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Abstract

This paper introduces a Bayesian approach to a Markov switching vector

error correction model that allows for regime shifts in the intercept terms, the

lag terms, the adjustment terms and the variance-covariance matrix. The pro-

posed Bayesian method allows for estimation of the cointegrating vector within

a nonlinear framework through Gibbs sampling so that it generates more effi-

cient estimation than classical approaches that require a multi-stage maximum

likelihood procedure. The Bayes factors are applied to test for Markov switching

and model specifications. We apply the proposed model to U.S. term structure

of interest rates allowing the risk premium and other parameters in the model to

change with regime.
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1 Introduction

This paper proposes a Markov switching vector error correction model (MS-VECM)

that allows for regime shifts in the intercept terms, the lag terms, the adjustment terms

and the variance-covariance matrix in a vector error correction model, using a Bayesian

approach with a Markov chain Monte Carlo method.

A number of studies consider nonlinear cointegration models with regime switch-

ing. Balke and Fomby (1997) consider a threshold cointegration model in order to

investigate the model in which there is discontinuous adjustment to a long-run equilib-

rium, based on the idea that only when the deviation from the equilibrium exceeds a

critical threshold, do the benefits of adjustment exceed the costs and, hence economic

agents act to move the system back toward the equilibrium. Other research using

threshold cointegration model include Anderson (1997), Tsay (1998), Martens et al

(1998), and Clements and Galvao (2002). Instead of threshold cointegration model,

nonlinear cointegration model using Hamilton’s (1989) Markov regime switching pro-

cess is also developed (Krolzig, 1997). Hall et al (1997) analyze the permanent income

hypothesis using a single equation cointegration model with Markov regime switching.

Psaradakis et al (2004) employ Markov switching to analyze an error correction model

in a single equation. A vector error correction model with Markov regime switching

is applied by Sarno and Valente (2005) for forecasting stock returns, and by Clarida et

al (2006), who show regime switching in the term structure of interest rates.

Estimation for a MS-VECM by classical methods requires a multi-stage maximum

likelihood procedure. The first stage consists of testing for the number of cointegrating

relationships in the system and estimating the cointegrating vectors by implementing

Johansen’s (1988, 1991) maximum likelihood method. Then, the second stage consists

of estimating other parameters in the model by maximum likelihood method. Thus,

the cointegrating vectors and other parameters in a nonlinear vector error correction

model are estimated assuming the model is linear. The final stage consists of the im-

plementation of an expectation-maximization (EM) algorithm for maximum likelihood
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estimation for unobserved Markov state variables conditional on estimated values of

the cointegrating vectors and other parameters by maximum likelihood. Thus, to es-

timate the Markov state variables, the maximum likelihood estimates are treated as if

they were the true values.

By applying a Bayesian approach, estimation of the MS-VECM is more efficient as

inference on the state variable is based on a joint distribution, rather than a conditional

distribution. The cointegrating vectors are estimated based on a joint distribution of

other variables including the state variables, so that it allows estimation of the cointe-

grating vectors within a nonlinear framework, rather than assuming that the model is

linear.

This paper proposes a Bayesian approach to a MS-VECM that allows the intercept,

the lag terms, the adjustment coefficients, and the variance-covariance matrix to shift

with Markov process. For a Bayesian approach to a MS-VECM, Paap and van Dijk

(2003) propose a nonlinear VECM where the intercept terms are affected by Markov

regime shift in order to investigate U.S. consumption and income. They employ a

Bayesian cointegration analysis based on Kleibergen and Paap (2002) and Kleibergen

and van Dijk (1998), which requires linear normalizing restrictions on the cointegrat-

ing vectors, that are criticized by Strachan (2003) as being likely to be invalid. Stra-

chan and van Dijk (2003a) and Strachan and Inder (2004) discuss the further problems

associated with the use of linear normalizing restrictions, and propose the Grassman

approach that places a valid prior on the cointegrating space. See Koop et al (2006b)

for details. In this paper, to estimate the cointegrating vectors, we apply Strachan and

Inder’s (2004) Bayesian method, that elicits a valid prior for the cointegrating space.

Our model in this paper is more general than Paap and van Dijk (2003), and is

flexible to modify in order to consider the model in which other parameters are also

subject to the regime shift. For example, in this paper we assume that the cointegrating

vectors are unaffected by the regime shifts. It is, however, possible to consider the

model where the cointegrating vectors are also dependent on the regime shifts. Also,

it is possible to consider the constant in the cointegrating vectors to be affected by the
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regime shifts by a slight modification. We present this modification in the application

of the model which consider the regime dependent risk premium term to investigate

U.S. term structure of interest rates.

The plan of the paper is as follows. Section 2 presents estimation method for the

MS-VECM using a Gibbs sampler. We specify prior densities and likelihood func-

tions, and then derive the posterior distributions. In Section 3, we describe testing for

Markov switching and the number of cointegrating rank as model selection by Bayes

factors. For testing for nonlinearity, the Schwarz BIC is used to approximate the Bayes

factors. To determine the number of rank, the Savage-Dickey density ratio is applied

to compute the Bayes factors. Then we show simulated experiments with artificially

generated data to evaluate the performance of detecting an appropriate model by the

proposed method. Section 4 illustrates application to U.S. term structure of interest

rates, using the MS-VECM where the risk premium term is also affected by the regime

shifts as well as the intercept terms, the lag terms, the variance-covariance matrix, and

the adjustment coefficients. Section 5 contains concluding remarks. The computa-

tions reported in this paper were performed using code written in the Ox programming

language (Doornik, 1998).

2 Markov Switching Vector Error Correction Model

This section introduces a MS-VECM and presents a Bayesian approach to estimate this

model. LetXt denote anI (1) vector ofn-dimensional time series withr linear coin-

tegrating relations. A VAR(p) system with normally distributed Gaussian innovations

ε ∼ iidN(0,Σ) can be written as a vector error correction model (VECM)

∆Xt = µ+αβ′Xt−1 +
p−1

∑
i=1

Ψi∆Xt−i + εt (1)

whereα (n× r) is adjustment term; andβ′ (n× r) is cointegrating vector. If we assume

that the intercept termµ, the adjustment termα, the lag termsΨi , and the variance-

covariance matrixΣ in the VECM are subject to an unobservable discrete state variable
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st = i wherei = 1,2, . . . ,m, then the VECM representation is written as

∆Xt = µ(st)+α(st)β′Xt−1 +
p−1

∑
i=1

Ψi(st)∆Xt−i + εt (2)

whereεt are assumedN(0,Σ(st)) and independent over time. Dimensions of matri-

ces areµ and ε (n×1), Ψi and σ (n×n). The state variablest evolves according

to a m-state, first-order Markov switching process with the transition probabilities,

p(st = i | st−1 = j) = pi j , i, j = 1, . . . ,m.

