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Abstract

We present a noncooperative foundation of an asymmetric Nash bar-
gaining solution for a general n-person cooperative game in strategic
form in which coalitions exert externalities. The Nash bargaining so-
lution should be immune to any coalitional deviations. Our nonco-
operative approach leads to a new concept of the core, called the Nash
core, for a cooperative game in which any deviating coalition anticipates
the Nash bargaining solution behavior of the complementary coalition.
We prove that when the probability of negotiation failure is sufficiently
small, there exists uniquely a (totally) efficient stationary subgame per-
fect equilibrium of the bargaining model, in which the grand coalition
forms with the agreement of the Nash bargaining solution, if and only
if the Nash bargaining solution belongs to the Nash core. The weights
of players for the asymmetric Nash solution are determined by their

likelihood to make proposals.
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1 Introduction

1.1 Motivation

We consider a general cooperative situation among n individuals where they
can communicate and form coalitions, which are enforceable, and cooperation
within a coalition may have external effects on the utility of individuals out-
side the coalition. It covers a wide range of multilateral cooperation problems:
exchange markets with externality, cartels among oligopolistic firms and in-
ternational alliance among countries, and so on. These cooperative situations
can be described by an n-person game in strategic form.

In game theory, there have been two different approaches to the general n-
person cooperative situation. One is the cooperative game approach initiated
by the classic work of von Neumann and Morgenstern (1944). von Neumann
and Morgenstern reduce the n-person game in strategic form to its coalitional
form (also called the characteristic function form), by assuming that individu-
als’ utilities are transferable, that is, what is achievable for a coalition depends
only on the sum of members’ utilities, and moreover that the members of the
coalition jointly choose their actions with expectation that the complementary
coalition reacts by damaging them in the worst way. The first assumption of
transferable utility is not critical to the von Neumann-Morgenstern theory. In
fact, their theory has been extended to the case of non-transferable utility by
Aumann (1961 and 1967), Aumann and Peleg (1960) and others. The second
assumption on coalitional behavior, however, has been criticised on the ground
that it allows incredible threats by the complementary coalition (Scarf 1971,
for example). The von Neumann-Morgenstern theory of a general cooperative
game is regarded as a two-stage procedure. First, by using the minimax solu-
tion of a zero-sum two-person game between a coalition and its complementary
coalition, one defines the value of the coalition. The function assigning to every
coalition its value is called the characteristic function. Secondly, one investi-

gates players’ behavior only based on the characteristic function by applying a



certain cooperative solution such as the stable set, core, Shapley value and oth-
ers. The characteristic function has been used as a convenient tool to analyse
cooperative games. However, at the same time, a difficulty in the cooperative
game approach is in the two-stage procedure itself of using the characteristic
function.! It is not clear how coalitional behavior assumed in two stages can
be justified in a consistent manner by rational behavior of individual players.
The approach lacks a unified framework of analysis.

The other is the noncooperative game approach initiated by Nash (1951 and
1953). In his approach (called the Nash program), Nash proposed to study co-
operative games based on reduction to noncooperative games by modelling pre-
play negotiations as moves in a noncooperative bargaining game. Analysing
an equilibrium point of the noncooperative bargaining game, one can explain
coalitional behavior as the result of individual players’ payoff maximization.
Nash (1953) presented a noncooperative foundation of his bargaining solution
of a two-person cooperative game obtained by a set of axioms in his initial
work (Nash 1950). An obvious restriction of Nash’s work is that it covers only
two-person games. Noncooperative approach to n-person cooperative games
was pioneered by Harsanyi (1974) and Selten (1981), and recently has received
widespread research interests: Binmore (1985), Gul(1989), Chatterjee et al.
(1993), Perry and Reny (1994), Moldovanu and Winter (1995), Hart and Mas-
Colell (1996), Okada (1996) among others. Most works, however, are based on
an n-person coalitional form game and exclude the externality of coalitional
behavior. The noncooperative game approach to general n-person coopera-
tive games has not been fully developed in the literature. The relationship
of our approach to recent works on coalitional bargaining with externality is

discussed at the end of this section.

lyon Neumann and Morgenstern themselves point out this difficulty. They write, “Now
it would seem that the weakness of our present theory lies in the necessity to proceed in two
stages: To produce a solution of the zero-sum two-person game first and then, by using this
solution, to define a characteristic function in order to be able to produce a solution of the
general n-person game, based on the characteristic function (von Neumann and Morgenstern
1947, p. 608).



1.2 Summary

In this paper, we attempt to extend a noncooperative foundation of the (asym-
metric) Nash bargaining solution to an n-person general cooperative game in
strategic form. Our bargaining game is based on the random-proposer model
(Okada 1996) which is a generalization of the Rubinstein’s (1982) alternating
offers model. In the model, a proposer is selected according to some proba-
bility distribution among active players. A proposal is a pair of a coalition
and a jointly mixed action for its members. The proposal is agreed by the
unanimous consent among the members. When a coalition is formed, all re-
maining players continue their negotiations. If a proposal is rejected, then
negotiations may end with a small probability. When negotiations end, all
players, except those who have already bound to some coalitional strategies,
select their actions independently.

The purpose of our analysis is to characterize a stationary subgame perfect
equilibrium (SSPE) when the probability of negotiation failure is sufficiently
small. In particular, since we are mainly interested in the noncooperative foun-
dation of the Nash bargaining solution in a general n-person cooperative game,
our analysis focuses on an SSPE with the efficiency property that all active
players cooperate both on and off equilibrium path. Such an equilibrium is
called totally efficient.

The main results of the paper are summarized as follows. First, we will
prove that if all players form the largest coalition in an SSPE, their agreement
should be the asymmetric Nash bargaining solution. The weights of players
are determined by the probability distribution selecting proposers, and the
disagreement point is given by a Nash equilibrium of the game. Secondly, we
will prove that, when one subcoalition is formed (off equilibrium path) in a
totally efficient SSPE, the complementary coalition reacts by the Nash bar-
gaining solution for its own negotiation problem. This means that, unlike the
von Neumann-Morgenstern theory, players outside the coalition do not react

to damage it in the worst way. With this result, we will prove that in order for



the Nash bargaining solution to be sustained as a totally efficient SSPE in our
noncooperative bargaining model, it should be immune to any coalitional devi-
ation anticipating that the complementary coalition will react according to the
Nash bargaining solution theory. In other words, the Nash bargaining solution
must belong to a type of the core of the underlying cooperative game in the
sense that no coalitional deviation can improve upon it with the expectation
of the Nash bargaining solution behavior of the complementary coalition. We
will call this new type of the core for a cooperative game in strategic form
the Nash core. Finally, we will prove that in the limit that the probability
of negotiation failure goes to zero, a totally efficient SSPE (uniquely) exists if
and only if the Nash bargaining solution is in the Nash core of the game.?
The notion of the Nash core can be supported by an argument of the con-
sistency of a cooperative solution (the Nash bargaining solution) as follows.?
Suppose that a cooperative solution is accepted as the standard of behavior in
a game. Since any coalition of players can be freely formed, the cooperative
solution should be stable against any coalitional deviation. When some coali-
tion deviates from the solution, the behavior of the complementary coalition
should be governed by the same standard of behavior (with no incentive to
deviate). This consistency argument naturally leads to the condition that the

Nash bargaining solution should belong to the Nash core.

1.3 Relationship to the Literature

This paper is an attempt to extend a noncooperative sequential bargaining
theory initiated by Rubinstein (1982) and Stahl (1972) to the general n-person
cooperative game in strategic form. In this subsection, we briefly discuss how
our approach can be related to the recent literature on coalitional bargaining

with externality from the viewpoints of modelling, solution and result. The

2The if-part is proved with a technical condition that the interior of the (strict) Nash
core is non-empty.

3A related notion of consistency for cooperative solutions is discussed by Huang and
Sjostrom (2003).



literature includes Bloch (1996), Yi (1997), Ray and Vohra (1997), Ray and
Vohra (1999) among others.

The works mentioned above commonly consider the following cooperative
situations with two-phases. In the first phase, some negotiation process on
coalition formation take place and as a result, a coalition structure (a parti-
tion of the player set) is determined. Given the coalition structure, a game of
choosing actions is played by coalitions in the second phase. Ray and Vohra
(1997) consider a Nash-like equilibrium across coalitions to analyze the second
phase. In this equilibrium, every coalition in the coalition structure is treated
as a “single” player, and it is assumed that each coalition takes a best response
(which means a Pareto optimal action relative to its members) to the actions
of all other coalitions. This type of model may be regarded as a simultaneous
model of coalitional interactions in the sense that all coalitions simultaneously
choose their actions not knowing other coalitions’ actions. The other models
studied by Bloch (1996) and Ray and Vohra (1999) also belong to the class
of simultaneous models while they employ a game in partition function form
introduced by Thrall and Lucas (1963) as a primitive. In contrast to these
models in the literature, our model of coalitional interactions is a sequential
model such that when one coalition forms and its members agree to employ
some joint action, players outside the coalition negotiate about how to react.
This sequential decision by coalitions continues until all players join coalitions.
The sequential model can capture in the simplest form one of essential as-
pects of coalitional bargaining that the formation of a coalition is reacted by
other players. The sequential and simultaneous models are complementary to
describe coalitional interactions.

