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Abstract

We consider estimation of the linear component of a partial linear model
when errors and regressors have long-range dependence. Assuming that errors
and the stochastic component of regressors are linear processes with i.i.d. in-
novations, we closely examine the asymptotic properties of the OLS estimator
calculated from nonparametric regression residuals. Especially we derive the
asymptotic distribution when the combined long-range dependence of errors
and the stochastic component of regressors exceeds a level. The case is not
considered in any previous works on partial linear models. We also improve
the existing results when the combined long-range dependence is less than the
level.
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1 Introduction

We consider estimation of 5 in the partial linear model defined in (1) below. The

regressor X; is a k—dimensional random vector and v’ denotes the transpose of v.

where t; = (i — 0.5)/n, i = 1,...,n, m(-) and g¢(-) are unknown functions, and
{e¢;} and {¢;} are 1-dimensional and k—dimensional long-range dependent linear
processes, respectively. We assume that {¢;} and {J;} are mutually independent.
Assumptions on m(-), g(-), {€}, and {J;} are given in Section 2.

We observe (Y;,X;), i = 1,...,n, and estimate 5 by the OLS estimator cal-
culated from nonparametric regression residuals. The estimator is denoted by Bh,
where h is the bandwidth of the nonparametric regression. We consider asymptotics
when the sample size n tends to infinity.

[4] and [2] consider the same model and estimate 3 by the same kind of estimator.
Especially our estimator of 3, B4, coincides with that of [2].

The results on estimation of [ in the two papers are theoretically interesting
and practically important. However, those are limited since they consider only the
case where the combined long-range dependence is less than a level, “d; +dy < 1/2”
in the notation defined in Section 2. See A1 in Section 2 for the definitions of d;
and dy. There are some unnecessary conditions on the bandwidth h and no general
condition for the conditional asymptotic normality is explicitly given in the two
papers.

The main purpose of this paper is to derive the asymptotic distribution of Bh
when the combined long-range dependence exceeds a level, “d; + dy > 1/2” in
the notation defined in Section 2. Besides, we improve the existing results when
di + dy < 1/2. We refer to nonparametric estimation of m(-) at the end of Section

2.



We can say that the asymptotic distribution of nl/Q(Bh — () is the same up
to a matrix multiplication as that of n="/2 3" | §;¢; when d; +dy < 1/2. When
di+dy > 1/2, (3 is not root-n-consistent and n'/2(nh) (1 +&)+1/2(3, _ ) converges
in distribution to a k-variate normal distribution under the assumptions in Theorem
2.2. In contrast to the case where d; +dy < 1/2, the asymptotic distribution of
n'/2(nh)~(@+d)+1/2(3, _ B) is completely different from that of n=(d1+d2) 37 §.¢;
and the rate of convergence is better than that related to n~(%1+d2) P06 It is
because nonparametric regression effectively works on 9; and ¢;. Then some of the
long-range dependence is cancelled out. See Corollary 4.1 in [6] for the asymptotic
distribution of n=(41+d2) 31 S,

There has been a lot of research on partial linear models since [15] and [18]. See
[12] for the research up to year 2000. In [15], the partial linear model is different
from (1) since

Y; = X[ B+ m(Z) + e, (2)

where Z; is a random variable. In (2), nonparametric regression with random-design
is applied to obtain the estimate of 5. On the other hand, nonparametric regression
with fixed-design is applied in the setup of (1) as in [18]. We concentrate on the
setup of (1). It will be extremely difficult to study partial linear models in the setup
of (2) under long-range dependence.

Recently, partial linear models have been studied for short-range dependent and
long-range dependent time series. See [1], [11], and the references therein for the
results under short-range dependence. See [4] and [2] for the results under long-
range dependence. In those papers, the estimators of 5 are root-n-consistent. [7]
studied a similar model, where there is no 9;, under long-range dependence.

There are a few different definitions of long-range dependence for time series
models, for example, poles of spectral densities, slowly-decaying autocovariances,

and so on. There is a lot of theoretical and practical research on time series with



long-range dependence because of its practical and theoretical importance. See [3],
[17], and [5] for the definitions, properties, and surveys of the research on long-range
dependent time series. In this paper we assume that {§;} and {¢;} are long-range
dependent linear processes as defined in A1 below. See [13], [14], [19], and [20] for
theoretical results on linear processes with long-range dependence.

This paper is organized as follows. We define the assumptions and the estimator
Bh in Section 2. The asymptotic properties are stated in Theorems 2.1 and 2.2.
Some important propositions are given and the theorems are proved in Section 3.
The proofs of the propositions are deferred to Section 4. Technical lemmas and the
proofs are confined to Section 5.

In this paper |a| stands for the largest integer which is less than or equal to a.
C’s are generic positive constants and a; ~ a; means that a;/a; — 1 as j — oo
or n — oo. We denote convergence in distribution and in probability by 2 and
2 respectively, and N(p,X) stands for a normal distribution with mean g and
covariance matrix X. Let Var(I¥) stand for the covariance matrix of a random

vector W. The Euclidean norm of a vector v is denoted by |v].

2 The estimator and the asymptotic distributions

In this section, we describe the assumptions, A1-A5, define Bh, and present the
asymptotic distributions in Theorems 2.1 and 2.2. Some notation is also introduced.

A1 and A2 below are about the properties of {d;} and {¢;}. A1 is a standard
assumption to examine the asymptotic properties of statistics and estimators under

long-range dependence. For example, see [13], [14], and [20].

Al:
(a)
6= AjG; and => bini_;,
=0

=0



where A;,7 =0,1,..., is a sequence of k£ x k constant matrices and we denote the

(t,m)

(I,m) element of A; by a;”"”. In addition each element of A; and b; satisfy

(tm)
m) @77 d b — T
R R T A S

where 0 < d; <1/2 and 0 <dy < 1/2.
(b) {¢} and {n;} arei.i.d. processes with E(¢;) =0 and E(n;) = 0. Each element
of ¢; and 7; have the finite fourth moment. Besides, {(;} and {r;} are mutually

independent.

Incorporating slowly varying functions into the definitions of A; and b; is not
so difficult when d; + dy < 1/2. However, it will be tough and notationally quite
complicated when d; +dy > 1/2 and our main purpose is to consider the latter
case. Therefore we do not incorporate slowly varying functions into the definitions
of A; and b; to make the proofs simpler and this paper more readable. We assume

that d; is common to each element of A; just for simplicity of presentation.

When A1 holds, we have
B(616741) ~ Aoej ™M and  E(er€j41) ~ boof M, (3)

where A, is a k x k constant matrix and by, is a constant. We write 75,(j) and
re(j) for the (I,m) element of B(d,6],,) and E(ei€j11), respectively. Since di > 0
and dy > 0, they are not absolutely summable. This is one of the characteristics of
time series with long-range dependence.

As for the second moments of (; and 7, we use the following notation.

o111 - O1k
B(GEH) = &+ - and  E(n}) = 0. (4)

Okl '+ Okk

We often write 032 for o;; in the proofs for notational convenience.

A2: In addition to (a) of A1,

(t,m)
ag-l’m) = (,_Oijm, 1 S l,m S k, and b] = 7
J



where 7, is a positive integer.

A2 is a restrictive assumption. However, it is necessary to examine the asymp-
totic properties of Bh when d; + dy > 1/2. See Lemma 5.1 for the details.

We can relax A2 to some extent. For example,

= s @ <0 9

This is also true of A;. Some more generalization such as b; = log(j +1)j '™ may
be possible since what we need in Lemma, 5.1 is a kind of smoothness.
A3 below is about the smoothness of g(-) and m(-) and it is a usual assumption

in the literature of partial linear models. For example, See [2].
A3: Each element of ¢g(-) and m(-) is twice continuously differentiable on [0, 1].

We give definitions and assumptions about nonparametric regression before we
define Bh. Our Bh is calculated from nonparametric regression residuals based on the
Gasser-Miiller weights as in [2]. See [8] and [9] for the properties of nonparametric
regression estimators with the Gasser-Miiller weights.

