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Abstract

This paper investigates the expectations hypothesis for the Japanese term structure of in-
terest rates using vector error correction models with multiple structural breaks, focusing on
how the breaks affect volatility, risk premium and speed of the adjustment toward the equilib-
rium. Using 1985-2005 data, we find strong evidence of three structural changes. After the
second break point, the term structure relationship is found to be weakened with nearly zero
percent short-term interest rate. This finding is consistent with the expectations hypothesis
since with very low short-term interest rate the risk premium is dominant in determining long
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1 Introduction

In the past few decades the Japanese economy has swung from rapid expansion in the late 80’s
to recession after the 1990 burst of the economic bubble. Japanese interest rates have moved in
tandem. Interest rates exhibited a declining trend up to 1987 when both long- and short-term rates
fell to around 4 percent, causing rapid economic expansion. The Bank of Japan (BoJ) introduced
higher interest rates policy to alleviate the economic expansion, and maintained its higher interest
rates policy until 1991. In 1990 the economic bubble burst, and then interest rates dropped rapidly
with the BoJ’s implementation of expansionary policies in an attempt to stimulate the sluggish
economy. In 1999 the BoJ introduced thero-interest-rate-policthat caused the short-term in-

terest rates to approach almost zero percent yield. Thus, the movement of the Japanese interest
rates are largely affected by the BoJ’s monetary policy, and considering a time series model with-
out multiple structural breaks might be misleading.

This paper investigates the expectations hypothesis for the Japanese term structure of interest
rates using vector error correction models with multiple structural breaks in deterministic terms,
adjustment terms, risk premium and covariance-variance matrices. The term structure of interest
rates implies a stable relationship between interest rates with different maturities. This stable
relationship would not be maintained when the short rate is successively close to zero percent
because with lower short-term rate the spread between the two different rates approaches the risk
premium and contains less information to account for the future long-term rates (Nagayasu, 2004).
We provide a simple methodology for empirical evidence of the expectations hypothesis using co-
integrated VAR models with multiple structural breaks.

The cointegration analysis for U.S. term structure has received significant attention since
Campbell and Shiller (1987). Hadlt al. (1992), Engsted and Tanggaard (1994), and Pagan
al. (1996) did not reject the null of no cointegration. However, after accounting for structural
break(s), Bliss and Smith (1998), Lanne (1999), Hansen and Johansen (1999), Hansen (2003) de-
tected the cointegration relationship. Aside from structural break, Sola and Driffill (1994) detected

the cointegration of the expectations hypothesis using a Markov switching model. Other nonlinear



examples are found in Dwyet al. (1996), Tsay (1998), van Dijk and Franses (2000), Hansen
and Seo (2001), Clements and Galvao (2001), and Clements and Galvao (2002).

To test for and estimate structural break in a multivariate dynamic model, Gregory and Hansen
(1996a) developed residual-based tests for a single structural break, appBing, Z,—, and
Z;— type tests to test the null of no cointegration against the alternative of cointegration in the pres-
ence of a possible regime shift. Gregory and Hansen (1996b) extended this to allow a trend shift in
a cointegration model with a single break point. Hansen and Johansen (1999) tested a single struc-
tural break based on Nyblomisstatistic (1989). Bagt al. (1998) applied the Andrews-Ploberger
exponential Wald statistic (1994) and developed methods for constructing confidence intervals for
the date of a single break in multivariate time series. Seo (1998) provided the Lagrange multi-
plier test for structural breaks in a cointegration model, applgingLM statistic by Andrews and
Ploberger (1994). Testing for structural breaks in any subset of parameters in cointegration models
was proposed by Hansen (2003), but this method assumed that the location of the break points are
known.

This paper applies a Bayesian approach to analyze a vector error correction model for the
Japanese term structure model, extending Wang and Zivot’s (2000) method for detecting multiple
breaks in univariate models as a problem of model selection. The Bayesian method with Markov
chain Monte Carlo simulation technique makes testing for and estimating of multiple structural
breaks in cointegration models technically simpler. Furthermore, the Bayesian method provides
useful posterior information such as posterior density and uncertainty in the location of the break
points rather than just point estimation. While Baal. (1998) proposed a method for constructing
confidence intervals for the date of a single break in a classical framework, the Bayesian method
provides HPDIs (highest posterior density interval) for the dates of multiple breaks.

This paper is organized as follows. Section 2 discusses the expectations hypothesis for the term
structure of the interest rate, and reviews briefly movement of the Japanese interest rates. Modeling
and its estimation method are presented in Section 3. Results of the empirical estimation for the
Japanese term structure are reported in Section 4. Section 5 concludes. All computation in this

article was performed using Ox v3.40 for Linux (Doornik, 2001).



