ and c0 is chosen so that X1 also follows Sα(1, 0, 0).

We tried h = 0.2, 0.3, 0.4 to see the effect of bandwidths.

We conducted the simulation study by using R2.3.1 and the fBasics package. The

sample size is 200 and each entry of Tables 1-3 are based on 2,000 repetitions. In Tables

1-3, mean, var, and mse stand for the sample means, the sample variances, and the

sample mean squared errors of the repetitions, respectively. The values of β are on the

left margins of the Tables 1-3. The true values of f(x0) are as follows:

α = 1.2 : f(0.0) = 0.2994, f(0.75) = 0.2130, f(1.5) = 0.1097.

α = 1.5 : f(0.0) = 0.2874, f(0.75) = 0.2264, f(1.5) = 0.1287.

α = 1.8 : f(0.0) = 0.2831, f(0.75) = 0.2381, f(1.5) = 0.1478.

Tables 1-3 are around here.

Theorem 2.1 tells that the effect of α and β appears in the asymptotic properties

in the cases of (α, β) = (1.2, 0.9), (1.5, 0.9), (1.8, 0.9). Theorem 2.2 tells that the effect

appears in the asymptotic properties in the case of (α, β) = (1.2, 1.3).

We obtained the following implications from Tables 1-3.

(i) The variance is more serious than the bias in each pair of (α, β). Thus larger

bandwidths will be better.
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(ii) The effect of α and β is seen in the cases of (α, β) = (1.2, 0.9), (1.2, 1.3), (1.5, 0.9),

(1.8, 0.9). This is conformable with Theorems 2.1-2. Especially the effect is remark-

able in the case of (α, β) = (1.2, 0.9). Even when the effect is seen, larger bandwidths

seem to perform better contrary to Theorems 2.1-2.

(iii) The effect of α and β rapidly disappears as β becomes larger.

4. Proofs of theorems

We prove Theorems 2.1-3 in this section. The proofs of all the lemmas are postponed

to section 5.

We begin with Lemma 4.1 which deals with Sa in (2.2) and (2.3). We reproduce Sa

here for reference.

Sa =
1

nh

n∑

i=1

[
K

(Xi − x0

h

)
− E

{
K

(Xi − x0

h

)∣∣∣Si−s0

}]

=
1

n

n∑

i=1

[1

h
K

(Xi − x0

h

)
−

∫
K(ξ)fs0(x0 + ξh− X̃i,s0)dξ

]

Remember s0 = s1 + s2 and that s1 is fixed in P1-3. In the proofs of the theorems,

we take a large s2 and temporarily fix it. Then we let n tend to ∞. Thus we can take

n = ks0 for simplicity of presentation without affecting the asymptotic properties. Since

the summands in Sa do not form martingale differences, we cannot apply the martingale

central limit theorem directly and we need Lemma 4.1.

We further decompose Sa into four components.

Sa =
k∑

l=1

N1l +
k∑

l=1

N2l +
k∑

l=1

N3l +
k∑

l=1

N4l,(4.1)

where

N1l =
1

nh

s1+(l−1)s0∑

i=1+(l−1)s0

[
K

(Xi − x0

h

)
− E

{
K

(Xi − x0

h

)∣∣∣S1+(l−1)s0−s1

}]
,(4.2)
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N2l =
1

nh

s1+(l−1)s0∑

i=1+(l−1)s0

[
E

{
K

(Xi − x0

h

)
|S1+(l−1)s0−s1

}
− E

{
K

(Xi − x0

h

)∣∣∣Si−s0

}]
,(4.3)

N3l =
1

nh

ls0∑

i=s1+1+(l−1)s0

[
K

(Xi − x0

h

)
− E

{
K

(Xi − x0

h

)∣∣∣S1+(l−1)s0

}]
,(4.4)

N4l =
1

nh

ls0∑

i=s1+1+(l−1)s0

[
E

{
K

(Xi − x0

h

)
|S1+(l−1)s0

}
− E

{
K

(Xi − x0

h

)∣∣∣Si−s0

}]
.(4.5)

N1l, N2l, N3l, and N4l are Ss1+(l−1)s0-, S1+(l−1)s0-, S1+ls0-, and S1−s2+ls0 -measurable,

respectively. In addition,

E{N1l|Ss1+(l−2)s0} = E{N2l|S1+(l−2)s0}(4.6)

= E{N3l|S1+(l−1)s0} = E{N4l|S1−s2+(l−1)s0} = 0.

Lemma 4.1. Suppose that C1 and C2 hold. Then we have

Var
( k∑

l=1

N2l

)
= O

( 1

n

)
, Var

( k∑

l=1

N4l

)
= O

( 1

n

)
,(4.7)

√
nh

k∑

l=1

N1l
d→ N

(
0,

s1

s0

κf(x0)
)
,

√
nh

k∑

l=1

N3l
d→ N

(
0,

s2

s0

κf(x0)
)
.(4.8)

Remark 1. Take an arbitrary positive integer m. Then the proof of Lemma 4.1 in

section 5 and standard arguments imply that
√

nh
∑k

l=1 N3l for x01, . . . , x0m are asymp-

totically mutually independent if x0k 6= x0l(k 6= l).