We define the n x n weight matrix W), = (w;;) by

( iln t; —
-1 K( “)du, t; € [h,1—h)
TR
_ 1 n i —Uu L _
Wij = % h (371)/n K‘I( h )d“’ ti=gqh =€[0,h) ’ (©)
_] n
( (i-1)/n ( h ) el |

where h is the bandwidth and K(-), K,(-), 0 < ¢ <1, and K;(-), 0 < ¢ <1, are
kernel functions. They satisfy A4 and A5 below. We usually call K,(-) and K7 (:)

boundary kernels. Under A4, we have

C

Then our nonparametric estimator of g(t;) is given by 37, w;; X and the nonpara-

metric regression residual is X; — 2?21 Wi X

6



We define an n x k matrix X and an n-dimensional vector Y by

X=(X,. ., X)'=T-W,)X and Y =(V,....) T =T -W,Y, (8)

where I is the n x n identity matrix, X = (X1,...,X,)T, and Y = (V1,...,Y,)T.
The elements of X and Y are nonparametric regression residuals.
When we use kernels satisfying A4 below, we have uniformly in elements

(I -=Wp)G =0k +n"") and (I —-W,)M =O(R*+n7"), (9)

where G = (g(t1),...,9(t,))T and M = (m(t,),...,m(t,))T. Hence the unknown
function m(-) is cancelled out in Y and we can regard Y as an estimate of X7f.
Therefore we estimate [ by
By = (XTX) ' XTy. (10)
A4 and A5 below are about kernel functions and A, respectively. Some more
conditions on A are imposed in Theorems 2.1 and 2.2.

A4:
(a) K() is a bounded and symmetric density function with support [—1, 1].
(b) K,4(-) and K;(-), 0 < ¢ < 1, are uniformly bounded, the support of K,(-) is

[—1,¢], and the support of K;(-) is [~¢, 1]. They also satisfy
/Kq(u)du =1, /K;(u)du =1, /qu(u)du =0, and /uK;‘(u)du = 0.

A5: h — 0 and nh? — o0 as n — 00.

We state Theorem 2.1. Note that this theorem can cover the case of short-range

dependence with minor modifications of the proof.

Theorem 2.1 Suppose that 0 < d; + dy < 1/2 and that A1, A3, and A4 hold. In
addition, we assume h = cyn~% , where ¢, > 0 and 1/8V d,/2V dy/2 < d), < 1/2,

and that E(6,6T) is positive definite. Then we have

VB —B) % NO,UT ViU,

7



where U = E(0,10]) and the (I,m) element of Vi is 332 1im(§)7(7)-

We find the asymptotic normality of \/n(3, — ) in 1 of Theorem 1 in [4] and (c)
of Theorem 1 in [2]. The latter paper relaxes the conditions of the former. However,

in the latter, d;, in the definition of h still has to satisfy

1 2d1 d2 2d2
© g1 . 11
§V31oq Vo <l op (11)

If 1 —2dy =v and 2dy = 0.9v, there is no dj, satisfying (11). We have shown that
we can always take h = cn~'/4.
The asymptotic normality in the two papers is conditional on {X;}. When

the asymptotic normality of n /2

»_, 0;¢; holds conditionally, it obviously holds
unconditionally, too. However, no general sufficient condition of the conditional
asymptotic normality that can be applied to (1) under long-range dependence is not
presented in the two papers or the papers cited in Section 5 of [2]. We believe it is
much easier to treat the asymptotic distribution unconditionally as in this paper. We
will be able to carry out statistical inference on [ since the asymptotic covariance

matrix is explicitly given in Theorem 2.1.

Theorem 2.2 deals with the case where d; + dy > 1/2.

Theorem 2.2 Suppose that dy + dy > 1/2 and that A1, A2, A3, and A4 hold. In
addition, we assume h = cyn~% , where ¢;, > 0 and 1/8V dy/2V dy/2 < d), < 1/2,

and that E(6,6T) is positive definite. Then we have
nl/Q(Nh)_(dl+d2)+1/2(Bh - B) i} N(O, U_l‘/gU_l),

where U = E(6,07) and the (I,m) element of V3, o§™ s defined by

tm) oo P ()™ (5 + ) + ™ ()1 (s + u)
" - 1<ef<lcaef/ / |s|t=di|s 4 uft—% s
00 1)y (t) (T + u) + o (t)tha(t + u)
x /_1 PR dt)du, (12)



[ K(z)
(pa) — a®PD([fs> 0V — gt dl/ S St A— | 13
P (s) @ ( {520} = s (=1)v(=s) (s + 2)1—% Z)’ (12)

i) = sz 0y pspoe [ Iy (14

(—1)v(=s) (5 4 2)1=¢

Remark 2.1 We are unable to verify Proposition 3.4 below when di + dy = 1/2.
The proposition is about the asymptotic covariance matriz. However, it is not so
tough to show that

Var() 0;¢;) = O(nlogn).
i=1

See the beginning of Section 3 for the definitions of 6; and &. If we have

. 1
lim
n—oo n logn

Var(z gzgz) = ‘/E;,
i=1
we will be able to establish

Jnlogn(B, — B) % N, U 'V;U ).

See Remark 5.1 just after Lemma 5.5. Some of the propositions and lemmas for
Theorem 2.2 deal with the case of dy + dy = 1/2 when they can easily include the

case.

The effect of using the boundary kernels is negligible in the asymptotic distribu-
tion. The asymptotic covariance matrix in Theorem 2.2 is finite from Lemma 5.1(2)

and (15) below.

/M (/M ds /M dt )d (15)
0 0o slh(s+u)l=h Jo tlmd(t 4 u)l-d Y

M 1 o0 dv o0 dw d
B /0 u?2Aditdz) (/u/M v2h (1 + v)t-h /u/M w2 (1 + w)1d2) *

where M is an arbitrary positive number. The asymptotic covariance matrix has a

complicated form and statistical inference on [ is a subject of future research. As
we mentioned in Section 1, the asymptotic distribution is completely different from

that of n=(4+d2) "1 §ie;. See a comment around (30) and Lemma 5.1 below.



Finally we see how estimating § affects nonparametric estimation of m(t;). Sup-

pose that A1, A2, A3, and A4 hold and that h = ¢,n="/*.
We estimate m(t;) by m(¢;) in (16) below.
mwziwm—ﬁm. (16)
=
We take b = ¢yn~% for the bandwidth of (16). Then we have
m(t;) — m(t;) (17)
= (zn:l wiym(ty) —m(t;)) + Zn:lwmfj + Zn:lwinjT(ﬁ — Bh)-
= = =

Some routine calculations show that

> wym(ts) —m(t) = O (18)
iwm’ﬁj = Op((nb)=~17%) (19)
SwX; = glt) + 007 + (nb) V2, (20)

See [16] for the asymptotic normality of (19). The optimal dj, for the first two terms
of the RHS of (17) is dy = (1 — 2d3)/(5 — 2d3). Then

b2 — O(n—(2—4d2)/(5—2d2)) and (nb)d2_1/2 — O(n_(2_4d2)/(5_2d2)).

When dy +dy < 1/2, By — B = O,(n""/?) and the effect of the last term of the RHS
of (17) is asymptotically negligible compared to the first two terms.

Next we consider the case where d; + dy > 1/2. Some elementary calculation
shows that if (2 —4dy)/(5 —2dsy) < 7/8 — 3(dy + d2)/4, the last term of the RHS of
(17) is asymptotically negligible compared to the first two terms. The inequality is
equivalent to

9 3 8 3

1% _ 2
s TaM <594, 1

The LHS is smaller than 3/2 and the RHS is larger than 3/2. Hence we have shown

ds. (21)

that estimating  does not have any asymptotic effects on nonparametric estimation

of m(-) if we take h = en~ /4.

10



3 Proof of theorems

In this section we prove Theorems 2.1 and 2.2. We introduce some notation and
state propositions. Then we prove the theorems by using the propositions. The
proofs of the propositions are given in Section 4.

We can represent X and Y as

X = I-Wy)G+(I-W,)D = G+D, (22)

Y = X4+ -W)M+(I—-Wy,)E = X+ M+ E, (23)

where D = (01,...,0,)", E = (e1,...,€)"

G = (I-WnG = (§(t),---,3(ta)", (24)
M = (I=-Wy)M = (m(t),....;m(t)", (25)
D = (I-WyD = (b,...,6,)", (26)
E = (I-WW)E = (&,...,&)" (27)

We can say that elements of X and Y are nonparametric regression residuals.