2 Expectations Hypothesis for the Term Structure of the Interest

Rates

2.1 The Expectations Hypothesis

The expectations hypothesis for the term structure of the interest rates states thatettied
interest rate is equal to the weighted average of the expected one period return plus a risk premium.
For an overview of the expectations hypothesis theory, see Shiller (1990)¢ {le¢ the yield to
maturity for anf-period at timet, Ls¢ be the risk premium for ari-period at timet, then the

hypothesis implies:

f
e = fﬁlZEtrl,t—&-i—l'f‘ Lt (1)
i=
By rewriting the above equation, the interest rate sp&adan be expressed as:

Stt=rft—rit = ft ileljilEtNl,tﬂ +Ltyt (2)

If r¢ is integrated of order one, then, is also integrated of order one and thyg andry; are
cointegrated with cointegrating vector (1, -1) as analyzed by Campbell and Shiller (1987). The
risk premium is assumed to bg0) so that the hypothesis states that—rqt — Lt is a stationary
process. Equation (2) states that if the change in expected short-term rate is zero percent, the
spreadSs ¢ equals the risk premiuros .

The expectations hypothesis in equation (2) with constant risk premium implies the following
vector error correction model witp lags:

p—1
Arg =Di+0(rfp-1—r1p-1—Lee) + Z WiAr_j + & (3
=

wherer = ( r¢; ry )’ Dristhe deterministic termy (2x 1) is the speed of the adjustment term,
Wi (2% 2) is the lag coefficient, angd (2x 2) isiidN( 0 Q) . In this paper the risk premiuizy ;

is assumed to be either constant suchas 6 (as in Hansen, 2003) or constant with trend term



such ad; = 6+ yt within a given regime.

2.2 Japanese Interest Rates and the Expectations Hypothesis

Figure 1 illustrates the movement of the Japanese short-term interest rate (3-month bill rate) and
the long-term interest rate (5-year government bond yield) since 1985. Until 1987, both short- and
long-rates were decreasing partly because the Japanese government used monetary policy to en-
sure an appreciation of the Japanese Yen to avoid more accumulation of the trade surpluses against
the US. The lower interest rates boosted the Japanese economy hereafter. The Bank of Japan (BoJ)
introduced a higher interest rate policy to catch up with rapid economic expansion. It was, how-
ever, too late to prevent the economy from overheating, and resulted in bubble economy. The
bubble economy burst in 1990, and accordingly, the interest rates exhibited a declining trend until
the BoJ introduced theero-interest-rate polic{ZIRP) between 1999 and 2001 in order to provide
adequate liquidity. Under the ZIRP, the BOJ maintained a nearly zero percent overnight call rate.
In 2001, the BoJ implemented a different operating target, which is the so cpleeditative-
easing policQEP). The aim was at further expansionary monetary policy by injecting liquidity
into the market by setting the level of its current account as the operating target instead of target-
ing the level of the overnight call rate. Figure 1 shows that the short rate has been closed to zero
since the ZIRP was implemented in 1999 and even since the QEP was implemented in 2001. The
expectation hypothesis in equation (2) shows that with O percent of the expected short term rates
the size of the yield spread equals the risk premium, which is assui@gdhat is, the long-term
rate is merely the risk premium in this period, and thus the cointegration relationship between the
two rates does not occur in this period. Since the ZIRP was introduced by the BoJ, the short-term
interest rate has been kept nearly zero percent so that the cointegrating relationship between the
two rates might have been vanished.

Figure 2 plots the yield spread between Japanese short- and long-term interest rates. If the
expectations hypothesis holds, the spread shown in Figure 2 should follow a stationary process.
The spread shows a negative trend until around 1991. This negative trend implies a lower risk pre-

mium due to higher expectation of future economic expansion. After 1991 it moved in an upward
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trend with higher risk premium until around 1996. In 1996 the short-rate suddenly dropped and
the long-rate decreased gradually, so the spread decreased until 1999. After the 1999 implementa-
tion of the ZIRP, the spread has seemed to be stable due to the stationary process of the long-term
interest rate that equals the risk premiurf0f) according to the expectation hypothesis.

Table 1 presents the results of several cointegration tests: PIC (Chao and Phillips, 1999),
Kleibergen & Paap’s Bayesian test (KP) with diffuse prior (Kleibergen and Paap, 2002), Strachan
and Inder’s Grassman approach (2004), and Johansen’s LR test {198&)PIC selects the rank
0 that has the smallest statistic. The KP test shows that the posterior probability of rank 0 is the
highest with 85.1%. The Strachan’s method also chooses rank 0 with 97.9%. The Johansen’s trace
test cannot reject the null of= 0 at 5 percent significant level. Thus, all five tests cannot detect
cointegration relationship between Japanese long and short term interest rates if structural breaks

are not included in the model.

