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Abstract

This paper investigates the expectations hypothesis for the Japanese term structure of in-

terest rates using vector error correction models with multiple structural breaks, focusing on

how the breaks affect volatility, risk premium and speed of the adjustment toward the equilib-

rium. Using 1985-2005 data, we find strong evidence of three structural changes. After the

second break point, the term structure relationship is found to be weakened with nearly zero

percent short-term interest rate. This finding is consistent with the expectations hypothesis

since with very low short-term interest rate the risk premium is dominant in determining long

rates.
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1 Introduction

In the past few decades the Japanese economy has swung from rapid expansion in the late 80’s

to recession after the 1990 burst of the economic bubble. Japanese interest rates have moved in

tandem. Interest rates exhibited a declining trend up to 1987 when both long- and short-term rates

fell to around 4 percent, causing rapid economic expansion. The Bank of Japan (BoJ) introduced

higher interest rates policy to alleviate the economic expansion, and maintained its higher interest

rates policy until 1991. In 1990 the economic bubble burst, and then interest rates dropped rapidly

with the BoJ’s implementation of expansionary policies in an attempt to stimulate the sluggish

economy. In 1999 the BoJ introduced thezero-interest-rate-policythat caused the short-term in-

terest rates to approach almost zero percent yield. Thus, the movement of the Japanese interest

rates are largely affected by the BoJ’s monetary policy, and considering a time series model with-

out multiple structural breaks might be misleading.

This paper investigates the expectations hypothesis for the Japanese term structure of interest

rates using vector error correction models with multiple structural breaks in deterministic terms,

adjustment terms, risk premium and covariance-variance matrices. The term structure of interest

rates implies a stable relationship between interest rates with different maturities. This stable

relationship would not be maintained when the short rate is successively close to zero percent

because with lower short-term rate the spread between the two different rates approaches the risk

premium and contains less information to account for the future long-term rates (Nagayasu, 2004).

We provide a simple methodology for empirical evidence of the expectations hypothesis using co-

integrated VAR models with multiple structural breaks.

The cointegration analysis for U.S. term structure has received significant attention since

Campbell and Shiller (1987). Hallet al. (1992), Engsted and Tanggaard (1994), and Paganet

al. (1996) did not reject the null of no cointegration. However, after accounting for structural

break(s), Bliss and Smith (1998), Lanne (1999), Hansen and Johansen (1999), Hansen (2003) de-

tected the cointegration relationship. Aside from structural break, Sola and Driffill (1994) detected

the cointegration of the expectations hypothesis using a Markov switching model. Other nonlinear
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examples are found in Dwyeret al. (1996), Tsay (1998), van Dijk and Franses (2000), Hansen

and Seo (2001), Clements and Galvao (2001), and Clements and Galvao (2002).

To test for and estimate structural break in a multivariate dynamic model, Gregory and Hansen

(1996a) developed residual-based tests for a single structural break, applyingADF−, Zα−, and

Zt− type tests to test the null of no cointegration against the alternative of cointegration in the pres-

ence of a possible regime shift. Gregory and Hansen (1996b) extended this to allow a trend shift in

a cointegration model with a single break point. Hansen and Johansen (1999) tested a single struc-

tural break based on Nyblom’sL statistic (1989). Baiet al. (1998) applied the Andrews-Ploberger

exponential Wald statistic (1994) and developed methods for constructing confidence intervals for

the date of a single break in multivariate time series. Seo (1998) provided the Lagrange multi-

plier test for structural breaks in a cointegration model, applyingsupLMstatistic by Andrews and

Ploberger (1994). Testing for structural breaks in any subset of parameters in cointegration models

was proposed by Hansen (2003), but this method assumed that the location of the break points are

known.

This paper applies a Bayesian approach to analyze a vector error correction model for the

Japanese term structure model, extending Wang and Zivot’s (2000) method for detecting multiple

breaks in univariate models as a problem of model selection. The Bayesian method with Markov

chain Monte Carlo simulation technique makes testing for and estimating of multiple structural

breaks in cointegration models technically simpler. Furthermore, the Bayesian method provides

useful posterior information such as posterior density and uncertainty in the location of the break

points rather than just point estimation. While Baiet al. (1998) proposed a method for constructing

confidence intervals for the date of a single break in a classical framework, the Bayesian method

provides HPDIs (highest posterior density interval) for the dates of multiple breaks.

This paper is organized as follows. Section 2 discusses the expectations hypothesis for the term

structure of the interest rate, and reviews briefly movement of the Japanese interest rates. Modeling

and its estimation method are presented in Section 3. Results of the empirical estimation for the

Japanese term structure are reported in Section 4. Section 5 concludes. All computation in this

article was performed using Ox v3.40 for Linux (Doornik, 2001).
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2 Expectations Hypothesis for the Term Structure of the Interest

Rates

2.1 The Expectations Hypothesis

The expectations hypothesis for the term structure of the interest rates states that thef -period

interest rate is equal to the weighted average of the expected one period return plus a risk premium.