We define the coefficients of §; and ¢, flj and l;j, by

SZ- = 52-—Zwij5j = Z AjCifja (28)
j:l jzftthfl

& = - wyg = Y bmy (29)
j=1 j=-nh]-1

We denote the (I,m) element of A; by &gz,m)' We prove in Lemma 5.1 below that

there is a large positive integer M such that

A;=0((nh)?*(G+1)"?) and b; = O((nh)*(j +1)®?), forj > M|nh|. (30)

(30) means that some of the long-range dependence is cancelled out in d; between
0; and Z?Zl w;j0;. This is also true of €. The effect of this cancellation appears

when d; +dy > 1/2.

11



Recalling that 8, = (X”X)"'X7Y, we examine XY and n~'X”X in Propo-
sitions 3.1 and 3.2, respectively. We do not use A1 fully in the proof of Proposition

3.1 and we use only properties of autocovariances in (3).
Proposition 3.1 Suppose that A1, A3, A4, and A5 hold. Then we have
XTy — XTXp
= > &ie; +O(nh*) + 0, (n™2h%) 4 0, (n®+1/21?)

i=1
+0,(n'?(nh)1F%=12) when 0 < dy 4+ dy < 1/2

Proposition 3.2 Suppose that A1, A3, A4, and A5 hold. Then we have

1 o~ ~
—XTX B E(5,07).
n

We establish the central limit theorem (CLT) of n='/2X"  ;¢; by appealing
to the truncation argument and the CLT for stationary m-dependent sequences in
Proposition 3.3 below. Some CLT’s concerning long-range dependent linear pro-
cesses and similar arguments are found in the literature, for example, in [10]. Thus

Proposition 3.3 below may not be new. However, we present it together with the

proof to complement the previous results on estimation of 3.

Proposition 3.3 Suppose that 0 < dy +dy < 1/2 and that A1 hold. Then we

have
n

1
— 26161 i) N(O, ‘/1),

=1

where Vi 1s defined in Theorem 2.1.

We calculate the covariance matrix of > , 0;¢; in Proposition 3.4 and establish

the asymptotic normality in Proposition 3.5 when d; + dy > 1/2.

12



We define n for the propositions by
77L — (nh) 1+2 d1+d2) (31)

Note that ni~Y/2(3, — 3) converges in distribution to a k-variate normal distribu-

tion.

Proposition 3.4 Suppose that dy + dy > 1/2 and that A1, A2, A4, and A5 hold.

Then we have

1 -
5\/&1"(2 6z€z) — Vé,

where Vy s defined in Theorem 2.2.

Proposition 3.5 Suppose that dy + dy > 1/2 and that A1, A2, A4, and A5 hold.

Then we have

ZS@ 4 N(0, Va).
We prove Theorems 2.1 and 2.2.

Proof of Theorems 2.1 and 2.2. We prove only Theorem 2.2 since we can prove
Theorem 2.1 in the same way.

Proposition 3.1 and the conditions on the bandwidth h yield that

" (5 - ) -
n
= (:;XTX) 1%2}}}4‘ ]'n(O(nh4)_|_Op( d1+1/2h2)_|_0( d2+1/2h2))
= (:LXTX) 1\/152n:5i€i+op(1)
i=1

Theorem 2.2 follows from (32) and Propositions 3.2 and 3.5. Hence the proof is

complete. O

13



4 Proofs of propositions

In this section we prove Propositions 3.1-3.5.
We elaborate the evaluation of the second moments given in [2] in the second

half of the proof of Proposition 3.1.

Proof of Proposition 3.1. Let £ = 1 be in the proof for notational simplicity.
Recall the definitions of r1;(j) and r.(j) in (3) and the properties of w;; in (7).
First we write X7Y — X7X3 by using G, M, D, and E in (24)-(27).

X"y - XTXp (33)

It follows from (9) that

GTM = O(nh*). (34)

Next we deal with GTE = GTE — GTW,E. A standard argument implies that
Var(GTE) < 37 [3illg;llre(i — j)] < On'+2=h%, (35)
1<ij<n

Noticing that GTW,E = ¥, 9i(Xj=, wije;), we obtain

Var(GTW,E) (36)

< Z Z |§i1||§i2||wi1j1||wi2j2||rf(j1 _j2)|
1<e1,i2<n 1<51,72<n

< Cht Y v =gl DD |wing | wisg,]

1<j1,52<n 1<i ,ia<n
< C'n1+2d2 h,4.

Here we used the fact that i <; ;< |wiyj ||wiy5| = O(1) uniformly in j; and jo.
This fact is due to (7).
From (35) and (36), we obtain

Var(GTE) < Cn'*22pt, (37)

14



Similarly, we can show that
Var(DTM) < Cn't?hpt, (38)

The proof is complete when dy + dy > 1/2.
Hereafter we assume that 0 < d; +dy < 1/2 in the proof and examine DTE

closely. It is written as

D'E =D"E — D"W,E — D"WYE + D"W!I'W,E. (39)
Provided that
DTW,E = O,(n'/?(nh)h+d-1/2), (40)
DTWIE = 0,(n'?(nh)hte-1/2) (41)
DTWIW,E = O,(n*?(nh)hte-1/2) (42)
we have
DTE — DTE = O, (n'/?(nh)+%2-1/2), (43)

Then the proposition follows from (33), (34), (37), (38), and (43).
We will establish (40) and (42). (41) can be treated in the same way as (40).
The variance of DT"W, E is written as
Var(D"W,E) = > Yo Wi Wiyg T (i — d2)re (1 — Ja)- (44)
1<is,is<n 1<j1,ja<n
We fix a sufficiently large positive integer M. When i; — i5 > Mnh,

Z |wi1j1wi2j27nf(j1 - ]2)| (45)

1<j1,52<n

_ C Li’” nh+1-—1
= (k)2 = (iy — iy + 1 — )l 2

=1
1 11—t
< 2ds—1
< Conp [ ey
C(nh)?d=~1 C
TE D BT =T

15



Put Uy = {(il,ig) | 1< il,ig < n and |21 — 22| > M?’Lh} and EM = {(il,ig) | 1<
i1, < m and |iy — iz] < Mnh}. Then the summation over Uy, is bounded by

Cn(nh)Aditd2)=1 gince

oY |wijwiggrin(in — i2)re(ji — Jo)| (46)

Uy 1<71,52<n

1 (d1+d2)—
< CZ |Z1 ) < Cn(Mnh)?

d1 +d2) 1

The summation over £y, is also bounded by Cn(nh)X since

YD wijwiggyria(in — i2)re(ji — Jo)] (47)

Ly 1<g1,52<n

Cn Mf{” (Mnh)!+2d
(nh)? 1-2d;

k=1

< Cn(nh) (di+d2)— 1M1+2d1+d2.

By combining (46) and (47), we obtain
Var(DTW,E) < Cn(nh)Xd1+d2)=1

Hence (40) is established.

Finally we verify (42). The variance is given by
Var(DTW,W,E) (48)

= Z Z Z wiljlwi2j2willlwi2l2rll(jl - jQ)TE(ll - l2)

1<i1,i2<n 1<j1,j2<n 1<i1,l2<n

As in the proof of (40), we fix a large positive integer M and define Uy, and L.

Then when |i; — i3] > Mnh, we have as in (45) that

. . C
Y Wi Wiprn(h —52)] < s (49)
1<j1,j2<n iy — ip|' 2%
C
| Y winwinrdh — k)| < (50)
1<ly,la<n iy — dp|t 2%

By substituting (49) and (50) into (48), we get

> > > Wiy Wiggo Wiyt Wigtyr11 (1 — J2)re(ly — 1) (51)

Unr 1<51,52<n 1<11,l2<n

C 2(d1+d2)—1
S Xy < On(Mnh)X e

16



The summation over £y, is bounded by Cn(nh)(@+d2)=1 p3+2(ditdz) gince

> > > Wiy Wigjo Wiyt Wigt, 711 (1 — J2)Te(ly — 12)] (52)

Lar 1<71,52<n 1<l1,l2<n

M |nh|
< (Ch7";4 Z (Mnh)1+2d1 (Mnh)1+2d2 < Cn(nh)Q(dl+d2)_1M3+2(d1+d2)-
n k=1

(42) follows from (51) and (52). Hence the proof of Proposition 3.1 is complete. O

Proof of Proposition 3.2. Let k& = 1 for notational simplicity. Note that X7 X

is written as
X'"X=G"G+G"D+D"G+D"D - D"W/!'D - D"W,D + DWW, D.
It is obvious from the proof of Proposition 3.1 that
GTG =0O(nh') and GTD = O,(n™/21h?).

We examine the other terms of X7 X .