3 A Time Series Model with Multiple Structural Breaks in a Co-

integrated VAR Model

3.1 Statistical Model

To investigate how structural breaks affect the speed of adjustment, the cointegrating vector, the
risk premium and other terms, we consider the form of a vector error correction model with mul-
tiple structural breaks in equation (3). It is possible to consider a more general model where lag
terms also change with breaks; however, for parsimonious reason, we assume that the lag terms
do not change over time.

Let X; denote arl (1) vector ofn-dimensional time series. The long-run multiplier matrix is
decomposed agfy, both aren x r, wherea is the adjustment term arfél is the cointegrating

vector. In this papeK; = (r,rst) wherer,; denotes long-term interest rate ang short-term

1The PIC and the KP methods requifg(r is the number of rank in the long-run multiplier matrix) linear restrictions
on the cointegrating vector for identification and normalization. Strachan (2003) and Strachan and Inder (2004) criti-
cized this linear normalization as likely invalid. See Koop et al (2004) for a general survey of Bayesian cointegration
analysis with a focus on the prior elicitation.



interest rate, and the cointegrating vedfois defined ag1,—1,—&,—y) so that the long-run
equilibrium is represented & 1 — (& + ytt) whereS_1 =111 —rst—1 is the spread of the two
interest ratest) andrs; , att — 1 period,& + yit denotes the risk premium under the rational
expectations hypothesis. If we assume that all parameters except the lag terms in VECM are
subject to structural breaks, then the bivariate VECM representation is:

p—1

DX = P+ &t + 00 (S-1— & —wet) + ZI WilXe i + & (4)

=
wheret = p, p+1,...,T,andpis the number of lags, arglare assumeN (0, Q;) and independent
over time. Dimensions of matrices gig & ande (2 x 1), W;; andQ; (2 x 2). We assume that the
parametersk, & andQ; are subject tan < t structural breaks with break poirks, ..., kmn, where
ki < ks < --- < km, SO that the observations can be separatedimtdl regimes.

Equation (4) can be rewritten in the matrix format as:

Y —WB+E 5)
where
177 /

Y=14ar, A, Ar T},EZ[s’p €pi1 e’T]
W:_X Z - zm+1}B=[r' ay - a’m+1}/,

i S,p-1(Sp-1—3p — YpP) _
7 = 37p(sp_5p+l-—yp+l(p+1)) fori=1..mid,

| sT-(Sr-a—dr—wT)
F=1m - Hmr & - &ma W1 - Wpa |5



Stp o Smelp Stp e Sm+1p Arg .y - Ay
N Si,p+1 ' Smelp+l 281 pi1 2Smi1,pt1 Ar/p Ar’z
st Smaar (T—p+Dsir o (T—p+Dsnar Arpy - Arp o |

Let T be the number of rows of, so thatt =T — p+1, thenX ist x 2(m+ p), [ is 2(m+ p) x 2,
W is T x K wherek = 3m+2p+1, andB isK x 2. 5, in X is an indicator variable that equals
1 if the regime id and O otherwise. Equation (5) represents the multivariate regression format of

equation (4).

3.2 Prior Distributions and Likelihood Functions

We specify the proper prior distributions for the parameters given in the model (4)k +et
(k1,ko, ..., km)" denote the vector of break dates. For the pkiawe choose a prior that is uniform
over all ordered subsequencegsef p+1,...,T — 1. For priors for the risk premium terms, let
ni = (&,y)) ando?, i = 1,...,m+1, be the error variance in the linear regression of the long
run equilibrium§ = & + yit + W, e ~ iidN(O, 0?), then the prior for these parameters are such
that the joint priorp(n; | 6?)p(0?) = p(ni,0?) is the normal inverted gamma density. For the
prior for B, we consider that the vectoriz&ls the normal unconditional of2;. We assume prior

independence betweénB, Q;, and(n;,0?),i =1,2,...,m+1, such that

p(k7 Ba Ql?"‘7Qm+17n17‘"7r]m+170-§.7"‘70.|’2n+1) = p(k) p(B) rllnizl{p(Ql) p(nholz)}

The priors fork, Q;, veqB), andn; are given as follows:

K~uniform(p+1,T—1) (6)

Qi ~ IW (A, hy) (7)



vec(B) ~ N (vec(Bp), Vo) (8)

(ni,07) ~ NIG (noji, Moji, So,, Vo, (9)

wherelW refers to an inverted Wishart distribution with paramet&rss R>*? and degrees of
freedom,h;; N refers to a multivariate normal with meaec(Bg) € R?*! and covarianc®p €
R?*2¢ in (8); NIG denotes a normal-inverted gamma density with mggnc R?<%, covariance
Mo, € R?*2, 02, 59; andvo; are scalar in (9).

