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1 Introduction

In a unanimity game, each player receives a positive payoff only when everyone plays the same

strategy. In any other strategy profile, the payoff is zero. When one of the two strict equilibria

payoff-dominates the other, it may seem natural to expect the payoff dominant equilibrium

to be the unique equilibrium selection outcome. For example, the theory of Harsanyi and

Selten (1988) fulfills this expectation, as a payoff dominant equilibrium in a unanimity game is

risk dominant. Young (1998) pointed out, however, that the expected result need not be true

in equilibrium selection by stochastic evolution. Specifically, working in a multi-population

random matching environment, Young (1998) shows that there are unanimity games with four

players in which both equilibria are stochastically stable although one of them payoff-dominates

the other in a wide margin.

At first sight, the source of the “counter-intuitive” result seems to be the non-generic

payoffs in unanimity games. Working in the adaptive play with mistakes à la Young (1993),

we identify the source of the multiplicity. What is responsible is not payoff ties per se, but a

particular way the stochastically stable equilibrium depends on non-equilibrium payoffs that

arise at strategy profiles where the numbers of players employing the respective strategies are

nearly equal.

An example of such a dependence is the following. Consider symmetric binary four-person

games, in which the payoff of a particular strategy, A or B, is determined by the number of

players who take that strategy. In Figure 1, α and β are equilibrium payoffs. In G1, each εk is a

non-equilibrium payoff associated with A. It follows from our main result that if the difference

between α and β is not so large, then (A, . . . , A) is a unique stochastically stable equilibrium

for every εk > 0, even if α < β. Specifically, our analysis shows that the claim is true whenever

2α > β. This is a consequence from the fact that, as long as the deviation losses are relatively

close, payoffs in the middle range of the table have a decisive effect on the stochastic stability.

Similarly in G2, (B, . . . , B) is uniquely stochastically stable provided 2β > α and εk > 0. By

continuity, the multiplicity follows in the limiting unanimity game.

A related point can be made in terms of the “mistake-counting” argument in a simple

adjustment scenario that is solely based on the stage game best response. In G1, let the initial

state be (B, . . . , B). If one of the players makes a mistake, all the others can switch to A. By

contrast, just one mistake is not enough if the initial state is (A, . . . , A). This is just a rough

idea, as it does not depend on the deviation losses whatsoever. Our analysis offers conditions

under which the simple intuition agrees with the stochastic stability in the adaptive play.

1



1 2 3 4

ak 0 ε2 ε3 α

bk 0 0 0 β

G1

1 2 3 4

ak 0 0 0 α

bk 0 ε2 ε3 β

G2

Figure 1: Four-person symmetric binary coordination games.

In the next section, we specify the class of games under study and recall some relevant

aspects of the adaptive play. The main analysis is given in section three. A sufficiency result

for the stochastically stable equilibrium allows us to make the preceding argument both precise

and more general. Concluding remarks are given in the final section. The appendix gives some

of the details that are skipped in the main text.

2 Preliminaries

There are n players, denoted by i ∈ I = {1, . . . , n}, n ≥ 3. Each player chooses her strategy

σi ∈ {A,B}. A generic strategy profile is denoted by σ ∈ Σ = {A,B}n. Let |σ|X be the

number of players employing X ∈ {A,B} in σ. The payoff of player i is given as follows:

ui(σ) =

ai
|σ|A , if σi = A,

bi
|σ|B , if σi = B,

where ai
k and bi

k are functions defined on {1, . . . , n} such that

(G1) ai
k and bi

k are nondecreasing in k,

(G2) ai
n > bi

1 and bi
n > ai

1.

The game thus defined is called a binary coordination game. The condition (G1) implies that

the payoff associated with a particular strategy depends only on the number of players who

adopt that strategy. By (G2), both (A, . . . , A) and (B, . . . , B) are strict equilibria. In order to

ensure that the game has exactly two strict equilibria, we introduce an additional condition.

For every i ∈ I, define ki = max
{

k | bi
n−k > ai

k+1

}
. Let Figure 2 depict payoff parameters

of a particular player i ∈ I. Then the number ki is m − 1. Let k = |σ−i|A be the number

of others adopting A and BRi(·) be the pure best response correspondence. It follows that
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Figure 2: Payoff parameters in an n-person simple binary coordination game.

BRi(σ) = {B} if k ≤ ki and A ∈ BRi(σ) otherwise. Note that 0 ≤ ki ≤ n − 2 for every ∈ I.

For every k = 0, 1, . . . , n− 2, let

I(k) =
{

i ∈ I | ki ≤ k
}

, I(k) =
{

i ∈ I | ki ≥ k
}

, I(k) =
{

i ∈ I | ki = k
}

.

I(k) is the set of players with threshold ki less than or equal to k. Similarly for the other two.

The additional condition concerns the distribution of these thresholds.

(G3) If there is k, 2 ≤ k ≤ n− 2, such that |I(k − 2)| = k, then I(k − 1) 6= ∅.

Roughly speaking, (G3) implies that the thresholds may differ across players, but they can do

so only in a “connected” way.1 A simple binary coordination game is a binary coordination

game that satisfies (G3). For every σ ∈ Σ and X ∈ {A,B}, let IX(σ) =
{

i ∈ I | σi = X
}
.

Lemma 1. A simple binary coordination game has exactly two strict equilibria.