For an overview of the expectations hypothesis theory, see Shiller (1990). Letr f ,t be the yield to

maturity for an f -period at timet, L f ,t be the risk premium for anf -period at timet, then the

hypothesis implies:

r f ,t = f−1
f

∑
i=1

Etr1,t+i−1 +L f ,t (1)

By rewriting the above equation, the interest rate spreadSf ,t can be expressed as:

Sf ,t ≡ r f ,t − r1,t = f−1
f−1

∑
i=1

i

∑
j=1

Et∆r1,t+ j +L f ,t (2)

If r1,t is integrated of order one, thenr f ,t is also integrated of order one and thusr f ,t andr1,t are

cointegrated with cointegrating vector (1, -1) as analyzed by Campbell and Shiller (1987). The

risk premium is assumed to beI(0) so that the hypothesis states thatr f ,t − r1,t −L f ,t is a stationary

process. Equation (2) states that if the change in expected short-term rate is zero percent, the

spreadSf ,t equals the risk premiumL f ,t .

The expectations hypothesis in equation (2) with constant risk premium implies the following

vector error correction model withp lags:

∆rt = Dt +α(r f ,t−1− r1,t−1−L f ,t)+
p−1

∑
i=1

Ψi∆rt−i + εt (3)

wherert = ( r f ,t r1,t )′, Dt is the deterministic term,α (2×1) is the speed of the adjustment term,

Ψi (2×2) is the lag coefficient, andεt (2×2) is iidN( 0 Ω) . In this paper the risk premiumL f ,t

is assumed to be either constant such asLt = δ (as in Hansen, 2003) or constant with trend term
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such asLt = δ+ γt within a given regime.

2.2 Japanese Interest Rates and the Expectations Hypothesis

Figure 1 illustrates the movement of the Japanese short-term interest rate (3-month bill rate) and

the long-term interest rate (5-year government bond yield) since 1985. Until 1987, both short- and

long-rates were decreasing partly because the Japanese government used monetary policy to en-

sure an appreciation of the Japanese Yen to avoid more accumulation of the trade surpluses against

the US. The lower interest rates boosted the Japanese economy hereafter. The Bank of Japan (BoJ)

introduced a higher interest rate policy to catch up with rapid economic expansion. It was, how-

ever, too late to prevent the economy from overheating, and resulted in bubble economy. The

bubble economy burst in 1990, and accordingly, the interest rates exhibited a declining trend until

the BoJ introduced thezero-interest-rate policy(ZIRP) between 1999 and 2001 in order to provide

adequate liquidity. Under the ZIRP, the BOJ maintained a nearly zero percent overnight call rate.

In 2001, the BoJ implemented a different operating target, which is the so calledquantitative-

easing policy(QEP). The aim was at further expansionary monetary policy by injecting liquidity

into the market by setting the level of its current account as the operating target instead of target-

ing the level of the overnight call rate. Figure 1 shows that the short rate has been closed to zero

since the ZIRP was implemented in 1999 and even since the QEP was implemented in 2001. The

expectation hypothesis in equation (2) shows that with 0 percent of the expected short term rates

the size of the yield spread equals the risk premium, which is assumedI(0), that is, the long-term

rate is merely the risk premium in this period, and thus the cointegration relationship between the

two rates does not occur in this period. Since the ZIRP was introduced by the BoJ, the short-term

interest rate has been kept nearly zero percent so that the cointegrating relationship between the

two rates might have been vanished.

Figure 2 plots the yield spread between Japanese short- and long-term interest rates. If the

expectations hypothesis holds, the spread shown in Figure 2 should follow a stationary process.

The spread shows a negative trend until around 1991. This negative trend implies a lower risk pre-

mium due to higher expectation of future economic expansion. After 1991 it moved in an upward
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trend with higher risk premium until around 1996. In 1996 the short-rate suddenly dropped and

the long-rate decreased gradually, so the spread decreased until 1999. After the 1999 implementa-

tion of the ZIRP, the spread has seemed to be stable due to the stationary process of the long-term

interest rate that equals the risk premium (I(0)) according to the expectation hypothesis.

Table 1 presents the results of several cointegration tests: PIC (Chao and Phillips, 1999),

Kleibergen & Paap’s Bayesian test (KP) with diffuse prior (Kleibergen and Paap, 2002), Strachan

and Inder’s Grassman approach (2004), and Johansen’s LR test (1991).1 The PIC selects the rank

0 that has the smallest statistic. The KP test shows that the posterior probability of rank 0 is the

highest with 85.1%. The Strachan’s method also chooses rank 0 with 97.9%. The Johansen’s trace

test cannot reject the null ofr = 0 at 5 percent significant level. Thus, all five tests cannot detect

cointegration relationship between Japanese long and short term interest rates if structural breaks

are not included in the model.

3 A Time Series Model with Multiple Structural Breaks in a Co-

integrated VAR Model

3.1 Statistical Model

To investigate how structural breaks affect the speed of adjustment, the cointegrating vector, the

risk premium and other terms, we consider the form of a vector error correction model with mul-

tiple structural breaks in equation (3). It is possible to consider a more general model where lag

terms also change with breaks; however, for parsimonious reason, we assume that the lag terms

do not change over time.

