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Abstract

This paper introduces a Bayesian approach to a Markov switching vector
error correction model that allows for regime shifts in the intercept terms, the
lag terms, the adjustment terms and the variance-covariance matrix. The pro-
posed Bayesian method allows for estimation of the cointegrating vector within
a nonlinear framework through Gibbs sampling so that it generates more effi-
cient estimation than classical approaches that require a multi-stage maximum
likelihood procedure. The Bayes factors are applied to test for Markov switching
and model specifications. We apply the proposed model to U.S. term structure
of interest rates allowing the risk premium and other parameters in the model to

change with regime.
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1 Introduction

This paper proposes a Markov switching vector error correction model (MS-VECM)
that allows for regime shifts in the intercept terms, the lag terms, the adjustment terms
and the variance-covariance matrix in a vector error correction model, using a Bayesian
approach with a Markov chain Monte Carlo method.

A number of studies consider nonlinear cointegration models with regime switch-
ing. Balke and Fomby (1997) consider a threshold cointegration model in order to
investigate the model in which there is discontinuous adjustment to a long-run equilib-
rium, based on the idea that only when the deviation from the equilibrium exceeds a
critical threshold, do the benefits of adjustment exceed the costs and, hence economic
agents act to move the system back toward the equilibrium. Other research using
threshold cointegration model include Anderson (1997), Tsay (1998), Martens et al
(1998), and Clements and Galvao (2002). Instead of threshold cointegration model,
nonlinear cointegration model using Hamilton’s (1989) Markov regime switching pro-
cess is also developed (Krolzig, 1997). Hall et al (1997) analyze the permanent income
hypothesis using a single equation cointegration model with Markov regime switching.
Psaradakis et al (2004) employ Markov switching to analyze an error correction model
in a single equation. A vector error correction model with Markov regime switching
is applied by Sarno and Valente (2005) for forecasting stock returns, and by Clarida et
al (2006), who show regime switching in the term structure of interest rates.

Estimation for a MS-VECM by classical methods requires a multi-stage maximum
likelihood procedure. The first stage consists of testing for the number of cointegrating
relationships in the system and estimating the cointegrating vectors by implementing
Johansen’s (1988, 1991) maximum likelihood method. Then, the second stage consists
of estimating other parameters in the model by maximum likelihood method. Thus,
the cointegrating vectors and other parameters in a nonlinear vector error correction
model are estimated assuming the model is linear. The final stage consists of the im-

plementation of an expectation-maximization (EM) algorithm for maximum likelihood



estimation for unobserved Markov state variables conditional on estimated values of
the cointegrating vectors and other parameters by maximum likelihood. Thus, to es-
timate the Markov state variables, the maximum likelihood estimates are treated as if
they were the true values.

By applying a Bayesian approach, estimation of the MS-VECM is more efficient as
inference on the state variable is based on a joint distribution, rather than a conditional
distribution. The cointegrating vectors are estimated based on a joint distribution of
other variables including the state variables, so that it allows estimation of the cointe-
grating vectors within a nonlinear framework, rather than assuming that the model is
linear.

This paper proposes a Bayesian approach to a MS-VECM that allows the intercept,
the lag terms, the adjustment coefficients, and the variance-covariance matrix to shift
with Markov process. For a Bayesian approach to a MS-VECM, Paap and van Dijk
(2003) propose a nonlinear VECM where the intercept terms are affected by Markov
regime shift in order to investigate U.S. consumption and income. They employ a
Bayesian cointegration analysis based on Kleibergen and Paap (2002) and Kleibergen
and van Dijk (1998), which requires linear normalizing restrictions on the cointegrat-
ing vectors, that are criticized by Strachan (2003) as being likely to be invalid. Stra-
chan and van Dijk (2003a) and Strachan and Inder (2004) discuss the further problems
associated with the use of linear normalizing restrictions, and propose the Grassman
approach that places a valid prior on the cointegrating space. See Koop et al (2006b)
for details. In this paper, to estimate the cointegrating vectors, we apply Strachan and
Inder’s (2004) Bayesian method, that elicits a valid prior for the cointegrating space.

Our model in this paper is more general than Paap and van Dijk (2003), and is
flexible to modify in order to consider the model in which other parameters are also
subject to the regime shift. For example, in this paper we assume that the cointegrating
vectors are unaffected by the regime shifts. It is, however, possible to consider the
model where the cointegrating vectors are also dependent on the regime shifts. Also,

it is possible to consider the constant in the cointegrating vectors to be affected by the



regime shifts by a slight modification. We present this modification in the application
of the model which consider the regime dependent risk premium term to investigate
U.S. term structure of interest rates.

The plan of the paper is as follows. Section 2 presents estimation method for the
MS-VECM using a Gibbs sampler. We specify prior densities and likelihood func-
tions, and then derive the posterior distributions. In Section 3, we describe testing for
Markov switching and the number of cointegrating rank as model selection by Bayes
factors. For testing for nonlinearity, the Schwarz BIC is used to approximate the Bayes
factors. To determine the number of rank, the Savage-Dickey density ratio is applied
to compute the Bayes factors. Then we show simulated experiments with artificially
generated data to evaluate the performance of detecting an appropriate model by the
proposed method. Section 4 illustrates application to U.S. term structure of interest
rates, using the MS-VECM where the risk premium term is also affected by the regime
shifts as well as the intercept terms, the lag terms, the variance-covariance matrix, and
the adjustment coefficients. Section 5 contains concluding remarks. The computa-
tions reported in this paper were performed using code written in the Ox programming

language (Doornik, 1998).