Equation (2) can be rewritten in the matrix format as

Y = WB+E (3)

whereY =(∆Xp, . . . ,∆XT)′,W =(I1Zβ, . . . , ImZβ), B=(α,Γ′)′, Z =(Xp−1, . . . ,XT−1)′,

E = (εp, . . .εT)′, α = (α1, . . . ,αm),

Γ = (µ1, . . . ,µm,Ψ1,1, . . . ,Ψp−1,1, . . . ,Ψm,1, . . . ,Ψm,p−1)′,

X =


s1,p · · · sm,p s1,p∆X′

p−1 · · · s1,p∆X′
1 · · · sm,p∆X′

p−1 · · · sm,p∆X′
p−1

...
...

...
...

...
...

...
...

...
...

s1,T · · · sm,T s1,T∆X′
T−1 · · · s1,T∆′T−p+1 · · · sm,T∆X′

T−1 · · · sm,T∆X′
T−p+1

.

Let τ be the number of rows ofY, so thatτ = T− p+1, thenX is τ×m(1+n(p−1)),

Γ is m(1+n(p−1))×n, W is τ×κ whereκ = m(1+ n(p−1)+ r), andB is κ×n.

si, j in X is an indicate variable such that it equals to 1 if regime isi and 0 otherwise.

Ii in W is an indicator matrix(τ× τ) where the diagonal elements are 1 iftth regime

is i, otherwise 0, and the off-diagonal elements are all 0. Equation (3) represents the

stacked form of (2).

2.1 Prior Distributions and Likelihood Functions

In selecting a prior density for cointegrating vectors, one approach is to choose an

informative prior such as a normal or a Studentt distribution withr2 linear normaliza-

tion restrictions onβ for identification such thatβ′ = (Ir ,β′?) whereβ? is (n− r)× r

unrestricted matrix. Bauwens and Lubrano (1996) and Kleibergen and Paap (2002)
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choose this type of prior with linear normalization onβ. This prior with linear nor-

malization, however, is criticized by Strachan (2003) and Strachan and Inder (2004)

as invalid because this normalization restricts the estimable region of the cointegrating

space. Instead of using this prior, they propose the Grassman approach that places a

prior on the cointegrating space rather than the cointegrating vectors. There is a num-

ber of research based on the Grassman approach. Strachan and van Dijk (2003a), for

example, analyze a vector error correction model using an uniform prior for the coin-

tegrating space. Strachan and van Dijk (2003b) investigate an issue of model selection

with a proper diffuse prior on the cointegrating vector. Koop et al (2006a) extend to a

panel cointegration model, based on the Grassman prior. Koop et al. (2006b) discuss

the prior elicitation for the cointegrating vector in detail. In this paper, we also adopt

the Grassman approach to place a noninformative prior on the cointegrating space as

g(β) ∝ π−(n−r)r
r

∏
j=1

Γ [(n+1− j)/2]
Γ [(r +1− j)/2]

(4)

whereΓ[q] =
∫ ∞

0 uq−1e−udu, q> 0 with identification restrictions,β′β = In, that do not

distort the weight on the cointegrating space.

For a prior for the transition probabilitiespi j , i, j = 1, . . . ,m, we assign a beta

distribution, assumingm= 2

p00∼ beta(u00,u01) (5)

p11∼ beta(u11,u10) (6)

wherebetarefers to a beta distribution with densityπ(pii |uii ,ui j )= Γ(uii +ui j )
Γ(uii )Γ(ui j )

puii−1
ii (1−

pii )ui j−1.

With regard to priors forB, Ωi , we assume prior independence betweenB and

Ωi such thatp(B,Ω1, . . . ,Ωm) = p(B)∏m
i=1 p(Ωi). We assign prior for the variance-

covariance matrix as an inverted Wishart distribution with the degrees of freedomh
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as

Ωi ∼ IW (Φi ,hi) (7)

whereΦi ∈ Rn×n. As for a prior forB, we consider the vector form ofB and assign a

multivariate normal as

vec(B)∼MN(vec(B0) ,ΣB) (8)

whereMN refers to a multivariate normal with meanvec(B0) ∈ Rκn×1, k = m(1+

n(p− 1) + r) and variance-covariance matrixΣB ∈ Rκn×κn. We assume thatαi , i =

1, . . . ,m, is distributed independently, so thatΣB is defined as

ΣB =

 Σα 0

0 ΣΓ

 (9)

whereΣα is nrm×nrm matrix such thatΣα = Vα⊗ Irm, Vα (n×n) is prior variance-

covariance matrix ofαi ∼ MVN(α,Vα); ΣΓ is n(m+ n(p− 1))× n(m+ n(p− 1))

matrix and is prior variance-covariance matrix ofΓ | α ∼ MVN(Γ,ΣΓ). This inde-

pendence relation of distributions amongα1, . . . ,αm is convenient for determining the

cointegrating rank using the Savage-Dickey density ratio described in Section 3.

The likelihood function forB,Ω1, . . .Ωm, β and the state variables̃ST = {s1,s2, . . . ,sT}′

is given by,

L
(

B,β,Ω1, . . . ,Ωm, S̃T |Y
)

∝

(
m

∏
i=1

|Ωi |−ti/2

)
exp

(
−1

2
tr

[
m

∑
i=1

{
Ω−1

i (Yi −WiB)′ (Yi −WiB)
}])

(10)

=

(
m

∏
i=1

|Ωi |−ti/2

)
exp

(
−1

2

m

∑
i=1

[
(vec(Yi −WiB))′ (Ωi ⊗ Iτ)

−1(vec(Yi −WiB))
])
(11)
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whereYi = IiY, Wi = IiW andti is the total number of observations whenst = i, i =

1,2, . . . ,m.

The likelihood function for the transition probabilitiespi j , i, j = 1,2, . . . ,m, which

are independent of the data but conditional on the set of the state variables, is given

assumingm= 2:

L
(

p11, p22 | S̃T

)
= pm11

11 (1− p11)
m12 pm22

22 (1− p22)
m21 (12)

wheremi, j , i, j = 1 or 2, denotes the number of the transition from the regimei to j,

that can be counted from giveñST .

2.2 Posterior Specifications

In this subsection we derive the posterior densities from the priors and the likelihood

functions. First, we derive the state variableS̃τ = {s1,s2, . . . ,sτ}′ by the multi-move

Gibbs sampler, then derive the posterior distributions for other parameters.