Proof. Let σ ∈ Σ be a strategy profile such that |σ|A = k. By (G2), if k = 1 or k = n−1, then

σ is not an equilibrium. Thus assume that 2 ≤ k ≤ n − 2 and that σ is a strict equilibrium.

Then one can verify that IA(σ) = I(k−2) and that IB(σ) = I(k). It follows that |I(k−2)| = k,

2 ≤ k ≤ n− 2, and I = I(k − 2) ∪ I(k), which contradict (G3).

It should be noted that for a binary coordination game without multiple best responses,2

(G3) is a necessary condition for the game to possess exactly two equilibria. Take such a game
1It is clear that (G3) is a generalization of the symmetric payoff assumption.
2A binary coordination game involves no multiple best responses if and only if BRi(σ) = {A} whenever

|σ−i|A > ki.
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and assume that there is k, 2 ≤ k ≤ n − 2, such that |I(k − 2)| = k and I = I(k − 2) ∪ I(k).

Then the strategy profile σ such that IA(σ) = I(k − 2) is a strict equilibrium.

Following Harsanyi and Selten (1988), let us call αi = ai
n − bi

1 the deviation loss of i ∈ I

at equilibrium (A, . . . , A). The deviation loss at (B, . . . , B) is βi = bi
n − ai

1.

As an equilibrium selection model, we employ the adaptive play with mistakes, introduced

by Young (1993). We assume that the reader is familiar to the stochastic stability analysis in

general, and the adaptive play with or without mistakes in particular. For details, the reader

is referred to Young (1993). The sizes of a history and of a sample are denoted by T and

s, respectively. Let A and B denote the T -fold concatenations of (A, . . . , A) and (B, . . . , B).

We assume that s ≤ T/2. In section A.1 in the appendix, we show that in a simple binary

coordination game the adaptive play without mistakes converges to either A or B whenever

s ≤ T/2. Therefore the method of Young (1993) to identify the stochastically stable equilibrium

is applicable in the simplest manner.3 The resistance from A to B is denoted by r(A,B).

r(B,A) is the resistance for the other direction. (A, . . . , A) is uniquely stochastically stable if

and only if r(A,B) > r(B,A).

3 Equilibrium Selection

3.1 The Relevant Linear Program and the Main Result

Consider the adaptive play with mistakes for a simple binary coordination game. The current

state is A. In any path from A to B, there is a player who optimally chooses strategy B

for the first time. Let us call that player a first exitor. The first exitor i ∈ I must have a

sample against which playing B is optimal. Such a sample must contain considerable number

of Bs played by others. Since player i is a first exitor, all such Bs are mistakes. We are going

to set up a linear program that gives us the minimum number of Bs that i must face. Its

optimal solution not only gives us the number, but also reveals the way the mistakes occur. In

many-person games, not only the number, but also the distribution of mistakes matters. The

linear program introduced below takes care of the case in point.

Fix a player i ∈ I. Set

zi
k = ai

n − ai
n−k + bi

k+1 − bi
1

3If we drop (G3), then not only the game may have more than two strict equilibria, but also the adaptive

play without mistakes may not converge to any strict equilibrium state. See the example given in section A.1.

On the other hand, the results in the next section apply to any binary coordination game as long as it has

exactly two strict equilibria, to which the adaptive play without mistakes converges.
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for k = 1, . . . , n − 1. Note that zi
k is nonnegative and nondecreasing in k. The relevant linear

program is given as follows:

(Pi
A) minx1 + 2x2 + · · ·+ (n− 1)xn−1

s.t. x1 + · · ·+ xn−1 ≤ s,
∑n−1

k=1 zi
kxk ≥ s(ai

n − bi
1), xk ≥ 0.

In this program, xk is the number of profiles that contain exactly k mistakes.
∑

k xk is the

number of profiles that contain at least one mistake. The first constraint comes from the fact

that this number cannot exceed the sample size. The second constraint expands into

bi
nxn−1 + · · ·+ bi

2x1 + (s−
∑n−1

k=1 xk)bi
1 ≥ ai

1xn−1 + · · ·+ ai
n−1x1 + (s−

∑n−1
k=1 xk)ai

n.

Thus it ensures that strategy B is a best response against the sample. The objective function

gives the total number of mistakes in the sample. It is clear that (Pi
A) has an optimal solution.

The stochastic stability analysis hinges on the number of mistakes. Do we need additional

integer constraints? For our purposes, we do not need them, as we only need the following

implications. By the definition of the first exitor, if the optimal value of (Pi
A) is at least v for

every i ∈ I, then v is a lower bound of the resistance r(A,B). If the optimal value of (Pi
A) is

strictly greater than v for every i ∈ I, then the resistance r(A,B) is strictly greater than v.4

We are ready to show the main result of the paper.

Theorem. Consider an n-person simple binary coordination game. If there is a positive integer

m such that

(A1) m ∈ arg min
k

zi
k 6=0

k

zi
k

, (A2) m ≤ n− 1
2

, (A3) ai
m+1 ≥ bi

n−m

are satisfied for every i ∈ I, then (A, . . . , A) is stochastically stable. If (A3) is satisfied by a

strict inequality, then (A, . . . , A) is a unique stochastically stable equilibrium.

Proof. The result is a consequence of the following facts.

(1) Under (A2) and (A3), the resistance from (B, . . . B) to (A, . . . A) is at most sm.