We go on to the proofs of Theorems 2.1-3. We investigate the asymptotic properties

of Sb in (2.4) for Cases 1-3 in Propositions 4.1-3, respectively. Then by combining Lemma

4.1 and Propositions 4.1-3, we derive the asymptotic distributions of f̂(x0)− E{f̂(x0)}.

Case 1: The proof of Proposition 4.1 below is based on the arguments in Koul and

Surgailis (2001). Especially the proof of Lemma 4.2 is a modified and simplified argument

of those of Koul and Surgailis (2001).
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Proposition 4.1. Suppose that C1 and C2 hold and that 1 < α < 2 and 1/α <

β < 1. Then we have

nβ−1/αSb
d→ −f ′(x0)cAZ.

Remark 2. The proof of Proposition 4.1 after that of Theorem 2.1 implies that Z

in Proposition 4.1 comes from the sample mean of X1, . . . , Xn. Therefore two nβ−1/αSb

for any pair of (x01, x02) are asymptotically degenerate.

We prove Theorem 2.1.

Proof of Theorem 2.1. First let 1/α−β+2/5 be smaller than 0. Then Proposition

4.1 implies that
√

nhSb = op(1). By taking a sufficiently large s2 in Lemma 4.1, we

can make s2/s0 and s1/s0 arbitrarily close to 1 and 0, respectively. These yield the

convergence in distribution of

√
nh(f̂(x0)− E{f̂(x0)}) d→ N(0, κf(x0)).

Next let 1/α− β + 2/5 be larger than 0. By Lemma 4.1, we have nβ−1/αSa = op(1).

Thus the convergence in distribution of the latter follows from Proposition 4.1. Hence

the proof of the theorem is complete.

Proof of Proposition 4.1. We adopt the notations of Koul and Surgailis (2001)

and prove the proposition by following the arguments there.

Provided that

nβ−1/α
(
Sb +

1

n

∫
K(ξ)f ′(x0 + ξh)dξ

n−s0∑

j=−∞

n∑

i=1∨(j+s0)

bi−jεj

)
= op(1),(4.9)

Proposition 4.1 follows from (1.9) of Koul and Surgailis (2001),

nβ−1/α−1
n∑

i=1

∞∑

j=s0

bjεi−j
d→ cAZ.
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We establish (4.9). As in Koul and Surgailis (2001), we represent Sb as

Sb =
1

nh

n∑

i=1

∞∑

j=s0

(E{Ki|Si−j} − E{Ki|Si−j−1})(4.10)

=
1

nh

n−s0∑

j=−∞

n∑

i=1∨(j+s0)

(E{Ki|Sj} − E{Ki|Sj−1}).

Then left hand side of (4.9) is rewritten as

∫
K(ξ)[nβ−1/α−1

n−s0∑

j=−∞

n∑

i=1∨(j+s0)

Ui,i−j(ξ)]dξ,(4.11)

where

Ui,j(ξ) = fj(x0 + ξh− bjεi−j − X̃i,j+1)(4.12)

−
∫

fj(x0 + ξh− bju− X̃i,j+1)dG(u) + f ′(x0 + ξh)bjεi−j.

We define Rn(ξ) by

Rn(ξ) = nβ−1/α−1
n−s0∑

j=−∞

n∑

i=1∨(j+s0)

Ui,i−j(ξ),(4.13)

then by Jensen’s inequality, we obtain for any r ≥ 1,

E
{∣∣∣

∫
K(ξ)Rn(ξ)dξ

∣∣∣
r} ≤

∫
K(ξ)E{|Rn(ξ)|r}dξ.(4.14)

We evaluate E{|Rn(ξ)|r} in Lemma 4.2 below.

Lemma 4.2. For any positive M and r such that 1 < r = α/(1 + η) and 0 < η <

(αβ − 1)/2, we have

lim
n→∞ sup

|ξ|<M
E{|Rn(ξ)|r} = 0.

(4.9) follows from (4.11), (4.13), (4.14), and Lemma 4.2. Hence the proof of the

proposition is complete.

Case 2: Theorem 2.2 follows from Lemma 4.1 and Proposition 4.2 below. The proof

of Proposition 4.2 below is based on the arguments in Surgailis (2002). We adopt the

17



notations. Especially the proof of Lemma 4.4 is a modified and simplified argument of

those in Surgailis (2002). We adopt the notations.

Proposition 4.2. Suppose that C1 and C2 hold and that 1 < α < 2 and 1 < β <

2/α. Then we have

n1−1/(αβ)Sb
d→

( c1c
α
0

σαββαβ

)1/(αβ)
(c+

f L+ + c−f L−).

Remark 3. The proof of Lemma 3.1 of Surgailis (2002) implies that L+ and L−

come from

n−1/(αβ) ∑n
i=1((εi ∨ 0)1/β − E{(εi ∨ 0)1/β}) and

n−1/(αβ) ∑n
i=1(|εi ∧ 0|1/β − E{|εi ∧ 0|1/β}),

respectively. As in Theorem 2.1 of Surgailis (2002), L+ and L− are common to every

x0. It also follows from the proof of Lemma 3.1 of Surgailis (2002) that the result of

Proposition 4.2 does not depend on s0.

The proof of Proposition 4.2 is given after Theorem 2.2 is proved.