The Nash-like equilibrium across coalitions is not a purely noncooperative
equilibrium notion since it assumes the (restricted) Pareto optimal behavior
by coalitions. It is a special kind of a social coalitional equilibrium introduced
by Ichiishi (1981), requiring that only coalitions in the coalition structure may

deviate from the equilibrium. The Nash core introduced in this paper pre-



scribes that if any coalition forms, then the complementary coalition reacts
according to the Nash bargaining solution of their own negotiation problem.
This reaction, however, is not an assumption but a result of our noncooper-
ative approach. Furthermore, the simultaneous models in the literature are
not analyzed by a unified solution concept. In most cases, their solution con-
cepts are “hybrid” in the sense that the first phase of negotiations on coalition
formation is studied by a solution different from that for the second phase
of choosing coalitional actions. Ray and Vohra (1997) analyze negotiations
on coalition formation by a cooperative solution concept called an equilibrium
binding agreement. The notion of blocking by a coalition, defined in a recursive
manner, plays a critical role. A cooperative game approach to the analysis of
stable coalition structures was studied earlier by Shenoy (1979) and Hart and
Kurz (1983). It is interesting to see that Ray and Vohra’s (1997) cooperative
approach and our noncooperative one derive a similar result of an anti-Coase
Theorem: a Pareto-efficient allocation is not be necessarily attained through
voluntary bargaining among rational agents even in the absence of transaction
costs.

Bloch (1996) and Ray and Vohra (1999) take a different approach from Ray
and Vohra’s (1997) cooperative one. They define a Rubinstein-type sequential
bargaining model for coalition formation on the partition function form, and
analyze an SSPE of the model. In their model, the first proposer is determined
by a fixed order of the players, and the first rejector becomes the next proposer.
In this paper, we employ the random proposer model in which the proposer in
every bargaining round is randomly selected among active players. Although
both types of sequential bargaining models are regarded as generalizations
of Rubinstein’s two-person alternating-offers model to coalitional bargaining,
there is one difference which should be remarked. In the fixed-order model,
there may exist delay of agreement in an SSPE, that is, a proposal may be
rejected on equilibrium path. Ray and Vohra (1999) show that the possibility

of delay may affect critically the prediction of a coalition structure, and provide



sufficient conditions for a no-delay SSPE. On the other hand, we showed in
Okada (1996) that no delay of agreement occurs in the random proposer model
in a super-additive coalitional form game. We will extend the no-delay theorem
to a general cooperative game in strategic form.

It is well-known that the equilibrium of the fixed-order model depends on
the bargaining protocol. Different orders of players may produce different bar-
gaining outcomes even if the fundamental parameters of the coalitional worth
remain unchanged. Based on this fact, the noncooperative bargaining theory
is often criticized on the ground that it is too sensitive to unimportant de-
tails of bargaining procedures. In our random proposer model, the equilibrium
outcome depends on the probability distribution to select a proposer in each
bargaining round. The probability distribution turns out to give weights of
players in the asymmetric Nash bargaining solution. In our view, the random
rule to select a proposer should not be regarded as an unimportant procedural
detail. The result supports clearly our intuition that the opportunity for a
player to make a proposal is a source of her bargaining power.

Finally, while we have discussed the relationship of this paper to recent lit-
erature on coalitional bargaining with externality, a major difference is perhaps
that we present a noncooperative foundation of the Nash bargaining solution
in the general cooperative game with externality, and also that we provides a
smooth bridge among noncooperative equilibrium, the Nash bargaining solu-

tion and the core in a unified bargaining model.

The paper is organized as follows. Section 2 provides definitions and nota-
tions. Section 3 presents a noncooperative bargaining model for an n-person
cooperative game in strategic form. Section 4 states the main theorems. Sec-

tion 5 proves the results. Section 6 concludes the paper.



2 Definitions and Notations

We start with several notations. For a finite set N with n elements, let RV
denote the n-dimensional Euclidean space with coordinates indexed by the
elements of N. Any point in RY is denoted by z = (z;)icny, and also by
r = (21,29, ++,x,) when N is indexed as {1,2,---,n}. Fori € N and = =
(xi)ien € R"™, x_; denotes the (n — 1)-dimensional vector constructed from z
by deleting the i-th coordinate x; in . The point z is sometimes written as
(z;,x ;). For S C N, R® denotes the subspace of RN spanned by the axes
corresponding to elements in S. For a finite set 7', the notation A(7") denotes
the set of all probability distributions on 7'.

An n-person cooperative game in strategic form is defined by a triplet G =
(N, {A;}ien, {uitien) where N = {1,2,---,n} is the set of players and each A4,
(i € N) is a finite set of player i’s actions.* The Cartesian product A = I1;cn A;
is the set of all action profiles a = (ay, - - -, a,) for n players. Player i’s payoff
function wu; is a real-valued function on A. A probability distribution on A;
is called a mixed action for player ¢. A subset S of N is called a coalition
of players. For a coalition S, let Ag = Il;c5A; be the set of action profiles
as = (a;);es for all members of S. A correlated action pg of the coalition S is a
probability distribution on Ag. The set of all correlated actions for the coalition
S is given by A(Ag). The idea of a correlated action is that all members in a
coalition choose their actions jointly according to the corresponding probability
distribution. In the cooperative game G, it is assumed that any coalition S can
make an enforceable agreement to employ any correlated action if all members
agree to it.

A coalition structure m = [Sy,--+,Spy] on N is defined by a partition of N,
a class of subsets of N satisfying that N = S;U---US,, and every two S; and
S; are disjoint. For a coalition structure m = [Sy,---,Sy;,] on N, an element

p" = (psy, . ps,,) in 171, A(Ag,) is called a correlated action profile for the

“In this paper, we will distinguish “action” and “strategy” since we consider a sequential
bargaining game in extensive form based on the game G in strategic form.



coalition structure 7. When a correlated action profile p™ for m# = (Sy,- -+, Sp)

is employed, each player ¢« € N obtains the expected payoff

uwi(p®) = Y - Y ILps(as;) - uilas,, -, as,) (1)

aSIGASI aSmEASm
where pg,(as;) (j = 1,---,m) is the probability that the correlated action
ps; of coalition S; assigns to an action profile as;, € Ag,. Given a coalition

structure m = (Sy,...,S,) on N, we define
F(G,m) = {(wi(p"), -, un(p)) € RV | p7 € TIJL A(As)) - (2)

F(G, ) represents the set of all expected payoff vectors for n players attained
by correlated action profiles for 7. When 7 consists only of the grand coalition
N, that is, 7 = [N], F(G,[N]) is simply denoted by F(G). We call F(G)
the feasible set of the cooperative game G. The feasible set F/(G) represents
the set of all expected payoff vectors of n players when they form the grand
coalition N. The set F(G) is a polyhedral compact convex subset of RY and
F(G) D F(G, ) for every coalition structure 7 on N. We remark that the set
F(G, ) is not necessarily convex.

We will formulate the Pareto frontier of the feasible set F(G), following
Harsanyi (1963). The upper-right boundary H of F(G) is defined as the set
of points in F(G) undominated (in a weak sense of Pareto) by any point in

F(G). With abuse of notation, we denote the equation of H as [
H(xzq,--,2,) =0

where H is a function on the feasible set F'(G). With no loss of generality, we
assume that H(x) > 0 for all z € F(G). Also, for simplicity of the analysis,

we assume:

Assumption 2.1
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(i) H is a concave and differentiable function and the first derivatives of H

with respect to xq,-- -, x, satisfy
o <0,---, OH <0
or; — or, —

(the equality may hold at most at the end points of the upper-right bound-
ary H).

(ii) F(G) has the full dimension n.

(iii) The strategic-form game G has a Nash equilibrium (in mixed actions)
whose payoff vector d = (dy,---,d,) € F(G) has the property that the
boundary of the set Fy(G) = {z € F(G) | ; > d; for all i € N}, other
than n hyperplanes z; = d; (i € N), is a subset of H.