Parameters for the risk premium,= (&;,Y;)’, are assumed to be independent from parameters
such a8 andQ; in the VECM but dependent upon the break pdéint andk;. Thus,n; is derived
from a simple regressiof ; = & + Vit + & = zn; + & conditional ork;_1 andk; whereS; is the
subsample of the regimez = (1,t), ande; is the Gaussian error term suche&s~ iid (0, ciz)
under the condition of the stationarity from the expectations hypothesis. Itis, therefore, considered
as a conventional Bayesian linear regression model such that if the natural conjugate prior with
normal-inverted gamma density is assigned, then the marginal posterior demgity afStudent-
distribution, thus the posterior can be obtained analytically.

The joint prior ofk, B, Qj, n; anda? is given by multiplication of (6) - (9) as follows:

p(kaB791>-~-an+1anla--~,nm+1’0%7---0r2n+1)
= p(kaB7le"')Qm+l) p(nla"'vnm+1ao-§7"'o-2m+l)

1
0 <m|i| |/\i|hi/2|Qi’(hi+n+1)/2> ‘V0|71/2
=

1
X exp [—2 {tr

1t /
><eXIO<—2 Z (072 {s0j + (Ni — o) Moji (N —no,i)}]> . (10)

m+1

Z (Q )

+vec(B— By)'V, *vec(B — By) }]
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The likelihood function fok, B, Q;, n; anda? is given by,

£ (k B le Qm+l>r]1, 7r]m+170€7 O-I?n-}-l |Y)

(HQ' /2 )exp<_1tr Z{Q (Y —WB) (Y, — WB)}])
xexp(—;nil[ -‘Z(S—Zini)’(S—Ziniﬂ>

Q| %074 | ex 1! vec(Y, —WB)) (Qi ® 1)t (vec(Y; —WB
q\| Pl 3 2. [(vecly ~WE))' (@ 1) (veo(¥i ~wiE))|
mt1

xexp{—; ; <0i_2 [Zi +(i—Ni)'ZZ (n; —ﬁi)D} (11)

whereY; denotes the; x 2 submatrix ofY values in regimd, W denotes; x Kk submatrix of

W in regimei, andt; is the number of observations in regimahens =i, i =1,2,...,m+1,

S={S1,S2--,S4}.Ni=(22)2S,=3( - z(Z2)'2)S,Z = (2,2,...,%,).

3.3 Posterior Specifications and Estimation

The joint posterior distribution can be obtained from the joint priors given in (10) multiplied by

the likelihood function fok, B, andQ; that is,

p(k,B,Ql,...,Qm+1,n1,...,r]m+1,01,...0m+1 |Y)
= p(k,B,Ql,...,Qerl‘Y) p(nl,...,nml,ol,...cml | k,Y)
[l p(k,B,Ql,...,le)ﬂ(k,B,Ql,...,le‘Y)

Xp(nla-~'7r|m+1a01w'-0m+1)£(r]17-~7r]m+1a017~-0m+1 ’Y)

m+1
m(ﬂﬂAW%u“m“””—%yvﬁﬁ

X exp(—; [tr (EQilAi> + mi:{ ([veC(Yi —WB)]' (Qi ® )~ vec(Y, —WuB)> }

11



+vec(B—Bo)'V; 'vec(B— By)])

X exp{—ér_ni [0f2{50,1+1i +(Ni —Noi) Mo, (Ni —Noj) + (Ni —Ni) Z’Z(ni — r]i)H } .

(12)

Consider first the conditional posteriorigfi = 1,2,...,m. Giventhat I=ky < --- <ki_1 <k <
ki1 <--- < kmy1=Tand the form of the joint prior, the sample space of the conditional posterior
of k; only depends on the neighboring break d&tesandk. 1. It follows that, fork; € [ki_1,ki+1],

p(kl | [e_kl]aY) 0 p(kl | kiflaki+laB>Qi7Qi+17ni7ni+laY) (13)

fori=1,...m, whichis proportional to the likelihood function f@= (k',B',Q7,... Q.. 1,1, -, Nmpe)’
evaluated with a break &t only using data betwedq 1 andk;. 1 and probabilities proportional
to the likelihood function.

Next, we consider the conditional posterio@fandvec(B). From the joint posterior in (12),

we can write two terms as:

m+1
Zx {[vec(Yi —~WB)] (Q @) tvedY, —vv.B)} + [veq(B— Bo)]'V, vec(B— By)
=
= [vec(B—B,)]' V5 lvec(B—B,) +Q

where

m+1

Q= Zl {[vec(Yi)]’ (Qi® IT)_lvec(Yi)} + [vec(Bo)]'V, tvec(Bo) — [vec(B,)]' M, vec(B, ).
i=
Thus, the conditional posterior €; is derived as an inverted Wishart distribution as:
p(Qi [ k.B.N;.Y) O Ei_,*r“/zmir<‘i+“i*”“)/2exp[—;tr(0i15,*)] (14)

whereZ; . = (Y —WB)' (Y; —WB) + A;. The conditional posterior ofec(B) is derived as a mul-