2 Markov Switching Vector Error Correction Model

This section introduces a MS-VECM and presents a Bayesian approach to estimate this
model. LetX; denote arl (1) vector ofn-dimensional time series withlinear coin-
tegrating relations. A VAR{) system with normally distributed Gaussian innovations

€ ~iidN(0,X) can be written as a vector error correction model (VECM)

p—1
AX = P+ ap' X1+ 21 WiAX; i + & (1)

wherea (nxr) is adjustment term; arf@l (nx r) is cointegrating vector. If we assume
that the intercept term, the adjustment term, the lag terms¥;, and the variance-

covariance matriZ in the VECM are subject to an unobservable discrete state variable



s =iwherei=1,2,...,m, then the VECM representation is written as

p-1
A = W) +a(s)B X1+ Z Wi(s)AX—i + & )
i=
whereg; are assumedl(0,X(s)) and independent over time. Dimensions of matri-
ces arepande (nx 1), W ando (nxn). The state variablg evolves according
to a m-state, first-order Markov switching process with the transition probabilities,

Equation (2) can be rewritten in the matrix format as

Y =WB+E 3)

whereY = (AXp, ..., A%r) \ W= (1ZB, .. InZB), B=(a,"), Z= (Xp_1,..., X1 1),
E=(gp,...€7)", 0 = (01,...,0m),
M= (UL -+« s Hm, l'|J:|.7:|.7 sy LIJp—Llu .. qum,l; ceey qu,p—l)ly

Stp -+ Smp Sl,pAXIIJ_]_ SlpAXi Sm.,pAXE)_l Sm,pAXE)_l

SLT v ST SLTAXpL; o STAT pip o SmTAXpgp o SmTAXT oy
Let T be the number of rows of, so thatt =T — p+1, thenXist xm(1+n(p—1)),
Fism(l+n(p—1)) xn, Wistx K wherek =m(1+n(p—1)+r), andBisk x n.
s,j in X is an indicate variable such that it equals to 1 if regimedad O otherwise.
I in W is an indicator matrixt x T) where the diagonal elements are 1'ffregime
is i, otherwise 0, and the off-diagonal elements are all 0. Equation (3) represents the

stacked form of (2).

2.1 Prior Distributions and Likelihood Functions

In selecting a prior density for cointegrating vectors, one approach is to choose an
informative prior such as a normal or a Studedistribution withr? linear normaliza-
tion restrictions orf3 for identification such thap’ = (I,,B,) whereB, is (n—r) xr

unrestricted matrix. Bauwens and Lubrano (1996) and Kleibergen and Paap (2002)



choose this type of prior with linear normalization Bn This prior with linear nor-
malization, however, is criticized by Strachan (2003) and Strachan and Inder (2004)
as invalid because this normalization restricts the estimable region of the cointegrating
space. Instead of using this prior, they propose the Grassman approach that places a
prior on the cointegrating space rather than the cointegrating vectors. There is a num-
ber of research based on the Grassman approach. Strachan and van Dijk (2003a), for
example, analyze a vector error correction model using an uniform prior for the coin-
tegrating space. Strachan and van Dijk (2003b) investigate an issue of model selection
with a proper diffuse prior on the cointegrating vector. Koop et al (2006a) extend to a
panel cointegration model, based on the Grassman prior. Koop et al. (2006b) discuss
the prior elicitation for the cointegrating vector in detail. In this paper, we also adopt

the Grassman approach to place a noninformative prior on the cointegrating space as

n+1-j)/2

+1-1)/2 )

—(n—r)r o r [(
g(B) O J]l il

wherel [g] = [ ud~te Udu, g > 0 with identification restrictiong¥'B = I, that do not
distort the weight on the cointegrating space.
For a prior for the transition probabilitiegj, i,j = 1,...,m, we assign a beta

distribution, assumingn = 2

Poo ~ beta(uoo, Uo1) )
P11 ~ beta(uy1, uo) (6)
iatrib it ; S e 1) — LUiH)  ui—1
wherebetarefers to a beta distribution with densiiyp; | uii, Uij) = Far ) Pi (1-

pii )i L,
With regard to priors foB, Q;, we assume prior independence betw&eand
Q; such thatp (B, Q1,...,Qm) = p(B) 1", p(Qi). We assign prior for the variance-

covariance matrix as an inverted Wishart distribution with the degrees of fredom



as

Qi ~ IW (P, hy) (7)

where®; € R"™". As for a prior forB, we consider the vector form & and assign a

multivariate normal as

vec(B) ~ MN (vec(Bp), 2p) (8)

whereMN refers to a multivariate normal with mearec(Bg) € R*™?1, k = m(1+
n(p— 1) +r) and variance-covariance mattdg € R*™ " We assume that;, i =

1,...,m, is distributed independently, so t&d is defined as

2« O
g = 9)
0 2r

whereX is nrmx nrm matrix such thaky =V, ® Irm, V4 (N % n) is prior variance-
covariance matrix ofx; ~ MVN(a,V,); Zr is n(m+n(p—1)) x n(m+n(p—1))
matrix and is prior variance-covariance matrixfof o ~ MVN(I,Zr). This inde-
pendence relation of distributions amaomg . .., oy, is convenient for determining the
cointegrating rank using the Savage-Dickey density ratio described in Section 3.
The likelihood function foB, Q1, ... Qn, B and the state variabl& = {s1,%,...,sr}

is given by,

£<Bvl‘37917"'79m7§|- ‘Y

0 (ﬂ|gi|“/2> exp<—

- <ﬁ|gi|“/2> exp(— (vec(Y; —WB)) (Q; @ 1) "t (vec(Y; —W.B))D

=~

tr

i{Qi_l(Yi_\NIB)/(Yi —W.B)}D (10)

NI = N |
3
L —|

(11)



whereY, = Y, W = [W andytj is the total number of observations whgn=1i, i =
1,2,....m.

The likelihood function for the transition probabilitigg, i, j = 1,2,...,m, which
are independent of the data but conditional on the set of the state variables, is given

assumingn= 2:

£ (p117 P22 | §T> = Pt (1— p1a) ™2 P52 (1— poo)™ (12)

wherem j, i,] = 1 or 2, denotes the number of the transition from the regitoej,

that can be counted from givéﬁt.

2.2 Posterior Specifications

In this subsection we derive the posterior densities from the priors and the likelihood
functions. First, we derive the state varialfe= {s1,%,...,5} by the multi-move
Gibbs sampler, then derive the posterior distributions for other parameters.