To sample the state variablẽSτ we employ the multi-move Gibbs sampling method,

which is originally proposed by Carter and Kohn (1994) and is applied to a Markov

switching model by Kim and Nelson (1998). The multi-move Gibbs sampling refers

to simulatingst , t = 1,2, . . . ,T, as a block from the following conditional distribution:

p
(

S̃τ | Θ,Y
)

= p(sτ | Θ,Y)
τ−1

∏
t=p

p(sτ | sτ+1,Θ,Y) (13)

whereΘ = {B,β,Ω1,Ω2, p11, p22}. The first term of the right hand side of the above

equation,p(sτ | Θ,Y), can be obtained from running the Hamilton filter (Hamilton,

1989). To drawst conditional onst+1, Θ andY, we use the following results:

p(st | st+1,Θ,Y) =
p(st+1 | st ,Θ,Y) p(st | Θ,Y)

p(st+1 | Θ,Y)
∝ p(st+1 | st) p(st | Θ,Y) (14)

wherep(st+1 | st) is the transition probability, andp(st | Θ,Y) can be obtained from
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the Hamilton filter. Using Equation (14) we compute:

Pr (st = 0 | st+1,Θ,Y) =
p(st+1 | st = 1) p(st = 1 | Θ,Y)

∑1
j=0 p(st+1 | st = j) p(st = j | Θ,Y)

(15)

Once above probability is computed, we draw a random number from a uniform distri-

bution between 0 and 1, and if the generated number is less than or equal to the value

calculated by (15), we setst = 1, otherwise, set equal to 0.

After drawingS̃τ by multi-move Gibbs sampling, we generate the transition prob-

abilities,p11 andp22, by multiplying (5) and (6) by the likelihood function (12)

p
(

p11, p22 | S̃τ

)
∝ pu22+m22−1

22 (1− p22)
u21+m21−1 pu11+m11−1

11

(
1− pu12+m12−1

11

)
(16)

Next, we can constructX andZ in (3) using the draw of̃Sτ, and then the joint

posterior distribution can be obtained from the priors given in (7) and (8) and the

likelihood function forB, β,Ωi , andS̃τ, that is,

p
(

B,β,Ω1, . . . ,Ωm, S̃τ |Y
)

∝ p
(

B,β,Ω1, . . . ,Ωm, S̃T

)
L
(

B,β,Ω1, . . . ,Ωm, S̃T |Y
)

∝ g(β)

[
m

∏
i=1

(
|Ji |hi/2 |Ωi |−(ti−1)/2

)]
exp

{
−1

2

[
tr

(
m

∑
i=1

Ω−1
i

)

+
m

∑
i=1

[
vec(Yi −WiB)′ (Ωi ⊗ Iτ)

−1vec(Yi −WiB)
]
+
[
vec(B−B0)

′Σ−1
B vec(B−B0)

]]}
(17)

whereg(β) refers to the prior forβ given in (4). From the joint posterior (17), we

have the following posterior distributions (see Appendix A.1 for derivation of these

posteriors):

Ωi | β,B, S̃τ,Y ∼ IW
(
(Yi −WiB)′ (Yi −WiB)+Φi , ti +hi

)
(18)
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vec(B) | Ωi ,β, S̃τ,Y ∼ N(vec(B?) ,M?) (19)

where

M? =

{
Σ−1

B +
m

∑
i=1

[
Ω−1

i ⊗
(
W′

i Wi
)]}−1

vec(B?) = M?

{
Σ−1

B vec(B0)+
m

∑
i=1

[
(Ωi ⊗ Iκ)

−1vec
(
W′

i Yi
)]}

For the posterior forβ, according to Strachan and Inder (2004), letz1,t be the

(t−1)th row of Z andz2,t be thetth row of X, then

p(β | S̃τ,Y) ∝ g(β)
∣∣β′D0β

∣∣−τ/2 ∣∣β′D1β
∣∣(τ−n)/2

(20)

whereD0 = D1−D2, D1 = S11 andD2 = S10S
−1
00 S01, Sjk = M jk−M j2M−1

22 M2k, M jk =

h jk +∑z′j,tzk,t , h jk = 0 if j 6= k, h j j = ϕI .

The posterior distributions forΩi in (18),B in (19), andβ in (20) are not convenient

analytical forms. Rather they are conditional on other parameters which must be esti-

mated. Gibbs sampler can be employed to generate random draws from the conditional

posteriors. While the conditional posterior densities forΣi andB are known form, the

posterior forβ in (20) is not a standard form and thus can be drawn by employing

importance sampling, the Metropolis-Hastings algorithm (see Chib and Greenberg,

1995) or the Griddy-Gibbs sampling (see Ritter and Tanner, 1992). In this paper, we

choose the Griddy-Gibbs sampling technique because the algorithm does not require

the specification of function that approximate the distribution. Choosing the Griddy-

Gibbs sampler, however, requires the appropriate choice of the grid of points and the

computing cost is much higher than other algorithms. The algorithm is provided in

Appendix A.2 for convenience.

Given the conditional posterior distributions, we implement the Gibbs sampling
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to generate sample draws. The following steps can be replicated until convergence is

achieved.

• Step 1: Setj = 1. Specify starting values for the parameters in the model,p(0)
ik ,

B(0), β(0) andΩ(0)
i .

• Step 2: GeneratẽS( j)
τ =

{
s( j)
1 ,s( j)

2 , . . . ,s( j)
τ

}′
from p

(
S̃τ | Θ( j−1),Y

)
, whereΘ =

{B,Ω1, . . . ,Ωm,β, pik}in (13), using multi-move Gibbs sampling algorithm.

• Step 3: Generate the transition probabilities(pik)( j) from p
(

pik | S̃
( j)
τ

)
in (16).

• Step 4: Generateβ( j) from p(β | S̃( j)
τ ,Y) in (20) using the Griddy-Gibbs sampling

algorithm.

• Step 5: GenerateB( j) from p(vec(B) | β( j),Ω( j−1)
i , S̃( j)

τ ,Y) in (19).

• Step 6: GenerateΩ( j)
i from p(Ωi | β( j),B( j), S̃( j)

τ ,Y) in (18).

• Step 7: Setj = j +1, and go to Step 2.

Step 2 through Step 7 can be iteratedN times to obtain the posterior means or standard

deviations. Note that the firstN0 times iterations are discarded in order to attenuate the

effect of the initial values.

3 Testing for Markov Switching, Cointegrating Rank, and

Model Selection by Bayes Factors

In this paper, testing for Markov switching and the cointegrating rank is treated as a

problem of model selection. In Bayesian framework, the posterior model probability

p(M j | Y) is used to assess the degree of support for each model,M j . From the

Bayes rule, we havep(M j |Y) = p(Y | M j)p(M j)/p(Y), wherep(Y | M j) is referred

to as the marginal likelihood forM j ; and p(M j) is the prior model probability for

M j . Sincep(Y) is often hard to calculate, comparison of two models,j and i, by

the posterior odds ratio,POji , is often used to obtain the posterior model probability.
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The posterior odds ratio is defined as the ratio of their posterior model probabilities as

POji = p(M j |Y)/p(Mi |Y) = p(Y|M j )p(M j )
p(Y|Mi)p(Mi)

, where the ratio of the marginal likelihoods

p(Y|M j )
p(Y|Mi)

is defined as the Bayes factor. With the posterior odds ratios, we can obtain the

posterior model probability asp(M j |Y) = POji/∑M
k=1POki whereM is the number of

models under consideration. Thus, in order to obtain the posterior model probability

by the posterior odds, we need to calculate the Bayes factor.