12



tivariate normal density with covariancdés, that is,

p(VeC(B) | kanlv- . -,nm+1791, .. '7Qm+laY)

0 |VB|1/2exp[—; {[vec(B—B,)] Vg vec(B - B*)}] (15)
where
m+-1 -1 m+-1
vec(B,) = |V 1+ ZI {O7 e (WW) | Vo tvec(Bo) + ZI {(Qi ® 1) "t vec(W'Y)) }] .
and

Vo= vol+§{nil®<w«w.>}]l-

The posterior ofj; is a Student-density conditional otk that is derived analytically from the

joint posterior witha? (a normal-inverted gamma density) as the following:

Ni ~ t(Mi,Sei, Mai, Vi) (16)

whereM.; = Mg+ YIYi, ; = Mz (Moinoi + Y/ Yifli), Si = Soi +&i 4+ (Nai — i)' Mg -+ (YD) "4 2 (noi —
Ni), Vi = Vgi +ti. Thus, the posterior mean gf can be obtained &&[n; | y] = N;.

Given the full set of conditional posterior specifications above, we illustrate the Gibbs sam-
pling algorithm for generating sample draws from the posterior. The following steps can be repli-

cated:

e Step 1: Sefj = 1. Specify starting values for the parameters of the mdd®l, B®, and
Qi(o) fori=212,... m+1.

e Step 2a: Compute likelihood probabilities sequentially for each ddxﬁei:lk(()j_l) +1,..., kgj_l) —

1 to construct a multinomial distribution. Weight these probabilities such that the sum of

them equals 1.
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Step 2b: Generate a draw for the first break dates a multinomial random variable on the

sample spac%kéjfl), kgfl)} from

( kOJ 1 J 1) B(j—l)’Q(1171)7Q(ZJfl)’n(ljfl)’n(szl)’Y>'

Step 3a: For=3,...,m+ 1, compute likelihood probabilities sequentially for each date at
ki1= ki(i]l) +1,..., ki“_l) to construct a multinomial distribution. Weight these probabili-

ties such that their sum equals 1.

Step 3b: Generate a draw of tlie— 1)th break dateki(j) from the conditional posterior

(kI (KIS 7D Bi-1 U U=t nU-b =D v ) Return to repeat Step 3a,
but imposing the previously generated break date, to generate the next break date. Iterate

until all breaks are generated.
Step 4: Computﬁi(j) asE[ni | y] = n; wheren; is calculated from the posterior in (16).

Step 5: GeneratB!) from p(vec(B) | k(j‘l),n(lj),...,n,(]iil,Qi(jfl), Qﬁr’ml ,Y)in (15).
Step 6: Generat®” from p(Q; | ki=Y,BD nV v) foralli=1,...,m+1in (14).

Step 7: Sef = j+ 1, and go to Step 2.

Step 2 through to Step 7 are iteratddimes to obtain the posterior densities. Note that the ffirst

iterations are discarded in order to remove the effect of the initial values.

3.4 Determining the Number of Structural Breaks and Model Selection by Bayes

Factors

Determining the number of structural breaks in a vector error correction model can be treated as a

problem of model selection. In a Bayesian context, the posterior probabilities for all models under

consideration are used for model selection. The posterior probabilities can be obtained by Bayes

factors, defined by the ratio of marginal likelihoodsBiS, = p(y | Mj)/p(y | M), and there are

14



several methods to calculate the Bayes factors (see Kass and Raftery, 1995). In this paper we
choose the Schwarz’s Bayesian information criterion (BIC) to approximate the Bayes factors.

The Schwarz BIC can give a rough approximation of the Bayes factors, which is easy to
use and does not require evaluation of the prior distribution as Kass and Raftery (1995) noted.
Wang and Zivot (2000) employed the Schwarz BIC to calculate the Bayes factors for detecting the
number of structural breaks in a univariate context. The Schwarz BIC for maadel be obtained

as

BIC;=-2Ing (6 Y;M; ) +ajln t) (17)

where £ (ET, |Y;Mj) denotes the likelihood function for modgl q; denotes the total number
of estimated parameters in the modeand M; denotes the model indicator for modgl The
likelihood function £ ((BAJ RE M,-) is evaluated aBAj, the posterior means of the parameters for
model j based on the output of the Gibbs sampler.