Let Xt denote anI (1) vector ofn-dimensional time series. The long-run multiplier matrix is

decomposed asαβ′, both aren× r, whereα is the adjustment term andβ′ is the cointegrating

vector. In this paperXt = (r l ,t , rs,t) wherer l ,t denotes long-term interest rate andrs,t short-term

1The PIC and the KP methods requirer2 (r is the number of rank in the long-run multiplier matrix) linear restrictions
on the cointegrating vector for identification and normalization. Strachan (2003) and Strachan and Inder (2004) criti-
cized this linear normalization as likely invalid. See Koop et al (2004) for a general survey of Bayesian cointegration
analysis with a focus on the prior elicitation.
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interest rate, and the cointegrating vectorβ is defined as(1,−1,−δt ,−γt) so that the long-run

equilibrium is represented asSt−1− (δt + γtt) whereSt−1 ≡ r l ,t−1− rs,t−1 is the spread of the two

interest rates,r l ,t and rs,t , at t − 1 period,δt + γtt denotes the risk premium under the rational

expectations hypothesis. If we assume that all parameters except the lag terms in VECM are

subject to structural breaks, then the bivariate VECM representation is:

∆Xt = µt +ξtt +αt (St−1−δt − γtt)+
p−1

∑
i=1

Ψi∆Xt−i + εt (4)

wheret = p, p+1, . . . ,T, andp is the number of lags, andεt are assumedN(0,Ωt) and independent

over time. Dimensions of matrices areµt , ξt andε (2×1), Ψt,i andΩt (2×2). We assume that the

parametersµt , ξt andΩt are subject tom< t structural breaks with break pointsk1, . . . ,km, where

k1 < k2 < · · ·< km, so that the observations can be separated intom+1 regimes.

Equation (4) can be rewritten in the matrix format as:

Y = WB+E (5)

where

Y =
[

∆r ′p ∆r ′p+1 · · · ∆r
′

T

]′
, E =

[
ε′p ε′p+1 · · · ε′T

]′
W =

[
X Z1 · · · Zm+1

]
, B =

[
Γ′ α′

1 · · · α′
m+1

]′
,

Zi =



si,p−1(Sp−1−δp− γpp)

si,p(Sp−δp+1− γp+1(p+1))
...

si,T−1(ST−1−δT − γTT)


for i = 1, . . . ,m+1,

Γ =
[

µ1 · · · µm+1 ξ1 · · · ξm+1 Ψ1 · · · Ψp−1

]
,
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X =



s1,p · · · sm+1,p s1,p · · · sm+1,p ∆r ′p−1 · · · ∆r ′1

s1,p+1 · · · sm+1,p+1 2s1,p+1 · · · 2sm+1,p+1 ∆r ′p · · · ∆r ′2
...

...
...

...
...

...
...

...
...

s1,T · · · sm+1,T (T− p+1)s1,T · · · (T− p+1)sm+1,T ∆r ′T−1 · · · ∆r ′T−p+1


.

Let τ be the number of rows ofY, so thatτ = T− p+1, thenX is τ×2(m+ p), Γ is 2(m+ p)×2,

W is τ×κ whereκ = 3m+ 2p+ 1, andB is κ×2. si, j in X is an indicator variable that equals

1 if the regime isi and 0 otherwise. Equation (5) represents the multivariate regression format of

equation (4).

3.2 Prior Distributions and Likelihood Functions

We specify the proper prior distributions for the parameters given in the model (4). Letk =

(k1,k2, . . . ,km)′ denote the vector of break dates. For the priork, we choose a prior that is uniform

over all ordered subsequences oft = p+ 1, . . . ,T −1. For priors for the risk premium terms, let

ηi = (δi ,γi)′ andσ2
i , i = 1, . . . ,m+ 1, be the error variance in the linear regression of the long

run equilibriumSt = δt + γtt + ut , ut ∼ iidN(0,σ2), then the prior for these parameters are such

that the joint priorp(ηi | σ2
i )p(σ2

i ) = p(ηi ,σ2
i ) is the normal inverted gamma density. For the

prior for B, we consider that the vectorizedB is the normal unconditional onΩi . We assume prior

independence betweenk, B, Ωi , and
(
ηi ,σ2

i

)
, i = 1,2, . . . ,m+1, such that

p
(
k,B, Ω1, . . . ,Ωm+1,η1, . . . ,ηm+1,σ2

1, . . . ,σ
2
m+1

)
= p(k) p(B)∏m+1

i=1

{
p(Ωi) p

(
ηi ,σ2

i

)}
.

The priors fork, Ωi , vec(B), andηi are given as follows:

k∼ uni f orm(p+1,T−1) (6)

Ωi ∼ IW (Λi ,hi) (7)
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vec(B)∼ N(vec(B0) ,V0) (8)

(ηi ,σ2
i )∼ NIG(η0,i ,M0,i ,s0,i ,ν0,i) (9)

whereIW refers to an inverted Wishart distribution with parametersΛi ∈ R2×2 and degrees of

freedom,hi ; N refers to a multivariate normal with meanvec(B0) ∈ R2κ×1 and covarianceV0 ∈

R2κ×2κ in (8); NIG denotes a normal-inverted gamma density with meanη0,i ∈ R2×1, covariance

M0,i ∈ R2×2, σ2
i , s0,i andν0,i are scalar in (9).

Parameters for the risk premium,ηi = (δi ,γi)′, are assumed to be independent from parameters

such asB andΩi in the VECM but dependent upon the break pointki−1 andki . Thus,ηi is derived

from a simple regressionSi,t = δi + γit +et = ztηi +ei,t conditional onki−1 andki whereSi,t is the

subsample of the regimei, zt = (1, t), andei,t is the Gaussian error term such asei.t ∼ iid(0,σ2
i )

under the condition of the stationarity from the expectations hypothesis. It is, therefore, considered

as a conventional Bayesian linear regression model such that if the natural conjugate prior with

normal-inverted gamma density is assigned, then the marginal posterior density ofηi is a Student-t

distribution, thus the posterior can be obtained analytically.