Proof of Theorem 2.2. First let 1/(αβ) be smaller than 3/5. Then Proposition

4.2 implies that
√

nhSb = op(1). By taking a sufficiently large s2 in Lemma 4.1, we

can make s2/s0 and s1/s0 arbitrarily close to 1 and 0, respectively. These yield the

convergence in distribution of

√
nh(f̂(x0)− E{f̂(x0)}) d→ N(0, κf(x0)).

Next let 1/(αβ) be larger than 3/5. By Lemma 4.1, we have n1−1/(αβ)Sa = op(1).

Thus the convergence in distribution of the latter follows from Proposition 4.2. Hence

the proof of the theorem is complete.
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Proof of Proposition 4.2. We begin the proof with several definitions.

Hn,∞(t) =
∫

K(ξ)(f(x0 + ξh− t)− f(x0 + ξh))dξ,

Tn =
n∑

i=1

∞∑

j=s0

(Hn,∞(bjεi)− E{Hn,∞(bjεi)}),

Tn =
n∑

i=1

∞∑

j=s0

(Hn,∞(bjεi−j)− E{Hn,∞(bjεi−j)}).

We prove the following two lemmas in section 5. The argument in p.265 of Surgailis

(2002), which corresponds to Lemma 4.3 here and deals with a kind of uniformity, is

rather difficult to understand. If another approach based on Lemma 4.3 is possible, the

argument in Surgailis (2002) may become easier to understand.

Lemma 4.3.

Tn − Tn = op(n
1/(αβ)).

Lemma 4.4.

nSb − Tn = op(n
1/(αβ)).

We consider Tn since Lemmas 4.3-4 imply that nSb = Tn + op(n
1/(αβ)). By the Taylor

series expansion,

Hn,∞(bjεi) = f(x0 − bjεi)− f(x0)(4.15)

+h2
∫

K(ξ)(
∫ ξ

0
(ξ − η)(f ′′(x0 + ηh− bjεi)− f ′′(x0 + ηh))dη)dξ

= f(x0 − bjεi)− f(x0) + h2H̄n,∞(bjεi),

where H̄n,∞(u) is clearly defined.

H̄n,∞(u) is a continuously differentiable bounded function and the derivative is also

bounded. In addition,

lim
n→∞ H̄n,∞(u) =

1

2

∫
ξ2K(ξ)dξ(f ′′(x0 − u)− f ′′(x0)).
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By applying the arguments in Lemma 3.1 of Surgailis (2002) to H̄n,∞(u), we can show

that for any r < αβ,

E{|
∞∑

j=s0

H̄n,∞(bjεi)|r} < Cr,

where Cr depends on r. This means that h2H̄n,∞(bjεi) in (4.15) is negligible in n−1/(αβ)Tn

and the result of Proposition 4.2 follows from Lemma 3.1 of Surgailis (2002). Hence the

proof of Proposition 4.2 is complete.

Case 3: The proof of Proposition 4.3 below is a modified and simplified argument of part

of the arguments in Hsing (1999) and Pipiras and Taqqu (2003). We adopt the notations

of the papers. Since Sb = Op(n
−1/2) from Proposition 4.3 below and we can treat Sa in

the same way as in Theorems 2.1-2, it is easy to prove the result of Theorem 2.3. We

omit the proof of Theorem 2.3.

Proposition 4.3. Suppose that C1 and C2 hold and that 0 < α < 2 and 2/α < β.

Then we have

n1/2Sb = Op(1).

Proof. What we have to prove is

nE{S2
b } = O(1).(4.16)

Let ε be a random variable which is distributed as ε1 and independent of {εj}∞j=−∞.

Then we have

P(|bjεi − bjε| ≥ 1) ≤ C|bj|α and E{|bjεi − bjε|2I(|bjεi − bjε| < 1)} ≤ C|bj|α.(4.17)

See (3.35) and (3.36) of Pipiras and Taqqu (2003) about (4.17).

Sb is written as

Sb =
1

n

n∑

i=1

Hn(X̃i,s0),(4.18)
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where

Hn(ζ) =
∫

K(ξ)(fs0(x0 + ξh− ζ)− E{f(x0 + ξh−X1)})dξ.

As in the proofs of Propositions 4.1-2, we define Ui,j(ξ). In Case 3, it is defined by

Ui,j(ξ)

= fj(x0 + ξh− bjεi−j − X̃i,j+1)− E{fj(x0 + ξh− bjεi−j − X̃i,j+1)|Si−j−1}(4.19)

=
∫

(fj(x0 + ξh− bjεi−j − X̃i,j+1)− fj(x0 + ξh− bjε− X̃i,j+1))dG(ε).

As in the proofs of Propositions 4.1-2, Ui,j(ξ) is Si−j-measurable and E{Ui,j(ξ)|Si−j−1} =

0. In addition, Hn(X̃i,s0) is written as

Hn(X̃i,s0) =
∫

K(ξ)
∞∑

j=s0

Ui,j(ξ)dξ.(4.20)

By (4.18) and (4.20), we have

nSb =
n∑

i=1

Hn(X̃i,s0) =
∫

K(ξ)
n∑

i=1

∞∑

j=s0

Ui,j(ξ)dξ.(4.21)

The properties of Ui,j(ξ), (4.21), Jensen’s inequality, and the Cauchy-Schwarz inequality

imply that

E{(nSb)
2} ≤

∫
K(ξ)

n∑

i=1

∞∑

j=s0

∞∑

j′=s0

(E{U2
i,j(ξ)})1/2(E{U2

i′,j′(ξ)})1/2dξ,(4.22)

where i′ = i− j + j′.