The differentiability assumption (i) causes no loss of generality to our results.
We can easily extend our results to the non-differentiable case since the piece-

wise linear function of the upper-right boundary H can be made to be the

OH
ox;

limit of differentiable functions. The same sign of all the first derivatives
implies that the variables x; and z; are mutually strictly decreasing functions
of each other on the upper-right boundary H. For each i € N, let F_;(QG)
denote the projection of F(G) over R¥N—{}, For every z_; € F_;(G), we define
hi(x_;) = max{x; | (z;,z_;) € F(G)}. By the assumption (i) and the convex-
ity of F(G), h; is a differential concave function over F ;(G). h;(x_;) is the
maximum payoff that player i can receive in the feasible set F(G) while all
other players’ payoffs are fixed at x_;. Assumptions (ii) and (iii) are technical.
The assumption (iii) guarantees that for all x € Fy(G) the point (h;(z_;),z_;)
is located on the upper-right boundary H of F(G).

In the rest of this section, we introduce several notions in cooperative game
theory. Since the classic work of von Neumann and Morgenstern (1944), the
characteristic function approach has been employed in cooperative game the-
ory to consider the problem of coalition formation and payoff distributions.

The characteristic function of a cooperative game assigns to each coalition the

11



set of payoff vectors that the coalition can “assure” its members. Regard-
ing a strategic-form game, the following two kinds of characteristic functions
have been primarily studied in the literature (see Aumann 1961 and 1967). A
coalition S is said to be a-effective for a payoff vector x € RY if there is a
ps € A(Ag) such that for any py_s € A(An_g), we have u;(ps, py_s) > x; for
all i € S. Let v*(S) be the set of all payoff vectors for which S is a-effective.
A coalition S is said to be B-effective for x € RN if for any py_s € A(An_s)
there exists a pg € A(Ag) such that u;(ps, py_g) > z; for all ¢ € S. Similarly
to v*(S), let v?(S) be the set of all payoff vectors for which S is B-effective.
It is easily shown that v®(S) C v#(S) for every S C N. The functions v* and
v? are called the a-characteristic function and the S-characteristic function,
respectively.

Intuitively, v®(S) is the set of all payoff vectors z € R¥ such that coalition
S can guarantee all members at least the payoff x, independently of what the
members of the complementary coalition N — S choose to do. On the other
hand, v?(S) is the set of all payoff vectors z € RS such that N — S cannot
prevent S from getting at least x. In general, these two sets are different,
but for a two-person game and for an n-person game with transferable utility
where side-payments are allowed, they coincide by the minimax theorem.

The noncooperative approach in this paper yields a payoff distribution
closely related to two standard cooperative solution concepts, the core and the

Nash bargaining solution.

Definition 2.1.

(1) Let v = v® or vP. A payoff vector € RY is said to dominate a payoff
vector y € RY with respect to v if there exists some coalition S of N such

that € v(S) and z; > y; for alli € S

(2) The a-core of a cooperative game G is the set of payoff vectors x € F(G)
which are not dominated by any other payoff vector in F/(G) with respect
to v®. The f-core of G is the set of payoff vectors x € F(G) which are

12



not dominated by any other payoff vector in F(G) with respect to v”.

Definition 2.2. Let 0 = (0Y);cy € A(N), and d¥ = (d))ien € F(G). A
correlated action b* € A(Ay) of N is called the (asymmetric) Nash bargaining

solution of G if b* is an optimal solution of the maximization problem

max > 0 -loglui(p) — d}']

i=1
subject to (1) p € A(Anw)

(2) us(p) > dY forall i=1,--- n.

Here, OV is called the weight vector of players, and d" the disagreement point.
The Nash bargaining solution b* of G with the weight vector #V and the
disagreement point d" is denoted by b*(G, 0", d") whenever the dependency on
G, 0V and dV should be emphasized. The payoff u(b*) = (u;(b*));en of players
generated by the Nash bargaining solution b* is called the Nash bargaining
solution payoff.

In negotiations, the grand coalition NV is not always formed. If the members
of a coalition S C N agree to choose a correlated action ps € A(Ag), all
remaining players may continue their negotiations, given the agreement of the
correlated action ps by S. The following game describes negotiations after

some coalition is formed.

Definition 2.3. Let G be an n-person cooperative game in strategic form.
For every coalition S and every correlated action ps € A(Ag) of S, a subgame
G(ps) of G is defined to be the same game as G except that all players in S

are bound to follow the correlated action pg.’

>Here we should not confuse a subgame of G with the standard notion of a subgame in an
extensive-form game, although it turns out that every subgame of G naturally corresponds
to a subgame of a noncooperative bargaining model in extensive form introduced in Section
3.
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The feasible set F'(G(ps)) of a subgame G(ps) can be defined in the same
manner as the feasible set F'(G) of G. Note that the set of “active” players is
N — S in the subgame G(pg). The model of a subgame G(ps) of G can describe
a general situation where several coalitions have formed. Suppose that disjoint
coalitions Sy, ---, Sy have formed and that members in each coalition S; have
agreed to employ some correlated action p’ € A(Ag;). Negotiations among
the remaining players in N — S can be described by the subgame G(ps) where
S =S U---USk and pg is the correlated action of S generated by p',-- -, pF.

Our cooperative solution for a strategic-form game G does not simply spec-
ify a feasible payoff (or a correlated action) for the grand coalition N. Rather,
it is a payoff configuration, which specifies for every coalition S of N a fea-
sible payoff of S.5 Since the feasible payoff for the coalition S depends on
a correlated action of the complementary coalition N — S in our set-up of
a strategic-form game (G, a payoff configuration specifies for every coalition
S and every correlated action p™¥~° of the complementary coalition N — S
a feasible payoff of S. Formally, a payoff configuration of G is defined as a
function ¢ which assigns for every coalition 1" and every correlated action pp
of T' an element ¢(pr) in the feasible set F'(G(pr)) of the subgame G(pr) (Put
S = N — T in the discussion above). ¢(pr) shows what payoffs other players
receive when coalition 7" is formed with the agreement of choosing py. In the
next section, we will see that a payoff configuration of G can be naturally
derived by a strategy profile for a noncooperative bargaining model of G.

We extend the Nash bargaining solution of G to a solution configuration
of G. Let 0 be a function assigning to each S C N a weight vector 6 € A(S)
of members in S. We call § the weight configuration of N. Let d be a function
assigning to every correlated action ps € A(Ag) of every coalition S a point

d(ps) in the feasible set F'(G(pg)) of the subgame G(pg). The point d(ps) is

6The formulation of a cooperative solution as a payoff configuration is employed in the
axiomatization of the Harsanyi value for a cooperative game with non-transferable utility
by Hart (1985).
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interpreted as a disagreement point for negotiations among members in the
complementary coalition N — S, given that the coalition S employs the corre-

lated action pg. We call d the disagreement configuration of G.

Definition 2.4. The Nash bargaining solution configuration b* of G with a
weight configuration € of N and a disagreement configuration d is a function
which assigns to every correlated action pg of every coalition S the Nash bar-
gaining solution b*(ps) = b*(G(ps), 0V °,d" ) of the subgame G(ps).” The
payoff configuration of G generated by b* is called the Nash bargaining solution
payoff configuration.

The characteristic function, which prescribes what a coalition can achieve
by itself, has played a central role in cooperative game theory since von Neu-
mann and Morgenstern (1944). A characteristic function of a strategic-form
game assumes a certain behavior of a coalition S and the complementary coali-
tion N — S. In the a-characteristic function, a coalition S, in attempting to
improve its position, must take into account all strategic possibility open to
the complementary coalition N — S. In the literature (Scarf 1971, for exam-
ple), it has been criticized that a coalition S excessively considers threats by
the members in N — S which may be harmful to themselves. Alternatively,
one can argue that a counter-action of the complementary coalition N — S
should be consistent with the members’ utility maximizing behavior. From
this point of view, by using the Nash bargaining solution configuration, we
define a new notion of effectiveness for a cooperative game in strategic form,

which is weaker than the a-effectiveness.

Definition 2.5. Let b* be the Nash bargaining solution configuration of a

cooperative game GG with a weight configuration # and a disagreement config-

"For notational simplicity, we use the same symbol b* for the Nash bargaining solution
configuration as the Nash bargaining solution of a subgame G(pS).
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uration d.

(i) A coalition S C N is said to be Nash-effective for a payoff vector z € R"
if there exists some ps € A(A) such that

Ui(pg, b*(pg)) >zx; forall i€ S (3)

where b*(ps) = b*(G(ps), 0V 5, dN~9) is the Nash bargaining solution of
the subgame G(ps) of G assigned by b* under 6 and d.

(ii) The Nash characteristic function v™*"

of GG is a function that assigns to
each coalition S C N the set, denoted by v™Ve*"(S), of all payoff vectors
in R" for which S is Nash-effective.