Since
n
Var() w;;d;) = > wijwigr (1 — J2)
Jj=1 1<g1,92<n
C 1
S h 2 Z . S 1 1—2d;
(nh) —nh] —1<j1—i,j2—i<|nh|+1 (|j1 = 72| + 1)
< C(nh)*~'  uniformly in 4,
we have

E(|D"WI'D|) < Cn(nh)"=Y? and E(|D"W!W,D|) < Cn(nh)?1,

Hence the proposition follows from the ergodicity of {6;} and the proof of the

proposition is complete. O

Proof of Proposition 3.3. Let £ =1 for notational simplicity. We appeal to the

Cramér-Wold device when k£ > 1. We write a; for A; and ag-l’l) since k£ = 1.
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We decompose §; and ¢; as

m
0 = Y G+ Z aJClJ—5 P4, (53)
J=0 Jj=m+1
6 = Y ami-j+ Z ajlli—j = z(m)Jng(m)v (54)
7=0 j=m+1
where 6™, 6™ €™ and &™ are defined by the above expressions.

(m)  5(m)

We denote the autocovariances of 6§m), € 0

,and é™ by ™ (), v (j),

fém) (4), and 7™ (), respectively. It is easy to see that

r((;m)(j) — r11(j) and rgm)(j) — 1(J) as m — oo, (55)

C . C

W] < TR and [r{™

(m)
r < — .
| 1) € (])| — (|]| 1)1,2,12

—-1/2 glm) (m)

zlz

We apply the CLT for stationary m-dependent sequences to n
and obtain

5™ LN (0, Vi),

where Vi, = > %° r((;m) (7)rf™(5). In addition, (55) and (56) imply that V3, — V}

j=—00
as m — 0o.

We have only to show that the effect of truncation in (53) and (54) becomes

negligible as m — oo, that is

We give the details of only the first term of (57).

We examine 7™ (j) and use the result to bound Var(27_, 6"™&™). When i is

2

positive and sufficiently large,

1
M@ < C Z

58
j= m+1]1 © i+ j)t 58)

o
C 1
S y1—2do> . Z > [7\1—do 1 » [a\1—ds2 s '
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The last summation in (58) tends to 0 as m — oo. From ( 58), we get

]‘ & m m
—Var( 51( )EE ))
n i=1
C N
< = X M = )R (i — )]
M 1<iyia<n
zn:( )2(d +d2)—2 io: 1
< C 14 1) e — — - — 0 as m — oo.
i=1 jomr /)L /i) i
Hence the proof of Proposition 3.3 is complete. O

We need some elaborate results on the coefficients of §; and ¢ in the proofs of
Propositions 3.4 and 3.5. The results are given in Lemma 5.1. Exactly speaking,
the coefficients of SZ and € depend on i since the kernel functions for w;; depend
on 7. However, Lemma 5.2 implies that the effect of using the boundary kernels
Ky(+) and K;(-) is negligible in the propositions.

Proof of Proposition 3.4. Let k£ = 1 for notational simplicity and we also suppress
the superscript (1,1) since £ = 1. For example, we write a; and y,(-) for 651’1)
and 1/)81’1)(-), respectively. Lemm 5.2 ensures that we can neglect the effect of using
the boundary kernels and prove the propositions as if we did not use the boundary

kernels Ky(-) and K;(-).

We decompose §; and €; as

_ M [nh] 00 - -~
5 = SooaiGi+ > @Gy = i+ 0w,
j=—|nh]-1 j= Y. [nh]+1
Mlnh] o0 -
G o= D> bmgt X bmig = futéy
j=—|nh]-1 j:M[TLhJ‘FI

where M is defined in Lemma 5.1 and Su, 5%, €15, and €éy; are defined by the above
expressions.

We write Var(3X© 5261) in covariances of dy;, 0o;, €14, and €.
Var(3~ §;é) (59)
i=1
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= 23 E(6;6,)E(&¢;) + O(n),

1<j
> E(6:0;)E (&) (60)
i<j
S E(01:01))E(€riéry) + O E(01:017)E(Eiay) + Y E(01:01)E(€1iéay)
i<j i<j 1<j

+ Y E (01502 E(E1ié1;) + 3" E(01:9))E(€2iaj) + Y E(01;025)E(E1ié2)

i<j i<j i<j

+ > E(02ibo)E(€riéry) + > B(02:00)E(Eniéas) + Y E(02i00)E(E1562).

i<j i<j i<j

We do not present every detail since it will be long and tedious. We closely look
at only the first term of the RHS of (60) in the proof.

When j—i = |unh] and 0 < u < M +1, we use the expression of a; in Lemma

5.1 to obtain

o  la)=(=i)
E@udy) = of Y. @l (61)
I=—|nh|-1

_ 2T U Ik Yn((1 4§ = )/ Inh))
bt (DA G-+ D

o} /M“ Y1 (s)hi (s + u) s

(nh)t=2d1 J_y  |s|l=di|s 4 u|t—d

Here we put [ = [snh]. We also have
o} /M“ Pa(t)tha(t + u)

(nh)i=2 J_y  [t]i=d |t + u-d

NOtiCng that E(Sliglj) =0 and E(gliglj) = 0 when ] -1 > (M + ].) L?’LhJ +1

E(é615) ~ (62)

we fix a small positive number v and use (61) and (62) to give an expression of the

first term of the RHS of (60). Recall that 7 = n(nh)~1+2(ditd2)

Z B (01i61;) E(€1ié 1)
1<J
~ Y E(udy)
0<j—i<v|nh|
, 2//M+1(/M—u Yi(s)ya(s +u) /M‘“ o () o (t + u)

0, S P Y P T TRl AR VT e AT I

dt) du.

The first term of the above expression becomes negligible as v — 0 since

_ o o B
2 oy FOdBEal s 2 (Ji — 7] + 1)2-2(d1+dz) < CpAhtet

0<j—i<v|nh| 0<j—i<v|nh]
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Hence we have shown that

JLIEIO TNL_I Z E(Sliglj)E(Eliglj) (63)
0<j—i<M|nh|+1
= ojo} /M+1 (/M_u Vals)u(s + u) ds /M_u VoDt + u) dt)du.

N o Al atd )y et u

The other terms appearing in (60) have expressions similar to (61) and (62) when

j —i=|unh| and u > 0. The expressions are

07% © ¢1(s)p1(s + u)
(nh)1—2d1 o o83—d1 (S—|—u)3—d1 )
9 [
(Rh)' =201 Jyz_y |31 (s + u)3~
P hi)di(s+ ]
+(nh()711—2d1 /_1 |5|11_(d81)(815_8u)31i)d1 dSI{M +1< u},
% 2 y(t)pa(t + u)
W/M $3—d (f 1 1y)3—d dt,
2 M )
E(€;6) ~ (nh()j%?da /M—u |t1|/i2—(;2)22$$;i)d2 dtI{0 <u < M+1}
o /M U (£)alt + )
(nh) 120 o o=t 4 )=

E(b2i02;) ~

dsI{0 <u < M+ 1}

E(01:025) ~

E(é625)

+ dtI{M +1 < u}.

By following the derivation of (63) and using the fact that ¢;(s) = s%i(s),

[ =1,2, in Lemma 5.1, we consider the 4th and 7th terms of the RHS of (60) and

obtain
> E(01:05)E(Eviéy) (64)
i<j
ot [T ([ ) (1o a0t )
2 92
nalab/o (/M—u |8|1_d1|8+U|1_d1 ds 1 |t|1—d2|t+u|1—d2dt)du’
Z E(52i52j)E(€1i€1j) (65)
i<j
~ WL oo 4y (s)ya (s + ) /M“ Ua()tha(t + )
2 2 1
mla”/ (/M |s|1’d1|8+UI1*d1d8 -1 |t|1d2|t+u|1d2dt)du'

Summing up (63), (64), and (65), we obtain

> E(0:0;)E(eny;)
~ ﬁa?aﬁ/MH(/oo hilshhls +u) /Mu A1) 0 g,

R T Y P E TRl B T AT [
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We treat the other terms in the same way and sum up all the terms of (60).

Then we have

i<j
. 9 o [ o ¢1(8)¢1(8+u) /oo wQ(t)’l/)g(t—FU)
~ d dt)du.
nalab/o (/71 S| s + ult- 5] [ |t + ul ) u
Hence the proof of Proposition 3.4 is complete. O

The proof of Proposition 3.5 is based on the truncation argument and the large
and small block argument. The proof is much more complicated than that of Propo-

sition 3.3.