Provided that for any positive M ,

sup
|ξ|≤M

E{U2
i,j(ξ)} ≤ C|bj|α,(4.23)

(4.16) follows from (4.22).

The integrand in (4.19) is bounded by C(1∧ (|(εi−j − ε)bj|)). Therefore by (4.17), we

get

E{U2
i,j(ξ)} ≤ C(E{|(εi−j − ε)bj|2I(|(εi−j − ε)bj| < 1)}+ P(|(εi−j − ε)bj| ≥ 1))

≤ C|bj|α.
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Hence (4.23) is established and the proof of the proposition is complete.

5. Proofs of technical lemmas

In this section we prove technical lemmas. The proofs of Lemmas 4.2 and 4.4 are

modified and simplified arguments of those in Koul and Surgailis (2001) and Surgailis

(2002), respectively.

Proof of Lemma 4.1. We write Ki for K((Xi − x0)/h) in the proof for notational

simplicity.

Note that for any s ≥ s1,

1

h
E{Ki|Si−s} =

∫
K(ξ)fs(x0 + ξh− X̃i,s)dξ(5.1)

and that the above expression is a bounded continuous function of X̃i,s. Hence (4.7)

follows from (4.6) by appealing to the properties of martingale differences.

We prove the latter of (4.8) by using (4.6) and applying the martingale central limit

theorem (e.g. Theorem 9.5.2 of Chow and Teicher (1988)). The former can be treated in

the same way and the proof is omitted.

Since |√nhN3l| ≤ C/
√

nh, we have only to show that

nh
k∑

l=1

E{N2
3l|S1+(l−1)s0} p→ s2

s0

κf(x0).(5.2)

(4.6) and P2 imply that

nh
k∑

l=1

E{N2
3l|S1+(l−1)s0}(5.3)

=
k∑

l=1

ls0∑

i=s1+1+(l−1)s0

1

nh
E{K2

i |S1+(l−1)s0}

+2
k∑

l=1

ls0∑

i1=s1+1+(l−1)s0

ls0∑

i2=i1+1

1

nh
E

{
Ki1Ki2|S1+(l−1)s0

}
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−
k∑

l=1

ls0∑

i1=s1+1+(l−1)s0

ls0∑

i2=s1+1+(l−1)s0

1

nh
E

{
Ki1|S1+(l−1)s0

}
E

{
Ki2|S1+(l−1)s0

}

=
k∑

l=1

ls0∑

i=s1+1+(l−1)s0

1

nh
E{K2

i |S1+(l−1)s0}+ Op(h).

By P1 and the ergodic thereom, we obtain

k∑

l=1

ls0∑

i=s1+1+(l−1)s0

1

nh
E{K2

i |S1+(l−1)s0}(5.4)

=
1

n

k∑

l=1

ls0∑

i=s1+1+(l−1)s0

∫
K2(ξ)fi−1−(l−1)s0(x0 − X̃i,i−1−(l−1)s0)dξ + Op(h)

p→ s2

s0

κf(x0)

since E{fs(x0 − X̃i,i−s)} = f(x0). (5.2) follows from (5.3) and (5.4).

Proof of Lemma 4.2. We adopt the notations of Koul and Surgailis (2001), for

example, U
(k)
i,j , M

(k)
i,j , D

(k)
i,j , χ

(k)
i,j , and W

(k)
i,j . Note that we can do without (2.1) there.

We fix a positive γ such that (1/r − 1/α)/β < γ < ((α − r)/r) ∧ (1 − 1/(rβ)). Then

r(1 + γ) < α.

{Mj,n(ξ)} defined in (5.5) form a martingale difference sequence with respect to {Sj}.

Mj,n(ξ) =
∑

i=1∨(j+s0)

Ui,i−j(ξ).(5.5)

Then by the von Bahr and Esseen inequality, we have

E{|Rn(ξ)|r} ≤ 2
n−s0∑

j=−∞
E{|Mj,n(ξ)|r}.(5.6)

To evaluate E{|Mj,n(ξ)|r}, we decompose Ui,j(ξ) into three components, U
(1)
i,j , U

(2)
i,j , and

U
(3)
i,j . Hereafter we suppress the dependence on ξ for notational convenience.

U
(1)
i,j = fj(x0 + ξh− bjεi−j − X̃i,j+1)−

∫
fj(x0 + ξh− bju− X̃i,j+1)dG(u)(5.7)

+f ′j(x0 + ξh− X̃i,j+1)bjεi−j

U
(2)
i,j = bjεi−j(f

′(x0 + ξh)− f ′(x0 + ξh− X̃i,j+1))(5.8)

U
(3)
i,j = bjεi−j(f

′(x0 + ξh− X̃i,j+1)− f ′j(x0 + ξh− X̃i,j+1))(5.9)
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Then

Mj,n =
3∑

k=1

M
(k)
j,n , where M

(k)
j,n =

n∑

i=1∨(j+s0)

U
(k)
i,i−j.