There are several methods to calculate the Bayes factor such as Chib (1995),

Gelfand and Dey (1994), the Savage-Dickey density ratio (see Verdinelli and Wasser-

man, 1995), and the Schwarz Bayesian information criterion (BIC) approximation

method (Schwarz, 1978). Among these, we choose the Schwarz BIC method to test for

nonlinearity and select the most appropriate model since other methods are not possi-

ble or difficult to perform.1 The Schwarz BIC can give a rough approximation to the

Bayes factors. It is, however, easy to implement and does not require evaluation of the

prior distribution, as Kass and Raftery (1995) note. The Schwarz BIC to approximate

the Bayes factors is employed by Wang and Zivot (2000) for detecting the number of

structural breaks. The Schwarz BIC forM j is calculated as

BIC j =−2lnL
(

θ̂ j |Y;M j

)
+q j ln(t) (21)

whereL
(

θ̂ j |Y;M j

)
denotes the likelihood function under the modelj; q j denotes the

total number of estimated parameters inM j . The likelihood functionL
(

θ̂ j |Y;M j

)
is evaluated at̂θ j , the posterior means of the parameters forM j .

With the Schwarz BICs forM j andMi , the Bayes factor forM j againstMi can be

approximated by

BFji = exp[−0.5(BICi −BIC j)] . (22)

1 For example, a method by Chib (1995) requires to know the full form of prior, likelihood, and
posterior. In the MS-VECM, the full forms of posterior forβ in (20) is difficult to obtain. In this case,
Chib and Jeliazkov (2001) show how the marginal likelihood can be calculated using the output from the
Metropolis-Hastings algorithm.

The Savage-Dickey density ratio method is applicable only to nested models, while the Gelfand and
Dey method is not suitable to multivariate models.
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With the prior odds, defined asp(M j)/p(Mi), the posterior odds can be computed by

multiplying the Bayes factor by the prior odds as PosteriorOddsji = BFji ×PriorOddsji .

By using the Schwarz BIC to approximate to logarithm of the Bayes factor, it is easy

to test Markov switching cointegration as a problem of model selection. In our case,

we compute the Schwarz BIC such that

BIC j = -2 lnL
(

B,Σ1, . . . ,Σm,β, S̃τ, pik |Y;M j

)
+q j ln(t)

= −2
{

lnL
(

B,Σ1, . . . ,Σm,β, S̃τ |Y;M j

)
+ lnL

(
pik | S̃τ;M j

)}
+q j ln(t)

To determine the number of cointegrating rank, Strachan and Inder (2004) employ

the Laplace approximation method to calculate the Bayes factors. In this paper, instead

of applying the Laplace approximation method, we choose the Savage-Dickey density

ratio to calculate the Bayes factors to determine the number of cointegrating rank. The

Bayes factor comparing zero rankr = 0 and non-zero rankr = r∗ is obtained using the

Savage-Dickey density ratio as follows:

BF(r = 0 | r = r∗) = BF(α = 0 | α 6= 0)

=
p(α = 0 |Y,Mr∗)
p(α = 0 | Mr∗)

(23)

wherer∗ > 0 is the number of rank to test;Mr∗ denotes a model with rankr∗; the

denominator is the prior density evaluated atα = 0; and the numerator is the posterior

density evaluated atα = 0. The prior forB, vec(B)∼MN(vec(B0),ΣB) with ΣB defined

in (9), impliesp(α) = ∏m+1
i=1 p(αi), whereαi ∼ MVN(α,Vα). The posterior forαi is

also independently distributed asαi | β,Ωi ,Yi ∼ MVN(αi ,Vα,i) whereVα,i = (V−1
α +

Z′i ZiΩ−1
i )−1 andαi = Vα,i(V−1

α α+Z′i (Yi −XiΓi)Ωi). Since

1
N−N0

N

∑
j=N0+1

p(α = 0 | β( j),Ω( j),Y, r∗)→ p(α = 0 |Y,Mr∗) (24)

asN goes to infinity, the numerator of (23) can be easily calculated.
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To evaluate the performance of detecting the Markov switching nonlinearity by

the Schwarz BIC, we conducted Monte Carlo simulations. We consider three-variable

MS-VECM for the experiments. The data generating processes (DGPs) are given as

the following:

M 1 : ∆Xt = µ0 +α0β′Xt−1 +Ψ0∆Xt−1 +σ0εt

M 2 : ∆Xt = µ(st)+α(st)β′Xt−1 +Ψ(st)∆Xt−1 +σ0εt

M 3 : ∆Xt = µ0 +α(st)β′Xt−1 +Ψ0∆Xt−1 +σ(st)εt

M 4 : ∆Xt = µ(st)+α(st)β′Xt−1 +Ψ(st)∆Xt−1 +σ(st)εt

whereµ(st = 0) = µ0=(0.2, 0.2, 0.2)’,µ(st = 1) = µ1=(-0.2, -0.2, -0.2)’,α(st = 0) =

α0=(-0.2, -0.2, 0.2)’,α(st = 1) = α1=(0, 0, 0)’,β′=(1, -1, 1),εt ∼ NID(0, I3), σ(st =

0) = σ0 = 0.5I3, σ(st = 1) = σ1 = 0.1I3, Ψ(st = 0) = Ψ0 = 0.5I3, andΨ(st = 1) =

Ψ1 = 0.2I3 the sample sizeT={100, 200, 500}. The transition probabilities are given

as (p00, p11)=(0.95, 0.95). These four DGPs represent:

M 1: Linear VECM model.

M 2: Homoskedastic MS-VECM with regime dependent mean

M 3: Heteroskedastic MS-VECM with constant mean

M 4: Heteroskedastic MS-VECM with regime dependent mean

It might be possible to compute Bayes factors for all modelM 1 - M 4 to select

the most appropriate model. However, if the true model is linear asM 1, computation

of the Bayes factors forM 2 - M 4 might not be feasible because of the problem that

the state variables and the transition probabilities are not identified through the Gibbs

sampling, causing a convergence problem in the Gibbs sampler. Kim and Nelson

(2001) overcome this problem by employing ’pseudo priors’ (see Carlin and Chib,

1995). In this paper we restrict a priori that a certain percentage of the observations

lies in each regime as Koop and Potter (1999) in order to avoid the problem. When the

total number of either regime occurred in the generated state variables atj-th iteration
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of Gibbs sampling, that is,∑τ
i=1s( j)

i or ∑τ
i=1(1− s( j)

i ), is less than given value, say, 5

percent of the sample size, then the previously drawn set of state variables,S̃( j−1)
τ , is

used in thej-th iteration of the Gibbs sampler by settingS̃( j)
τ = S̃( j−1)

τ .