(iii) The Nash core of G is the core of G with respect to the Nash characteristic

function vVosh,

The Nash-effectiveness is based on the following idea. When a coalition S
chooses a correlated action pg, it should consider a counter-action of the com-
plementary coalition N —S which is consistent with its members’ payoff maxi-
mization. In other words, the coalition S should consider only credible threats
by the complementary coalition N — S. A question remains: what is the
outcome of the payoff-maximizing behavior of N — S? Since the members in
N — S can negotiate about their correlated action, it is reasonable to assume
that the members in the complementary coalition N — S agree to choose the
Nash bargaining solution of their own negotiation problem described by the
subgame G(pg), given that the coalition S chooses the correlated action pg.
It is easily seen that the Nash-effectiveness is weaker than the a-effectiveness.
Thus, the Nash core is considered to be a refinement of the a-core which re-
quires that a threat of the complementary coalition N — S against a coalition

S be credible in the sense that the threat is consistent to the Nash bargaining
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theory.® The f-effectiveness assumes coalitional behavior different from those
in the a-effectiveness and the Nash-effectiveness. It is as if the coalition S
forces the complementary coalition N — S to move first, and then responds
(Scarf 1971).

Without specifying a noncooperative bargaining model, it is hard for us to
decide which notion of effectiveness is appropriate for the analysis of coopera-
tion in a strategic-form game. In the next section, we will present a noncoop-
erative sequential bargaining model and will show that the Nash-effectiveness

can be justified by a subgame perfect equilibrium of the bargaining model.

3 A Noncooperative Bargaining Model

The bargaining model of an n-person cooperative game G in strategic form is
divided into two phases, (i) negotiations for coalition formation and (ii) choos-
ing actions. The negotiation phase consists of a (possibly) infinite sequence of
bargaining rounds. After the negotiation phase, the model has the phase of
choosing actions in which all members in coalitions are bound to follow their
agreed-upon correlated actions and the remaining players outside coalitions
choose their individual (mixed) actions independently. Let 6 be a weight con-

figuration of N. The precise rule of the bargaining model is given below.

(I) negotiation phase:

The negotiation phase has a (possibly) infinite number of bargaining rounds
t (=1,2,---). Let Ny be the set of all “active” players who do not belong to
any coalitions in round ¢. In the initial round, we put N; = N. The sequence

of moves is as follows.

8Chakrabarti (1988) considers a refinement of the S-core which requires that a threat
used by N — S be a Pareto-undominated action of N — S to all possible deviations by S.
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(1) In the beginning of each round t, every player i € IV, is randomly selected
as a proposer according to the probability distribution §(NV;) € A(Vy)

which the weight configuration 6 assigns to /V;.

(2) The selected player i proposes a coalition S with i € S C N; and a
correlated action pg € A(Ag) of S.

(3) All other members in S either accept or reject the proposal sequentially
according to a predetermined order over /N;. The order of responders do

not affect the result in any critical way.

(4) If all responders accept the proposal (S, pgs), then it is agreed upon and
becomes binding. Then, negotiation goes to the next round ¢ + 1 with
N+l = Nt — S, The same process as above is repeated in round ¢ + 1

with the probability distribution 8%+ € A(N,4).

(5) If any one responder rejects the proposal, then two events may happen.
With probability 1—¢ (¢ > 0), negotiations continue in the next round ¢+1
with N**! = N' under the same rule as in round ¢. With probability &,
negotiations break down and the game goes to the next phase of choosing

actions.

(6) The negotiation process ends when every player in N joins some coalition,

and the game goes to the phase of choosing actions.

(IT) choosing action phase:
In this phase, all players in N choose their own actions, depending on the

outcome of the negotiation phase. There are three possible cases.

(1) When agreements (S, ps,), -, (Sm, ps,,) with S;U- - -US,;, = N and pg, €

A(S;) (i = 1,---,m) are reached, the agreed-upon correlated actions
Ps,, ", Ps,, are played.

(2) When negotiations do not stop, all players ¢ who do not join any coalitions

choose their individual (mixed) actions p; € A(A4;) independently.” The

9Note that the probability of this event is zero as long as the probability € that negotia-
tions break down after a proposal is rejected is positive.

18



other players, who join some coalitions, play their agreed-upon correlated

actions.

(3) When negotiations break down in some round after a proposal is rejected,

the same rule as (2) is applied.

The bargaining model above is denoted by I'>Y. Formally, ['*? is represented as
an infinite-length extensive game with perfect information, that is, all players
know all past actions of the game when they make their choices. The rule of
the game is the common knowledge of players. We also use a notation I' to
describe the bargaining model where the probability € of negotiation failure
converges to zero.

A (behavior) strategy for player i in 'Y is defined according to the standard
theory of extensive games. Let h! be a history of the game I'*Y when player
i has a turn to move in round ¢ of the negotiation phase. The history h! is
represented by a sequence of all past actions in I'*? before play re i’s move
in round t. Specifically, it describes who were proposers in all past rounds
and how players responded to all past proposals.'’ Similarly, let A be a whole
history of the negotiation phase when the action phase starts. Roughly, a
strategy s; of player i in I'*? is a function which assigns her action s;(h) to
every possible history h = h! or h. Specifically, player i’s action s;(h), h = h!
or h, is given as follows.

(i) When player 7 is a proposer in round ¢, s;(h!) is a probability distribution
(with a finite support'!) on the set of all possible proposals (S, ps) with i €
S C N; and pg € A(Ag),

(ii) When player 7 is a responder in round ¢, s;(hf) is a probability distribution
over {accept, reject},

(iii) When the action phase starts and player 7 does not belong to any coalition

1When player i is a responder in round ¢, the proposer and all responses before player 4
in round ¢ are included in h!.

1The assumption of the finite support does not affect the result at all since any probability
mixture, with finite or infinite support, of correlated actions pg of S can be reduced to a
single correlated action of S.
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in the negotiation phase, s;(h) is player ¢’s mixed action in A(A4;). When player
¢ belongs to some coalition, she follows the agreed-upon correlated action in

the action phase.

Let P denote the set of all correlated action profiles p™ for all coalition
structures 7 of N. For a strategy profile s = (s1,-- -, s,) of players in I'*? a
probability distribution x on P (with a finite support) is determined. Then,
player i’s expected payoff for a strategy profile s is given by

Buy(s) = [ o)y (4

where u;(p™) is the expected payoff of player i for a correlated action profile
p™ defined by (1). In what follows, the expected payoff Eu;(s) is denoted
by wu;(s) with abuse of notations, and expected payoff is simply called payoff,
whenever no confusion arises. We remark that the expected payoff vector
(u1(s), -+ -, un(s)) for every strategy profile s in T*? belongs to the feasible set
F(G) of G.

For every correlated action pg of every coalition S, let I'*?(ps) be the
subgame of the extensive game I'*Y which starts after the agreement (S, pg)
has been reached. For notational convenience, we set ['*?(py) = I'=Y when S is
an empty set (). In the same way as (4), a strategy profile s = (s, -, s,) of
players in I'? generates the expected payoff vector for players in the subgame
I'*%(pg), which is an element of the feasible set F/(G(ps)) of the game G(ps).
In this way, a strategy profile s = (s;,---,s,) in 'Y naturally generates a
payoff configuration of the cooperative game G.

The solution concept that we apply to the bargaining model I'* is a sta-

tionary subgame perfect equilibrium.

Definition 3.1. A strategy combination s* = (s%,---,s*) of the game I'*

’en

is called a stationary subgame perfect equilibrium (SSPE) if s* is a subgame
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perfect equilibrium of I'? where every player i’s strategy s! is stationary, i.e.,
satisfies the property that the action s}(h) prescribed by sf to any history h
depends only on the collection of agreements, (Si,ps,), -, (Sm,Ps,, ) which
have been reached on h.'? The payoff (configuration) generated by an SSPE
is called an SSPE payoff (configuration).

Agreements by coalitions compose a payoff-relevant history of negotiations
in the sense that they determine the payoff structure in the future negoti-
ations among the players outside coalitions. The SSPE requires that every
player’s action should depend only on such a payoff-relevant history. It, how-
ever, should be emphasized that deviations from the equilibrium are allowed
to be non-stationary. In the context of negotiations, it implies forgiveness -
“let bygones be bygones.” Players do not treat one another unfavourably even
if they were treated so in past rounds of negotiations.

It is well-known that in a broad class of Rubinstein-type sequential multi-
lateral bargaining games including our model I'**?, there is a large multiplicity
of subgame perfect equilibria when the discount rate of future payoffs or the
probability of breakdown in negotiations is very small (see Sutton 1986 and
Osborne and Rubinstein 1990 for this result). The multiplicity of subgame
perfect equilibria holds even in the n-person pure bargaining game where no
subcoalitions are allowed. Mainly, by this reason, the concept of an SSPE is
employed in almost every literature of noncooperative multilateral bargaining
model (see Baron and Ferejohn 1989, Perry and Reny 1994, Chatterjee et al.
1993, Okada 1996 and 2000, Winter 1996 among others). One possible jus-
tification for an SSPE is a focal-point argument. It is the simplest type of a
subgame perfect equilibrium and thus it may be easier for players to coordi-
nate their mutual expectations on it (see Baron and Kalai 1993 and Chatterjee

and Sabourian 2000 on this line of research). The SSPE is a natural reference

12Precisely speaking, when player ¢ is a responder, his response surely depends on a current
proposal and may depend on who a proposer is and on how responders preceding to him
have behaved in the same round.
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point of the analysis in multilateral bargaining models.