Provided that

E{|Mj,n(ξ)|r} ≤ C(
n∑

i=1∨(j+s0)

(i− j)−β(1+γ))r,(5.10)

(5.6), (5.10) and some calculation as on p.321 of Koul and Surgailis (2001) imply the

result of Lemma 3.1. We establish (5.10).

We give some definitions before we consider M
(1)
j,n and U

(1)
i,j .

χ
(1)
i,j = I(|bjv| ≤ 1, |bjεi−j| ≤ 1), χ

(2)
i,j = I(|bjv| > 1, |bjεi−j| ≤ 1), χ

(3)
i,j = I(|bjεi−j| > 1).

By using them, we have

E{|M (1)
j,n |r} ≤ C

3∑

k=1

D
(k)
j,n ,(5.11)

where

D
(k)
j,n = E{|

n∑

i=1∨(j+s0)

χ
(k)
i,i−jU

(1)
i,i−j|r}.

We show that all of D
(k)
j,n are bounded by C(

∑n
i=1∨(j+s0))(i− j)−β(1+γ))r. We deal with

D
(1)
j,n and D

(3)
j,n. D

(2)
j,n can be treated in the same way as D

(3)
j,n.

We can represent U
(1)
i,j as

U
(1)
i,j = W

(1)
i,j −W

(2)
i,j ,(5.12)

where

W
(1)
i,j =

∫
(
∫ −bjεi−j

−bju
f ′j(x0 + v + ξh− X̃i,j+1)dv)dG(u),

W
(2)
i,j =

∫
(
∫ −bjεi−j

−bju
f ′j(x0 + ξh− X̃i,j+1)dv)dG(u).

Since

|f ′j(x0 + v + ξh− X̃i,j+1)− f ′j(x0 + ξh− X̃i,j+1)| ≤ C|v|γ for |v| ≤ 1,
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we have

|U (1)
i,j χ

(1)
i,j | ≤ C

∫
(
∫ −bjεi−j

−bju
|v|γdv)dG(u) ≤ C|bj|1+γ(1 + |εi−j|1+γ).(5.13)

By (5.12), (5.13) and Minkowski’s inequality, we get

D
(1)
j,n ≤ C(

n∑

i=1∨(j+s0)

|bi−j|1+γ(E{1 + |εj|r(1+γ)})1/r)r(5.14)

≤ C(
n∑

i=1∨(j+s0)

(i− j)−β(1+γ))r.

Next we deal with D
(3)
j,n. By exploiting (5.12), we have

D
(3)
j,n ≤ C

2∑

l=1

2∑

k=1

E{|
n∑

i=1∨(j+s0)

W
(l,k)
i,i−jI(|bi−jεj| > 1)|r},(5.15)

where

W
(1,1)
i,j =

∫
(
∫ −bjεi−j

−bju
f ′j(x0 + v + ξh− X̃i,j+1)dv)I(|bjεi−j| > 1)I(|εi−j| > |u|)dG(u),

W
(1,2)
i,j =

∫
(
∫ −bjεi−j

−bju
f ′j(x0 + v + ξh− X̃i,j+1)dv)I(|bjεi−j| > 1)I(|εi−j| ≤ |u|)dG(u),

W
(2,1)
i,j =

∫
(
∫ −bjεi−j

−bju
f ′j(x0 + ξh− X̃i,j+1)dv)I(|bjεi−j| > 1)I(|εi−j| > |u|)dG(u),

W
(2,2)
i,j =

∫
(
∫ −bjεi−j

−bju
f ′j(x0 + ξh− X̃i,j+1)dv)I(|bjεi−j| > 1)I(|εi−j| ≤ |u|)dG(u).

Noticing that

|W (1,1)
i,j | = C|bjεi−j|1+γI(|bjεi−j| > 1),

|W (1,2)
i,j | = C

∫
|bju|1+γI(|bjεi−j| > 1)dG(u) ≤ C|bj|1+γ,

|W (2,1)
i,j | = C|bjεi−j|1+γI(|bjεi−j| > 1),

|W (2,2)
i,j | = C

∫
|bju|1+γI(|bjεi−j| > 1)dG(u) ≤ C|bj|1+γ,

we get

D
(3)
j,n ≤ C(

n∑

i=1∨(j+s0)

|bi−j|1+γ)r ≤ C(
n∑

i=1∨(j+s0)

(i− j)−β(1+γ))r(5.16)

25



Combining (5.11), (5.14), and (5.16), we have

E{|M (1)
j,n |r} ≤ C(

n∑

i=1∨(j+s0)

(i− j)−β(1+γ))r.(5.17)

We deal with M
(2)
j,n .

E{|M (2)
j,n |r}(5.18)

≤ E{|εj|r}E{|
n∑

i=1∨(j+s0)

bi−j(f
′(x0 + ξh)− f ′(x0 + ξh− X̃i,i−j+1))|r}

≤ CE{(
n∑

i=1∨(j+s0)

|bi−jX̃i,i−j+1|)r} ≤ C{
n∑

i=1∨(j+s0)

|bi−j|(E{|X̃i,i−j+1|r})1/r}r

≤ C(
n∑

i=1∨(j+s0)

(i− j)−2β+1/r)r ≤ C(
n∑

i=1∨(j+s0)

(i− j)−β(1+γ))r.