The joint prior ofk, B, Ωi , ηi andσ2
i is given by multiplication of (6) - (9) as follows:

p
(
k,B,Ω1, . . . ,Ωm+1,η1, . . . ,ηm+1,σ2

1, . . .σ
2
m+1

)
= p(k,B,Ω1, . . . ,Ωm+1) p

(
η1, . . . ,ηm+1,σ2

1, . . .σ
2
m+1

)
∝

(
m+1

∏
i=1

|Λi |hi/2 |Ωi |−(hi+n+1)/2

)
|V0|−1/2

×exp

[
−1

2

{
tr

[
m+1

∑
i=1

(
Ω−1

i Λi
)]

+vec(B−B0)
′V−1

0 vec(B−B0)

}]

×exp

(
−1

2

m+1

∑
i=1

[
σ−2

i

{
s0,i +(ηi −η0,i)

′M0,i (ηi −η0,i)
}])

. (10)
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The likelihood function fork,B,Ωi , ηi andσ2
i is given by,

L
(
k,B,Ω1, . . . ,Ωm+1,η1, . . . ,ηm+1,σ2

1, . . .σ
2
m+1 |Y

)
∝

(
m+1

∏
i=1

|Ωi |−ti/2 σ−ti
i

)
exp

(
−1

2
tr

[
m+1

∑
i=1

{
Ω−1

i (Yi −WiB)′ (Yi −WiB)
}])

×exp

(
−1

2

m+1

∑
i=1

[
σ−2

i (Si −Ziηi)
′ (Si −Ziηi)

])

=

(
m+1

∏
i=1

|Ωi |−ti/2 σ−ti
i

)
exp

(
−1

2

m+1

∑
i=1

[
(vec(Yi −WiB))′ (Ωi ⊗ Iτ)

−1(vec(Yi −WiB))
])

×exp

{
−1

2

m+1

∑
i=1

(
σ−2

i

[
ζi +(ηi − η̂i)

′Z′i Zi (ηi − η̂i)
])}

(11)

whereYi denotes theti × 2 submatrix ofY values in regimei, Wi denotesti × κ submatrix of

W in regime i, andti is the number of observations in regimei whenst = i, i = 1,2, . . . ,m+1,

Si = {Si,1,Si,2, . . . ,Si,ti}′, η̂i = (Z′i Zi)−1Z′i Si , ζi = S′i(Iti −Zi(Z′i Zi)−1Zi)Si , Zi = (z1,z2, . . . ,zti )
′.

3.3 Posterior Specifications and Estimation

The joint posterior distribution can be obtained from the joint priors given in (10) multiplied by

the likelihood function fork, B, andΩi that is,

p(k,B,Ω1, . . . ,Ωm+1,η1, . . . ,ηm+1,σ1, . . .σm+1 |Y)

= p(k,B,Ω1, . . . ,Ωm+1 |Y) p(η1, . . . ,ηm+1,σ1, . . .σm+1 | k,Y)

∝ p(k,B,Ω1, . . . ,Ωm+1)L(k,B,Ω1, . . . ,Ωm+1 |Y)

×p(η1, . . . ,ηm+1,σ1, . . .σm+1)L(η1, . . . ,ηm+1,σ1, . . .σm+1 |Y)

∝

(
m+1

∏
i=1

{
|Λi |hi/2 |Ωi |−(ti+hi+n+1)/2 σ−ti

i

})
|V0|−1/2

×exp

(
−1

2

[
tr

(
m+1

∑
i=1

Ω−1
i Λi

)
+

m+1

∑
i=1

{(
[vec(Yi −WiB)]′ (Ωi ⊗ Iτ)

−1vec(Yi −WiB)
)}
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+vec(B−B0)
′V−1

0 vec(B−B0)
])

×exp

{
−1

2

m+1

∑
i=1

[
σ−2

i

{
s0,1 +ζi +(ηi −η0,i)

′M0,i (ηi −η0,i)+(ηi − η̂i)
′Z′Z(ηi − η̂i)

}]}
.

(12)

Consider first the conditional posterior ofki , i = 1,2, . . . ,m. Given that 1= k0 < · · ·< ki−1 < ki <

ki+1 < · · ·< km+1 = τ and the form of the joint prior, the sample space of the conditional posterior

of ki only depends on the neighboring break dateski−1 andki+1. It follows that, forki ∈ [ki−1,ki+1],

p(ki | [Θ−ki ],Y) ∝ p(ki | ki−1,ki+1,B,Ωi ,Ωi+1,ηi ,ηi+1,Y) (13)

for i = 1, . . .m, which is proportional to the likelihood function forΘ =(k′,B′,Ω′
1, . . .Ω′

m+1,η′1, . . . ,η′m+1)
′

evaluated with a break atki only using data betweenki−1 andki+1 and probabilities proportional

to the likelihood function.

Next, we consider the conditional posterior ofΩi andvec(B). From the joint posterior in (12),

we can write two terms as:

m+1

∑
i=1

{
[vec(Yi −WiB)]′ (Ωi ⊗ Iτ)

−1vec(Yi −WiB)
}

+[vec(B−B0)]
′V−1

0 vec(B−B0)

= [vec(B−B?)]
′V−1

B vec(B−B?)+Q

where

Q =
m+1

∑
i=1

{
[vec(Yi)]

′ (Ωi ⊗ Iτ)
−1vec(Yi)

}
+[vec(B0)]

′V−1
0 vec(B0)− [vec(B?)]