To sample the state variatewe employ the multi-move Gibbs sampling method,
which is originally proposed by Carter and Kohn (1994) and is applied to a Markov
switching model by Kim and Nelson (1998). The multi-move Gibbs sampling refers
to simulatings,t =1,2,...,T, as a block from the following conditional distribution:

-1
p(S10Y) =pis| V) [Pl ss2.0.Y) (13)
where® = {B, 3,Q1,Q2, p11, p22}. The first term of the right hand side of the above
equation,p(s; | ©,Y), can be obtained from running the Hamilton filter (Hamilton,

1989). To draws conditional ons..1, © andY, we use the following results:

p(5t+l ’ Sban) p(& ‘ O7Y)
p<5t+1 ‘ O,Y)

P(st|s+1,0,Y) = Op(s+rls)p(s]O,Y) (14)

wherep(s+1 | &) is the transition probability, ang(s | ©,Y) can be obtained from



the Hamilton filter. Using Equation (14) we compute:

P(s+1|s=1)p(s=1]06,Y)
Shop(ssils=i)p(s=]0.Y)

Pr (St =0 | S‘[+lae7Y) = (15)

Once above probability is computed, we draw a random number from a uniform distri-
bution between 0 and 1, and if the generated number is less than or equal to the value
calculated by (15), we set = 1, otherwise, set equal to 0.

After drawing§[ by multi-move Gibbs sampling, we generate the transition prob-

abilities, p11 and p22, by multiplying (5) and (6) by the likelihood function (12)

p (pn’ P22 ‘ §(> 0 p5222+mzzfl (17 pzz)uzlﬂ’ﬂzlfl pli|jlil+mll*1 (17 plﬁz+m1271> (16)

Next, we can construck andZ in (3) using the draw o, and then the joint
posterior distribution can be obtained from the priors given in (7) and (8) and the

likelihood function forB, 3,Q;, and§[, that is,

p(B,B,Ql,...,Qm,§ yv) 0 p(B,B,Ql,...,Qm,§T>£<B,[3,Ql,...,Qm,§T \Y)

[ ool 3 )

+_i [vec(Yi ~WB) (Q © 1) Lvec(Y, —W.B)} + [vec(B—By)' 55 vec(B— Bo)]] }

17)

whereg(B) refers to the prior fof3 given in (4). From the joint posterior (17), we
have the following posterior distributions (see Appendix A.1 for derivation of these

posteriors):

Qi | B,B, S, Y ~ IW ((Y; —WB)' (Y, —WB) + ®;,t; +h;) (18)

10



vec(B) | Qi,B.S:,Y ~ N (vec(B,),M,) (19)

where

M, = {zgl+ii [ @ (WW)] }1

vec(B,) = M, {Zglvec(Bo) +.i [(Qi ® IK)’lvec(Wi’Yi)] }

For the posterior foi3, according to Strachan and Inder (2004), 2et be the

(t —1)™" row of Z andz; be thet'" row of X, then

p(B|S.Y) Og(B) |B'DoB| %|B'D:p|" "/ (20)

whereDg = D1 — D2, D1 = S1 andD; = S10S54 So1, Sik = Mk — Mj2M3 Moy, Mk =
hik + 3 Zj 1z, hjk = 01if j £k, hjj = ¢l.

The posterior distributions fd®; in (18),Bin (19), and3 in (20) are not convenient
analytical forms. Rather they are conditional on other parameters which must be esti-
mated. Gibbs sampler can be employed to generate random draws from the conditional
posteriors. While the conditional posterior densitiesX¥pandB are known form, the
posterior forf in (20) is not a standard form and thus can be drawn by employing
importance sampling, the Metropolis-Hastings algorithm (see Chib and Greenberg,
1995) or the Griddy-Gibbs sampling (see Ritter and Tanner, 1992). In this paper, we
choose the Griddy-Gibbs sampling technique because the algorithm does not require
the specification of function that approximate the distribution. Choosing the Griddy-
Gibbs sampler, however, requires the appropriate choice of the grid of points and the
computing cost is much higher than other algorithms. The algorithm is provided in
Appendix A.2 for convenience.

Given the conditional posterior distributions, we implement the Gibbs sampling

11



to generate sample draws. The following steps can be replicated until convergence is

achieved.

e Step 1: Sef = 1. Specify starting values for the parameters in the mcp;@l,
B, @ anin(o).

e Step 2: Generatg’) = {s(lj),s(zj),...,s([j)}/ from p (§[ | 6(1*1),Y), where® =
{B,Q1,...,Qm,B, pi }in (13), using multi-move Gibbs sampling algorithm.

e Step 3: Generate the transition probabilitieg ) from p (p.k | §‘ ) in (16).

o Step 4: Generaf@)) from p(B | S, Y) in (20) using the Griddy-Gibbs sampling

algorithm.
o Step 5: GeneratB() from p(vec(B) | BV, QY 8V vy in (19).
o Step 6: Generat@! from p(Q; | 31, BD, SV Y) in (18).

e Step 7: Sefj = j+1, and go to Step 2.

Step 2 through Step 7 can be iteralbtimes to obtain the posterior means or standard
deviations. Note that the firly times iterations are discarded in order to attenuate the

effect of the initial values.

3 Testing for Markov Switching, Cointegrating Rank, and

Model Selection by Bayes Factors

In this paper, testing for Markov switching and the cointegrating rank is treated as a
problem of model selection. In Bayesian framework, the posterior model probability
p(M;j | Y) is used to assess the degree of support for each madel, From the
Bayes rule, we havp(Mj | Y) = p(Y | M;)p(M;)/p(Y), wherep(Y | M;) is referred

to as the marginal likelihood fofMfj; and p(%;) is the prior model probability for

M;. Sincep(Y) is often hard to calculate, comparison of two modglgndi, by

the posterior odds rati®O;;, is often used to obtain the posterior model probability.