(2) Under (A1), (A2) and (A3), the optimal value of (Pi
A) is at least sm for every i ∈ I. If

(A3) is strengthened to a strict inequality, the optimal value is strictly greater than sm.

4In general, the resistance r(A, B) need not be the value of the optimal integer solution of some (Pi
A).
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Phase 1 Phase 2 Phase 3 Phase 4
T︷ ︸︸ ︷ s︷ ︸︸ ︷ s︷ ︸︸ ︷ s︷ ︸︸ ︷

σ1 B · · · B A∗ · · · A∗ B · · · B A · · · A

...
... · · ·

...
... · · ·

...
... · · ·

...
... · · ·

...

σm B · · · B A∗ · · · A∗ B · · · B A · · · A

σm+1 B · · · B B · · · B A · · · A A · · · A

...
... · · ·

...
... · · ·

...
... · · ·

...
... · · ·

...

σn B · · · B B · · · B A · · · A A · · · A

Figure 3: A path from B to A.

To prove (1), it suffices to construct a path from B to A in which there are exactly sm

mistakes. See Figure 3. In Phase 2, let every player sample Phase 1. There are exactly sm

mistakes in Phase 2. Let i ∈ {1, . . . ,m} and j ∈ {m+1, . . . , n}. In Phase 3, let j sample Phase

2. Then A is a best response for j by (A3). In Phase 4, let i sample Phase 3. Then respective

strategies yield ai
n−m+1 and bi

m. By (A2), n − m ≥ m. Therefore (A3) and (G1) imply that

ai
n−m+1 ≥ ai

m+1 ≥ bi
n−m ≥ bi

m, which allows i to choose A. Letting j sample the final available

segment of Phase 2 and the initial segment of Phase 4, we make her choose A in Phase 4 as

well. Finally, note that these sample assignments are possible as long as s ≤ T/2.

To prove (2), pick i ∈ I and let (x1, . . . , xn−1) be an optimal solution of (Pi
A). By (A1),

mzi
kxk ≤ kzi

mxk

for every k = 1, . . . , n− 1. Assume for the contrary that the optimal value is smaller than sm.

Then

m
∑

k zi
kxk ≤ zi

m

∑
k kxk < zi

msm.

Therefore
∑

k zi
kxk < szi

m. On the other hand, the best response constraint in (Pi
A) dictates

that
∑

k zi
kxk ≥ s(ai

n − bi
1). Hence ai

n − bi
1 < zi

m, or ai
n−m < bi

m+1. It follows from (A2)

that n − m ≥ m + 1. Thus the preceding strict inequality contradicts (A3) and (G1) since

ai
n−m ≥ ai

m+1 ≥ bi
n−m ≥ bi

m+1. The claim for the unique selection can be proved similarly.

Figure 2 should help us better understand the implications of the conditions. (A3) implies

that ki ≤ m − 1 for every i ∈ I. (A2) and (A3) imply that the graph of A and the graph of

B intersects in the left half of the domain. One might say that strategy A has the larger basin

of attraction in this case. In many-person games, (A, . . . , A) needs an additional condition
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to become stochastically stable.5 The condition (A1) is deeply related to the relevant linear

program. The fractions to be minimized appear as the relative cost coefficients in the simplex

algorithm. If m is a unique minimizer in (A1), then (A1) through (A3) imply that in any

optimal solution of (Pi
A) the sample size constraint binds and the solution typically contains

at least two non-zero entries.6 This means that the program admits no simple solution that is

analogous to those found in two-person games.

3.2 Sensitivity of Stochastic Stability on Payoffs in the “Middle”

It is clear that there are ranges for payoff parameters within which all the conditions in the

preceding theorem are satisfied. A set of conditions below is particularly useful in revealing

the sensitivity of the stochastic stability on payoffs at strategy profiles where the numbers of

players for the respective strategies are nearly equal.

Proposition 1. Consider an n-person simple binary coordination game. If there is a positive

integer m ≤ (n − 1)/2 such that the following conditions are satisfied for every i ∈ I, then

(A, . . . , A) is a unique stochastically stable equilibrium:

(1.1) βi <
(n−m− 1)αi

m
.

(1.2) ai
m+1 > bi

n−m.

(1.3) There exists γi ∈ (bi
n−m, ai

m+1) such that for every k 6= n− 1,

ai
n−k > γi +

(m− k)αi

2m
and bi

k+1 < γi − (m− k)αi

2m
.

A sketch of the proof follows. (1.1) and (1.3) imply that mzi
k < kαi for k 6= m. Pick

sufficiently small εi > 0 such that mzi
k ≤ k(αi−εi) for every k. Decreasing ai

m+1 and increasing

bi
n−m appropriately and then setting ai

m+1 = · · · = ai
n−m = b

i
m+1 = · · · = b

i
n−m, (1.2) allows us

to construct a simple binary coordination game G in which

zi
k =

αi − εi, if k = m, . . . , n−m− 1,

zi
k, otherwise.

5One can verify that by increasing bi
n while keeping all the others fixed (B, . . . , B) eventually becomes a

unique stochastically stable equilibrium, provided the sample size s is not extremely small. See section A.2.

Hence the validity of the “intuition” that the stochastic stability selects an equilibrium with the largest basin

of attraction is dubious outside the class of two-by-two games, even in models with state independent mistake

(or mutation) rate.
6This follows from Proposition 3 in the appendix.
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( n−m−1
n−1 )s

︷ ︸︸ ︷
( m

n−1 )s

︷ ︸︸ ︷

σ1 A · · · A B∗ · · · B∗

...
... · · ·

...
... · · ·

...