The Bayes factor for modé&lagainst mode| can be approximated by

BFjk ~ exp[—0.5(BIC; — BICy)] (18)

With the prior odds, defined as Pr{MPr(M), the posterior odds can be obtained by multiplying
the Bayes factor by the prior odds as PosteriorQdesBFjx x PriorOddsg. We compute the

posterior odds for all possible models and then obtain the posterior probability for each model by
PosteriorOddg

. 19
> —q PosteriorOdds (19)

Pr(Mj |Y) =

wheren is the number of models under consideration.
By using the Schwarz BIC to approximate the logarithm of the Bayes factor, it is easy to
determine the number of breaks and other model specification such as whether the volatility is

subject to structural breaks as a problem of model selection. In our case, we compute the Schwarz

15



BIC as

BIC; = -2In£(k,B,Q1,...,Qms1,N1,---,Nme1 | Y; M) +q;In(T) (20)

We compute BIG using the posterior modes kf for j = 1,...,mand the posterior means of the
remaining parameters based on the output of the Gibbs sampler.

Alternative methods for calculating the Bayes factor include using the harmonic mean of the
likelihood as the marginal likelihood (Newton and Raftery, 1994), or using the Gibbs output to
calculate the marginal likelihood (Chib, 1995). Compared with these methods, the BIC approach
gives merely a rough approximation although it is consistent in determining the number of struc-

tural breaks as shown by Yao (1988) and Liu et al (1997).

4 Estimation Results

In this section, we analyze the Japanese term structure of interest rates using the cointegration
models with multiple structural breaks outlined in the previous section. The data used in this em-
pirical study are 3-month bill rate as the short-term interest rate and 5-year government bond yield
as the long-term interest rate based on the monthly data taken from IME&fsational Financial
Statisticsand Datastreamrespectively ranged from 1985:01 to 2005:10 with 250 observations,
and are plotted in Figure 1. Figure 2 presents the spread between the two rates.

We consider the VECM witlAry = (Ary ¢, Arsy), wherers, denotes the short-term interest rate
andr; denotes the long-term interest rate, and estimate eight models with structural breaks in
different subset of the parameters with the number of breaks0,1,...,5. The number of lags
p is 3 selected by Schwarz BIC. The Gibbs sampling is performed with 10,000 draws and the
first 1,000 discarded. The prior hyperparameters are chosAn-a®.1l,, hy = 2.001Vi in (7),

Bo = O«xxn, Vo = 0.1l¢ in (8),No, = 0241, Mgj =0, 5 = 0.1,vgj = 0.01Vi in (9). These choices
of the hyperparmeters are relatively noninformative.

In this empirical study, we are interested in how the breaks affect the the adjustment terms,

16



risk premium and covariance-variance matrices so that models under consideration allow these
parameters to change with breaks. The following eight models with different specifications were

estimated:

2
Model 1: Ar; = i + ZwiArtfi +&
i=
2
Model 2: Ary = p + leiNH +&
1=
2
Model 3:Ary = 0t (S-1— &) + ZLIJiArt_i +&
i=
2
Model 4: Ary = a(S-1— &) + leiArH + &
1=

2
Model 5:Ary = 0 (S-1—9) + lePiArt_i +g
i=

2
Model 6: Ar; = 0 (S-1—90) + ZLPiArH +&
=
2
Model 7:Ary = g +0a(S-1—90) + ZlliiArt,i +&
i=

2
Model 8:Ary = +a(S-1—906) + leiArt‘i + &
i=

whereg; ~ iidN (0, Q;) for Model 1, 3, 5 and 7, anel ~ iidN(0,Q) for other models. Model 1

and Model 2 assume that there is no cointegration relationship between the two variables. Model
1 allowsp andQ to change with breaks, while Model 2 assumes constant volatility. The rest of
models assume that there exist one cointegration relationship between the two interest rates. In
Model 3a, & andQ are subject to change with breaks. Model 4 restfirte being constant over

the entire sample. Model 5 assumes thandQ shift with breaks while in Model & does not

shift. The speed of the adjustment toward the equilibrium in both Model 5 and 6 is subject to

2We also considered models that contains the time trend in the cointegrating relationship. However, the Bayes
factors for these models are insignificantly small compared with the models considered in this paper.
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change while the risk premium in these models is not affected by the breaks. Model 7 assumes
that intercept ternuandQ shift with breaks while in Model & does not change with breaks. In

both Model 7 and 8 changes in risk premium does not affect the speed of the adjustment as Model
5 and 6, but the intercept terms are subject to change with the breaks. To compute the posterior
probabilities for the models with a various number of the breaks, the Bayes factors approximated
by (18) and (20) are calculated, and the results are reported in Table 2. From these results, a
cointegration exists once the structural breaks are consideredMsd&i 1|Y) + Pr(Model 2|

Y) = 0.000. The most appropriate number of the breakis 3 since the posterior probability
whenm=3, P(m=3]|Y) = 5& ; Prim= 3| Modeli,Y) = 0.854, which is dominant. Clearly, the
no-structural break modei(= 0) is rejected by the data as(Rr=0]|Y) = 0.000. A cointegration

is not detected if the structural breaks were not considered as shown in Table 1, although once
the breaks were taken into consideration a model with cointegration is strongly favored. The
results reported in Table 2 show that the models where covariance mafggeshange with

breaks (Model 1, Model 3, and Model 5) are strongly supported against homoscedastic models.
A model with the highest posterior probability is Model 3 with 97.2 percentMBdel 3| Y) =
zf’zoPr(ModeI 3| m=i,Y)=0.972). Other models exhibit ignorably low posterior probabilities.
Hence Model 3 withm = 3 is dominant over other models with(Rtodel 3| m= 3,Y) = 0.836,

and thus we focus on this model to investigate.