The Bayes factors were computed for all models (M 1 - M 4) to calculate the pos-

terior model probability for each model. For prior hyperparameters, we setΦi = 0.01I3

andhi = 0.001 for all i in (7), ΣB = 100Iκn andB0 = 0 in (8) favoring the absence of

cointegration. These values are assigned to ensure fairly large variances for represent-

ing prior ignorance. For prior hyperparameters for the transition probabilities, we set

u00 = u11 = 9, u01 = u10 = 1 in (5) and (6). The number of cointegration rank and the

lag length are assumed to be known. Each simulation is replicated 1000 times. For

each replication of the simulations, the Griddy-Gibbs sampler is employed with 5,000

draws with the first 500 discarded to generate the cointegrating vector with the interval

of integration (the deterministic Simpson’s rule is used) for each element ofβ from

-6.00 to 6.00 with the number of the grid at 1200 to avoid significant truncation of the

posterior density.

Table 1 summarizes the results of Monte Carlo simulations for model selection.

The value in each element of the Table represents the average posterior model prob-

ability. When the true model is the linear VECM,M 1, the average posterior model

probability selects the correct modelM 1 with more than 90% even whenT = 100.

When the true model is the MS-VECM,M 2, M 3 orM 4, the average posterior model

probability selects the correct model with less than 90% for the three DGPs when

T = 100. Increasing the sample size to 200 improves the performances as the correct

model is selected with more than 90%.

4 Application: U.S. Term Structure of Interest Rates

We present an empirical study using the MS-VECM to analyze U.S. term structure of

interest rates. It is possible to apply the MS-VECM of the form (2) to examine the

expectations hypothesis of U.S. term structure of interest rates. However, with some
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minor modifications, the model can be extended to allow the risk premium term in the

cointegrating vector to shift with regime, rather than assuming that the risk premium

is constant. With this model, we can investigate nonlinearity of U.S. term structure of

interest rates by changes in monetary policy.

4.1 Expectation Hypothesis

The expectations hypothesis of the term structure of interest rates implies anf -period

interest rate is the weighted average of the expected future one-period interest rates

plus risk premium. For an overview of the expectations hypothesis theory, see Shiller

(1990). Letr f ,t be the yield to maturity for anf -period at timet, L f ,t be the risk

premium for anf -period at timet, then the hypothesis implies:

r f ,t = f−1
f

∑
i=1

Etr1,t+i−1 +L f ,t (25)

By rewriting the above equation, the interest rate spreadSf ,t can be expressed as

Sf ,t ≡ r f ,t − r1,t = f−1
f−1

∑
i=1

i

∑
j=1

Et∆r1,t+ j +L f ,t (26)

If r1,t is integrated of order one, thenr f ,t is also integrated of order one and thusr f ,t

andr1,t are cointegrated with cointegrating vector (1, -1) as analyzed by Campbell and

Shiller (1987). The risk premium is assumed to beI(0) so that the hypothesis states

thatr f ,t − r1,t −L f ,t is a stationary process.

The expectations hypothesis in (26) with constant risk premium implies the fol-

lowing vector error correction model with the lag length atp−1:

∆Xt = µ+α(β′Xt−1−L f ,t)+
p−1

∑
i=1

Ψi∆Xt−i + εt (27)

whereXt = ( r f ,t , r1,t )′; α (2×1) is the adjustment term;β (2×1) is the cointe-

grating vector;Ψi (2×2) is the lag coefficient; andεt (2×2) is iidN(0,Σ).

There is a number of research that confirms nonlinearity of U.S. term structure of
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interest rates due to changes in monetary policy. Tsay (1998), Hansen and Seo (2002),

Clements and Galvao (2002) use a threshold cointegration model, while Clarida et

al (2006) employ a Markov switching vector error correction model to detect regime

switching. All these studies find nonlinearity due to the instability for interest rates

between 1979 and 1982 as a potential source of shifts. This period between 1979 and

1982 is known as thenon-borrowed reserves operating procedure,that the Federal

Reserve moved from interest rate targeting to money growth targeting and allowed the

interest rate to fluctuate freely.

4.2 MS-VECM with Regime Switching Risk Premium

We apply the MS-VECM to U.S. term structure of interest rate based on (27) to account

for the regime shifts. The MS-VECM considered in Section 2 is applied, but with

minor modification so that the risk premium term,L f ,t , is also subject to the regime

shifts with Markov process:

∆Xt = µ(st)+α(st)(β′Xt−1−L(st))+
p−1

∑
i=1

Ψi(st)∆Xt−i + εt (28)

whereεt ∼ N(0,Ω(st)); L(st) is the risk premium term depending upon the state vari-

ables. Compared with the MS-VECM considered in Section 2, there is an additional

regime dependent parameterL(st) to estimate. Sinceβ′Xt −L(st) is I(0), we can es-

timateL(st) as a parameter in a linear regressionβ′Xt = L(st)+ ut = LSt + ut where

ut ∼ iidN(0,σ2), L = (L0,L1), andSt = (1,st)′. With the natural conjugate priors for

L | σ2 ∼ N(L,σ2VL) andσ2 ∼ IG(σ2,νσ), whereIG denotes an inverted Gamma dis-

tribution, the posterior forL is analytically obtained as at-distribution with the mean

E(L |Y) = (V−1
L +S′S)−1(V−1

L L+S′ŜL) where eachtth row of Sis (1,st); L̂ is the OLS

estimator,(S′S)−1S′Xβ. To estimateβ, reexpress the model (28) as

y∗t = µ(st)+α(st)β′Xt−1 +
p−1

∑
i=1

Ψi(st)∆Xt−i + εt (29)

wherey∗t = ∆Xt + α(st)L(st). The cointegrating vectors,β, in the model (29) can be
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estimated by applying Strachan and Inder’s (2004) method to the model.

Then, with regressionY = WB+ E whereW = (I0(Zβ−1L0), I1(Zβ−1L1),X));

1 is τ×1 matrix of 1;Y = (y∗1, . . . ,y
∗
τ)
′; B, X, andE are defined as (3) so that the pos-

teriors forB andΩi are the same as (19) and (18). With these posteriors we implement

the Gibbs sampler as follows (whenm= 2):

• Step 1: Setj = 1. Specify starting values for the parameters of the model,p(0)
11 ,

p(0)
22 B(0) = (α(0)

0 ,α(0)
1 ,µ(0)

0 ,µ(0)
1 ,Ψ(0)

1,0, . . . ,Ψ
(0)
p−1,0,Ψ

(0)
1,1, . . .Ψ

(0)
p−1,1), L(0)

i , β(0) and

Ω(0)
i .

• Step 2: GeneratẽS( j)
τ =

{
s( j)
1 ,s( j)

2 , . . . ,s( j)
τ

}′
from p

(
S̃τ | Θ( j−1),Y

)
in (13),

whereΘ = {B,L,Ω1,Ω2,β, pik}, using multi-move Gibbs sampling algorithm.

• Step 3: Generate the transition probabilities,p( j)
ik from p

(
pik | S̃

( j)
τ

)
in (16).