′M−1
? vec(B?) .

Thus, the conditional posterior ofΩi is derived as an inverted Wishart distribution as:

p(Ωi | k,B,ηi ,Y) ∝ |Ξi,?|ti/2|Ωi |−(ti+hi+n+1)/2exp

[
−1

2
tr
(
Ω−1

i Ξi,?
)]

(14)

whereΞi,? = (Yi −WiB)′ (Yi −WiB)+Λi . The conditional posterior ofvec(B) is derived as a mul-
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tivariate normal density with covariance,VB, that is,

p(vec(B) | k,η1, . . . ,ηm+1,Ω1, . . . ,Ωm+1,Y)

∝ |VB|−1/2exp

[
−1

2

{
[vec(B−B?)]

′V−1
B vec(B−B?)

}]
(15)

where

vec(B?) =

[
V−1

0 +
m+1

∑
i=1

{
Ω−1

i ⊗
(
W′

i Wi
)}]−1[

V−1
0 vec(B0)+

m+1

∑
i=1

{
(Ωi ⊗ Ik)

−1vec
(
W′

i Yi
)}]

.

and

VB =

[
V−1

0 +
m+1

∑
i=1

{
Ω−1

i ⊗
(
W′

i Wi
)}]−1

.

The posterior ofηi is a Student-t density conditional onk that is derived analytically from the

joint posterior withσ2
i (a normal-inverted gamma density) as the following:

ηi ∼ t(ηi ,s∗i ,M∗i ,ν∗i) (16)

whereM∗i = M0i +ϒ′
iϒi , ηi = M−1

∗i (M0iη0i +ϒ′
iϒiη̂i), s∗i = s0i +ζi +(η0i−η̂i)′[M−1

0i +(ϒ′
iϒi)−1]−1(η0i−

η̂i), ν∗i = ν0i + ti . Thus, the posterior mean ofηi can be obtained asE[ηi | y] = ηi .

Given the full set of conditional posterior specifications above, we illustrate the Gibbs sam-

pling algorithm for generating sample draws from the posterior. The following steps can be repli-

cated:

• Step 1: Setj = 1. Specify starting values for the parameters of the model,k(0), B(0), and

Ω(0)
i for i = 1,2, . . . ,m+1.

• Step 2a: Compute likelihood probabilities sequentially for each date atk1 = k( j−1)
0 +1, . . . ,k( j−1)

2 −

1 to construct a multinomial distribution. Weight these probabilities such that the sum of

them equals 1.
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• Step 2b: Generate a draw for the first break datek1 as a multinomial random variable on the

sample space
[
k( j−1)

0 ,k( j−1)
2

]
from

p
(

k( j)
1 | k( j−1)

0 ,k( j−1)
2 ,B( j−1),Ω( j−1)

1 ,Ω( j−1)
2 ,η( j−1)

1 ,η( j−1)
2 ,Y

)
.

• Step 3a: Fori = 3, . . . ,m+1, compute likelihood probabilities sequentially for each date at

ki−1 = k( j−1)
i−1 +1, . . . ,k( j−1)

i to construct a multinomial distribution. Weight these probabili-

ties such that their sum equals 1.

• Step 3b: Generate a draw of the(i−1)th break datek( j)
i−1 from the conditional posterior

p
(

k( j)
i−1 | k( j−1)

i−2 ,k( j−1)
i ,B( j−1),Ω( j−1)

i−1 ,Ω( j−1)
i ,η( j−1)

i−1 ,η( j−1)
i ,Y

)
. Return to repeat Step 3a,

but imposing the previously generated break date, to generate the next break date. Iterate

until all breaks are generated.

• Step 4: Computeη( j)
i asE[ηi | y] = ηi whereηi is calculated from the posterior in (16).

• Step 5: GenerateB( j) from p(vec(B) | k( j−1),η( j)
1 , . . . ,η( j)

m+1,Ω
( j−1)
i , . . . ,Ω( j−1)

m+1 ,Y) in (15).

• Step 6: GenerateΩ( j)
i from p(Ωi | k( j−1),B( j),η( j)

i ,Y) for all i = 1, . . . ,m+1 in (14).

• Step 7: Setj = j +1, and go to Step 2.

Step 2 through to Step 7 are iteratedN times to obtain the posterior densities. Note that the firstL

iterations are discarded in order to remove the effect of the initial values.

3.4 Determining the Number of Structural Breaks and Model Selection by Bayes

Factors

Determining the number of structural breaks in a vector error correction model can be treated as a

problem of model selection. In a Bayesian context, the posterior probabilities for all models under

consideration are used for model selection. The posterior probabilities can be obtained by Bayes

factors, defined by the ratio of marginal likelihoods asBFjk = p(y | M j)/p(y | Mk), and there are
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several methods to calculate the Bayes factors (see Kass and Raftery, 1995). In this paper we

choose the Schwarz’s Bayesian information criterion (BIC) to approximate the Bayes factors.

The Schwarz BIC can give a rough approximation of the Bayes factors, which is easy to

use and does not require evaluation of the prior distribution as Kass and Raftery (1995) noted.