In the literature of the equilibrium selection in noncooperative games, the
SSPE is equivalent to the subgame perfect equilibrium satistying subgame con-
sistency introduced by Harsanyi and Selten (1989). The subgame consistency
in general extensive games requires that every player should behave in the
same way across “isomorphic” subgames. In the context of our bargaining
game I'*?  all subgames starting from the beginning of all rounds can be con-
sidered isomorphic as long as the same collections of agreements have been
reached before, since they have identical game trees in such a case. Also, an
SSPE can be reformulated as a Markov-perfect equilibrium (Maskin and Tirole
2001) of T'=Y by taking the collection of agreements reached in past negotiations
as a payoff-relevant state variable in each round.

The bargaining game I'*? may suffer from two kinds of inefficiency. The first
kind of inefficiency is that a proposal is rejected and negotiations break down
with a positive probability. The breakdown of negotiations typically results
in an inefficient outcome. The second kind of inefficiency is the failure of the
grand coalition N. It is known that the first kind of inefficiency may occur in
the fixed-order model where an initial proposer is determined according to a
fixed order over the player set and the first rejector becomes the next proposer
(Chatterjee et al. 1993, Okada 1996 and Ray and Vohra 1999). When utility
is transferable, Okada (1996) proves that this is not the case in the random
proposer model for a super-additive TU game. In the next section, it will be
shown that this result can be extended to a cooperative game in strategic form.
Specifically, we will prove that in every SSPE of I'*Y every player’s proposal is
accepted in the first round. This enables us to focus the problem of inefficiency

caused by the formation of subcoalitions.

Definition 3.2.

(i) An SSPE s of I'* is called efficient if the grand coalition N is formed in

the initial round of the negotiation phase, independent of a proposer.
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(ii) An SSPE s of I'®Y is called totally efficient if the coalition of all active
players (if any) are formed in every round of the negotiation phase, inde-

pendent of history.

(iii) A limit efficient SSPE of I'? is defined to be a limit of efficient SSPEs of
%Y as e goes to zero. A limit totally efficient SSPE of T is defined to

be a limit of totally efficient SSPEs of I'*? as ¢ goes to zero.

In an efficient SSPE, the grand coalition N is formed in the initial round of
negotiations on equilibrium path. A totally efficient SSPE has a stronger prop-
erty that the coalition of all active players is formed not only on equilibrium
path but also off equilibrium path. In other words, the totally efficient SSPE
of I'*? induces an efficient SSPE on every subgame I'*?(pg) of I'*Y where pg
is a correlated action of a coalition S, independent of whether it is reached by
the equilibrium path or not. Obviously, a totally efficient SSPE of I'*? is an
efficient SSPE.

4 Theorems

The aim of our analysis is to characterize a limit totally efficient SSPE in the
bargaining game I'’. In this section, we will state the main theorems. All
proofs are given in the next section. The following proposition is useful to our

analysis.

Proposition 4.1. (No delay) Let s* be an SSPE of I'*?. Then, for every
1 € N, player i’s proposal is accepted in the initial round of the negotiation

phase in s*.

The proposition shows that there is no delay of agreement in the bargain-

ing game I'>?. That is, some agreement of coalition is reached immediately
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on equilibrium path. The bargaining rule of I'*Y that a proposer is selected
randomly in every round is critical to this result. The theorem does not hold
in the fixed-order model. Montero (2000) shows the no-delay result of the
random proposer model for a game in partition function form. In Proposition
4.1, we remark that the grand coalition is not necessarily formed.

We are now ready to state the main theorems in the paper.

Theorem 4.1. Let v = (v, - -+, v,) be a limit efficient SSPE payoff of T'?. Let
6N be the weight vector for N assigned by the weight configuration #. Then,
v is the Nash bargaining solution payoff of the cooperative game G with the
weight vector #" and a disagreement point d = (dy,---,d,) which is a Nash

equilibrium payoff of G.

The theorem shows that when the probability ¢ of negotiation failure is
sufficiently small, players agree to the Nash bargaining solution in an efficient
SSPE of I'*?. Two remarks are in order. First, the disagreement point of
the Nash bargaining solution is given by a Nash equilibrium in the strategic-
form game G. Unlike Nash’s (1953) optimal threat model, our bargaining
model I'*? (and I'?) does not allow players to commit themselves to incredible
threats which will be implemented when negotiations fail. The SSPE of '
prescribes that players should play a Nash equilibrium of G when negotiations
break down. Secondly, the theorem shows that the weights of players for the
Nash bargaining solution is determined by their likelihood to make proposals.
The more likely a player is selected as a proposer, the greater bargaining power
she obtains. In the context of a two-person game, Binmore et al. (1986) show
other sources of asymmetry. They include different waiting times to make
counter offers after rejection and different beliefs concerning the probability of
breakdown.

With help of Theorem 4.1, we are going to characterize a limit totally
efficient SSPE of I'’. By definition, a totally efficient SSPE of I'? induces
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a totally efficient SSPE of every subgame I'’(pg) of it which starts after a
coalition S agree to play a correlated action pg. In other words, the members
of the coalition S should anticipate the totally efficient SSPE behavior of the
complementary coalition. This observation naturally leads to the notions of the
Nash effectiveness and thus of the Nash core (Definition 2.5). A limit totally
efficient SSPE payoff of T must be in the Nash core. If not, there exists
some coalition S of which members can improve upon their SSPE payoffs by
employing some correlated action (which will be counteracted by the Nash
bargaining solution behavior of the complementary coalition N — S). Every
member of S has an incentive to propose such a coalitional deviation (when
selected as a proposer) since all other members of S accept it. This contradicts
the SSPE property. The Nash bargaining solution configuration which defines

the Nash core has the disagreement configuration d satisfying the following

property:

(A) For every correlated action pg € A(Ag) of every coalition S, the dis-
agreement configuration d of G assigns a Nash equilibrium payoff of the

subgame G(pg) of G.

Theorem 4.2. Let ¢* be the payoff configuration generated by a limit totally
efficient SSPE s* of I'?. Then

(i) ¢* is the Nash bargaining solution payoff configuration which has the weight
configuration # and a disagreement point configuration d satisfying (A), and
(ii) for every S C N and every ps € A(Ag), the payoff ¢*(ps) € F(G(ps))
assigned by ¢* belongs to the Nash core of the subgame G(pg) defined by the

Nash bargaining solution configuration with # and d.

It follows from Theorem 4.2 that when the breakdown probability ¢ of
negotiation is very small, a totally efficient SSPE payoff is the Nash bargaining

solution payoff with the weight vector Y and moreover that it belongs to the
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Nash core of G. Since the totally efficient SSPE of I'*Y has the subgame
property that it induces a totally efficient SSPE on every subgame I'*?(pg) of
=% the property above of the totally efficient SSPE payoff should be true on
every subgame I'*Y(pg).

To understand the condition (ii) of Theorem 4.2, we discuss what it means
in a special case of a transferable utility game (N, v) in characteristic function
form where the characteristic function v assigns a real value v(S) to every
coalition S of N. For a coalition S, the restriction of v on S is denoted by
vs. The subgame G(py_g) of G simply corresponds to a transferable utility
game (S, vg) with player set S. The (symmetric) Nash bargaining solution of
(S,vs) with the disagreement point v({i}) = 0 for all i € S is given by the
equal payoff vector (1/|S],---,1/]S|) where |S| denotes the number of members
in S. Since the value v(S) of coalition S is independent of the action by the
complementary coalition N — S, the Nash core of the game (S, vg) is just equal
to the usual core. The Nash bargaining solution (1/|S|,---,1/|S]|) belongs to
the core of (S,vg) if and only if v(S)/|S| > v(T)/|T| for all subcoalitions T
of S. Therefore, for the equal weights, the condition (ii) of Theorem 4.2 is
reduced to a simple condition in the case of a transferable utility game (N, v):
v(S)/|S| > v(T)/|T| for all two coalitions S and T of N with 7" C S. We
proved in Okada (1996, Theorem 3) that the converse of Theorem 4.2 holds
true for a transferable utility game in characteristic function form. The last
theorem shows that this result can be extended to a general cooperative game

G in strategic form (under some technical condition).