The estimated break points and the 95% HPDI (Highest Probability Density Intervals) of each
break point for Model 3 withm = 3 are reported in Table 3 and plotted in Figure 3. The posterior
mode of the three structural breaks are 1991:4, 1999:4, and 2001:7. The first estimated break date
seems closely associated with the burst of the bubbled economy in 1990, and the second break
seems associated with the implementatiorthaf zero-interest-rate-policyy March 1999. The
third break date seems to correspond with the introductioth@fquantitative easing policypn
March 2001.

The estimates of parameters for Model 3 excluding the coefficients of the two lag terms of
the vector error correction model with three structural breaks are reported in Table 4. The results

show that there are significant changes in volatility For exampleQ1 in the first regime is the
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largest and then becomes smaller as both rates approach zero. This is not surprising since with the
lower interest rates as in the ZIRP the volatility tends to be smaller. On the other hand, the higher
interest rates tends to fluctuate much more than lower rates. In the third and fourth regimes, the
standard deviations of the covariances between the error terms of the long- and short-term interest
rate are very high; in other words, the covariances between the two rates are not significant. This
suggests that the movement of the long-term interest rate is almost independent of those of the
short-term interest rate in the third and fourth regimes where the short rate has been kept as low
as zero percent, while in other regimes (regime 1 and 2) the covariances between the long- and
short-term interest rates are significantly different from zero.

The estimated speed of adjustment toward the equilibricgnglearly differs between the
four regimes. The speed of adjustment for both short- and long-term interest rates are decreased
after the second break date, the implementation ofzére-interest-rate policyn 1999. In the
first and second regimes before the second break point the speed of both long- and short-term
rates are significant with small standard deviations; however, after the second break, the speed
declines and becomes insignificant. After the second break point, the adjustment speed for both
long- and short-term interest rate approaches almost zero with fairly large standard deviations.
This implies that the cointegration relationship between the two interest rates is weakened after
the second break point. This is consistent with the expectations hypothesis of the term structure,
which implies that when the interest rates are lower the stable relationship of the interest spread
is weakened and the spread is merely risk premium when the short-term interest rate reaches zero
percent. Figure 4 plots the posterior density of eadalpha-ij where i denotes regime 1,2,3,4
and j=1 for the long-term, j=2 for the short-term interest rate), and shows that both densities of
for both in the third and fourth regimes (alpha-31, alpha-32, alpha-41 and alpha-42) contain zero,
which suggests that the adjustment toward the stable relationship does not occur in the regimes of
the zero-interest-rate-policand thequantitative easing policyThese analysis by the HPDI are
sensible but informal in contrast to posterior odds. To confirm this no-cointegration in the third
and the fourth regime in a formal way, we compute the Bayes factor using the Savage-Dickey

density ratio method with the restrictions = a4 = 0. The Savage-Dickey density ratio is used
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for comparing nested models where one model is restricted (M1) and the other is unrestricted

(M2). The Bayes factor comparing these two models by Savage-Dickey density ratio is given by:

p(asz=0a4=0]Y,Model 3)
p(az=0a4=0|Model 3

BF> = (21)

The denominator of the RHS in (21) is easily calculated siremn;) is a part ofvedB) which is
Normal. The numerator of the RHS in (21) cannot be calculated directly since we have the condi-
tional posterior foveqB) (that isveda)) which is Normal, but not the marginal posterior density.
The Gibbs output, however, can be used for estimation of the marginal posteridrbedthe total
number of the Gibbs iterationbly be the number of draws that is discarded to remove the effect
of the initial values. Then, averagirpg(ag =as=0k™ n{" n” o o Y5 4 Model 3)

across the dravvis“”,ng”),ngn),Qg”),an) will yield an estimate ofp (a3 = a4 = 0| Y,Model 3.

To be precise, l6d" = (k(”), né”), r]gn), Q(gn), an)) be then-th draw from the Gibbs sampler, then

! g p (a3 = a4 =0] 0", Y;_4, Model 3)
N —Ng n—fC11
— p(az=04=0]Y,Model 3 (22)

asN goes to infinity. We compute the Bayes factor using (21) and (22) to compare the restricted
model with the unrestricted model. The Bayes factor for this results in 8.842, which suggests that
the restricted model of the no-cointegration in regime 3 and 4 is supported with 89.84%.