Wang and Zivot (2000) employed the Schwarz BIC to calculate the Bayes factors for detecting the

number of structural breaks in a univariate context. The Schwarz BIC for modelj can be obtained

as

BIC j=-2 lnL
(

θ̂ j |Y;M j

)
+q j ln(t) (17)

whereL
(

θ̂ j |Y;M j

)
denotes the likelihood function for modelj; q j denotes the total number

of estimated parameters in the modelj and Mj denotes the model indicator for modelj. The

likelihood functionL
(

θ̂ j |Y;M j

)
is evaluated at̂θ j , the posterior means of the parameters for

model j based on the output of the Gibbs sampler.

The Bayes factor for modelk against modelj can be approximated by

BFjk ≈ exp[−0.5(BIC j −BICk)] (18)

With the prior odds, defined as Pr(Mj )/Pr(Mk), the posterior odds can be obtained by multiplying

the Bayes factor by the prior odds as PosteriorOddsjk = BFjk ×PriorOddsjk. We compute the

posterior odds for all possible models and then obtain the posterior probability for each model by

Pr(M j |Y) =
PosteriorOddsjk

∑n
m=1PosteriorOddsmk

(19)

wheren is the number of models under consideration.

By using the Schwarz BIC to approximate the logarithm of the Bayes factor, it is easy to

determine the number of breaks and other model specification such as whether the volatility is

subject to structural breaks as a problem of model selection. In our case, we compute the Schwarz
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BIC as

BIC j = -2 lnL(k,B,Ω1, . . . ,Ωm+1,η1, . . . ,ηm+1 |Y;M j)+q j ln(T) (20)

We compute BICj using the posterior modes ofk j for j = 1, . . . ,m and the posterior means of the

remaining parameters based on the output of the Gibbs sampler.

Alternative methods for calculating the Bayes factor include using the harmonic mean of the

likelihood as the marginal likelihood (Newton and Raftery, 1994), or using the Gibbs output to

calculate the marginal likelihood (Chib, 1995). Compared with these methods, the BIC approach

gives merely a rough approximation although it is consistent in determining the number of struc-

tural breaks as shown by Yao (1988) and Liu et al (1997).

4 Estimation Results

In this section, we analyze the Japanese term structure of interest rates using the cointegration

models with multiple structural breaks outlined in the previous section. The data used in this em-

pirical study are 3-month bill rate as the short-term interest rate and 5-year government bond yield

as the long-term interest rate based on the monthly data taken from IMF’sInternational Financial

StatisticsandDatastreamrespectively ranged from 1985:01 to 2005:10 with 250 observations,

and are plotted in Figure 1. Figure 2 presents the spread between the two rates.

We consider the VECM with∆rt = (∆r l ,t ,∆rs,t), wherers,t denotes the short-term interest rate

and r l ,t denotes the long-term interest rate, and estimate eight models with structural breaks in

different subset of the parameters with the number of breaksm= 0,1, . . . ,5. The number of lags

p is 3 selected by Schwarz BIC. The Gibbs sampling is performed with 10,000 draws and the

first 1,000 discarded. The prior hyperparameters are chosen asΛi = 0.1I2, hi = 2.001∀i in (7),

B0 = 0κ×n, V0 = 0.1Iκ in (8), η0,i = 02×1, M0,i = 0, s0,i = 0.1, ν0,i = 0.01∀i in (9). These choices

of the hyperparmeters are relatively noninformative.

In this empirical study, we are interested in how the breaks affect the the adjustment terms,
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risk premium and covariance-variance matrices so that models under consideration allow these

parameters to change with breaks. The following eight models with different specifications were

estimated2:

Model 1: ∆rt = µt +
2

∑
i=1

Ψi∆rt−i + ε∗t

Model 2: ∆rt = µt +
2

∑
i=1

Ψi∆rt−i + εt

Model 3: ∆rt = αt(St−1−δt)+
2

∑
i=1

Ψi∆rt−i + ε∗t

Model 4: ∆rt = αt(St−1−δt)+
2

∑
i=1

Ψi∆rt−i + εt

Model 5: ∆rt = αt(St−1−δ)+
2

∑
i=1

Ψi∆rt−i + ε∗t

Model 6: ∆rt = αt(St−1−δ)+
2

∑
i=1

Ψi∆rt−i + εt

Model 7: ∆rt = µt +α(St−1−δ)+
2

∑
i=1

Ψi∆rt−i + ε∗t

Model 8: ∆rt = µt +α(St−1−δ)+
2

∑
i=1

Ψi∆rt−i + εt

whereε∗t ∼ iidN(0,Ωt) for Model 1, 3, 5 and 7, andεt ∼ iidN(0,Ω) for other models. Model 1

and Model 2 assume that there is no cointegration relationship between the two variables. Model

1 allowsµ andΩ to change with breaks, while Model 2 assumes constant volatility. The rest of

models assume that there exist one cointegration relationship between the two interest rates. In

Model 3α, δ andΩ are subject to change with breaks. Model 4 restrictsΩ to being constant over

the entire sample. Model 5 assumes thatα andΩ shift with breaks while in Model 6Ω does not

shift. The speed of the adjustment toward the equilibrium in both Model 5 and 6 is subject to

2We also considered models that contains the time trend in the cointegrating relationship. However, the Bayes
factors for these models are insignificantly small compared with the models considered in this paper.
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change while the risk premium in these models is not affected by the breaks. Model 7 assumes

that intercept termµ andΩ shift with breaks while in Model 8Ω does not change with breaks. In

both Model 7 and 8 changes in risk premium does not affect the speed of the adjustment as Model