Theorem 4.3. Let ¢* be the Nash bargaining solution payoff configuration
of a cooperative game GG with a weight configuration # and a disagreement

configuration d satisfying (A). If ¢* satisfies

(B) for every S C N and every ps € A(Ag), the payoff ¢*(ps) € F(G(ps))

assigned by ¢* belongs to the interior of the strict Nash core!? of subgame

13The strict core is defined by the same manner as the core except that the domination
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G(pg) relative to the upper-right boundary of the feasible set F'(G(ps)),

then ¢* is a payoff configuration generated by a limit totally efficient SSPE of
.

Theorems 4.2 and 4.3 virtually show that the Nash bargaining solution of
the general cooperative game GG can be supported by the totally efficient SSPE
of the bargaining model I'? where the probability of negotiations failure is very
small, if and only if the Nash bargaining solution belongs to the Nash core.
We remark that when the feasible set F(G) (or vV%"(N)) is large compared
to vVesh(S) for all S # N, the Nash core becomes large, and thus it becomes
easy that condition (B) in Theorem 4.3 holds.

Before we prove the theorems in the next section, we discuss an example

of a three-person game to illustrate our results.

Example 4.1 (a three-person prisoner’s dilemma)

Consider a three-person game G in strategic form given in Figure 4.1. The
game can be interpreted as the prisoner’s dilemma. Every player i (=1, 2, 3)
has two actions, C; (cooperate) and D; (defect). If all players cooperate, all
receive payoff 2. If any one of them unilaterally deviate, she receives the highest
payoff 6, while the two other players receive zero payoffs. If any two players
jointly deviate, then they receive payoff 3 and the other player receives payoff
-2. If all players defect, they receive payoff 1. Every player : has the dominant
action D;, and thus the game has a unique Nash equilibrium (Dy, Dy, D3).
It can be seen that the action profile (Cy,Cy, C3) is the (symmetric) Nash
bargaining solution of the cooperative game G with the disagreement point

(D17D27D3)-

requires that any member of a coalition is never worse-off with at least one member being
better-off. When utility is transferable, the core and the strict core coincide.

27



Cy D, Cy D,
—2
Cy 2 6 Ch 0 3
0 3
1
Dy 0 3 Dy —2 1
0 -2 3 1
Cy Ds

Figure 4.1 A three-person prisoner’s dilemma game

We will show that the Nash bargaining solution (C, Cy, C3) is in the Nash
core of the cooperative game G. Before we construct the Nash characteristic
function, we explain the basic idea behind the Nash core. Suppose that a single
player 7, say ¢ = 3, deviates from the Nash bargaining solution to defect. Then,
players 1 and 2 negotiate about how to react to player 3’s deviation. Their
strategic possibility is described by the two-person game Gy 2y in Figure 4.2.
In the game G 2y, (D1, Ds) is the dominant equilibrium, and thus is a unique
disagreement point. Since (D;, D,) is Pareto efficient in the game Gy 3, it is
trivially the Nash bargaining solution of G';2;. That is, players 1 and 2 agree
to react to player 3’s deviation by (Dy, Dy). Then, player 3’s payoff decreases
from 2 to 1. Player 3 is worse-off by deviation. Next, suppose that any two
players, say 1 and 2, defect jointly. Then, player 3 reacts to this coalitional
deviation by defecting herself since Dj is her optimal action to (Dy, D). Then,
the payoff of both players 1 and 2 decrease from 2 to 1. Players 1 and 2 are
worse-off by the joint deviation. Since no coalition can improve upon the Nash
bargaining solution (Cy, Cy, C3), it belongs to the Nash core. In this case, our
result shows that the Nash bargaining solution (C4,C5, C3) can be supported
by a totally efficient SSPE of the bargaining model I'*Y when the probability
¢ of negotiation failure is sufficiently small.

The Nash characteristic function of the cooperative game G is constructed
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as follows. Suppose that player 3 employs any mixed action ps = (p,1 — p)
where p (0 < p < 1) is the probability to select C3. Then, by the same
argument as above, players 2 and 3 react to player 1 by employing the Nash
bargaining solution (Ds, Ds3) of their own bargaining problem. Therefore, the

Nash characteristic function v™Ve"({3}) for player 3 is given by
vNVesh((3}) = {ws € R| w3 <1 —3p for some p, 0 < p < 1}.

Since 2 > 1 — 3p for any p (0 < p < 1), player 3 can not improve upon the
Nash bargaining solution (C, Cy, C3). The same result holds for i = 1, 2.

Cy Dy
C,10,0|-23
Dy [3,-2] 1,1

Figure 4.2 A two-person game G 2) between players 1 and 2
when player 3 defects.

Next, suppose that players 1 and 2 jointly employ any correlated action
p'2 = (p,q,m,1 — p — q — r) where p is the probability assigned to an action
profile (C1, Cy), ¢ the probability assigned to an action profile (Cy, D), and r
the probability assigned to an action profile (D;,C5). Since player 3 chooses
the dominant action Dj, the Nash characteristic function vV ({1,2}) for

players 1 and 2 is given by

oVt ({1,2)) = {(wy, ws) € R wy <1 —p+2¢—3r,wy <1 —p—3q+2r

for some p,q,r with 0 < p,q,r <1, 0<p+q+r <1}

It is impossible that both inequalities 1 — p+2¢ — 3r > 2 and 1 — p — 3¢ +
2r > 2 simultaneously hold for some p, ¢ and r» with 0 < p+qg+1r < 1.
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Therefore, coalition {1, 2} can not improve upon the Nash bargaining solution
(Cy,Cy, C3). The same result holds for any other two-person coalition.
Finally, we remark that the Nash solution (Cy, Cs, C3) does not belong to
the Nash core if the payoff vector for the action profile (Dy, Dy, D3) is changed
from (1, 1, 1) to (-1, -1, -1) in Figure 4.1. In the new game, if player 3
defects, then players 1 and 2 agree to react by the Nash solution of their own
negotiation problem with the disagreement point (-1, -1), which means that
they play (C1, Ds) and (Dy, C5) with equal probability. Then, player 3 obtains
payoff 3 higher than 2. This means that player 3 can improve upon the Nash
solution (C1, Cy, C3) of G. In the new game, the Nash solution (C, Csy, C3) can
not be supported by a limit totally efficient SSPE of the bargaining model.

5 Proofs

In this section, we will prove the results with help of several lemmas.

Lemma 5.1. Let s* = (s},-++,s*) be an SSPE of I'*?, and let ¢* = (¢}, -, q")
be a mixed action profile of G' which is played by s* in the choosing action
phase when no agreements have been reached in the negotiation phase. Then

q¢* must be a Nash equilibrium of G.

Proof. When no agreements have been reached in the negotiation phase,
all n players select their actions independently in the choosing action phase,
and thereafter the whole bargaining process of I'*? ends. This rule of I'*?
implies that the subgame perfect equilibrium s* of I'*? must prescribe a Nash
equilibrium of GG in the choosing action phase when no agreements have been

reached. Q.E.D.
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In what follows, we fix the Nash equilibrium ¢* = (¢}, -+, ¢*) of G given by
an SSPE s* in case of no agreements, and assume that ¢* satisfies Assumption
2.1.(iii). We denote the expected payoffs of players for ¢* by d = (dy,- -, d,).
It will be shown that d = (di,---,d,) becomes the disagreement point of the
Nash bargaining solution when all players are active in negotiations. When the
grand coalition NV is formed in s, it holds that the SSPE payoff v = (vy,- -, vy,)
of s* satisfies v; > d; for all i € N (if v; < d; for some i, i will obtain the
expected payoff (1 — €)v; + ed; higher than v; by rejecting the proposal). If
d is a Pareto-efficient point of F'(G), then v = d must hold. In this case, the
efficient SSPE of I'*? is characterized trivially such that every player obtains
the disagreement payoff d on the equilibrium play of s*, independent of whether
or not an agreement is reached. Therefore, without loss of generality, we can

assumme:

Assumption 5.1. The disagreement payoff d in an SSPE s* of I'*? is Pareto-
inefficient in the feasible set F'(G) of G.

The following lemma proves Proposition 4.1 which shows no delay of agree-

ment in every SSPE of I'*.

Lemma 5.2. In every SSPE s* = (s},---,s") of 'Y, every player’s proposal

n

is accepted in the initial round of the negotiation phase.

Proof. Let v = (vq,- -, v,) be the expected payoffs of players for s*, and let
F(G) be the feasible set of G. We note that v € F/(G) since F/(G) is convex and
v is a convex combination of a finite number of points in F'(G). By Assumption
5.1, there exists some y = (yy,---,y,) in F(G) such that y; > d; for all i € N.
Since y and v are in the convex set F(G), it holds (1 —¢)v+ey € F(G) for any
e with 0 < & < 1. Then, select p¥ € A(AY) such that u;(p") = (1 —¢)v; +cy;
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for all 7 € N. Since y; > d; for any j, we have
Uj(pN) > (1 —¢)vj+ed; forall jeN. (5)

Suppose that every player i proposes (N,pY). Since s* is an SSPE of I'®Y,
the right-hand side of (5) is the expected payoff that player j(# i) can obtain
by rejecting the proposal (N,p"). (5) implies that every player i’s proposal
(N,p") is accepted by all other players. This fact implies that player i’s
equilibrium proposal (not necessarily equal to (N, p")) must be accepted on

equilibrium play of the SSPE s*. Q.E.D.