12



The posterior odds ratio is defined as the ratio of their posterior model probabilities as

PO; = p(M; |Y)/p(M |Y)= W where the ratio of the marginal likelihoods
p(Y[2)

YD is defined as the Bayes factor. With the posterior odds ratios, we can obtain the

posterior model probability gs( | Y) = POji / T¥ ; PO« whereM is the number of

models under consideration. Thus, in order to obtain the posterior model probability
by the posterior odds, we need to calculate the Bayes factor.

There are several methods to calculate the Bayes factor such as Chib (1995),
Gelfand and Dey (1994), the Savage-Dickey density ratio (see Verdinelli and Wasser-
man, 1995), and the Schwarz Bayesian information criterion (BIC) approximation
method (Schwarz, 1978). Among these, we choose the Schwarz BIC method to test for
nonlinearity and select the most appropriate model since other methods are not possi-
ble or difficult to performt The Schwarz BIC can give a rough approximation to the
Bayes factors. Itis, however, easy to implement and does not require evaluation of the
prior distribution, as Kass and Raftery (1995) note. The Schwarz BIC to approximate
the Bayes factors is employed by Wang and Zivot (2000) for detecting the number of

structural breaks. The Schwarz BIC @f; is calculated as

BIC; = —2Ing (6 | Y; 84 ) +ajIn t) (21)

whereg <6AJ 1Y, M,) denotes the likelihood function under the mogied; denotes the
total number of estimated parametersif;. The likelihood functiong ((5J |Y;5Mj>
is evaluated wAj the posterior means of the parametersfc

With the Schwarz BICs fofif; and;, the Bayes factor fofM/; againstM; can be

approximated by

BFji = exp[—O.S(BICi — B|Cj)] . (22)

1 For example, a method by Chib (1995) requires to know the full form of prior, likelihood, and
posterior. In the MS-VECM, the full forms of posterior fBrin (20) is difficult to obtain. In this case,
Chib and Jeliazkov (2001) show how the marginal likelihood can be calculated using the output from the
Metropolis-Hastings algorithm.
The Savage-Dickey density ratio method is applicable only to nested models, while the Gelfand and
Dey method is not suitable to multivariate models.

13



With the prior odds, defined g% 4M;j)/p(M;), the posterior odds can be computed by
multiplying the Bayes factor by the prior odds as PosteriorQae8F; x PriorOdds;.

By using the Schwarz BIC to approximate to logarithm of the Bayes factor, it is easy
to test Markov switching cointegration as a problem of model selection. In our case,

we compute the Schwarz BIC such that

BICJ = -2Ing (87 21,.. -vzn’hBag[a Pik |Y19\/[J) +d; In (t)

- —2{|ns(B,zl,...,zm,B,§|Y;M,-)+|ns(pik|§[;M,-)}+q,-|n(t)

To determine the number of cointegrating rank, Strachan and Inder (2004) employ
the Laplace approximation method to calculate the Bayes factors. In this paper, instead
of applying the Laplace approximation method, we choose the Savage-Dickey density
ratio to calculate the Bayes factors to determine the number of cointegrating rank. The
Bayes factor comparing zero rank= 0 and non-zero rank= r* is obtained using the

Savage-Dickey density ratio as follows:

BF(r=0|r=r") = BF(a=0|a#0)
p(a =0, 9%)
p(a=0] M)

(23)

wherer* > 0 is the number of rank to tesfif;« denotes a model with rank; the
denominator is the prior density evaluatediat 0; and the numerator is the posterior
density evaluated at= 0. The prior forB, vedB) ~ MN(vedByp), 2g) with Zg defined
in (9), impliesp(a) = ™ p(ai), wherea; ~ MVN(a,V,,). The posterior fon; is
also independently distributed as| B,Q;,Y; ~ MVN(@;,Vq,) whereVq i = (Vo1 +
Zzo Y tandd = Vqi(Vata +Z/(Y, — XI)Q;). Since

1 N

p(a=0[BY, QW Y,r") — p(a=0]Y,94) (24)
N=No j:gwl r

asN goes to infinity, the numerator of (23) can be easily calculated.

14



To evaluate the performance of detecting the Markov switching nonlinearity by
the Schwarz BIC, we conducted Monte Carlo simulations. We consider three-variable
MS-VECM for the experiments. The data generating processes (DGPs) are given as

the following:

M1: A% = Ho+aoP X—1+ WoAX_1+ Oo€
M2 DX = \(s)+0(s)BKe—1+W(S)A% 1+ Oogt
M3 DX = po+0(s)BX—1+WolX_1+ 0(S)e

M4a: DX =) +0(s)B X1+ W(s)A%_1+ 0(s)&

wherep(s = 0) = Ww=(0.2, 0.2, 0.2)’ u(s = 1) = }=(-0.2, -0.2, -0.2)’ a(§ = 0) =
00=(-0.2, -0.2, 0.2)' a(s = 1) = a;=(0, 0, 0), B'=(1, -1, 1),& ~ NID(O, I3), o(s =

0) = 0p = 0.5l3, o(s =1) = 01 = 0.1l3, W(5 = 0) = Wy = 0.5l3, and¥(s = 1) =
Y, = 0.2I3 the sample siz&={100, 200, 500}. The transition probabilities are given
as (Poo, p11)=(0.95, 0.95). These four DGPs represent:

M1: Linear VECM model.
M2: Homoskedastic MS-VECM with regime dependent mean
‘M 3: Heteroskedastic MS-VECM with constant mean

M 4: Heteroskedastic MS-VECM with regime dependent mean

It might be possible to compute Bayes factors for all ma#tél - 44 to select
the most appropriate model. However, if the true model is lineands computation
of the Bayes factors foif 2 - M4 might not be feasible because of the problem that
the state variables and the transition probabilities are not identified through the Gibbs
sampling, causing a convergence problem in the Gibbs sampler. Kim and Nelson
(2001) overcome this problem by employing 'pseudo priors’ (see Carlin and Chib,
1995). In this paper we restrict a priori that a certain percentage of the observations
lies in each regime as Koop and Potter (1999) in order to avoid the problem. When the

total number of either regime occurred in the generated state varialjléls @eration
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of Gibbs sampling, that isz}zlsi(j) or z}:l(l—si“)), is less than given value, say, 5
percent of the sample size, then the previously drawn set of state varigﬁféé,, is
used in thej-th iteration of the Gibbs sampler by setti%) = §j_l).