5 and 6, but the intercept terms are subject to change with the breaks. To compute the posterior

probabilities for the models with a various number of the breaks, the Bayes factors approximated

by (18) and (20) are calculated, and the results are reported in Table 2. From these results, a

cointegration exists once the structural breaks are considered as Pr(Model 1 | Y)+ Pr(Model 2 |

Y) = 0.000. The most appropriate number of the break ism= 3 since the posterior probability

whenm= 3, Pr(m= 3 |Y) = ∑8
i=1Pr(m= 3 |Model i,Y) = 0.854, which is dominant. Clearly, the

no-structural break model (m= 0) is rejected by the data as Pr(m= 0 |Y) = 0.000. A cointegration

is not detected if the structural breaks were not considered as shown in Table 1, although once

the breaks were taken into consideration a model with cointegration is strongly favored. The

results reported in Table 2 show that the models where covariance matrices,Ωt , change with

breaks (Model 1, Model 3, and Model 5) are strongly supported against homoscedastic models.

A model with the highest posterior probability is Model 3 with 97.2 percent (Pr(Model 3|Y) =

∑5
i=0Pr(Model 3| m= i,Y) = 0.972). Other models exhibit ignorably low posterior probabilities.

Hence Model 3 withm= 3 is dominant over other models with Pr(Model 3| m= 3,Y) = 0.836,

and thus we focus on this model to investigate.

The estimated break points and the 95% HPDI (Highest Probability Density Intervals) of each

break point for Model 3 withm= 3 are reported in Table 3 and plotted in Figure 3. The posterior

mode of the three structural breaks are 1991:4, 1999:4, and 2001:7. The first estimated break date

seems closely associated with the burst of the bubbled economy in 1990, and the second break

seems associated with the implementation ofthe zero-interest-rate-policyin March 1999. The

third break date seems to correspond with the introduction ofthe quantitative easing policyin

March 2001.

The estimates of parameters for Model 3 excluding the coefficients of the two lag terms of

the vector error correction model with three structural breaks are reported in Table 4. The results

show that there are significant changes in volatilityΩ. For example,Ω1 in the first regime is the
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largest and then becomes smaller as both rates approach zero. This is not surprising since with the

lower interest rates as in the ZIRP the volatility tends to be smaller. On the other hand, the higher

interest rates tends to fluctuate much more than lower rates. In the third and fourth regimes, the

standard deviations of the covariances between the error terms of the long- and short-term interest

rate are very high; in other words, the covariances between the two rates are not significant. This

suggests that the movement of the long-term interest rate is almost independent of those of the

short-term interest rate in the third and fourth regimes where the short rate has been kept as low

as zero percent, while in other regimes (regime 1 and 2) the covariances between the long- and

short-term interest rates are significantly different from zero.

The estimated speed of adjustment toward the equilibrium,αi , clearly differs between the

four regimes. The speed of adjustment for both short- and long-term interest rates are decreased

after the second break date, the implementation of thezero-interest-rate policyin 1999. In the

first and second regimes before the second break point the speed of both long- and short-term

rates are significant with small standard deviations; however, after the second break, the speed

declines and becomes insignificant. After the second break point, the adjustment speed for both

long- and short-term interest rate approaches almost zero with fairly large standard deviations.

This implies that the cointegration relationship between the two interest rates is weakened after

the second break point. This is consistent with the expectations hypothesis of the term structure,

which implies that when the interest rates are lower the stable relationship of the interest spread

is weakened and the spread is merely risk premium when the short-term interest rate reaches zero

percent. Figure 4 plots the posterior density of eachα (alpha-ij where i denotes regime 1,2,3,4

and j=1 for the long-term, j=2 for the short-term interest rate), and shows that both densities ofα

for both in the third and fourth regimes (alpha-31, alpha-32, alpha-41 and alpha-42) contain zero,

which suggests that the adjustment toward the stable relationship does not occur in the regimes of

the zero-interest-rate-policyand thequantitative easing policy. These analysis by the HPDI are

sensible but informal in contrast to posterior odds. To confirm this no-cointegration in the third

and the fourth regime in a formal way, we compute the Bayes factor using the Savage-Dickey

density ratio method with the restrictionsα3 = α4 = 0. The Savage-Dickey density ratio is used
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for comparing nested models where one model is restricted (M1) and the other is unrestricted

(M2). The Bayes factor comparing these two models by Savage-Dickey density ratio is given by:

BF12 =
p(α3 = α4 = 0 |Y,Model 3)
p(α3 = α4 = 0 |Model 3)

(21)

The denominator of the RHS in (21) is easily calculated sincevec(αi) is a part ofvec(B) which is

Normal. The numerator of the RHS in (21) cannot be calculated directly since we have the condi-

tional posterior forvec(B) (that isvec(α)) which is Normal, but not the marginal posterior density.

The Gibbs output, however, can be used for estimation of the marginal posterior. LetN be the total

number of the Gibbs iterations,N0 be the number of draws that is discarded to remove the effect

of the initial values. Then, averagingp
(

α3 = α4 = 0 | k(n),η(n)
3 ,η(n)

4 ,Ω(n)
3 ,Ω(n)

4 ,Y3−4,Model 3
)

across the drawsk(n),η(n)
3 ,η(n)

4 ,Ω(n)
3 ,Ω(n)

4 will yield an estimate ofp(α3 = α4 = 0 |Y,Model 3).