• Step 4: Addα(st)( j−1)L(st)( j−1)to the both sides of the model such that∆Xt +

α(st)( j−1)L(st)( j−1) = µ(st)( j−1) + α(st)( j−1)β′Xt−1 + ∑p−1
i=1 Ψi(st)( j−1)∆Xt−i +

εt , then generateβ( j) from p(β | S̃( j)
τ ,Y) in (20) using Strachan and Inder’s

method with the Griddy Gibbs sampling algorithm.

• Step 5: To generateL(st)( j), set up the regressionβ′( j)Xt = LS( j)
t + ut where

L = (L0,L1), S( j)
t = (1,s( j)

t ), andut ∼ iidN(0,σ2). EstimateL asL( j) = (V−1
L +

S( j)′S( j))−1(V−1
L L+S( j)′S( j)L̂), whereL̂ is the OLS estimator. Note that the risk

premium of regime 0 isL(st = 0) = L0 = L0, and that of regime 1 isL(st = 1) =

L1 = L0 +L1.

• Step 6: With the draws ofL( j), β( j) and S̃( j)
τ , constructI ( j)

0 and I ( j)
1 to obtain

W( j) = (I ( j)
0 (Zβ( j) − 1L0), I

( j)
1 (Zβ( j) − 1L1),X)), and then generateB( j) from

p(vec(B) | β( j),L( j),Ω( j−1)
i , S̃( j)

τ ,Y) in (19).

• Step 7: GenerateΩ( j)
i from p(Ωi | β( j),L( j),B( j), S̃( j)

τ ,Y) in (18).

• Step 8: Setj = j +1, and go to Step 2.
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4.3 Estimation Results

We analyze U.S. term structure of interest rates using the MS-VECM described above.

The data set is monthly 3-month Treasury bill and 10-year Treasury bond covering

the period 1960:1 to 2006:1 with 552 observations, obtained from the Federal Reserve

Bank of St. Louis. Figure 1 plots the data set and its spread.

We consider the following four models:

M 1 : ∆Xt = µ+α(β′Xt−1−L)+
p−1

∑
i=1

Ψi∆Xt−i + εt

M 2 : ∆Xt = µ(st)+α(st)(β′Xt−1−L(st))+
p−1

∑
i=1

Ψi(st)∆Xt−i + εt

M 3 : ∆Xt = µ+α(st)(β′Xt−1−L(st))+
p−1

∑
i=1

Ψi∆Xt−i +σ(st)εt

M 4 : ∆Xt = µ(st)+α(st)(β′Xt−1−L(st))+
p−1

∑
i=1

Ψi(st)∆Xt−i +σ(st)εt

whereεt ∼ iidN(0,Σ). M 1 represents a linear VECM.M 2 is a homoskedastic MS-

VECM with regime dependent mean.M 3 is a heteroskedastic MS-VECM with con-

stant mean.M 4 is a heteroskedastic MS-VECM with regime dependent mean.

To estimate four models,M 1 - M 4, we implement the Gibbs sampling algorithm

described Section 4.2, with prior hyperparametersL = 0, VL = 1000,σ2 = 0.5, νσ =

0.001 for ensuring a relatively noninformative forL. For other prior hyperparameters

we set the same values as in the Monte Carlo simulation in Section 3. The Gibbs

sampler is run with 10,000 times with the first 1,000 discarded.2

Testing for cointegration rank with the lag lengthp = 4 is conducted using the

Savage-Dickey density ratio described in Section 3. The results are reported in Table

2. We find that there are very strong evidence of rank 1 for all four modelsM 1 -

2 We did not check whether the draws from the Gibbs sampler converge by calculating, for example,
Geweke’s (1992) convergence diagnostics because there involve too many parameters to check. We
believe that the number of iteration as 10,000 is generally sufficiently large number of draws to converge,
and the first 1,000 discarded is enough to eliminate the effect of initial draw.
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M 4 with the p = 4.3 Table 3 reports the posterior model probabilities calculated by

using the Schwarz BIC forM 1 - M 4, varying the lag lengthp = 2 - 5. Clearly,

nonlinearity by the Markov process is detected with almost 100 percent. The posterior

model probability forM 4 is Pr(M 4 | Y) = ∑5
p=2Pr(M 4, p | Y) ≈ 0.934, and thus

there is strong evidence to supportM 4. The highest posterior model probability is

44.1 percent given toM 4 with p = 4.

Table 4 reports the results of the posterior estimation of the parameters forM 4

with p= 4. From the results, the 95% HPDI ofβ (after normalizing) containsβ2 =−1,

that is implied by the expectations hypothesis of the term structure. To examine

whether the restriction ofβ2 = −1 is appropriate in a more formal way4, we calcu-

late the Bayes factor asBF ≈ exp[−0.5(BICR−BICUR)], where BICUR is the unre-

stricted BIC, and BICR is the restricted BIC with the restrictions ofβ = (1,−1), and

the the value is 278.14, which shows a very strong evidence to support the expectations

hypothesis.5

The posterior expectation of the state variables is plotted in Figure 2. Thenon-

borrowed reserves operating procedurebetween 1979 and 1982 is detected as the

regime shift. Regime shift occurs also in 1972 and 1984. These regime shifts are

corresponding to higher inflation regime (Goodfriend, 1998), and are characterized by

a much higher variance of both the long and the short interest rate than those of regime

0. In regime 0, that is relatively stable period, the variance of the long rate is higher

than that of the short rate; on the other hand, in regime 1, the short rate fluctuates much

more than the long rate. The risk premium in regime 1,L1, is lower than in regime

0, L0, that implies long run inflation expectations decrease during high inflation pe-

riod due to the central bank’s anti-inflationary monetary policy by rising the short term

interest rate.
3 We have also tested for the number of cointegration rank ofM 1 - M 4 with different lag length at

p = 2,3, and 5, and the results are all the same as whenp = 4, that is, there is very strong evidence of
rank 1.

4 As Koop (2004) note, “the justification for using the HPDIs to compare models is an informal one
which, in contrast to posterior odds, is not rooted firmly in probability theory.”

5 See Kass and Raftery (1995) for a rule of thumb for evaluating Bayes factors. According to this rule
of thumb, ifBFi j is between 20 and 150, there is a strong evidence against modelj, and ifBFi j exceeds
150, there is a very strong evidence against modelj.
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We find that the adjustment term for the long-term rate is positive asαi,0 < 0 and

for the short-term rate negative asαi,1 > 0 for both regimes, which implies that the

long-term rate tends to fall and the short-term rate tends to rise against the disequi-

librium in either regime. The adjustment terms for both the long and the short-term

rate in both regimes are significant as the 95% HPDIs for those values do not contain

zero. Figure 3 plots the posterior densities for these adjustment terms and indicates

that these densities do not contain zero. In regime 1 of higher volatility in the inter-

est rates, the posterior mean of the adjustment speed for both the short (α1,0) and the

long rates (α1,1) is (−0.0800,0.0625) which is much faster than those in the regime 0

(α0,0,α0,1) = (−0.0115,0.0135). This implies that interest rates adjust much faster in

periods of high volatility with high inflation and anti-inflationary monetary policy.