Proof of Proposition 3.5. Let k£ = 1 for notational simplicity and we also suppress
the superscript (1,1) since £ =1 as in the proof of Proposition 3.4. When k£ > 1,
we appeal to the Cramér-Wold device.

First we choose two sequences of positive integers {l,} and {s,} such that
l, — 00, 8 = 00, S, /l, — 0, and [,h — 0. In the proof, [,,|nh| and (s, + 2)|nh]
are the large block size and the small block size, respectively. The number of the

blocks is denoted by ¢, and

cn = |n/{(ly+ss+2)|nh|}] ~ " — 00.
We define &;1, 0i2, dis, éi1, éia, and é3 by

) ~ R Sn|nh| R 00

on = b, = > 4oy, O3 = >, 4Gy, (66)
=M |nh|+1 i=sn|nh|+1

Sn|nh| ~ 00 B

E1 = €1, €= >, bmy &= > bm (67)

i=M|nh|+1 i=5,[nh|+1

Then

gi = 5” + 521' + 531’ and Ez = éli + ggi + égi.
In Lemma 5.3 below, we show that
n

1 A A 1 no.
lim fV&I‘(Z((SM + 621)€3z) = 0, lim 7Var(z (Sgi(gli + €21)) = 0,
i=1

n—oo n, ‘1 n—oon
1=
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Thus we have only to deal with Z?:l(gu + 527;)(€17; + €9;). We rewrite it as in (68)

below.
Z(Su + 52z')(€1z' + €y) = Z Wi+ Z Zi + Ry, (68)
i=1 i=1 i=1

where

n[nh]+(i~1)(bn+sn+2) nh]

W, = 3 (81 + d2;) (€1 + €2;),
J=1+4(i—1)(In+sn+2)|[nh]
i(ln+sn+2)|nh] . .
7, — ) (01 =+ 027) (€1 + €37),

=14 b+ (im 1) (I + 50 +2) ]
and R, consists of the remainder terms.

It is easy to show that Var(R,) = o(n) as in the proof of Lemma 5.2 and the
details are omitted. Besides, {W;}", and {Z;}", are two sequences of i.i.d. random
variables due to the definitions of 51]-, 52]-, €15, and €y;.

From Lemm 5.4, we have

Var(}- Z;) = ,0(s,(nh)44%)) = O(52) = o(i), (69)

i=1
which implies that >, Z;/Vii = 0,(1).
Finally we consider Y¢7, W;/v/#. From Lemma 5.5 and the definition of {I,},

we have

ST e}%} < SRy —of

— [,h \e2n?

(nh)4(d1+d2)
thQ(nh)4(d1+d2)2) =o(1). (70)

The proposition follows from (68), (69), (70), Proposition 3.4, and the Lindeberg

CLT. Hence the proof of Proposition 3.5 is complete. O

5 Technical lemmas and the proofs

We state the technical lemmas used in Section 4 and give the proofs at the end of

this section.
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We examine the coefficients of 52 and ¢; in Lemma 5.1. See a comment before the

proof of Proposition 3.4 and Lemma 5.2 about the effect of the boundary kernels.

Lemma 5.1 Suppose that A1, A2, A4, and A5 hold. We take a sufficiently large
positive integer M and represent l;j as

bj = Yan(j/[nh])(A+ )7, —[nh] — 1< j < Mnh],

bj = (nh)¢sa(j/[nh])(1+5) ",  Mnh] <j.

Then 1o, () and ¢a,(+) satisfy the following properties.
(1) on(+) and ¢a,(-) are uniformly bounded in n.
(2) When j = |snh|, we have

nh_{{.lo%n(]/th) = ¢2(8), _1§5§M7

lim GG/ [0h)) = ba(s), M <,

where

Uals) = (s > 0} = Js|" /(il)v(—s) %d )

and ¢o(s) = s?1o(s). Note that 1o(s) can be defined for any large positive s and
that Yy(s) and ¢2(s) are bounded.
(8) When j = |snh| <0, —1 < s <0, we have

[V2a(i/[nR])][s|"7H < € and  |yu(5/ [nh])|ls|*7" < C.

(4) |bj] < C(nh)~"*% —|nh] —1<j<0.

(tm)

When we represent a; as

ay™ = G/ R+ )T, —(nh] =1 < j < M(nh),
G = (b2l (i Inh ) (1 + §) ¥, M[nh] < j,

1/)§an)() and ¢§lnm)() have the same properties as (1)-(4) with obvious changes.

Especially we denote the limits in (2) by @Z)Y’m)(-) and ¢§l’m)(-).
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Lemma 5.2 Suppose that di +dy > 1/2 and that A1, A2, A4, and A5 hold.

Then we have

S0 — S0y wid) (6 — S0y wige;) = 0,(V),
S ) (0 = X5y wi65) (6 — Sy wize;) = 0,(Vn),

where we put 1 = nlogn when dy + dy = 1/2. This implies that the effect of using

boundary kernels K,(-) and K;(-) is negligible in Propositions 8.4 and 3.5.

Lemma 5.3  Suppose that dy +dy > 1/2 and that A1, A2, A4, and A5 hold.
Then we have
Var (3" (0y; + 09:)éi) = 0(R), Var(3_ si(é1; + é51)) = o(i), Var(d_ dsiés;) = o().

i=1 i=1 i=1
Lemma 5.4 Suppose that dy +dy > 1/2 and that A1, A2, A4, and A5 hold.

Then we have

B(|Z,2) = O(spnhlogn), dy+dy=1/2
! - O(Sn(nh)Q(dl+d2)), d1 + d2 > 1/2

Lemma 5.5 Suppose that dy +dy > 1/2 and that A1, A2, A4, and A5 hold.

Then we have

E(|W1|4) = O(lz(nh)‘l(dl*d?)) — 0(%(nh)4(d1+d2)).

Remark 5.1 When dy +dy = 1/2, we should be careful in dealing with the inte-
gration over the regions containing 0 in the proofs. We will be able to proceed with

some modifications and establish
In
E(Wy[Y) = 02 logn(nh)4(d1+d2)) _ O(E logn(nh)4(d1+d2)).

Howewver, the notation and the details are extremely complicated and we have not

checked all the details yet.
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Lemma 5.6 Suppose that dy +dy > 1/2 and that A1, A2, A4, and A5 hold.

Then we have
ln|nh]

E{| Z 52i€2i|4} = O(li(nh)4(d1+d2))‘

i=1
Lemma 5.7 Suppose that dy +dy > 1/2 and that A1, A2, A4, and A5 hold.

Then we have
In|nh|

E{] > S|t} = O(1% (nh)!drtd2)y,
i=1

Lemma 5.8 Suppose that dy +dy > 1/2 and that A1, A2, A4, and A5 hold.

Then we have

ln|nh| R I [nh) A
BY Y Suul'} = O@mh) ) and BY| Y Syen]'} = O (nh)+4).
=1 i—1
Lemma 5.9 Suppose that A4 and A5 hold. Then we have
[nhl+1 (0.5-4)/(nh) [nh|+1
/ _ K(z)dz = 1, Z / K(z)dz = 0,
i=—|nh]—1 (—0.5—i)/(nh) i Tnl 1
[nh]+1 )
Z / K(z)dz = (nh)Q(/ 2K (2)dz + O((nh) ™)),
-1
|_nhj+1 .
| | / )dz = (nh)3(/1 |z|3K(z)dz + O((nh)_l)).
z——|_nhj 1 -

The proof of Lemma 5.9 is trivial and omitted.

Proof of Lemma 5.1. We prove only the results for l~)j. We put b; =0 for j <0

and represent IN)j as
_ [nh|+1
bi=bj— X Wity (71)
i=—|nh]-1
Obviously b; = 0 when j < —|nh| —
We take and fix a sufficiently large positive integer M. We need A2 only when
j > M|nh].
First we deal with the case where j < 0 and j = |[snh], —1 < s < 0. Noticing

that
(0.5—4)/(nh)
= K(2)dz, 72
Wiars = [ o o KMz (72
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we have

; Lnij:ﬂ 5 /(0.5z’)/(nh) K(2)d (73)
= - — z)dz
! i=(—§)V(—|nh]—1) (i + 7 +1)'=% J.5-i)/(nn)

(”h)lid2 /(s)v(l) (54 2)t-
AWy K

(|j|+11d2 v (s + 2)

(73) yields that

onliflnn)) ~ (PR

s+ z)l-d
. . 1 K(z)
lim don(j/[nh]) = —ls|"~ [ el
n1~>ngo 1/)2 (]/L’I’L J) f)/|8| (=s)V(=1) (S + Z)l—dQ

dz. (74)

We define 5(s), —1 < s < 0, by the RHS of (74). The proof of (3) and (4) is
complete. We have also established (1) and (2) when —1 < s < 0.
Next we deal with the case where 0 < j < M|nh] and j = [snh], 0 < s < M.