σn−1 A · · · A B∗ · · · B∗

σn A · · · A A · · · A

Sample 1

s︷ ︸︸ ︷

σ1 B∗ · · · B∗

...
... · · ·

...

σm B∗ · · · B∗

σm+1 A · · · A

...
... · · ·

...

σn A · · · A

Sample 2

Figure 4: Samples in the adaptive play with mistakes.

It follows that G satisfies (A1) to (A3). By (2) in the proof of the main result, every feasible

solution of (Pi
A) has a value greater than sm. Since zi

k ≥ zi
k, every feasible solution of (Pi

A)

is feasible in (Pi
A). Therefore every feasible solution of (Pi

A) has a value greater than sm. On

the other hand, m satisfies (A2) and (A3) in the original game. Thus it follows from (1) in

the proof of the main theorem that the resistance from (B, . . . B) to (A, . . . A) is at most sm.

Note that as long as (1.2) is satisfied, (1.3) places no additional restrictions on the pay-

off parameters ai
m+1, . . . , a

i
n−m and bi

m+1, . . . , b
i
n−m. Therefore the advantage of strategy A

over strategy B can be arbitrarily small. The result shows that any slight advantage in the

“middle” can compensate a disadvantage near equilibrium whenever the disadvantage is not

overwhelming. It generalizes the argument given in the introduction.

Figure 4 illustrates how Proposition 1 works. By (1.1), sample 1 in Figure 4 does not have

enough mistakes to make player n switch. Neither does sample 2, since bi
m+1 < ai

n−m by (1.2).

Note that these samples contain sm mistakes. On the other hand, in the proof of the main

theorem we saw that the phase 2 in Figure 3, which also contains sm mistakes, can reach A.

3.3 Multiplicity of Stochastically Stable Equilibria

Interchanging ai
k and bi

k and replacing zi
k with wi

k = bi
n − bi

n−k + ai
k+1 − ai

1, the main theorem

generates a set of conditions that ensures the stochastic stability of (B, . . . , B). If all the con-

ditions for respective equilibria are satisfied within a single game, then multiple stochastically

stable equilibria arise.

An n-person simple binary coordination game is said to possess m-indifference property if

for every i ∈ I both A and B are best responses against σ ∈ Σ whenever there are at least m

others who play A and at least m others who play B. An equivalent condition is given in (2.2)
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below. A unanimity game is a simple binary coordination game with 1-indifference property

with additional conditions that ai
1 = ai

n−1 and bi
1 = bi

n−1 for every i ∈ I.

Proposition 2. Consider an n-person simple binary coordination game. If there are a positive

integer m < (n−1)/2 and real numbers γi ∈ [bi
1, a

i
n)∩ [ai

1, b
i
n) such that the following conditions

are satisfied for every i ∈ I, then both (A, . . . , A) and (B, . . . , B) are stochastically stable:

(2.1) βi ≤ (n−m− 1)αi

m
and αi ≤ (n−m− 1)βi

m
.

(2.2) bi
m+1 = · · · = bi

n−m = ai
m+1 = · · · = ai

n−m = γi.

(2.3) For the remaining parameters k = 1, . . . ,m− 1, n−m, . . . , n− 2,

ai
n−k ∈

[
γi + (m−k)αi

2m , γi + (n−m−k−1)βi

2m

]
, bi

k+1 ∈
[
γi − (n−m−k−1)βi

2m , γi − (m−k)αi

2m

]
.

For games with 1-indifference property, (2.3) can be simply dropped.

In this result, payoff parameters should satisfy twice as many conditions as those in Propo-

sition 1. Here again, (2.1) and (2.3) take care of conditions (A1) and (B1)7. A special care

must be taken, however, for the consistency of (2.1) and (2.3). At this point, the condition

that m < (n − 1)/2 comes in. Without it, (2.1) may become trivial. Moreover, it implies

that each interval in (2.3) has nonempty interior, and that the minimum of the interval for

ai
n−k (bi

k+1, respectively) is strictly less than the maximum of the interval for ai
n−k+1 (bi

k+2,

respectively). The latter implication makes sure that the intervals are distributed in such a

way that is consistent with (G1).

There are other classes of games in which non-trivial multiplicity may arise. An (n, l)-

coordination game, where l > n/2, is an n-person simple binary coordination game with non-

negative payoffs such that a particular strategy yields a positive payoff if and only if there are

at least l− 1 others who play the same. Such a game can be a natural model of collective deci-

sion making. Proposition 2 is not applicable to (n, l)-coordination games as payoff ties extend

asymmetrically around the center. Invoking the main result directly, however, one can show

that an (n, l)-coordination game can possess non-trivial multiple stochastically stable equilibria

if and only if l > (n + 3)/2.
7The counterpart condition of (A1) for the stochastic stability of (B. . . . , B).
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4 Concluding Remarks

We have shown equilibrium selection results under which the multiplicity of stochastically

stable equilibria can be understood as a consequence of its particular form of dependence

on non-equilibrium payoffs. Given an m-indifferent simple binary coordination game with

multiple stochastically stable equilibria, Proposition 1 implies that each neighborhood of the

game contains a game in which (A, . . . , A) is uniquely stochastically stable and another in

which (B, . . . , B) is uniquely stochastically stable. As a correspondence, the stochastically

stable equilibrium is upper hemicontinuous but not lower hemicontinuous.8

In one of the rare studies that focus on the equilibrium selection in a many-person stage

game, Kim (1996) obtains, among other things, a unique equilibrium selection for a symmetric

n-person binary coordination game by means of the stochastic stability. Following Kandori,