See the definition of r and γ about the last line of (5.18).

Finally, by using P3, we have

E{|M (3)
j,n |r}(5.19)

≤ C(
n∑

i=1∨(j+s0)

(i− j)−β(i− j)−β+1/r)r ≤ C(
n∑

i=1∨(j+s0)

(i− j)−β(1+γ))r.

Hence (5.10) is proved for every k and the proof of the lemma is complete.

Proof of Lemma 4.3. We prove Lemma 4.3 by using the results given in Surgailis

(2002). However, we do not deal with the uniformity and we can do without (2.3) there

in the proofs of Lemmas 4.3-4.

We write Vn for the difference of Tn and Tn and represent Vn as

Vn = Tn − Tn = −
n∑

k=1

An(k) +
∞∑

k=1

Bn(k),(5.20)

where

An(k) =
∞∑

j=k

(Hn,∞(bjεn+1−k)− E{Hn,∞(bjεn+1−k)}),

Bn(k) =
k+n−1∑

j=k

(Hn,∞(bjε1−k)− E{Hn,∞(bjε1−k)}).
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We choose two positive numbers, r and γ, such that 1 + r(1− β) < r/(αβ), 1 + r −

β(α − γ) < r/(αβ), and 1 < r < α. It is not difficult to check the existence of r and γ.

Then by the von Bahr and Esseen inequality, we obtain

E{|Vn|r} ≤ 2(
n∑

k=1

E{|An(k)|r}+
∞∑

k=1

E{|Bn(k)|r}).(5.21)

Provided that

n∑

k=1

E{|An(k)|r} = o(nr/(αβ)) and
∞∑

k=1

E{|Bn(k)|r} = o(nr/(αβ)),(5.22)

the result of the lemma follows from (5.21). We prove (5.22).

First we deal with An(k). Since

Hn,∞(0) = 0, |Hn,∞(x)| ≤ C, and |H ′
n,∞(x)| ≤ C,

we have

|Hn,∞(bjεn+1−k)| ≤ C(1 ∧ (|εn+1−k|j−β)).

If

E{(
n∑

j=k

(1 ∧ (|εn+1−k|j−β)))r} ≤ C(kr(1−β) + kr−β(α−γ)),(5.23)

we get

E{
n∑

k=1

|An(k)|r} ≤ C(
n∑

k=1

kr(1−β) +
n∑

k=1

kr−β(α−γ)) = o(nr/(αβ)).(5.24)

See the definitions of r and γ. Note that E{Hn,∞(bjεn+1−k)} in the definition of An(k) is

treated by Jensen’s inequality. We establish (5.23).

Some calculation as in Surgailis (2002) gives

(
n∑

j=k

(1 ∧ (|εn+1−k|j−β)))r(5.25)

≤ C{I(|εn+1−k| ≤ kβ)|εn+1−k|k1−β + I(|εn+1−k| > kβ)|εn+1−k|1/β}r.

By evaluating the expectation of (5.25), we obtain (5.23).
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Next we deal with Bn(k). As in the case of An(k), what we should establish is

Mn∑

k=1

E{(
n+k−1∑

j=k

(1 ∧ (|ε1−k|j−β)))r}(5.26)

+
∞∑

k=Mn+1

E{(
n+k−1∑

j=k

(1 ∧ (|ε1−k|j−β)))r} = o(nr/(αβ)),

where M is an arbitrary large integer.

The first term of the left hand side of (5.26) can be treated in the same way as in the

case of An(k). We consider only the second term of the left hand side of (5.26).

We closely examine the random variables in the sign of expectation. Then

n+k−1∑

j=k

(1 ∧ (|ε1−k|j−β))

≤ C





(k1−β − (k + n)1−β)|ε1−k|, |ε1−k| ≤ kβ

n + (k1−β − (k + n)1−β)|ε1−k|, kβ < |ε1−k| ≤ (k + n)β

n, |ε1−k| > (k + n)β

.(5.27)

We take the expectation by using (5.27) and get

E{(
n+k−1∑

j=k

(1 ∧ (|ε1−k|j−β)))r} ≤ C{(k1−β − (k + n)1−β)r + nrP(|ε1−k| > kβ)(5.28)

≤ C{(k1−β − (k + n)1−β)r + nrk−αβ}.

Then the second term of (5.26) is bounded by

C
∞∑

k=Mn+1

{(k1−β − (k + n)1−β)r + nrk−αβ}

≤ C(n1+r(1−β)
∫ ∞

M
(u1−β − (1 + u)1−β)rdu + nr−αβ+1

∫ ∞

M
u−αβdu) = o(nr/(αβ)).

The last inequality follows from the definition of r. Hence the proof is complete.

Proof of Lemma 4.4. We adopt the notations of Surgailis (2002), for example,

U
(k)
i,j , M

(k)
n,j , and Vnj. We choose two positive numbers, λ and r, such that

1 ∨ 2

2β − 1 + 1/(αβ)
< r < α and

αβ − r

αβ(2βr − 1− r)
< λ < 1 ∧ 2− αβ

αβ(3− 2βr)
.
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The existence of λ and r is proved in Surgailis (2002). [a] stands for the largest integer

which is less than or equal to a.