Then we have as in (73) that

~ Y vy 1 K(Z)
b; ~ — d 75
’ GrOt® (b)) (st @ (75)

|
0 JH+ 11— 1 K(z2)
~ et GR) Lt

(75) yields that

Vo (3/|nh]) ~ *y{l - (%)l_d2 /_1 (ﬂdz},

1(s+ z)l-

i v/ lnk)) = 21 =5 [ o). (70

~1 (s 4 z)l-dz
We define 1(s), 0 < s < M, by the RHS of (76). We have established (1) and (2)
when 0 < s < M.
Finally we deal with the case where j > M|nh| and j = |snh|. Then we have

from A2 that

by = —
I (j+ 1)t j+1 2 j+1

27



By combining (77) and Lemma 5.9, we have

[nh|+1 2
o Y v(dy — 1)(dy — 2)(nh)
et = G T e )
! (nh)®
2 -1
x([lz K(z)dz + O((nh)™")) + ((j ; 1)4d2).
We substitute (78) into (71) and obtain
o (nh)?  ~(dy —1)(d2 — 2)
SRS EC
1 nh 1
2

This implies that

. dy —1)(dy — 2

ool ) = MDD
1 nh 1
2
and that ¢o,(-) are uniformly bounded.
We can take any large M. Then we have
G2 (/L nh]) = (j/[nh])*W2u(i/ [0h]).
Obviously from the above expression,
lim 20 (j/[nh]) = s (s). (79)

We define ¢y(s) by s?iy(s). Since ¢o,(+) are uniformly bounded, ¢y(s) is also
bounded. (1) and (2) is established when s > M. Hence the proof of Lemma 5.1 is

complete. O

Proof of Lemma 5.2. Suppose that & = 1 and d; +dy > 1/2 for notational
simplicity. We illustrate only the former result, the summation from 1 to |nh]| + 1.

By carrying out routine calculations and using (3) and (7), we obtain

[nh]+1
Var( - diei) = O((nh)* %)),
i=1
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Var( ) (Z: wi;05)€:)

=1

- Z Z wiljlwiZjZ,rll(jl - j2)re(i1 - 22)

1<iy, o< [nh]+1 1<51,52<n

< Clnh)™ 2% %7 r(in —iz) = O((nh)1F®)),

1<iy,iz<|nh|+1

h]+ n
Var( Z waﬁj = O( (nh) d1+d2)),
i=1 -

Var( Z Z wzg Z wzlel
i=1 —
- Z Z Z wiljlwizjzwilllwizlzTn(j1 - j2)7“e(l1 - l2)

1<i1,i2< thJ«}*l 1<71,52<n 1<l,l2<n

1
C(nh) ( h) (nh)1+2d1 (nh)1+2d2 — O((nh) (d1+d2) )
The former result follows from the above expressions.

When d; +d, = 1/2, we should replace (nh)*4+4) by nhlogn. Hence the

proof of Lemma 5.2 is complete. O

Proof of Lemma 5.3. Let £ = 1 for notational simplicity and we also suppress
the superscript (1,1) since £ = 1. We only outline the proof of the first and last
expressions.

By following the proof of Proposition 3.4, we obtain

3" E(61:01,)E(ésiés)) (80)

1<i,j<n

~ 2n0tof [ T / Y a@nlsru) e 06ty g,

o JsTa)s ru[ta P, By

n
- O(S%dz),
> E(2:02;) E (€3:¢37) (81)
1<i,j<n
2 2 s 91(8)di(s +u) oo gy (1) o (t + u)
2n010b/0 ( M 30 (s 4 u)dd S/sn 13da(f + )5 42 dt)du
n
- O(S%dz),
> E(01:09; ) E(é3:€3;) (82)
1<i<j<n
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M+1 o rMo )y (8)dy (s + u) o Po(t)Pa(t + u)
~ na%a,?/o (/]\7[711. |S|11—d1(51+ )3 ds /Sn t3fd2 (tj—u)?’_@ dt)du
o [ ([ ) 0l ) g,

+noio, et . |s[1=d1 (5 + u)3—d . 137l (t 4 )3—d>

- o)

3" E(d3:0s;)E(ésiés)) (83)
1<4,j<n
~ 2iotet [T( [ D)n(s ) ds [ Oa0)0all T 1) ) gy

w8370 (s 4 u)3-d o 1370 (1 4 )3

n
- O( 47(d1+d2))'
Sn
The first and last expressions follow from (80)—(83). Hence the proof of Lemma 5.3

is complete. O

Proof of Lemma 5.4. We can verify this lemma in a fashion similar to that of
Proposition 3.4 by just noticing that the summation of E{(01;40)(01;-40;) }E{ (é1:+
€2:)(€1j + €5)} is over {(¢,7) |1 < 4,5 < (s, + 1)[nh]}. The details are omitted.
When d; + dy = 1/2, we should replace (nh)2@+%)=1 with logn. Hence the proof

of Lemma 5.4 is complete. O

Proof of Lemma 5.5. Let £ = 1 for notational simplicity and we also suppress
the superscript (1, 1) since £ =1 in the proofs of Lemmas 5.5-5.8.

Since W, has the same distribution as

In|nh|
WI = Z ((512617, + 522612 + 617,622 + 621622)
i=1

the lemma follows from Lemmas 5.6-5.8. Hence the proof of the Lemma 5.5 is

complete. O

Proof of Lemma 5.6. We represent 52,~ and €y in ¢; and 7; as

R Sn|nh| M|nh|—1
0y = >ooaiGy = Z ai—lCl (84)
j=M|nh|+1 Sn|nh
Sn|nh| N nh|—
€y = oo by = bifjnj- (85)
j=M|nh]+1 Jj=i—sn|nh]
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Since the purpose of this lemma is to find an upper bound of E{| S 665,14}, we
use |@;] and |b;| instead of @; and b;, respectively in calculating the autocovariances
of (§Qi and égi .

Because of the symmetry, we have only to take into account the summation of

|E (01, 024y Oy 02 ) E (€niy €21, 234 €21, )| (86)
over §j, j=1,...,8, where
Si = {(inyinyis,ia) |1 < i1 <is < iy < iy < ln|nhl},
Sy = {(i1,d2,13,14) | 1 < 0y = ip < i3 < iy <l,|nh|},
Sy = {(i1,02,13,14) | 1 < 1y < ig =13 < iy <l,|nhl},
Sy = {(i1,d9,13,14) | 1 < 1y < ip < iz =iy <l,|nh|},
Ss = {(i1,02,13,14) | 1 < iy < ip =iz =1y <ly|nhl},
S = {(i1,02,13,04) | 1 < iy = ip < iz =iy < ly|nhl},
S; = {(i1,02,13,14) | 1 < iy = ip = i3 < iy < ly|nhl},
Se = {(i1yisy iz ia) |1 < i1 =is = is = is < Ln|nh]}.

Hereafter }°s means the summation over S,.