The Bayes factors were computed for all modésl( - M 4) to calculate the pos-
terior model probability for each model. For prior hyperparameters, w@;se0.01l3
andh; = 0.001 for alli in (7), Zg = 100k, andBp = 0 in (8) favoring the absence of
cointegration. These values are assigned to ensure fairly large variances for represent-
ing prior ignorance. For prior hyperparameters for the transition probabilities, we set
Ugo = U1 = 9, Up1 = Uyp = 1 in (5) and (6). The number of cointegration rank and the
lag length are assumed to be known. Each simulation is replicated 1000 times. For
each replication of the simulations, the Griddy-Gibbs sampler is employed with 5,000
draws with the first 500 discarded to generate the cointegrating vector with the interval
of integration (the deterministic Simpson’s rule is used) for each elemehtfraim
-6.00 to 6.00 with the number of the grid at 1200 to avoid significant truncation of the
posterior density.

Table 1 summarizes the results of Monte Carlo simulations for model selection.
The value in each element of the Table represents the average posterior model prob-
ability. When the true model is the linear VECMIf 1, the average posterior model
probability selects the correct mod®f'1 with more than 90% even whéih= 100.

When the true model is the MS-VECMY 2, M 3 or M 4, the average posterior model
probability selects the correct model with less than 90% for the three DGPs when

T = 100. Increasing the sample size to 200 improves the performances as the correct

model is selected with more than 90%.

4 Application: U.S. Term Structure of Interest Rates

We present an empirical study using the MS-VECM to analyze U.S. term structure of
interest rates. It is possible to apply the MS-VECM of the form (2) to examine the

expectations hypothesis of U.S. term structure of interest rates. However, with some

16



minor modifications, the model can be extended to allow the risk premium term in the
cointegrating vector to shift with regime, rather than assuming that the risk premium
is constant. With this model, we can investigate nonlinearity of U.S. term structure of

interest rates by changes in monetary policy.

4.1 Expectation Hypothesis

The expectations hypothesis of the term structure of interest rates impliepenind
interest rate is the weighted average of the expected future one-period interest rates
plus risk premium. For an overview of the expectations hypothesis theory, see Shiller
(1990). Letr¢; be the yield to maturity for arf-period at timet, L¢; be the risk

premium for anf-period at time, then the hypothesis implies:

f
Mg = f_lzlEtrl,t+ifl+|—f,t (25)
=
By rewriting the above equation, the interest rate spadan be expressed as

Sti=rsp—ryp="f1 :ililEtNl,Hj +Lst (26)
If r1¢ is integrated of order one, then;, is also integrated of order one and tinyg
andry; are cointegrated with cointegrating vector (1, -1) as analyzed by Campbell and
Shiller (1987). The risk premium is assumed tolb@) so that the hypothesis states
thatr¢y —rqit — Lt IS a stationary process.
The expectations hypothesis in (26) with constant risk premium implies the fol-
lowing vector error correction model with the lag lengttpat 1:

p—-1
DX = p+a(BX-1—Ly)+ Zl WidX i + & (27)

whereX = ( r¢y, ryy )5 o (2x 1) is the adjustment ternf} (2 x 1) is the cointe-
grating vector¥; (2 x 2) is the lag coefficient; angl (2 x 2) isiidN(0,X).

There is a number of research that confirms nonlinearity of U.S. term structure of
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interest rates due to changes in monetary policy. Tsay (1998), Hansen and Seo (2002),
Clements and Galvao (2002) use a threshold cointegration model, while Clarida et
al (2006) employ a Markov switching vector error correction model to detect regime
switching. All these studies find nonlinearity due to the instability for interest rates
between 1979 and 1982 as a potential source of shifts. This period between 1979 and
1982 is known as th@on-borrowed reserves operating procedutfeat the Federal
Reserve moved from interest rate targeting to money growth targeting and allowed the

interest rate to fluctuate freely.

4.2 MS-VECM with Regime Switching Risk Premium

We apply the MS-VECM to U.S. term structure of interest rate based on (27) to account
for the regime shifts. The MS-VECM considered in Section 2 is applied, but with
minor modification so that the risk premium terhy,, is also subject to the regime

shifts with Markov process:

-1
A% = (s) +a(8)(BX_1— L(8)) + pgl Wi(S)AX i+ & (28)

whereg; ~ N(0,Q(s)); L(s) is the risk premium term depending upon the state vari-
ables. Compared with the MS-VECM considered in Section 2, there is an additional
regime dependent parametdls) to estimate. Sinc@'X —L(s) is 1(0), we can es-
timateL(s) as a parameter in a linear regress@®; = L(s) +u = LS + u where

U ~ iidN(0,62), L = (L% LY), andS = (1,5)’. With the natural conjugate priors for

L | 02 ~ N(L,0%V, ) anda? ~ IG(a?,v,), wherelG denotes an inverted Gamma dis-
tribution, the posterior foL is analytically obtained astadistribution with the mean
E(L|Y)=(V[1+389 (V[ L+SS) where each" row of Sis (1,%); L is the OLS

estimator,(SS)~1SXp. To estimate, reexpress the model (28) as

p—-1
Vi = W) +a(s)BX%-1+ 21 Wi (s)A%—i + & (29)

wherey; = AX + a(s)L(s). The cointegrating vector§, in the model (29) can be
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estimated by applying Strachan and Inder’s (2004) method to the model.