Lemma 5.3. Let s* = (s},---,s") be an efficient SSPE of 'Y, v = (v, -+, v,,)
the expected payoffs of players for s*, and d = (dy,--,d,) the disagreement
payoff of s*. In s*, every player ¢ € N initially proposes a pair (N, p;) where

p' € A(AY) is the optimal solution of the maximization problem

max  u;(p) (6)
subject to (1) p € A(AY)

(2) uj(p) > (1 —e)vj+ed; forallje N, j+#i.
Moreover, the proposal (N, p') is accepted.

Proof. Let ¢; = (1 — ¢)v; + ed; denote the RHS of the second constraint in
(6). If responder j is offered more than c, then it is optimal for her to accept

the proposal. (6) can be reformulated as

max  h;(x_;)
subject to (1) z_; € F_;(Q)

(2) zj>¢; foralljeN, j#i
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Recall that h;(z_;) = max{z; | (z;,2_;) € F(G)}. The function h; is continu-
ous from Assumption 2.1(i). Let #*;, € RV} be the optimal solution of the
problem above. It must hold from Assumptions 2.1.(ii) and (iii) that =} = ¢;
for all j # i. For any ¢ > 0, (¢)jen is an interior point of the feasible set F'(G)
(note that v; > d; for all j € N). Then, it holds from the continuity of h;
that for any sufficiently small §; > 0, there exists J; > 0 for all j # 7 such that
hi(z*; 4+ 6_;) > hi(z*;) — 0; where 6_; = (0;) 2. This inequality means that
if player i proposes the grand coalition N and the correlated action attaining
payoffs (z* ;4+9_;, h;(x* ;4+0_;)), this proposal is accepted and thus player i can
obtain more than h;(z* ;) — ;. Since d; > 0 can be chosen arbitrarily small, we

can show that player ¢ proposes the optimal solution p’ of (6) in the efficient

SSPE s* of ', Lemma 5.1 shows that the proposal is accepted. Q.E.D.

Lemmas 5.2 and 5.3 characterize the equilibrium proposal of every player in
an efficient SSPE of I'*?. We note that the optimal solution of the maximiza-
tion problem in Lemma 5.3 gives only a necessary condition for the efficient
SSPE proposal for every player ¢ since the optimality of proposing the grand
coalition N is not examined. Since player ¢ can propose any subcoalition S
of N, we must guarantee that the grand coalition N is actually the optimal
proposal. This will be done in Theorem 4.2 where the Nash core plays an
important role. Before going to the proof of Theorem 4.2, we will prove that
the maximization problem in Lemma 5.3 characterizes the asymmetric Nash

bargaining solution of GG as the probability ¢ of negotiation failure goes to zero.

Lemma 5.4. Let v = (vy,---,v,) be a limit of efficient SSPE payoffs v* =

(v5,+ -+, vE) of I'? as e goes to zero. Then,
v — d1 OH Up — dn OH
()= = . 7
6, oxy (v) 0, oz, (v) (7)
H(v) =0 (8)
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where 6 = (01, --,6,) is the probability distribution which selects a proposer
from the player set N, and d = (dy,---,d,) is the disagreement payoff of an
efficient SSPE in I'*? (independent of ¢).

Proof. Let 2} denote the payoff that every player : € N demands for herself
in the initial round of the negotiation phase when the efficient SSPE of I'* is
played. By Lemma 5.3, we can show that for every : € N

H((1—¢e)v]+edy,---,x5,---,(1 —e)v, +ed,) =0. (9)
Also, by Lemma 5.3 and the definition of v, we can obtain
v; =025 + (1 —0;)[(1 —e)v; +ed;], foral i=1,---, n. (10)
For each i € N, define 2°* € F(G) as
= (1 =) +edy, -, 25, -, (1 —e)vl + edy,). (11)

2% is the payoff vector proposed by player 7 in the initial round of the negoti-
ation phase in the efficient SSPE s° of ['*?. For any i, j € N(i # j), we have
from (9)

H(z*") — H(z%7) = 0.
By Taylor’s theorem, there exists some A, 0 < A < 1, such that

0 = H(2%) — H(2)

H . )
= [z —(1—¢e)v; —ed]- gx (A2 4+ (1 — N)z*)
€ € aH X} €,
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(10) yields

1
7= (L= e)of —edi = o — (L =)o —ed] = (v} =d)).  (13)

3 3
By substituting (13) into (12), we can prove

’Uf — dl oH

¢ —d; OH . )
Y J 8—()\25’Z + (1= N)z). (14)

Az (1= X)) =
(= (1= 0)2) = ==

By assumption, we have lim._,o v® = v, which implies from (10) that lim._,o 2 =

v; for all ¢ . Thus, it follows from (11) that

limv® = lim 2! = -+ = lim 2" = v. (15)
e—0 e—0 e—0

We can prove (7) from (14) and (15), and can prove (8) from (9) and (15).
Q.E.D.

In view of (9) and (10), the efficient SSPE payoffs v* = (v5,- -+, vg) of I’

are characterized as a solution of

vi =0; - hi((1 —e)v®, +ed ;) + (1 —=6;)-{(1 —e)v; +ed;} forallie N.(16)

)

(16) is called the equilibrium equation of the efficient SSPE payoffs of ',

We are now ready to prove Theorems 4.1 and 4.2.

Proof of Theorem 4.1. The maximization problem in Definition 2.2 is

reformulated as

max, >, 0;-log(w; — d;)
subject to (1) H(zy,---,2,) >0

(2) z; > d; forall i€ N.
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By Assumption 5.1, the optimal solution z* = (x%,--+,2%) € RN satisfies

’n

H(zi,---,zr) = 0 and 27 > d; for all i € N. Therefore, the Kuhn-Tucker

’n

condition gives

0; OH
- A ) =0 =1
H(z*)=0
where \ is the Lagrange multiplier. From the concavity of H(xy,---,z,) and

Assumption 5.1, z* is the optimal solution of the maximization problem if and
only if x* satisfies the Kuhn-Tucker condition. Together with this fact, Lemma

5.4 proves the theorem. Q.E.D.

Proof of Theorem 4.2. Let ¢* be the payoff configuration of 'Y generated
by a limit totally efficient SSPE s* = (s},---,sk). Let s = (s7,---,5%) be

’en

*

) as € goes to

totally efficient SSPEs of I'*? which converges to s* = (s,---,s
zero. By the same proof as Lemma 5.1, we can show that for every correlated
action ps € A(A®) of every coalition S, s induces a Nash equilibrium of the
subgame G(ps) of G when negotiations break down among all players in N —S.
Let d(ps) denote the payoffs of such a Nash equilibrium, and let d denote the
disagreement configuration of G' which assigns d(ps) to every subgame G(ps)
of G. Let T'*?(pg) denote a subgame of I'>" which starts after agreement (S, pg)
is reached. By applying Theorem 4.1 to every subgame I'*Y(pg), we can show
that the payoff configuration ¢* satisfies (i).

*

We will next prove (ii). Let z* = (z},---,2%) € RY be the payoff vector
which the payoff configuration ¢* assigns to the game G. For notational sim-
plicity, we will prove only that x* belongs to the Nash core of G defined by the
Nash bargaining solution configuration b* with # and d. The same proof can
be easily applied to the payoff vector ¢*(ps) which the payoff configuration

¢* assigns to every correlated action pg of every S. Suppose that x* does not

belong to the Nash core of G. By the definition of the Nash core, there exists
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some coalition 7" C N and some payoff vector y € v™V*"(T') such that

yi > a2t forall ieT, (17)

where pVesh

is the Nash characteristic function (see Definition 2.5). By the
definition of vVos" the fact that y € vV®"(T) means that there exists some

correlated action pr € A(AT) of T such that
wi(pr,b*(pr)) > y; forall ieT (18)

where b*(pr) is the Nash bargaining solution of the subgame G(pr). Let b°(pr)
be the correlated action employed by the complementary coalition N — 7" in
the totally efficient SSPE s° of I'? after pr is agreed by the coalition 7. By

Theorem 4.1, we can show that

limb®(ps) = 0" (ps). (19)

Let 2® = (xf,---,2%) be the payoff vector of the totally efficient SSPE s*.
Then,

limz® = 2*. (20)

e—0

In view of (17), (18), (19) and (20), it holds that for sufficiently small ¢ > 0

ui(pr,0°(pr)) > z; forall ie€T. (21)

)

Now, suppose that player i € T deviates from s® and proposes (T, pr). If it
is agreed upon, then all responders j in T receive the payoff u;(ps, b°(pr))
since thereafter the complementary coalition N — S reacts to S by choosing
b*(pr). If the proposal (S, pg) is rejected, they receive the continuation payoff
(I — &)} + ed;, which is smaller than 2§ (note that x5 > d;). From (21), it is
optimal for all responders in T to accept (T, pr). Therefore, on the equilibrium
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play of s, the proposal (T, pr) is agreed and the proposer i is better-off. This
contradicts that s° is an SSPE of I'*?. Q.E.D.