We put
ip — iy = [&nh], i3 — iy = [&nh], and iy — i3 = [{nh, (87)

where 0 <& <s,+1,0<& <U,,and 0 <& <s,+1 from (84) and (85).
First we consider S5 — Sg. Then for 7 =5,...,8,
> IE (621, 021, 015 021, ) (21, Ein €21, €23,)| < CIE(nh)? < CI (nh) (¥ (88)
Sj
since

|E(52i152i252i352i4)| < C and |E(éy, €9i,€9i,€92,)] < C.
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Next we consider S;. From (84) and (85), E(<§2i1<§2i252i3<§2i4) and E(éy;, €24, €0, €2i,)

are given by

E(52i152i2 52i352i4) = Z ail—hdiz—h &ig—ladi4—l4E(Cl1 <l2<l3Cl4)v (89)
l1,l2,l3,l4

E(€2i1 €2i2 €2i3 €2i4) = _ Z _ bil—jl biz—j2 bi3—j3 bi4—j4E(77j1 Cjznjs 77j4)- (90)
J1,J25]35]4

In (89) and (90), we put @;, ;, =0 and b;, ;. = 0, when i, — [, and i, — j, are not
included in the definitions of 52,~p and €y, respectively.
As for (89), there are 4 subsets of {(l1,l2,13,l4) | — 00 < l1,ls, 13,1y < o0} we

should take into consideration and they are

£1 = {(lla 127l37l4) |l1 - 12 7& l3 = l4},
£2 = {(lla 127l37l4) |l1 = l3 7& l2 = l4},
'C3 = {(ll7 l27l37l4) |l1 - l4 7é l2 = lg},

'C4 = {(l17l27l37l4) |l1 - l2 = l3 = l4}

Hereafter }°, means the summation over £,.
We have for £, L5, and L3,
E(52i152i2)E((§2i352i4)7 p=1

Z |a‘i1—lldiz—l26i3—l3di4—l4|E(Cl1<—l2<—l3<—l4) S E(é?il §2i3)E(§2i2(§2i4)7 D= 2 . (9]‘)
£p E(02;,02i,)E(02i,02:,), p=3

In the same way as in the proof of Proposition 3.4, we can show that for 1 < p <

q <4,

Ao C o0 d€a
Bont) < payemm |, e rg e )

In the case of L4, we have

o0

Z |di1—ldi2—ldi3—lai4—l|E(Cf) (93)
[=—00
< C /00 d&,
T (b3 370 (E + &) N (G + &+ )TN (G S+ &+ )N
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We treat E(€g;, €9;,€2i,€0;,) in the same way as E(dg;, 09;,02i,02;,) and we define

jla j?) j?n a‘nd L74 by

T = {1, J2sd3,J4) | 1 = J2 # J3 = Ja},
To = {1, J2: 73, J4) | 1 = J3 # Jo = Ja},
Tz = {1, J2s Jss Ja) | 71 = Ja # Jo = Ja}

;74 = {(j17j27j37j4) |]1 = j2 - j3 = ]4}

We have for J1, J2, and Js,

- - - N E(€2z‘1 €2i2)E(€2i3€2i4)7 p=1
D 1biy =i bis—jnbig—jsbis—js [E(M 155 mja1js) < X EEni, €2i,)E(€2inéni,), p=2. (94)
Tv E(€2i, €2:i,)E(€9iy€0i5), p=3

In the same way as in the proof of Proposition 3.4, we can show that for 1 < p <

q<4,
C o d&
E(éy 9 )| < —— / . 95
PEntn)l < Gy fy o e+ ve, o o
In the case of 7, we have
S 1biy—ibis—ibis—sbis—; [E(n}) (96)
Jj=—00
C /oo dfb
(nh)> 40 Jar &% (& + E0)3 2 (& + &1 + &) B (G + & + & + &)> %
Here we define T (r,p, q) by
T(r,p.q) (97)
= Z Z Z |&i1*ll&i2*l2&i3*13&i4*l46i1*j1 Bi2*j26i3*j35i4*j4|
S Ly Jq
XE(Ch Cl2Cl3Cl4)E(77j177j277j377j4)'
It is easy to see that for any r,
> | (0, 024y 0245 024, ) E (€i, €0y 2i5 €91, )| < > T(r,pq). (98)

Sr 1<p,q<4
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By exploiting (91)-(96), we evaluate T (1,p,q) for every pair of {(p,q)|1 <
p,q < 4}. We have for (1,1),

T(1,1,1) (99)

)~ > dé, > 0o
< Clah(uhy @) [ ([ emaeyaym Jy o sep

> d&p o0 d&p
x /]\7[ 37d2(§b_|_§1)3—d2 /]\7[ §§d2(§b+€3)3d2)d€1d§2d§3

b
< Cly(nh)" B+,

where Q17 = {(£1,&,&6)7[0< & <s,+1, 0< & <1, 0<& < s,+1}. In the
RHS of (99), l,nh and (nh)® come from 4; and d&;d&;d€s, respectively . We can
treat the other pairs almost in the same way and the details are omitted. Hence we
have shown that

> 1B (Doiy 01y 021y 00i, ) E (€0, €03y 23y €03, )| < Cly (nh) H1H42), (100)
S1

We proceed to S;. Since we can deal with S; and S, in the same way, the
details about S; and S, are omitted. We still use £, and J, here. There is no
iy — iy = |&nh| for S,.

We will find an upper bound of the summation of |E(03;, 8si,00i,)E(€3:, €aisois )|
over S;. We give expressions such as (91)-(93) only to

B(03;, 02iy000) = Y iy 1, @iy~ Gig 1By -1 B (G G0 G G )

l1,l2,l3,la
since those of é; are similar to those of 52,~. We put a;,_;, = 0 when 4, — [, is not
included in the definition of 522-1,.

We have for £, L5, and L3,

52,
Z |&i1*l1&i1*l2ai3*l3di4*l4 |E(Cl1Cl2<13<l4) < E(52i152i3
< I
P 09;, O
In the case of L4, we have

> 16, iy i, |B(G) (102)

[=—00
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< C /00 d&,
 (nh)t S 872 (E, + &) (Eu + & + &3)3

By exploiting (92), (101), (102), and those of é,;, we evaluate T (2, p, q) for every

pair of {(p,q)|1 < p,q <4}. We have for (1,1),

T(2,1,1) (103)

) dg, [ dta
< Clnnh(nh)4(d +dz) 4(nh)? /Q12 (/1\7[ fo-2a /M 301 (&, + &)

o d§, [ d&
X/M 6—2d> /M €S—d2(€b+§3)3d2)d§2d63

b
< CL(nh)thte)=t

where Q15 = {(£&,&)710< & <1, 0 <& < s, + 1}. In the RHS of (103), I,nh
and (nh)? come from 7; and d&yd&;z, respectively .
We can treat the other pairs almost in the same way and the details are omitted.

Recalling (98), we have

> 1B (Ooiy 0iy 021y 00i ) E (€0, €01y 23y €03, )| < Cly (nh)H1H42), (104)
Sa
The proof of Lemma, 5.6 is complete. O

Proof of Lemma 5.7. Lemma 5.7 can be established in the same way as Lemma
5.6 and we use the notation such as S,, £,, J,, and T (r,p,q). We represent Ori
and €;; in ¢; and 7; as

M |nh] i+|nh|+1

Sli = Z EleZ;j = Z aiflCl (105)
j=—|nh]-1 l=i— M |nh)|
Mlnh] i+[nh]+1

€ = Sy = Y. b (106)
j=—|nh]—-1 j=i—M|nh|

When we calculate the autocovariances of dy; and &, we use |, and |b;| instead
of a; and l;j, respectively as in the proof of Lemma 5.6.

We have only to consider the summation of
E (01,010 0105 01, ) E (€14, €14y €105 €12, )| (107)
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over §;, j=1,...,8.

We put
ig - il == L€1NhJ, ig — i2 = L€2th, and i4 — ig = L€3NhJ, (108)

where 0 < & < M+1,0< & <1,,and 0 < & < M + 1 from (105) and (106).

We can deal with S5 — Sg as in the proof of Lemma 5.6 and the details are
omitted.

We consider S;. Note that E(8y;,015,01i,01,) and E(éy;, é14,614,615,) have the same
kind of expression as (89) and (90). As in (89) and (90), we put a;,—;,, = 0 and
Biq,jq = 0, when ¢, — [, and i, — j, are not included in the definitions of Sup and
€14, , respectively.