We represent nSb − Tn as

nSb − Tn = V1n + V2n,(5.29)

where

V1n =
n∑

i=1

[nλ]∑

j=s0

∫
K(ξ)Ui,j(ξ)dξ,

V2n =
n∑

i=1

∞∑

j=[nλ]+1

∫
K(ξ)Ui,j(ξ)dξ,

Ui,j(ξ) = fj(x0 + ξh− bjεi−j − X̃i,j+1)− fj+1(x0 + ξh− X̃i,j+1)

−f(x0 + ξh− bjεi−j) + E{f(x0 + ξh− bjεi−j)}.

If

E{|Vn1|2} = o(n2/(αβ)) and E{|Vn2|r} = o(nr/(αβ)),(5.30)

the result of the lemma follows from (5.29). We establish (5.30).

As in the proof of Lemma 4.2, we rewrite Vn1 and Vn2 as

Vn1 =
∫

K(ξ)(
n−s0∑

j=1−[nλ]

M
(1)
n,j (ξ))dξ and Vn2 =

∫
K(ξ)(

n−1−[nλ]∑

j=−∞
M

(2)
n,j (ξ))dξ,(5.31)

where

M
(1)
n,j (ξ) =

n∑

i=1∨(j+s0)

Ui,i−j(ξ)I(i−j ≤ [nλ]) and M
(2)
n,j (ξ) =

n∑

i=1∨(j+s0)

Ui,i−j(ξ)I(i−j > [nλ]).

{M (l)
n,j(ξ)} form martingale difference sequences with respect to {Sj}.

(5.30) follows from (5.31), Jensen’s inequality and the von Bahr and Esseen inequality

if we have shown that for any positive M , uniformly on {|ξ| ≤ M},
n−s0∑

j=1−[nλ]

(
n∑

i=1∨(j+s0)

(E{U2
i,i−j(ξ)I(i− j ≤ [nλ])})1/2)2 = o(n2/(αβ)),(5.32)

n−1−[nλ]∑

j=−∞
(

n∑

i=1∨(j+s0)

(E{|Ui,i−j(ξ)|rI(i− j > [nλ])})1/r)r = o(nr/(αβ)).(5.33)
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Provided that on {|ξ| ≤ M},

E{|Ui,j(ξ)|r} ≤ Cj1−2rβ, j ≥ s0,(5.34)

some calculation as on pp. 270-271 of Surgailis (2002) implies (5.32) and (5.33). In the

calculation we use the fact that

E{|Ui,j(ξ)|2} ≤ CE{|Ui,j(ξ)|r}

since |Ui,j(ξ)| is uniformly bounded in i, j, and ξ.

We establish (5.34). Hereafter we suppress the dependence on ξ.

We decompose Ui,j into three components.

Ui,j = U
(1)
i,j + U

(2)
i,j + U

(3)
i,j ,(5.35)

where

U
(1)
i,j = fj(x0 + ξh− bjεi−j − X̃i,j+1)− fj+1(x0 + ξh− X̃i,j+1)

−fj(x0 + ξh− bjεi−j) + E{fj(x0 + ξh− bjεi−j)},

U
(2)
i,j = fj(x0 + ξh− bjεi−j)− fj(x0 + ξh)− f(x0 + ξh− bjεi−j) + f(x0 + ξh),

U
(3)
i,j = −E{U (2)

i,j }.

First we evaluate U
(1)
i,j , which is written as

U
(1)
i,j =

∫
(
∫ −bjεi−j

−bju
(f ′j(x0 + ξh + z − X̃i,j+1)− f ′j+1(x0 + ξh + z))dz)dG(u).

Since

|
∫ −bjεi−j

−bju
(f ′j(x0 + ξh + z − X̃i,j+1)− f ′j+1(x0 + ξh + z))dz| ≤ C(|bju|+ |bjεi−j|)|X̃i−j+1|,

we have

E{|U (1)
i,j |r} ≤ Cj1−2βr.(5.36)
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Next we deal with U
(2)
i,j , which is also written as

U
(2)
i,j =

∫ −bjεi−j

0
(f ′j(x0 + ξh + z)− f ′(x0 + ξh + z))dz.

Using P3 and the above expression, we obtain

|U (2)
i,j | ≤ C|bjεi−j|j1/r−β.(5.37)

(5.37) implies that

E{|U (2)
i,j |r} ≤ Cj1−2βr.(5.38)

Finally, by Jensen’s inequality, we obtain

|U (3)
i,j |r ≤ Cj1−2βr.(5.39)

(5.34) follows from (5.36), (5.38), and (5.39). Hence the proof of the lemma is com-

plete.
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Table1: α＝1.2 

 

x0 0.0 0.75 1.5 

h 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 

mean 0.2872 0.2867 0.2848 0.2204 0.2203 0.2198 0.1160 0.1163 0.1169

var 0.0325 0.0299 0.0276 0.0280 0.0260 0.0243 0.0143 0.0135 0.0129

 

0.9 

mse 0.0326 0.0300 0.0278 0.0280 0.0261 0.0243 0.0143 0.0136 0.0130

mean 0.2984 0.2972 0.2953 0.2224 0.2220 0.2216 0.1132 0.1139 0.1147

var 0.0092 0.0076 0.0067 0.0083 0.0070 0.0062 0.0039 0.0034 0.0031

 