To prove Theorem 4.3, we first establish that there exists a solution for the

equilibrium equation (16) of the efficient SSPE of ',

Lemma 5.5 Let v = (vq,--+,v,) be the Nash bargaining solution payoffs
of G with the weight vector 6 = (0y,---,6,) and the disagreement point d =
(dy,---,dy). For any sufficiently small ¢ > 0, there exists a solution v* =
(vf)ien € F(G) of the equilibrium equation (16) such that v® converges to v

as € goes to zero.

Proof. Let F* = {z € F(G) | #; > d; for all i € N}. For every x € F* and
every ¢ € N, define

gi(x) = 0; - hi((1 — &)w; +ed_y) + (1 — 0;) - {(1 — &)a; +edi}.  (22)

It can be proved that ¢°(x) = (¢5(z),-- -, ¢5(z)) is a continuous function from
the compact convex subset F™* of R™ to itself. Then, by Brouwer’s fixed point
theorem, there exists a fixed point v® € F* of g° satisfying (16). Since F* is a
compact set, there exists some converging subsequence of {v°}. Take any such
subsequence of {v°}. Let ¥ denote its limit. By the same proof as in Theorem
4.1 (and Lemma 5.4), we can prove v = v. This implies that the sequence {v°}

itself has the limit v. Q.E.D.

Let ¢* be the Nash bargaining solution payoff configuration of G. By ap-
plying the same proof as Lemma 5.5 to every subgame G(pg) of G, we can
show that there exists a solution for the equilibrium equation of an efficient
SSPE of the subgame I'*?(pg) of I'*Y. Let v*(ps) denote the solution. Lemma

5.5 also shows that v°(pg) converges to the Nash bargaining solution payoff
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¢*(ps) of G(ps).

Proof of Theorem 4.3 Let d be a disagreement configuration of G satis-
fying (A). For every correlated action ps € A(A®) of every coalition S, let
d(ps) € F(G(ps)) denote the disagreement point which the configuration d
assigns to the subgame G(ps) of G. With abuse of notation, we also denote
by d = (dy,- -, d,) the disagreement point in G assigned by the disagreement
configuration d.

Define every player i’s strategy s in I'*? as follows.
(1) When no coalition forms,

(i) propose the grand coalition N and the correlated action yielding the
payoff vector in (11)

2= (hi((1 —e)v®, +ed ), (1 —&)v°, +ed ),

where v° = (vf);en € F(G) is a solution of the equilibrium equation
(16) (of which existence is proved in Lemma 5.5).
(ii) accept any proposal yielding a payoff not less than (1 — e)vf + ed;,
(iii) employ the Nash equilibrium of G' given by the disagreement con-

figuration d when negotiations break down.

(2) When some coalition S forms and some correlated action ps € A(A%) of
S is agreed, the strategy s; is defined by the same way as above except
that N and v¢ are replaced with N — S and v°(pg), respectively. When
more than one coalition form, s; is defined in a similar way by taking S

as the union of coalitions.

Let ¢° be the payoff configuration generated by the strategy profile s° =
(s5,-,s5) constructed above. Since v®(pg) is a solution for the equilibrium
equation of an efficient SSPE of I'®%(pg) for every ps € A(Ag), we can show
that ¢°(ps) = v*(ps), and that ¢°(ps) converges to the Nash bargaining solu-

tion payoff ¢*(ps) of G(ps) with 6 and d when £ goes to zero.
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What remains to be proved is that the strategy profile s* = (s5,--,s5) is
an SSPE of I'*?(pg). For this purpose, it is sufficient to prove that player i’s
proposal 2% is optimal given s°. For each j € N, let zjl denote the j-th vector
of player i’s proposal 25, that is,

20 =hy((1 = e)v°, 4 ed_y), zj“ = (1 —e)vj +ed;, j#i.

Since the disagreement point d = (dy,- - -, d,) of G is an interior point of F(G)
from Assumption 5.1, (1 — €)v® + &d is also an interior point of F(G) (note
that F(G) is a convex set of R"). This implies that h;((1 — g)v®, +&d_;) >
(1 —£)vf +ed; for every i € N. Then, it follows from (16) that 27/ < vf < 25"
for any j # . Also, we can see from Lemma 5.5 that v® and every 25! converge
to the Nash bargaining solution payoffs v of G with the weights 6 = (6,,---,6,)
and the disagreement point d = (dy,- - -,d,) as € goes to zero. Since v belongs
to the interior (relative to the upper-right boundary H of the feasible set F'(G))
of the strict Nash core of G and 2°* belongs to the boundary H, we can see
that 25 also belongs to the (relative) interior of the strict Nash core for any
sufficiently small . Take any coalition S and any correlated action pg of S.
By definition, the payoff vector u = (u;(ps, b*(ps)));en is Nash-effective for S,
that is, u € vV95"(S). The fact that 25 is in the strict Nash core implies that
if u;(ps, b*(ps)) > zjl forall j € S,j # i, then i > u;(pg, b*(ps)). Otherwise,
u dominates 2% via S in the strict sense with respect to vV%". Therefore, z; &

is the optimal value (attained by S = N) of the maximization problem

max u;(ps, b*(ps))
subject to (1) S C N, ps € A(A)

(2) u;(ps, 0" (ps)) = 2" forall jeS, j#i.

This means that the strategy s; prescribes the optimal proposal of player «¢.

It is clear that s; prescribes the optimal action for responders. By applying
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the same proof to all subgames of I'*? starting after some agreement has been
reached, we can prove that s° = (s5,---,5%) is a totally efficient SSPE of T'=.

Q.E.D.

6 Concluding Remarks

We have presented a noncooperative foundation of the asymmetric Nash bar-
gaining solution for a general cooperative game where players can form coali-
tions and their payoffs depend on what other players do outside the coalitions.
In this general cooperative situation, a strategic interaction between one coali-
tion and its complementary coalition plays a critical role in determining a final
outcome of the game. Unlike the classic theory of von Neumann and Mor-
genstern, our noncooperative approach requires that any coalitional behavior
be consistent with members’ payoff maximization. We have characterized an
efficient equilibrium where all active players in negotiations form the largest
(efficient) coalition, independent of history. The main result is that the Nash
bargaining solution can be uniquely supported by the efficient equilibrium
of the bargaining model where the probability of negotiation failure is very
small, if and only if the Nash bargaining solution belongs to the Nash core of
the game. The Nash core is defined by the standard core concept under the
supposition that a threat by the complementary coalition should be consistent
with the Nash bargaining theory.

We conclude the paper with a few remarks for future research. First, in our
model, the disagreement point of the Nash bargaining solution is determined
by a Nash equilibrium of a strategic-form game which is a primitive of the
analysis. Obviously, in order to derive a unique outcome of rational behavior
in a general cooperative game, we need an equilibrium selection theory of a

strategic form game. Secondly, the weights of the asymmetric Nash bargain-
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ing solution is given by the probability distribution to select a proposer. A
natural question is how such a probability distribution is determined in a real
situation. In our view, this question is truly empirical, beyond the scope of
this paper. Some social and political factors may determine the probability
distribution. For example, in local communities, a seniority rule (older per-
sons propose more often than younger ones) tends to prevail. In international
negotiations, countries with larger populations (or GDPs) may be given more
opportunities to make proposals. Thirdly, our analysis focuses on the efficient
equilibrium in which the grand coalition forms. It is interesting to investigate
coalition structures which appear in inefficient equilibria. When multiple sub-
coalitions form, players may want to renegotiate their on-going agreements to
attain a Pareto-improving payoff allocation. This problem of renegotiations in
coalitional bargaining is analyzed by Okada (2000) and Seidmann and Winter
(1998) in a transferable utility game in characteristic function form. We showed
in Okada (2000) that successive renegotiations necessarily lead to an efficient
allocation when the prevailing agreement is considered as the threat point of
renegotiation. The possibility of renegotiation, however, has a negative effect
in distorting the equity of a final allocation by inducing the first-mover rent.
Finally, the extension of our analysis to cooperative situations with incomplete

information deserves to be explored.
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