5 Conclusion

In this paper we consider a Markov switching vector error correction model where

the adjustment terms, the lag terms, the intercept terms, and the variance-covariance

matrix are subject to the regime shifts with the first order unobservable Markov process

while the cointegrating vector is unaffected by the regime shifts.6

Estimations are carried out entirely by a Bayesian method. The cointegrating vec-

tor is drawn using the method by Strachan and Inder (2004) in a nonlinear framework

so that the estimation of the cointegrating vector is more efficient than multi-step clas-

sical methods where the cointegrating vector is estimated assuming the model is linear.

To select the most appropriate model among linear, Markov switching, and other

model specifications, we use the posterior model probabilities by approximating the

Bayes factors by the Schwarz BIC. Although the Schwarz BIC does not generate the

exact value of Bayes factor but just approximation, the Monte Carlo simulation show

that it selects generally a correct model. To determine the number of cointegrating

6 It is possible to allow the cointegrating vectors to change with Markov process by slight modifica-
tion. However, we have not done this because changing the long-run relationship is not reasonable idea
unless economic theory support this.
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rank, we employ the Savage-Dickey density ratio to calculate the Bayes factors for

zero rank against non-zero rank.

As an application to illustrate the use of the MS-VECM, we illustrate U.S. term

structure of interest rates using the MS-VECM with regime dependent risk premium.

We find that regime with high volatility and high speed of adjustment captures the

non-borrowed reserves operating procedureduring the 1979-82 and other phases of

inflation scare, while the stable regime with low volatility and low speed of adjustment

prevails after the mid of 80’s.

In this paper Markov switching is chosen as a switching behavior, assuming that

one regime jumps to another regime suddenly at particular dates. It is of interest to

consider alternative multivariate nonlinear models such as a smooth transition vector

error correction models (ST-VECM) to analyze the nonlinear cointegration where the

regime shifts occur not suddenly but smoothly, and compare the ST-VECM with the

MS-VECM by the Bayes factors.

Appendix

A.1 Derivation of (18) and (19)

The joint prior ofB, β, andΩi is given by multiplication of (4), (7) and (8) as follows:

p
(

vec(B),β,Ω1, . . . ,Ωm.S̃T

)
= g(β)p(vec(B))p(S̃T)

m

∏
i=1

p(Ωi)

∝ g(β)

(
m

∏
i=1

|Φi |hi/2 |Ωi |−(hi+n+1)/2

)
|ΣB|−1/2exp

{
−1

2

[
tr

(
m

∑
i=1

Ω−1
i Φi

)
+vec(B−B0)

′Σ−1
B vec(B−B0)

]}
(30)

The likelihood function forB,Ω1, . . .Ωm, β andS̃T is given by,

L
(

B,β,Ω1, . . . ,Ωm, S̃T |Y
)
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∝

(
m

∏
i=1

|Ωi |−ti/2

)
exp

(
−1

2
tr

{
m

∑
i=1

[
Ω−1

i (Yi −WiB)′ (Yi −WiB)
]})

(31)

=

(
m

∏
i=1

|Ωi |−ti/2

)
exp

{
−1

2

m

∑
i=1

[
vec(Yi −WiB)′ (Ωi ⊗ Iτ)

−1vec(Yi −WiB)
]}

(32)

The joint posterior for derivingΩi is given as product of the joint prior (30) and the

likelihood (31) as

p(vec(B),β,Ω1, . . . ,Ωm, S̃T |Y)

∝ p
(

vec(B),β,Ω1, . . . ,Ωm.S̃T

)
L
(

B,β,Ω1, . . . ,Ωm, S̃T |Y
)

∝ g(β)

(
m

∏
i=1

|Φi |hi/2 |Ωi |−(ti+hi+n+1)/2

)
|ΣB|−1/2exp

{
−1

2

[
vec(B−B0)′Σ−1

B vec(B−B0)
]}

×exp

(
−1

2

{
m

∑
i=1

Ω−1
i

[
(Yi −WiB)′ (Yi −WiB)+Φi

]})
(33)

From the joint posterior (33), the conditional posterior density forΩi can be de-

rived as

p(Ωi | B,β, S̃T ,Y) =
p(vec(B),β,Ωi , S̃T |Y)

p(vec(B),β, S̃T |Y)
∝ p(vec(B),β,Ωi , S̃T |Y)

∝ |Ωi |−(ti+hi+n+1)/2exp

(
−1

2
tr
{

Ω−1
i

[
(Yi −WiB)′ (Yi −WiB)+Φi

]})
= |Ωi |−(ti+hi+n+1)/2exp

[
−1

2
tr
(
Ω−1

i Φ?,i
)]

(34)

whereΦ?,i = (Yi −WiB)′ (Yi −WiB)+ Φi . Thus, the conditional posterior ofΩi is de-

rived as an inverted Wishart distribution as

Ωi | β,B, S̃T ,Y ∼ IW
(
(Yi −WiB)′ (Yi −WiB)+Φi , ti +hi

)
. (35)

With regard to the conditional posterior density forvec(B), we use the likelihood

(32), instead of (31), to obtain the joint posterior as multiplying the joint prior in (30)
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by (32), we have

p(vec(B),β,Ω1, . . . ,Ωm, S̃T |Y)

∝ p
(

vec(B),β,Ω1, . . . ,Ωm.S̃T

)
L
(

B,β,Ω1, . . . ,Ωm, S̃T |Y
)

∝ g(β)

(
m

∏
i=1

|Φi |hi/2 |Ωi |−(ti+hi+n+1)/2

)
|ΣB|−1/2exp

{
−1

2

[
vec(B−B0)′Σ−1

B vec(B−B0)
]}

×exp

{
−1

2

m

∑
i=1

[
vec(Yi −WiB)′(Ωi ⊗ Iti )

−1vec(Yi −WiB)
]}

(36)

From (36), we can write the key term in the last two lines as

m

∑
i=1

[
vec(Yi −WiB)′ (Ωi ⊗ Iti )

−1vec(Yi −WiB)
]
+vec(B−B0)

′Σ−1
B vec(B−B0)

= vec(B−B?)
′M−1

? vec(B−B?)+Q

where

Q =
m

∑
i=1

[
vec(Yi)

′ (Ωi ⊗ Iti )
−1vec(Yi)

]
+vec(B0)

′Σ−1
B vec(B0)−vec(B?)

′M−1
? vec(B?)

M? =

{
Σ−1

B +
m

∑
i=1

[
Ω−1

i ⊗
(
W′

i Wi
)]}−1

vec(B?) = M?

{
Σ−1

B vec(B0)+
m

∑
i=1

[
(Ωi ⊗ Ik)

−1vec
(
W′

i Yi
)]}

.