1.3 

mse 0.0092 0.0077 0.0067 0.0083 0.0070 0.0063 0.0039 0.0034 0.0031

mean 0.2987 0.2963 0.2942 0.2219 0.2222 0.2222 0.1157 0.1158 0.1163

var 0.0057 0.0041 0.0033 0.0044 0.0033 0.0027 0.0022 0.0017 0.0014

 

1.7 

mse 0.0057 0.0041 0.0033 0.0045 0.0034 0.0028 0.0023 0.0017 0.0014

mean 0.2990 0.2973 0.2946 0.2218 0.2219 0.2219 0.1138 0.1146 0.1153

var 0.0048 0.0032 0.0024 0.0034 0.0024 0.0018 0.0018 0.0012 0.0010

 

2.1 

mse 0.0048 0.0032 0.0024 0.0034 0.0024 0.0019 0.0018 0.0013 0.0010

mean 0.2987 0.2969 0.2946 0.2221 0.2213 0.2210 0.1146 0.1155 0.1161

var 0.0040 0.0025 0.0018 0.0030 0.0019 0.0013 0.0017 0.0011 0.0008

 

∞ 

mse 0.0040 0.0025 0.0018 0.0031 0.0020 0.0014 0.0017 0.0011 0.0009

 

 

 

 

 



Table2: α＝1.5 

 

 

x0 0.0 0.75 1.5 

h 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 

mean 0.2842 0.2827 0.2808 0.2313 0.2307 0.2301 0.1362 0.1370 0.1375

var 0.0119 0.0103 0.0094 0.0129 0.0115 0.0106 0.0093 0.0086 0.0082

 

0.9 

mse 0.0119 0.0103 0.0094 0.0129 0.0115 0.0106 0.0094 0.0087 0.0082

mean 0.2890 0.2876 0.2858 0.2344 0.2339 0.2335 0.1350 0.1362 0.1366

var 0.0054 0.0038 0.0031 0.0052 0.0039 0.0033 0.0034 0.0028 0.0024

 

1.3 

mse 0.0054 0.0038 0.0031 0.0052 0.0039 0.0033 0.0035 0.0028 0.0025

mean 0.2867 0.2860 0.2845 0.2371 0.2364 0.2351 0.1369 0.1370 0.1375

var 0.0043 0.0029 0.0021 0.0037 0.0025 0.0020 0.0025 0.0017 0.0014

 

1.7 

mse 0.0043 0.0029 0.0021 0.0038 0.0026 0.0021 0.0026 0.0018 0.0014

mean 0.2865 0.2857 0.2845 0.2347 0.2341 0.2336 0.1371 0.1370 0.1371

var 0.0042 0.0027 0.0020 0.0035 0.0023 0.0017 0.0021 0.0014 0.0011

 

2.1 

mse 0.0042 0.0027 0.0020 0.0036 0.0024 0.0018 0.0022 0.0015 0.0011

mean 0.2867 0.2856 0.2846 0.2335 0.2335 0.2330 0.1373 0.1374 0.1376

var 0.0038 0.0024 0.0017 0.0031 0.0020 0.0014 0.0021 0.0013 0.0010

 

∞ 

mse 0.0039 0.0024 0.0017 0.0032 0.0020 0.0014 0.0021 0.0014 0.0010

 



Table3: α＝1.8 

 

x0 0.0 0.75 1.5 

h 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4 

mean 0.2799 0.2788 0.2778 0.2391 0.2388 0.2384 0.1514 0.1520 0.1525

var 0.0064 0.0050 0.0043 0.0073 0.0061 0.0055 0.0067 0.0060 0.0056

 

0.9 

mse 0.0065 0.0051 0.0043 0.0073 0.0061 0.0055 0.0067 0.0060 0.0057

mean 0.2836 0.2822 0.2812 0.2408 0.2402 0.2397 0.1517 0.1517 0.1518

var 0.0043 0.0028 0.0021 0.0043 0.0032 0.0026 0.0032 0.0025 0.0021

 

1.3 

mse 0.0043 0.0028 0.0021 0.0044 0.0032 0.0026 0.0032 0.0025 0.0021

mean 0.2830 0.2825 0.2811 0.2415 0.2410 0.2406 0.1527 0.1528 0.1530

var 0.0041 0.0026 0.0019 0.0033 0.0023 0.0018 0.0024 0.0017 0.0013

 

1.7 

mse 0.0041 0.0026 0.0019 0.0033 0.0023 0.0018 0.0025 0.0017 0.0013

mean 0.2833 0.2823 0.2810 0.2415 0.2414 0.2407 0.1508 0.1514 0.1518

var 0.0039 0.0025 0.0018 0.0035 0.0023 0.0017 0.0022 0.0015 0.0011

 

2.1 

mse 0.0039 0.0025 0.0018 0.0035 0.0023 0.0017 0.0022 0.0015 0.0012

mean 0.2819 0.2815 0.2810 0.2411 0.2410 0.2404 0.1512 0.1517 0.1523

var 0.0038 0.0024 0.0017 0.0033 0.0021 0.0014 0.0021 0.0014 0.0010

 

∞ 

mse 0.0038 0.0024 0.0017 0.0033 0.0021 0.0014 0.0021 0.0014 0.0011
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