Mailath, and Rob (1993), he works in a single population random matching environment. The

source of the difference between his result and ours should be found in the difference between

the respective equilibrium selection dynamics.9 In the adaptive play with mistakes, a state

is a finite sequence of stage game strategy profiles. The whole state space can be naturally

embedded into the mixed strategy space of the stage game. The crucial property is that

the range is full dimensional, in that it includes every extreme point in the mixed strategy

space. In the single population random matching model, by contrast, the range of the natural

embedding is single dimensional. In particular, the range includes just two extreme points,

the two unanimous pure strategy profiles. A consequence is that some features that the best

response structure of the stage game possesses may simply disappear. For this reason, neither

the presence of multiple best responses in unanimity games nor the mistake counting argument

in Figure 4 has any implication in the model.10,11 This observation should also convince us

the reason why Young (1998) finds the multiplicity: the state space of the multi-population

random matching is full dimensional.12

8This feature reminds us of the equilibrium refinement literature. See, for example, Okada (1981).
9Combining the result of Kim (1996) and ours, it follows that a simple binary coordination game that satisfies

all the conditions of Proposition 2 is an example of games for which Kandori et al. (1993) and Young (1993)

produce different selection outcomes. Jacobsen et al. (2000) find two-person coordination games on which the

selection outcomes of the two models differ.
10As Kim (1996) suggests, it may well be the case that the “intuition” mentioned in footnote 5 is valid for

single population models.
11Concerning the stability properties of versions of the replicator dynamics, Weibull (1995) discusses the

difference between the single population model and the multi-population model.
12Thus, results analogous to ours should hold true in the multi-population random matching model.
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Unexpected results in binary coordination games are not specific to the stochastic evolu-

tion literature. Morris and Ui (2005) and Oyama, Takahashi, and Hofbauer (2005) generalize

previous results in equilibrium selection, respectively, by robustness with respect to incomplete

information (Kajii and Morris 1997) and by perfect foresight dynamics (Matsui and Matsuyama

1995). Even for unanimity games, however, no clear-cut results have been shown. Meanwhile,

Hofbauer (1999) offers a dynamic selection model in which the risk dominant equilibrium (in

the sense of Harsanyi and Selten 1988) is selected in n-person unanimity games.

One might be inclined to think that binary coordination games are particularly simple

class of games. As far as equilibrium selection is concerned, such a view may be ill-founded.

Appendix

A.1 Convergence in the adaptive play

For convenience, we collect relevant definitions and properties.

• ki = max
{

k | bi
n−k > ai

k+1

}
. Recall that 0 ≤ ki ≤ n− 2.

• For σ ∈ Σ such that |σ−i|A = k, BRi(σ) = {B} if k ≤ ki and A ∈ BRi(σ) if k > ki.

• For every k = 0, 1, . . . , n− 2,

I(k) =
{

i ∈ I | ki ≤ k
}

, I(k) =
{

i ∈ I | ki ≥ k
}

, I(k) =
{

i ∈ I | ki = k
}

.

• For every σ ∈ Σ, IA(σ) =
{

i ∈ I | σi = A
}

and IB(σ) =
{

i ∈ I | σi = B
}
.

• A simple binary coordination game is a binary coordination game satisfying

(G3) If there is k, 2 ≤ k ≤ n− 2, such that |I(k − 2)| = k, then I(k − 1) 6= ∅.

Recall that T and s are the history size and the sample size of the adaptive play. Adaptive

play without mistakes is absorbing if, starting from any state, the play can reach a strict

equilibrium state in a finite number of steps.

Lemma 2. Adaptive play without mistakes for a simple binary coordination game is absorbing

if T = 2 and s = 1.
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Proof. Consider the adaptive play with (T, s) = (2, 1). Let σ ∈ Σ be the sample given to i ∈ I

on a particular day. To avoid ambiguities caused by multiple best responses, let the player

choose B if and only if B is a unique best response against σ. Formally,

bri(σ) =

A, if i ∈ I(k − 1),

B, if i ∈ I(k),
(?)

where k = |σ−i|A, the number of others that adopt A. Clearly, bri(σ) ∈ BRi(σ).

Pick σ1 ∈ Σ. Starting from σ1, we construct a path that leads to either (A, . . . , A) or

(B, . . . , B). Set |σ1|A = k1 so that

σ1 = (

k1︷ ︸︸ ︷
A, . . . , A, B, . . . , B).

We can assume that 1 ≤ k1 ≤ n − 1. On day 2, let everyone sample σ1. Following (?), they

play σi
2 = bri(σ1). The outcome of day 2 is σ2. By construction,

• For every i ∈ I(k1 − 2), i ∈ IA(σ2).

• For every i ∈ I(k1), i ∈ IB(σ2).

• For every i ∈ I(k1 − 1), i ∈ IA(σ2) if and only if i ∈ IB(σ1).

Thus σ2 can be written as

σ2 = (

k2︷ ︸︸ ︷
|I(k1−2)|︷ ︸︸ ︷
A, . . . , A,

|I(k1−1)∩IB(σ1)|︷ ︸︸ ︷
A, . . . . . . , A,

|I(k1−1)∩IA(σ1)|︷ ︸︸ ︷
B, . . . . . . , B,

| I(k1)|︷ ︸︸ ︷
B, . . . , B).