Then, with regressiod =W B+ E whereW = (Io(Zp — 1Lo),11(ZB — 1L1),X));
listx 1 matrix of 1,Y = (y;,...,¥i); B, X, andE are defined as (3) so that the pos-
teriors forB andQ; are the same as (19) and (18). With these posteriors we implement

the Gibbs sampler as follows (whem= 2):

e Step 1: Sef = 1. Specify starting values for the parameters of the mqni%)l,

0 0 0 0 0 0 0 0 0 0
59 BO = (@, W O WO WO, WO O ) 1O O ang

0@,

o Step 2. Generat&) = [V &V &V " from p(S 00D Y) in (13),
SIS

where® = {B,L,Q1,Q5,B, pi}, using multi-move Gibbs sampling algorithm.
e Step 3: Generate the transition probabilitig%? from p(pik | §j)> in (16).

e Step 4: Adda(s)~YL(s)U~Vto the both sides of the model such tiag +
a(s)I7IL() 7Y = p(s) 07 + a(s) U IBX 1 + 3 Wils) 708X i +
&, then generat@) from p(B | §”,Y) in (20) using Strachan and Inder’s
method with the Griddy Gibbs sampling algorithm.

e Step 5: To generatk(s)()), set up the regressigdi()X = LS? + u where
L=(L%LY), §V = (1,4"), andu ~ iidN(0,02). Estimatel asL() = (V 1+
S8~y L+ S1’SIL), whereL is the OLS estimator. Note that the risk
premium of regime 0 i& (s = 0) = Lo = L, and that of regime 1 is(s = 1) =
Ly =Lo0+LL

e Step 6: With the draws of (), () and S, constructl{" and1!" to obtain
wil) = (|éj)(ZB(D - 1L0),|£j)(ZB(D —1L3),X)), and then generatB) from
p(vec(B) | B1),L0), 017 &V v)in (19).

o Step 7: Generat@! from p(Q; | BV, LD, BD SV v) in (18).

e Step 8: Sef = j+ 1, and go to Step 2.
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4.3 Estimation Results

We analyze U.S. term structure of interest rates using the MS-VECM described above.
The data set is monthly 3-month Treasury bill and 10-year Treasury bond covering
the period 1960:1 to 2006:1 with 552 observations, obtained from the Federal Reserve
Bank of St. Louis. Figure 1 plots the data set and its spread.

We consider the following four models:

p—-1
M1: A =p+a(fX-1—L)+ zi WilX i +&

-1
M2: M =pu(s)+a(s)(BX-1—L(s))+ pzl Wi(s)A%-i + &

p—1
M3: M =p+a(s)(BX-1—L(s))+ Zl WiAX i +0()&

1
M4 DX =)+ a(8)(BX 1 L(s) + pzi Wi(8)0% s + o(s)e

whereg; ~ iidN(0,Z). M1 represents a linear VECMU 2 is a homoskedastic MS-
VECM with regime dependent meaf/ 3 is a heteroskedastic MS-VECM with con-
stant mean/M4 is a heteroskedastic MS-VECM with regime dependent mean.

To estimate four models\(1 - M4, we implement the Gibbs sampling algorithm
described Section 4.2, with prior hyperparametets0,V, = 1000,02 = 0.5, v, =
0.001 for ensuring a relatively noninformative for For other prior hyperparameters
we set the same values as in the Monte Carlo simulation in Section 3. The Gibbs
sampler is run with 10,000 times with the first 1,000 discarted.

Testing for cointegration rank with the lag length= 4 is conducted using the
Savage-Dickey density ratio described in Section 3. The results are reported in Table

2. We find that there are very strong evidence of rank 1 for all four mo@iéls-

2 We did not check whether the draws from the Gibbs sampler converge by calculating, for example,
Geweke’s (1992) convergence diagnostics because there involve too many parameters to check. We
believe that the number of iteration as 10,000 is generally sufficiently large number of draws to converge,
and the first 1,000 discarded is enough to eliminate the effect of initial draw.
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M4 with thep = 43 Table 3 reports the posterior model probabilities calculated by
using the Schwarz BIC foM1 - M4, varying the lag lengtlp = 2 - 5. Clearly,
nonlinearity by the Markov process is detected with almost 100 percent. The posterior
model probability for4 is Pr(M4|Y) = 35 _,Pr(M4,p|Y) ~ 0.934, and thus
there is strong evidence to suppdit4. The highest posterior model probability is
44.1 percent given t@/4 with p=4.

Table 4 reports the results of the posterior estimation of the parametefig 4or
with p= 4. From the results, the 95% HPDI B{after normalizing) containg, = —1,
that is implied by the expectations hypothesis of the term structure. To examine
whether the restriction d8, = —1 is appropriate in a more formal whywe calcu-
late the Bayes factor &88F ~ expg—0.5(BICr — BICyR)|, Where BIGQR is the unre-
stricted BIC, and BI is the restricted BIC with the restrictions pf= (1,—1), and
the the value is 278.14, which shows a very strong evidence to support the expectations
hypothesis.

The posterior expectation of the state variables is plotted in Figure 2.ndihe
borrowed reserves operating proceduretween 1979 and 1982 is detected as the
regime shift. Regime shift occurs also in 1972 and 1984. These regime shifts are
corresponding to higher inflation regime (Goodfriend, 1998), and are characterized by
a much higher variance of both the long and the short interest rate than those of regime
0. In regime 0, that is relatively stable period, the variance of the long rate is higher
than that of the short rate; on the other hand, in regime 1, the short rate fluctuates much
more than the long rate. The risk premium in regimé.4,is lower than in regime
0, Lo, that implies long run inflation expectations decrease during high inflation pe-
riod due to the central bank’s anti-inflationary monetary policy by rising the short term

interest rate.

3 We have also tested for the number of cointegration rartk/df - M4 with different lag length at
p=2,3, and 5, and the results are all the same as whe, that is, there is very strong evidence of
rank 1.

4 As Koop (2004) note, “the justification for using the HPDIs to compare models is an informal one
which, in contrast to posterior odds, is not rooted firmly in probability theory.”