For the proof of this derivation, see Appendix of Sugita (2006). Hence, the conditional

posterior density forvec(B) is derived as a multivariate normal density as follows:

p(vec(B) | Ω1, . . . ,Ωm,β, S̃T ,Y) ∝ |ΣB|−1/2exp

{
−1

2

[
vec(B−B?)

′M−1
? vec(B−B?)

]}
(37)
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Thus, the conditional posterior distributions forΩi andB are given as (18) and (19)

respectively.

A.2 The Griddy-Gibbs Sampler

The Griddy-Gibbs sampler is proposed by Ritter and Tanner (1992). This sampler can

be implemented when the conditional posterior density is unknown to the researcher.

The advantage of using this sampler over the importance sampler or the Metropolis-

Hastings algorithm is that researcher does not have to provide an approximation of the

function, that is not easy task in many cases. The disadvantage is that this sampler

demands more computing time. The procedure for implementing the Griddy-Gibbs

sampler is as following:

1. Before we begin the chain, we must choose the range of the grid and the number

of the grid. The range should be chosen so that the generated numbers are not

truncated.

2. Let vec(β)′ = (β1,β2, . . . ,βm). With an arbitrary starting value (within the up-

per and the lower bound of the grid), computef (β1|βi
2,β

i
3, . . . ,β

i
m,Y), wherei

denotes thei-th loop, over the grid(β1,1,β1,2, . . . ,β1,U), whereβ1,1 is the lower

bound of the grid ofβ1, andβ1,U is the upper bound of the grid ofβ1.

3. Compute the valuesG = (0,Φ2,Φ3, . . . ,ΦU) where

Φ j =
∫ β1, j

β1,1

f (β1|βi
2,β

i
3, . . . ,β

i
m,Y)dβ1

j = 2, . . . ,U

4. Compute the normalized pdf valuesGζ = G j/ΦU of ζ(β1|βi
2,β

i
3, . . . ,β

i
m,Y).

5. Draw the random numbers from the uniform density with the lower bound as

zeros and the upper bound asΦU and invert cdfG by numerical interpolation to

obtain a drawβi
1 from ζ(β1|βi

2,β
i
3, . . . ,β

i
m,Y).
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6. Repeat steps 2-5 forβ2, . . . ,βm.

7. Seti = i +1 (incrementi by 1) and go to step 2.

Note that integration at the step 3 can be done by the deterministic approximation such

as the Simpson’s rule or the Trapezoidal rule. The Simpson’s rule approximates the

integration off (θ), based on an interpolation, such as

∫ 1

0
f (θ)dθ ≈ 1

6
[ f (0)+4 f (0.5)+ f (1)] .

Or the extended Simpson rule can be applied as, with 2n intervals of equal length

d = θi −θi−1 = 1/2n based on 2n+1 pointsθ0 = 0,θ1, . . . ,θ2n = 1,

∫ 1

0
f (θ)dθ ≈ d

3
{ f (θ0)+4[ f (θ1)+ f (θ3)+ · · ·+ f (θ2n−1)]

+2[ f (θ2)+ f (θ4)+ · · ·+ f (θ2n)]} .

See Bauwens et al (p68-71,1999) for details and other version of the Simpson rule.
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Table 1: Average posterior probabilities: Testing for Cointegration, Non-Cointegration

and Markov Cointegration

True Model =M 1 True Model =M 2

model T = 100 T = 200 T = 500

M 1 0.921 0.958 0.996

M 2 0.040 0.020 0.001

M 3 0.037 0.022 0.003

M 4 0.002 0.000 0.000

model T = 100 T = 200 T = 500

M 1 0.032 0.000 0.000

M 2 0.859 0.946 0.973

M 3 0.088 0.043 0.021

M 4 0.021 0.011 0.006

True model =M 3 True Model =M 4

model T = 100 T = 200 T = 500

M 1 0.065 0.044 0.006

M 2 0.024 0.021 0.001

M 3 0.897 0.935 0.993

M 4 0.012 0.000 0.000

model T = 100 T = 200 T = 500

M 1 0.027 0.000 0.000

M 2 0.037 0.028 0.003

M 3 0.070 0.031 0.006

M 4 0.862 0.941 0.991

Note: Each element in Table shows the average posterior model probabilities calculated by using the

Schwarz BIC.
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Table 2: Cointegration Test for U.S. Term Structure of Interest Rates

M 1 M 2 M 3 M 4

r = 0 0.023 0.001 0.000 0.000

r = 1 0.977 0.999 1.000 1.000

r = 2 0.000 0.000 0.000 0.000

Note: Each value in the Table shows the posterior model probability calculated by using the Savage-

Dickey density ratio. Each model is with the lag lengthp = 4.

Table 3: Model Selection for U.S. Term Structure of Interest Rates withr = 1

p = 2 p = 3 p = 4 p = 5 Pr(M )

M 1 0.000 0.000 0.000 0.000 0.000

M 2 0.026 0.002 0.000 0.000 0.028

M 3 0.000 0.005 0.025 0.008 0.038

M 4 0.255 0.188 0.441 0.050 0.934

Pr(p) 0.281 0.195 0.466 0.058 1.000

Note: Each value in the Table shows the posterior model probability calculated by using the SBIC.

The bottom row of the Table shows the marginal probabilities for each lag length Pr(p)= ∑4
i=1Pr(M i, p).

The right column of the Table shows the marginal probabilities for each model Pr(M )= ∑5
p=2Pr(M i, p).
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Table 4: Posterior Results forM 4 with p = 4

( ) = standard deviation

parameter mean 95% HPDI

β2 -1.0331 (0.0618) -1.1690, -0.9229

α0,0 -0.0115 (0.0031) -0.0173, -0.0053

α0,1 0.0135 (0.0031) 0.0075, 0.0195

α1,0 -0.0800 (0.0111) -0.0999, -0.0539

α1,1 0.0625 (0.0133) 0.0375, 0.0897

L0 1.4310 (0.2953) 0.7755, 1.9582

L1 0.6310 (0.5455) -0.5606, 1.5853

p00 0.9098 (0.0270) 0.8511, 0.9554

p11 0.9696 (0.0097) 0.9482, 0.9860

Σ0 =



0.0408 0.0169

(0.0032) (0.0017)

0.0169 0.0270

(0.0017) (0.0026)


, Σ1 =



0.1670 0.2334

(0.0240) (0.0353)

0.2334 0.6660

(0.0353) (0.0787)


.

Note: The subscripti in αi, j denotes the regime,j = 0 for the long-term rate, andj = 1 for the

short-term rate.
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Figure 1: US 3-month bill rate, 10-year bond rate and the spread

Source: Federal Reserve Bank of St.Louis
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Figure 2: Posterior expectation of the regime variable E[St |Y] for th US Term

Structure of Interest rates
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Figure 2: Histogram of posterior densities forα for US term structure of interest

rates
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