Case 1. k2 > k1. Following (?), let σi
3 = bri(σ2) for every i ∈ I. We show that k3 = |σ3|A > k2.

In σ2, every i ∈ I has at least k1 others playing A. Therefore i ∈ IA(σ3) for every i ∈ I(k1−1).

Hence k3 ≥ k2. If k2 ≥ n− 1, then σ3 = (A, . . . , A). Thus we can assume 2 ≤ k2 ≤ n− 2.

Claim 1: If I(k1 − 1) ∩ IA(σ1) = ∅ then I(k1) ∩ I(k2 − 1) 6= ∅.

Proof. Assume that I(k1 − 1) ∩ IA(σ1) = ∅. It follows that |I(k1 − 1)| = k2. If

I(k1) ∩ I(k2 − 2) 6= ∅, then I(k1) ∩ I(k2 − 1) 6= ∅. If I(k1) ∩ I(k2 − 2) = ∅, then

I(k2−2) = I(k1−1). Hence |I(k2−2)| = k2. Thus (G3) implies that I(k2−1) 6= ∅.

Since k2 > k1, I(k2 − 1) ⊂ I(k1). Therefore I(k1) ∩ I(k2 − 1) 6= ∅. ‖

12



It follows from Claim 1 that either I(k1 − 1)∩ IA(σ1) 6= ∅ or I(k1)∩ I(k2 − 1) 6= ∅. Therefore

k3 > k2. Under the sample assignment σi
t+1 = bri(σt) for every i ∈ I, we have shown that

k2 > k1 implies k3 > k2. By induction, the play eventually reaches (A, . . . , A) if k2 > k1.

Case 2. k2 < k1. Following (?), let σi
3 = bri(σ2) for every i ∈ I. We show that k3 = |σ3|A < k2.

In σ2, every i ∈ I has at most k1 − 1 others playing A. Therefore i ∈ IB(σ3) for every

i ∈ I(k1 − 1). Hence k3 ≤ k2. If k2 ≤ 1, then σ3 = (B, . . . , B). Thus we can assume

2 ≤ k2 ≤ n− 2.

Claim 2: If I(k1 − 1) ∩ IB(σ1) = ∅ then I(k1 − 2) ∩ I(k2 − 1) 6= ∅.

Proof. Assume that I(k1−1)∩IB(σ1) = ∅. It follows that |I(k1−2)| = k2. Assume

that R = I(k1−2)∩ I(k2−1) = ∅. Then I(k2−2) = I(k1−2). Hence |I(k2−2)| = k2.

Thus (G3) implies that I(k2 − 1) 6= ∅. Since k2 < k1, I(k2 − 1) ⊂ I(k1 − 2).

Therefore R = I(k1 − 2) ∩ I(k2 − 1) 6= ∅. We have shown that R = ∅ implies

R 6= ∅. This is equivalent to R 6= ∅. ‖

It follows from Claim 2 that either I(k1 − 1) ∩ IB(σ1) 6= ∅ or I(k1 − 2) ∩ I(k2 − 1) 6= ∅.

Therefore k3 < k2. Under the sample assignment σi
t+1 = bri(σt) for every i ∈ I, we have shown

that k2 < k1 implies k3 < k2. By induction, the play eventually reaches (B, . . . , B) if k2 < k1.

Case 3. k2 = k1 and 2 ≤ k2 ≤ n− 2. In this case, σ2 can be written as follows.

σ2 = (

k2︷ ︸︸ ︷
|I(k2−2)|︷ ︸︸ ︷
A, . . . , A,

|I(k2−1)∩IB(σ1)|︷ ︸︸ ︷
A, . . . . . . , A,

|I(k2−1)∩IA(σ1)|︷ ︸︸ ︷
B, . . . . . . , B,

| I(k2)|︷ ︸︸ ︷
B, . . . , B).

If I(k2 − 1) = ∅, then |I(k2 − 2)| = k2. Thus (G3) implies I(k2 − 1) 6= ∅.

Let σi
3 = bri(σ2). Then

σ3 = (

k3︷ ︸︸ ︷
|I(k2−2)|︷ ︸︸ ︷
A, . . . , A,

|I(k2−1)∩IA(σ1)|︷ ︸︸ ︷
A, . . . . . . , A,

|I(k2−1)∩IB(σ1)|︷ ︸︸ ︷
B, . . . . . . , B,

| I(k2)|︷ ︸︸ ︷
B, . . . , B).

If k3 6= k2, then we can apply either Case 1 or Case 2. Thus we can assume that k3 = k2 = k1.

Then

|I(k2 − 1) ∩ IA(σ1)| = |I(k2 − 1) ∩ IB(σ1)| ≥ 1. (†)
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The inequality follows from I(k2 − 1) 6= ∅. For every i ∈ I(k2 − 1) ∩ IA(σ1), let σi
4 = bri(σ2).

For everyone else, let σi
4 = bri(σ3). Then

σ4 = (

k4︷ ︸︸ ︷
|I(k2−2)|︷ ︸︸ ︷
A, . . . , A,

|I(k2−1)∩IA(σ1)|︷ ︸︸ ︷
A, . . . . . . , A,

|I(k2−1)∩IB(σ1)|︷ ︸︸ ︷
A, . . . . . . , A,

| I(k2)|︷ ︸︸ ︷
B, . . . , B).