5 See Kass and Raftery (1995) for a rule of thumb for evaluating Bayes factors. According to this rule
of thumb, ifBF;j is between 20 and 150, there is a strong evidence against maated if BFj exceeds
150, there is a very strong evidence against mgdel
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We find that the adjustment term for the long-term rate is positive as< 0 and
for the short-term rate negative as; > 0 for both regimes, which implies that the
long-term rate tends to fall and the short-term rate tends to rise against the disequi-
librium in either regime. The adjustment terms for both the long and the short-term
rate in both regimes are significant as the 95% HPDIs for those values do not contain
zero. Figure 3 plots the posterior densities for these adjustment terms and indicates
that these densities do not contain zero. In regime 1 of higher volatility in the inter-
est rates, the posterior mean of the adjustment speed for both theshgrafd the
long rates g 1) is (—0.0800Q 0.0625 which is much faster than those in the regime 0
(0p,0,001) = (—0.01150.0135. This implies that interest rates adjust much faster in

periods of high volatility with high inflation and anti-inflationary monetary policy.

5 Conclusion

In this paper we consider a Markov switching vector error correction model where
the adjustment terms, the lag terms, the intercept terms, and the variance-covariance
matrix are subject to the regime shifts with the first order unobservable Markov process
while the cointegrating vector is unaffected by the regime shifts.

Estimations are carried out entirely by a Bayesian method. The cointegrating vec-
tor is drawn using the method by Strachan and Inder (2004) in a nonlinear framework
so that the estimation of the cointegrating vector is more efficient than multi-step clas-
sical methods where the cointegrating vector is estimated assuming the model is linear.

To select the most appropriate model among linear, Markov switching, and other
model specifications, we use the posterior model probabilities by approximating the
Bayes factors by the Schwarz BIC. Although the Schwarz BIC does not generate the
exact value of Bayes factor but just approximation, the Monte Carlo simulation show

that it selects generally a correct model. To determine the number of cointegrating

6 It is possible to allow the cointegrating vectors to change with Markov process by slight modifica-
tion. However, we have not done this because changing the long-run relationship is not reasonable idea
unless economic theory support this.
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rank, we employ the Savage-Dickey density ratio to calculate the Bayes factors for
zero rank against non-zero rank.

As an application to illustrate the use of the MS-VECM, we illustrate U.S. term
structure of interest rates using the MS-VECM with regime dependent risk premium.
We find that regime with high volatility and high speed of adjustment captures the
non-borrowed reserves operating proceddrgring the 1979-82 and other phases of
inflation scare, while the stable regime with low volatility and low speed of adjustment
prevails after the mid of 80’s.

In this paper Markov switching is chosen as a switching behavior, assuming that
one regime jumps to another regime suddenly at particular dates. It is of interest to
consider alternative multivariate nonlinear models such as a smooth transition vector
error correction models (ST-VECM) to analyze the nonlinear cointegration where the
regime shifts occur not suddenly but smoothly, and compare the ST-VECM with the

MS-VECM by the Bayes factors.

Appendix

A.1 Derivation of (18) and (19)

The joint prior ofB, B, andQ; is given by multiplication of (4), (7) and (8) as follows:

p(vedB).B,Qs....,QmSr ) = a(B)p(ved®))p(Sr) [ P(Q:)

m
0 g(B) <‘|—l|q)i|hi/2|Qi|(hi+n+l)/2> |ZB|l/zeXp{_
i=

o(3000)

+vec(B— Bo)' Z5'vec(B—Bo)| } (30)

N

The likelihood function foB,Q1,...Qm, B andSy is given by,

£<B,B,Q1,...,Qm,§T|Y>

23



3

(el
_ (ﬂ|§zi|“/z> exp{

The joint posterior for deriving?; is given as product of the joint prior (30) and the

likelihood (31) as

{ [Q (Y —WB)' (Y; —WB)] }) (31)

3 e

I\)\I—‘ N\H

—

vec(Y; —WB) (Qi®IT)1veC(Yi—V\ﬂB)”

(32)

p(vqu)7ﬁagla .. '7Qm>§T | Y)

0 p(vec(B),B,Ql,...,QmST) £<B,B,Ql,...,Qm,§T \Y)

(P (,[mlm\“i/zrQir—“i*“i*”” )rz 2exp{ - [ve(® - B0 Z5 vedB - Bo) |

xexp(—{ZlQ [(Yi —WB) (Yi—vv.B)+q>i]}> (33)

From the joint posterior (33), the conditional posterior densityQprcan be de-

rived as

ax . _ PvedB),B.Q.5r|Y) =
p(C: | B,B.5.Y) SvedB) B vy [ PedB)P.0: S V)

h 1

|

= o exp [—;tr(ﬂilcb*,i)] (34)

where®, ; = (VY] —WB)' (Y, ~WB) + ®&;. Thus, the conditional posterior €f; is de-
rived as an inverted Wishart distribution as

Qi | B,B,Sr,Y ~ IW ((Y, —WB)' (Y —\WB) + &t +hy) . (35)

With regard to the conditional posterior density f@qB), we use the likelihood

(32), instead of (31), to obtain the joint posterior as multiplying the joint prior in (30)
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by (32), we have

p(Vqu),B,Ql, .. -an,gT | Y)

0 p(vec(B),B,Ql,...,Qm.gr) >:(|3,[3,§21,...,Qm,§T \Y)

_ ok _ 1 _
Dg(B) <r1|q>i|“'/2|szi| <"+“'+“+1>/2) by 1/2exp{—2 [vedB—Bo)'Z5'vedB ~ Boﬂ}

x exp{ —% i [veqY; —WB)'(Qi @ Iy) *vedY; —WB)] } (36)

From (36), we can write the key term in the last two lines as

i [vec(Yi —WB)' (Q @1y) tved(Y; —WB) | 4 vec(B— Bo)' Zg'vec(B— Bo)

=vec(B—B,) M, vec(B—B,)+Q

where

3

Q= [vec(Yi)’(Qi ® Iti)‘lvec(Yi)} +vec(Bo)' Zgvec(By) — vec(B,) M tvec(B,)

M, = {Zgl+ii Qe (WW)] }_1

vec(B,) = M, {ZBlvec(Bo) + i [(Qi ® |k)_1VGC(VV|/Yi)} } .