As in the proof of Lemma 5.6, we have for £, Lo, and L3,
014,0
Z |a‘i1—lldiQ—lQai3—l3di4—l4|E(<—l1<—l2<—l3<—l4) S E((Slil(slig)E((sliz(slm)a D= 2 . (]‘09)
7 o E(G

From Lemma 5.1, we have for 1 <p < g <4,

IE(14,015, ) (110)
M|nh]—(iq—ip)
< C > |y, —i, |

I=—|nh|-1
ip—ig—1 1
< C Y g iy —ig > —nh]}
=1 (RR)?720
20: 1
+C — — —
I=(—[nh]—1)V(ip—iq) (nh)t= b (l + iy — i, + 1)h
Wb (iq —ip) .
+C —
— I+ 1) =4+ iy —i,+ 1)1
1 1
< f + }

(nh)l—Zdl (iq _ ip + 1)1—2d1

In the case of L4, we have

i1+LTLhJ+1
S i iy 18y 1di, | B(CT) (111)

l=is—M \_th
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o] S — 1
(nh)374d1 (nh)273d1 (24 _ 2‘3 + 1)172d1
1
(nh)1*2d1 (24 — i2 + 1)1*2(11 (23 _ 2'2 4 1)1,2,11

_|_

1
+(i4 — i 4 D)2 (g — iy 4+ 1)120 (fy — 4y + 1)124 }
(111) is rather complicated because @, is not equal to 0 for —|nh] —1 <1< 0. We
verify (111).
The LHS of (111) is rewritten as

M thJ +i1—14

Z |dl&l+i27i1&l+i3*i1&l+i4*i1 |E(<f)
I=—|nh|-1

We define 5 subsets of the set of all integers, A;, As, Az, A4, and As, by

A = {l110< 1< M|nh] +i, —ig},

Ar = {l](ir —i2) V (= [nh] — 1) <1 <0},

As = {l|(ir—i3) V (=[nh] = 1) ST < (i1 —i2) V (= |nh] = 1)},
Ay = {l](ir—ia) V (=[nh] = 1) ST < (i1 —i3) V (= |nh] = 1)},

As = {l] — |nh| =1 <1< (i —iq) V(—|nh] —1)}.
Then we have
{l| = |nh| =1 <1< Mlnh|+i —is} = A UAUA3 U A U As.
By using Lemma 5.1 and carrying out some calculations, we obtain

| Qi —iy Qi —iy Qg —is |
>
At
C
(ia — i1 + 1) 21 (ig — iy + 1)1 20 (i — iy + 1) 241

Y b, iy Gy iy Qg iy |
As

C
(nh,)I*Zdl (24 — 7:2 + 1)172d1 (7,3 — 7:2 + 1)172d1 ’

Y by =iy Gy —iy G-, |
A3
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C
(nh)2*3d1 (24 — ig + 1)172‘11 ’

Y by =iy Gy —iy Qg =i, |
Ay

¢
(nh)3=4di”

Z |alal+z‘27i1 Qltiz—iy Al4ig—iq
As

C

< -
— (nh})374d1 ’

where )4 means the summation over A,. Hence (111) follows from the above
inequalities. In (111), some of 1 — 2d; can replaced with 1 —d;. However, 5}72‘11 is
more tractable in dealing with the integration over the regions containing 0.

We do not give the inequalities for €;; such as (110) and (111) explicitly since
they are trivial from (110) and (111).

Recalling (97) and (98), we consider 7 (1,p,q). By exploiting (109)—(111), we
can bound T (1,p,q) by CI12(nh)*4+4) for every pair of {(p,q)|1 < p,q¢ < 4}. In

fact we have for (1,1),

T(1,1,1) (112)

1 1
S Clnnh(nh)4(d1+d2)_4(nh)3/ (]_ —+ 1_—%) (]. + 1—2d1)

Q21 1 3

1 (14 o ) (1 g ) A€ dEads
61 63

< Cly(nh)Hs®),
where Qg1 = {(£1,&,&)7[0< &6 < M+1, 0<& <1, 0<& < M +1}. In the
RHS of (112), l,nh and (nh)* come from i; and d& d&,dEs, respectively .
The other pairs can be treated almost in the same way and 7 (1,p,q) of those
pairs are bounded by CI2(nh)*@+%)  Note that we have to be careful in dealing
the pairs involving £, and J;. The details are omitted. Hence we have shown that

> B (01, 01430145 010 ) E (€1, €14 €14y €10, )| < CL2 () Hr-He2), (113)
S1
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We go on to S,. Since we can deal with S3 and &, in the same way, the details
about &3 and S, are omitted. We give only necessary upper bounds in the case of
L4 for 83 and S, at the end of the proof.

We consider the summation of |E(6% 81,015, )E(€3; é1iy€1i,)| over S,. We give
expressions such as (109)-(111) only to

B(6%,01i5015) = Y iy 1y iy 1y iyt 41, B(C G0 G o)
Ii,l2,l3,la
since those of €;; are similar to those of 5”. We put a;,—;, = 0 when 4, — [, is not

included in the definition of 322-1,.

We have for L1, L5, and L3,

E(@%m )AE(AIZ?)(?H[;)A) p — 1
D iy 1y iy 1 iy 18114 [B (G G0 Ga ) < 4 E(013,010) E(013,01s,), p=2 . (114)
” B b1 B b1y), p =3

In the case of L4, we have

[oe]
> |ag iy it |BE(C) (115)
[=—00
MLTLhJ+i17i4
< C Y @iy Gugig—i |
I=—|nh|—-1
1 1

<
< C{ (nh)3—id: + (Rh)2 34 (34 — i3 + 1)1 201

1
+(7,3 — 7:1 + 1)172‘11 (7,4 — 7:1 + 1)172‘11 }
By exploiting (110), (114), (115), and those of €;, we evaluate 7(2,p,q) for

every pair of {(p,q) |1 < p,q < 4}. We have for (1,1),

T(2,1,1) (116)

1 1
< Ol [ (14 ) (1 o e

222 (1 i $ 3

< CP(nh)Mditd2)

where 922 = {(62,63)T | 0 S 62 S ln, 0 S 63 S M + 1} In the RHS of (116), lnTLh

and (nh)? come from 7; and d&d&;z, respectively. Recall that dy + dy > 1/2.
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The other pairs can be treated almost in the same way and 7 (1,p,q) of those
pairs are bounded by C2(nh)*41+%) We have to be careful in dealing the pairs

involving £, and J;. The details are omitted. Hence we have shown that

> TE (1401050145010 ) E (€14, €14 €14y €10, )| < CLZ () HrHe2), (117)
Sa

We omit the details about &3 and S, by just giving upper bounds for £,.
We have for Ss,

> i, d, i, o[BG (118)
l=—o0

M |nh]+i1—ia
< C Z |al&l2+i2*i1&l+i4*i1|
I=—|nh|-1
1 1
< C
< ¢f (k)P40 ) (i, — iy + D)1 2

1
+ (22 — 7:1 + 1)172(11 (7,4 — 7:1 + 1)172‘11 }
We have for Sy,

[o¢]
Y i1yt B (119)
|l=—0o0
M\_nh_]-i—il—ig
< C Y @i, Gy, |
l:—l_nh,J—l

<}

(nh)l=d1 = (ig — iy + 1)172d1 (43 —4; 4+ 1)1—2d

Hence the proof of Lemma 5.7 is complete. O
Proof of Lemma 5.8. We only outline the proof of the former expression since the
proofs of both of the expressions are similar to those of Lemmas 5.6 and 5.7. We
use the notation such as S,, £,, J,, T(r,p,q), and €.

We should consider the summation of
[E(01i, 014 0145 01 ) E (€2, i i 0, )|
over S;, j =1,...,8. Wedefine &, &, and &; as in (108) and use the upper bounds

of |E(51i151i251i3 51i4)| and |E(€ég;, €2;,€2i,€9;,)| derived in the proofs of Lemmas 5.6 and

5.7.
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We can treat the cases of S5—S8g in the same way as before and omit the details.

When we consider Sy, we have

T(1,1,1) (120)

- C,lnnh(nh)4(d1+d2)—4(nh)3/921{(l—i— 1_12d1)(1+ 1_1%)

1 3

> d&s oo d&p
/M & B (& + &1)P /M & " (& + &) }d&d&d&)

< CI3(nh)*hr®)

where [,nh and (nh)® come from 4; and d&;d&>d€s, respectively.
We can derive similar inequalities for the other pairs of {(p,q)|1 < p,q < 4}
and each of T(1,p,q) is bounded by CI2(nh)*%+%)  Hence we have shown that
> TE(O1i, 016, 0115010 ) E (€03, €01 iy i, ) | < CIL () H),
S1

In the case of S, we have

T(2,1,1) (121)

< Clynh(nh)m+1%=3(nh)? /Q {(1+ 6%‘;2‘11)

© d& [ d&
“Ju & Js TG + Gy

< OB (nh)" Bt

where [,nh and (nh)? come from i; and d&d&s, respectively.
We can derive similar inequalities for the other pairs of {(p,q)|1 < p,q < 4}
and each of T(2,p,q) is bounded by CI2(nh)*@+%) Hence we have shown that
> 1E(O1i, 014y 0145011 ) E (01, iy 0106, ) | < Ol (nh)AH),
So
We can proceed in the same way in the cases of S3 and S;. Hence the proof of

Lemmas 5.8 is complete.
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