By (†), k4 > k2. Following (?), let σi
5 = bri(σ4) for every i ∈ I. We show that k5 = |σ5|A > k4.

In σ4, every i ∈ I has at least k2 others playing A. Therefore i ∈ IA(σ5) for every i ∈ I(k2−1).

Hence k5 ≥ k4. If k4 ≥ n− 1, then σ5 = (A, . . . , A). Thus we can assume that 3 ≤ k4 ≤ n− 2.

Claim 3: If I(k2) ∩ I(k4 − 2) = ∅ then I(k2) ∩ I(k4 − 1) 6= ∅.

Proof. Assume that I(k2) ∩ I(k4 − 2) = ∅. It follows that |I(k4 − 2)| = k4. Thus

(G3) implies that I(k4 − 1) 6= ∅. Since k4 > k2, I(k4 − 1) ⊂ I(k2). Therefore

I(k2) ∩ I(k4 − 1) 6= ∅. ‖

Noting that I(k4−2) ⊂ I(k4−1), it follows from Claim 3 that I(k2)∩I(k4−1) 6= ∅. Therefore

k5 > k4, which allows us to apply Case 1 for the rest of the play.

Case 4. k2 = k1 = 1 or k2 = k1 = n− 1. Consider the first case. Then σ2 can be written as

σ2 = (A,

|I(0)∩IA(σ1)|︷ ︸︸ ︷
B, . . . . . . , B,

| I(1)|︷ ︸︸ ︷
B, . . . , B).

Letting σ1
3 = br1(σ2) and σi

3 = bri(σ1) for every i 6= 1, we have σ3 = (B, . . . , B). In the second

case,

σ2 = (

|I(n−3)|︷ ︸︸ ︷
A, . . . , A,

|I(n−2)∩IB(σ1)|︷ ︸︸ ︷
A, . . . . . . , A, B).

Letting σn
3 = brn(σ2) and σi

3 = bri(σ1) for every i 6= n, we have σ3 = (A, . . . , A).

Lemma 3. Adaptive play without mistakes for a simple binary coordination game is absorbing

if s ≤ T/2.

Proof. Consider the adaptive play in which s ≤ T/2. Fix an initial state, an arbitrary sequence

in Σ with length T . Let it be day 1. On day 1 through day s, let everyone sample the outcomes

from day −s + 1 through day zero and play best response. The assignment is possible since

s ≤ T/2. We can assume that players choose the same strategy throughout Phase 1, which

consists of day 1 through day s. Phase 1 results in the s-run of σ1 ∈ Σ.
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In the adaptive play with (T, s) = (2, 1), there is a path from σ1 that eventually leads

either (A, . . . , A) or (B, . . . , B). It suffices to replicate the sequence in the adaptive play with

the current setting. Among cases appeared in the proof of Lemma 2, the replication is obvious

unless k1 = k2 = k3. Take σ1, . . . , σ4 that appeared in Case 3 in the proof of Lemma 2, where

k1 = k2 = k3. Let Phase k be the s-run of σk, k = 1, 2, 3, and let Phase 3 follow Phase 2, which

follows Phase 1.

Next s dates consist Phase 4. It suffices to show that it can be the s-run of σ4. Throughout

Phase 4, let every i ∈ I(k2 − 1) ∩ IA(σ1) sample the final available segment of Phase 2 and

the initial available segment of Phase 4. Let everyone else sample the entire Phase 3. These

sample assignments are possible since s ≤ T/2.

It is clear that every i /∈ I(k2 − 1) ∩ IA(σ1) plays σi
4 throughout Phase 4. On first day

in Phase 4, i ∈ I(k2 − 1) ∩ IA(σ1) observes the s-run of σ2. Thus she can play A. Hence the

outcome of the first day in Phase 4 can be σ4. On t-th day in Phase 4, inductively, i observes

the s− t + 1-run of σ2 and the t− 1-run of σ4. Since A ∈ BRi(σ2) ∩BRi(σ4), she plays A on

day t. Consequently, Phase 4 can come out as the s-run of σ4.

In section 2 we remarked that a binary coordination game without (G3) may have a third

strict equilibrium. Moreover, games without (G3) need not possess the desirable convergence

property in the adaptive play.

Example 1. Let players i = 1, 2 have payoff function u in Figure 5. Let player i = 3 have payoff

function w in the Figure. Let players i = 4, 5 have payoff function v in the Figure. It follows

that (k1, k2, k3, k4, k5) = (0, 0, 0, 3, 3). Since |I(3 − 2)| = 3, (G3) is violated. Nonetheless the

five-person game has exactly two strict equilibria, because player 3 has a unique best response

only if all the others are making a unanimous choice. Now consider the strategy profiles

(A,A, A,B,B) and (A,A, B,B,B). Each is a non-strict equilibrium, in which all players but 3

are playing their unique best responses. It is clear that all the states consisting solely of these

equilibria form a non-singleton recurrent class in the adaptive play.

A.2 Simple optimal solutions in the relevant program

The next result characterizes the conditions under which (Pi
A) admits a simple optimal solution.

Proposition 3. Consider the program (Pi
A) of a player i ∈ I in a binary coordination game.