For the proof of this derivation, see Appendix of Sugita (2006). Hence, the conditional

posterior density fovedB) is derived as a multivariate normal density as follows:

p(vec(B) | Q1,....Qm,B,Sr.Y) rzsl/zexp{—i [vec(B~B.)'M vec(B—B,)] } (37)
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Thus, the conditional posterior distributions f@r andB are given as (18) and (19)

respectively.

A.2 The Griddy-Gibbs Sampler

The Griddy-Gibbs sampler is proposed by Ritter and Tanner (1992). This sampler can
be implemented when the conditional posterior density is unknown to the researcher.
The advantage of using this sampler over the importance sampler or the Metropolis-
Hastings algorithm is that researcher does not have to provide an approximation of the
function, that is not easy task in many cases. The disadvantage is that this sampler
demands more computing time. The procedure for implementing the Griddy-Gibbs

sampler is as following:

1. Before we begin the chain, we must choose the range of the grid and the number
of the grid. The range should be chosen so that the generated numbers are not

truncated.

2. Let veqB)’ = (B1,B2,.--,Bm). With an arbitrary starting value (within the up-
per and the lower bound of the grid), compute:|Bb, B, .-, B, Y), wherei
denotes thé-th loop, over the gridB1.1,B1.2,---,B1u), Wheref 1 is the lower

bound of the grid of31, andPyy is the upper bound of the grid .
3. Compute the values = (0, P2, P3,...,Py) where

B . )

® = /B £ (B1Bby B, ... Bl Y) B2
1.
j=2,...,U

4. Compute the normalized pdf valugg = Gj /Py of Z(B1|BL, BL, - -, Bl Y)-

5. Draw the random numbers from the uniform density with the lower bound as
zeros and the upper bound@g and invert cdfG by numerical interpolation to

obtain a draw@, from (1B, RS, - - -, B, Y)-
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6. Repeat steps 2-5 f@p, ..., Bm.

7. Seti =i+ 1 (incremeni by 1) and go to step 2.

Note that integration at the step 3 can be done by the deterministic approximation such
as the Simpson'’s rule or the Trapezoidal rule. The Simpson’s rule approximates the

integration off (8), based on an interpolation, such as

/Olf(e)dm % [£(0) +4f(0.5) + f(1)].

Or the extended Simpson rule can be applied as, witingrvals of equal length

d=6;—6;_1=1/2nbased on 2+ 1 pointsBy = 0,01, ...,02n =1,

[T10)08 = S 11(80)+alf(81) + £(8) 4+ F(80 1)

+2[f(82) + f(6a4) +--- 4 F(82n)] }.

See Bauwens et al (p68-71,1999) for details and other version of the Simpson rule.
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Table 1: Average posterior probabilities: Testing for Cointegration, Non-Cointegration

and Markov Cointegration

True Model =M1 True Model =M 2

model T=100 T=200 T=500 model T=100 T=200 T =500

M1 0.921 0.958 0.996 M1 0.032 0.000 0.000
M2 0.040 0.020 0.001 M2 0.859 0.946 0.973
M3 0.037 0.022 0.003 M3 0.088 0.043 0.021
M4 0.002 0.000 0.000 M4 0.021 0.011 0.006

True model =M3 True Model =M 4

model T=100 T=200 T=500 model T=100 T=200 T =500

M1 0.065 0.044 0.006 M1 0.027 0.000 0.000
M2 0.024 0.021 0.001 M2 0.037 0.028 0.003
M3 0.897 0.935 0.993 M3 0.070 0.031 0.006
M4 0.012 0.000 0.000 M4 0.862 0.941 0.991

Note: Each element in Table shows the average posterior model probabilities calculated by using the

Schwarz BIC.
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Table 2: Cointegration Test for U.S. Term Structure of Interest Rates

M1 M2 M3 M4
r=0 0.023 0.001 0.000 0.000
r=1 0977 0999 1.000 1.000
r=2 0.000 0.000 0.000 0.000

Note: Each value in the Table shows the posterior model probability calculated by using the Savage-

Dickey density ratio. Each model is with the lag lengtk- 4.

Table 3: Model Selection for U.S. Term Structure of Interest Ratesmwitii

p=2 p=3 p=4 p=5|Pr(M)
M1 0.000 0.000 0.000 0.0000.000
M2 0.026 0.002 0.000 0.0000.028
M3 0.000 0.005 0.025 0.008 0.038
M4 0.255 0.188 0.441 0.050 0.934
Pr(p) 0.281 0.195 0.466 0.058 1.000

Note: Each value in the Table shows the posterior model probability calculated by using the SBIC.
The bottom row of the Table shows the marginal probabilities for each lag lengih-Pi5 i+, Pr(4i, p).
The right column of the Table shows the marginal probabilities for each mo@#f P& 23:2 Pr(Mi, p).
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Table 4: Posterior Results fov 4 with p=4

() = standard deviation

parameter mean 95% HPDI
B> -1.0331 (0.0618) -1.1690, -0.9229
doo  -0.0115(0.0031) -0.0173,-0.0053
do1  0.0135(0.0031)  0.0075, 0.0195
a0 -0.0800 (0.0111) -0.0999, -0.0539
a1 0.0625(0.0133)  0.0375, 0.0897
Lo 1.4310 (0.2953)  0.7755, 1.9582
Ly 0.6310 (0.5455)  -0.5606, 1.5853
poo  0.9098 (0.0270)  0.8511, 0.9554
pi1 0.9696 (0.0097)  0.9482, 0.9860
0.0408 00169 0.1670 02334
. (0.0032 (0.0017) . (0.0240 (0.0353
0.0169 00270 0.2334 06660
(0.0017) (0.0026) (0.0353 (0.0787

Note: The subscript in a; ; denotes the regimg, = 0 for the long-term rate, an¢l= 1 for the

short-term rate.
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Figure 1: US 3-month bill rate, 10-year bond rate and the spread

Source: Federal Reserve Bank of St.Louis
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Figure 2: Posterior expectation of the regime variabl&|¥] for th US Term

Structure of Interest rates
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Figure 2: Histogram of posterior densities foffor US term structure of interest

rates
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