Table 4 also shows that the changes in the values of the &iedhe cointegrating relationship
are significantly affected by the breaks. This parameter expresses the risk premium according to
the expectations hypothesis. It is negative until the first break when the bubble burst in 1991. It
then becomes positive as the future uncertainty increases in the recession. After the second break
the risk premium again decreases with the expectation of recovery from the long recession. Then

the risk premium is slightly increased after the third break.
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5 Conclusion

This paper developed a Bayesian approach for a cointegrated VAR model with multiple structural
breaks in order to analyze the expectations hypothesis for the Japanese term structure of the interest
rates, extending Wang and Zivot's (2000) approach for univariate models. The Gibbs sampling
method simplifies the estimation of this model. The number of structural break points are selected
by the posterior probability based on the estimation of the models given the number of possible
break dates. The Bayesian approach provides useful information such as uncertainty in the location
of the dates by the posterior mass function for each estimated break points.

We found strong evidence of three structural breaks during 1985 - 2005. These three breaks
seemed to be associated respectively with the burst of economic bubble in 1990, the implementa-
tion of the BoJ'szero-interest rate policin late 1999, andhe quantitative easing polidp 2001.

The speed of the adjustment toward the equilibrium is found to be affected by the breaks. The
adjustment terms approach almost zero after the second break date for both long- and short-term
interest rates, which implies that there was no cointegration relation in the third regime when the
short-term interest rate was kept at nearly zero percent; that is, it did not respond to the movement
of the long-term interest rate. The Bayes factor calculated by the Savage-Dickey density ratio
supports no cointegration during these periods. This finding is consistent with the expectations
hypothesis of the term structure model that implies no cointegration when interest rates are low
because the risk premium is dominant in the yield spread between the two interest rates. We also

found that the volatility and the risk premium were affected by these three breaks.
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Figure 1: Japanese long-term and short-term interest rates

solid line - long-term interest rate, dotted line - short-term interest rate
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Table 1: Cointegration Tests

rankr  PIC  KP (%) Strachan(%) LR 5%cv

0 -2.174 0.851 0.979 8.209 12.53
1 -0.588 0.122 0.021 2028 3.84
2 -0.127  0.027 0.000 - -

Note:

The lag was chosen to le= 3 in VAR by the BIC.

PIC: Posterior Information Criterion (Chao and Phillips, 1999)

KP: Kleibergen and Paap method with diffuse prior (2002)

Strachan: Strachan’s method with diffuse prior, Strachan and Inder (2004)

LR: Johansen’s LR trace test (Johansen, 1991)

Table 2: Model Selection and the number of the braaksy the Posterior Probabilities

m=0 m=1 m=2 m=3 m=4 m=5 Pr(ModellY)

Model 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Model 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Model 3 0.0000 0.0004 0.0002 0.8357 0.1354 0.0000 0.9717
Model 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Model 5 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0002
Model 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Model 7 0.0000 0.0005 0.0092 0.0185 0.0000 0.0000 0.0282
Model 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Pr(mY) 0.0000 0.0011 0.0094 0.8542 0.1354 0.0000

Note: m denotes the number of the breaks

Table 3: Estimates of the Break Points for Model 3

()=standard deviation,

Post. Mode for Model 3 95% HPDI
di 1991:04 (0.2611) 1991:02, 1991:07
d» 1999:04 (5.3813) 1998:08, 1999:08
ds 2001:07 (1.4309) 2001:05, 2001.10
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Figure 3: Posterior Probability Mass of the Break Points for Model 3
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Table 4: Parameter Estimates (Posterior Mean) for Model 3

()=standard deviation,

Parameter M I'st
(of] -0.00364 (0.00095) 0.00123 (0.00039)
ay -0.00512 (0.00065) 0.00506 (0.00123)
a3 0.00085 (0.00086) 0.00154 (0.00153)
Oy -0.00408 (0.00414) 0.00055 (0.00109)
o1 o 3 04

-0.39609  1.6057  1.0528  1.3496
(0.09099) (0.04563) (0.05371) (0.03094)

[ 005268 002764 ] [ 005278 001106 ]
(0.02764 (0.00632 (0.00762 (0.00168

Q=1 002764 010592 |'2= | 001106 002468
| (0.00632 (0.01958 | | (0.00168 (0.00344 |
[ 0.01206 000099 T [ 0.03651 000050 T
0._ | (001048 (0.00063 | ., _ | (0.01092 (0.00027
37| 0.00099 000374 |’ | 0.00050 000027
| (0.00063 (0.00149 | | (0.00027 (0.00007 |
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Figure 4. Posterior Density af for Model 7
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