Denote by λ1 and λ2 the Lagrange multipliers for the best response constraint and the sample

size constraint, respectively. The following conditions are equivalent:
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1 2 3 4 5

ak 0 ε2 ε3 ε4 α

bk 0 0 0 0 β

u

1 2 3 4 5

ak 0 0 0 0 α

bk 0 ε2 ε3 ε4 β

v

1 2 3 4 5

ak 0 0 0 0 α

bk 0 0 0 0 β

w

Figure 5: Payoffs in a five-person game, in which 0 < ε2 < ε3 < ε4 < min{α, β}.

(1) There is k∗ ∈ arg min
k

zi
k 6=0

k

zi
k

such that bi
k∗+1 ≥ ai

n−k∗.

(2) There is an optimal solution in which λ2 = 0.

(3) The solution

(x∗1, . . . , x
∗
n−1 : λ∗1, λ

∗
2) =

( k∗︷ ︸︸ ︷
0, . . . , 0,

s(ai
n − bi

1)
zi
k∗

, 0, . . . , 0 :
k∗

zi
k∗

, 0
)

is optimal.

Proof. Since (3) implies (2), it suffices to show that (2) implies (1) and that (1) implies (3). In

this proof, we omit superscripts for an arbitrarily chosen i ∈ I. We invoke the duality theorem.

Note that the dual program of (Pi
A) is given by

max s(an − b1)λ1 − sλ2

s.t. z1λ1 − λ2 ≤ 1, . . . , zkλ1 − λ2 ≤ k, . . . , zn−1λ1 − λ2 ≤ n− 1,

together with the nonnegativity condition λ1 ≥ 0 and λ2 ≥ 0.

Assuming (2), we show (1). Take an optimal solution with λ2 = 0. Then by dual feasibility,

zkλ1 ≤ k. Thus λ1 ≤ k/zk for every zk 6= 0. By complementary slackness, zkλ1 = k for every

k such that xk 6= 0. In particular, zk > 0 for every such k. Therefore

λ1 = min
k

zk 6=0

k

zk
> 0.

Let

arg min
k

zk 6=0

k

zk
= {k1, . . . kl}.

Assume that bi
kj+1 < ai

n−kj
for every j = 1, . . . , l. Then zkj

< an − b1. Thus

zk1xk1 + · · ·+ zkl
xkl

< (an − b1)xk1 + · · ·+ (an − b1)xkl

16



= (an − b1)(x1 + · · ·+ xn) ≤ s(an − b1).

Therefore
∑

k zkxk < s(an − b1) since xk > 0 implies k = kj for some j = 1, . . . , l. But

this contradicts the complementary slackness since λ1 > 0. Therefore there is k∗ such that

k∗/zk∗ = mink,zk 6=0 k/zk and bi
k∗+1 ≥ ai

n−k∗ .

Assuming (1), we show (3). Consider the solution given in (3). Nonnegativity constraints

are all satisfied. Since bk∗+1 ≥ an−k∗ , zk∗ ≥ an−b1, which implies xk∗ ≤ s. Thus (x1, . . . , xn−1)

is primal feasible. Since λ∗2 = 0, the dual constraint is given by zkλ
∗
1 ≤ k, which is satisfied by

the definition of λ∗1. Thus (λ∗1, λ
∗
2) is dual feasible. It is straightforward to verify complementary

slackness. Thus the solution is optimal by the duality theorem.

Interchanging ai
k and bi

k and replacing zi
k with wi

k = bi
n − bi

n−k + ai
k+1 − ai

1, the result

generates the conditions for the program (Pi
B).

The result allows us to justify the claim made in footnote 5. Consider a simple binary

coordination game that satisfies (A1), (A2), and (A3) with strict inequality. Let the param-

eters of the game be (ai
k, b

i
k). Consider another game (ai

k, b
i
k) in which bi

n = b
i
n + ξ but all the

others remain unchanged. Let us verify that increasing ξ > 0 eventually results in a game in

which (B, . . . , B) is a unique stochastically stable equilibrium, provided the sample size s is

not extremely small.

If ξ is sufficiently large, then

{n− 1} = arg min
k

zi
k 6=0

k

zi
k

and {1} = arg min
k

wi
k 6=0

k

wi
k

.

In fact, the former is obvious since bi
n appears only in zi

n−1. For the latter, it suffices to pick

ξ > max
{

(wi
k − kwi

1)/(k − 1) | k 6= 1, wi
k − kwi

1 > 0
}

whenever the set is non-empty.

By Proposition 3, the optimal value of (Pi
A) is given by s(n − 1)(ai

n − bi
1)/zi

n−1. Taking

the integer constraint and the non-first exitors into account, we obtain

r(A,B) ≤ n

⌈
(ai

n − bi
1)s

zi
n−1

⌉
= n

⌈
sαi

αi + βi

⌉
.

Concerning (Pi
B), Proposition 3 implies that

min
{⌈

sβi

βi + ai
2 − bi

n−1

⌉
, s

}
≤ r(B,A).

If ξ is sufficiently large so that

nαi

αi + βi
< min

{
βi

βi + ai
2 − bi

n−1

, 1
}

,
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then r(A,B) < r(B,A) as long as s is large enough to preserve the strict inequality after the

rounding. The argument also shows that if s is extremely small, such as s = 1, then the

stochastic stability does not depend at all on the magnitudes of the deviation losses. In such

a case, the model is essentially equivalent to the simple mistake counting model mentioned in

the fourth paragraph of section 1.
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