To be precise, letΘ(n) =
(

k(n),η(n)
3 ,η(n)

4 ,Ω(n)
3 ,Ω(n)

4

)
be then-th draw from the Gibbs sampler, then

1
N−N0

N

∑
n=N0+1

p
(

α3 = α4 = 0 | Θ(n),Y3−4,Model 3
)

→ p(α3 = α4 = 0 |Y,Model 3) (22)

asN goes to infinity. We compute the Bayes factor using (21) and (22) to compare the restricted

model with the unrestricted model. The Bayes factor for this results in 8.842, which suggests that

the restricted model of the no-cointegration in regime 3 and 4 is supported with 89.84%.

Table 4 also shows that the changes in the values of the meanδ in the cointegrating relationship

are significantly affected by the breaks. This parameter expresses the risk premium according to

the expectations hypothesis. It is negative until the first break when the bubble burst in 1991. It

then becomes positive as the future uncertainty increases in the recession. After the second break

the risk premium again decreases with the expectation of recovery from the long recession. Then

the risk premium is slightly increased after the third break.
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5 Conclusion

This paper developed a Bayesian approach for a cointegrated VAR model with multiple structural

breaks in order to analyze the expectations hypothesis for the Japanese term structure of the interest

rates, extending Wang and Zivot’s (2000) approach for univariate models. The Gibbs sampling

method simplifies the estimation of this model. The number of structural break points are selected

by the posterior probability based on the estimation of the models given the number of possible

break dates. The Bayesian approach provides useful information such as uncertainty in the location

of the dates by the posterior mass function for each estimated break points.

We found strong evidence of three structural breaks during 1985 - 2005. These three breaks

seemed to be associated respectively with the burst of economic bubble in 1990, the implementa-

tion of the BoJ’szero-interest rate policyin late 1999, andthe quantitative easing policyin 2001.

The speed of the adjustment toward the equilibrium is found to be affected by the breaks. The

adjustment terms approach almost zero after the second break date for both long- and short-term

interest rates, which implies that there was no cointegration relation in the third regime when the

short-term interest rate was kept at nearly zero percent; that is, it did not respond to the movement

of the long-term interest rate. The Bayes factor calculated by the Savage-Dickey density ratio

supports no cointegration during these periods. This finding is consistent with the expectations

hypothesis of the term structure model that implies no cointegration when interest rates are low

because the risk premium is dominant in the yield spread between the two interest rates. We also

found that the volatility and the risk premium were affected by these three breaks.
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Figure 1: Japanese long-term and short-term interest rates
solid line - long-term interest rate, dotted line - short-term interest rate
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Figure 2: Spread between Long- and Short-term Interest Rates
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Table 1: Cointegration Tests

rankr PIC KP (%) Strachan (%) LR 5% cv
0 -2.174 0.851 0.979 8.209 12.53
1 -0.588 0.122 0.021 2.028 3.84
2 -0.127 0.027 0.000 – –

Note:
The lag was chosen to bep = 3 in VAR by the BIC.
PIC: Posterior Information Criterion (Chao and Phillips, 1999)
KP: Kleibergen and Paap method with diffuse prior (2002)
Strachan: Strachan’s method with diffuse prior, Strachan and Inder (2004)

LR: Johansen’s LR trace test (Johansen, 1991)

Table 2: Model Selection and the number of the breaksm by the Posterior Probabilities

m= 0 m= 1 m= 2 m= 3 m= 4 m= 5 Pr(Model|Y)
Model 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Model 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Model 3 0.0000 0.0004 0.0002 0.8357 0.1354 0.0000 0.9717
Model 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Model 5 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0002
Model 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Model 7 0.0000 0.0005 0.0092 0.0185 0.0000 0.0000 0.0282
Model 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Pr(m|Y) 0.0000 0.0011 0.0094 0.8542 0.1354 0.0000

Note: m denotes the number of the breaks

Table 3: Estimates of the Break Points for Model 3

()=standard deviation,

Post. Mode for Model 3 95% HPDI
d1 1991:04 (0.2611) 1991:02, 1991:07
d2 1999:04 (5.3813) 1998:08, 1999:08
d3 2001:07 (1.4309) 2001:05, 2001.10
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Figure 3: Posterior Probability Mass of the Break Points for Model 3
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Table 4: Parameter Estimates (Posterior Mean) for Model 3

()=standard deviation,

Parameter r l ,t rs,t

α1 -0.00364 (0.00095) 0.00123 (0.00039)
α2 -0.00512 (0.00065) 0.00506 (0.00123)
α3 0.00085 (0.00086) 0.00154 (0.00153)
α4 -0.00408 (0.00414) 0.00055 (0.00109)

δ1 δ2 δ3 δ4

-0.39609 1.6057 1.0528 1.3496
(0.09099) (0.04563) (0.05371) (0.03094)

Ω1 =


0.05268 0.02764

(0.02764) (0.00632)
0.02764 0.10592

(0.00632) (0.01958)

, Ω2 =


0.05278 0.01106

(0.00762) (0.00168)
0.01106 0.02468

(0.00168) (0.00344)



Ω3 =


0.01206 0.00099

(0.01046) (0.00063)
0.00099 0.00374

(0.00063) (0.00149)

, Ω3 =


0.03651 0.00050

(0.01092) (0.00027)
0.00050 0.00027

(0.00027) (0.00007)


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Figure 4: Posterior Density ofα for Model 7
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