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Abstract

Using recent advances in the nonparametric estimation of continuous-time processes under mild statisti-
cal assumptions as well as recent developments on nonparametric volatility estimation by virtue of market
microstructure noise-contaminated high-frequency asset price data, we provide (i) a theory of spot variance
estimation and (7) functional methods for stochastic volatility modelling. Our methods allow for the joint
evaluation of return and volatility dynamics with nonlinear drift and diffusion functions, nonlinear leverage
effects, jumps in returns and volatility with possibly state-dependent jump intensities, as well as nonlinear risk-
return trade-offs. Our identification approach and asymptotic results apply under weak recurrence assumptions
and, hence, accommodate the persistence properties of variance in finite samples. Functional estimation of a
generalized (i.e., nonlinear) version of the square-root stochastic variance model with jumps in both volatility
and returns for the S&P500 index suggests the need for richer variance dynamics than in existing work. We
find a linear specification for the variance’s diffusive variance to be misspecified (and inferior to a more flexible
CEV specification) even when allowing for jumps in the variance dynamics.
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1 Introduction

Understanding volatility is of fundamental importance for effective portfolio choice, derivative pricing, and risk
management, among other issues. A successful strand of the literature on volatility estimation has focused on
stochastic volatility modelling either in continuous time or in discrete time (for a review, Shephard, 2005, 2006).
This literature provides alternative methods to filter volatility - an inherently unobservable state variable - by
using return data sampled at relatively low (generally daily) frequencies. An equally successful, but alternative,
recent strand of the literature on volatility estimation has recognized the identification potential of return data
sampled at intra-daily frequencies to effectively treat daily volatility (estimated by aggregating squared intra-daily
returns) as an "observable" quantity, without need for filtering on the basis of low-frequency return data (for
a review, Andersen et al., 2004). This second body of work has seldom investigated the implications of high-
frequency variance estimation for stochastic volatility modelling. The parametric approaches of Barndorff-Nielsen
and Shephard (2002), Bollerslev and Zhao (2002), Corradi and Distaso (2006), and Todorov (2007), however, are
important exceptions and very promising contributions in this area.

We further bridge the gap between arguably the two main strands of the current literature on financial markets
volatility by providing functional inferential methods. Specifically, we study nonparametric stochastic volatility
modelling in continuous time using high-frequency asset price data for the purpose of spot volatility estimation.

Write continuously-compounded returns as 741 = log(pe+1) — log(p:) and consider the system:

Tiitar = dlog(p) = u(af)dt + o dW] + dJ}, (1)
df(a7) = myy(o)dt + Aoy (0F)dWY + dJ7, (2)

where {W], W7} are possibly correlated Brownian motions, {J], J7} are Poisson jump processes independent of
each other and independent of {W;, W} with intensities A"(.) and A7 )(.), and u(.), myy(.), and Ay)(.) are
generic functions satisfying smoothness conditions laid out in the following sections.

Our procedures have three main features. First, we filter spot variance by localizing (in time) high-frequency
estimates of integrated variance [o2ds. We then use spot variance to identify the parameters and functions
driving variance dynamics (i.e., A7 )(.), mys)(.), Ay)(.) and, given parametric assumptions on the jump size
distribution, the moments of the volatility jumps). Since the classical realized variance estimator (i.e., the sum of
squared intra-daily returns over the day) may contain substantial contaminations due to market microstructure
noise (as emphasized by Bandi and Russell, 2008, and Zhang at al., 2005, in recent work), we employ robust
(to noise) integrated variance estimates. In other words, when possible, we allow for market microstructure
noise and control for it.! Second, differently from much existing work on stochastic volatility modelling, we avoid
imposing tight (possibly affine) parametric structures on A7 y(.), ms()(.), and Ay((.). Specifically, we identify the
relevant functions (through estimates of the system’s infinitesimal moments) using nonparametric kernel methods
for diffusion and jump-diffusion processes as proposed by Bandi and Nguyen (2003), Bandi and Phillips (2003), and
Johannes (2004) in simpler frameworks, namely in the context of scalar models with observables. In order to lay out
the main ideas in the context of a well-understood estimation problem, we use classical Nadaraya-Watson kernel

estimates. However, as we illustrate below, extensions to alternative functional estimation methods are rather

LFor recent surveys of nonparametric methods for integrated variance estimation using market microstructure noise-contaminated
high-frequency asset price data, we refer the reader to the review papers by Bandi and Russell (2007), Barndorff-Nielsen and Shephard
(2007), and McAleer and Medeiros (2008).



straightforward given our procedures. Third, identification does not require stationarity. Rather, it relies on
recurrence, which is known to be a milder assumption than stationarity and mixing (see Bandi and Phillips, 2004,
for a review of identification methods for recurrent continuous-time processes). In light of the persistent behavior
of daily volatility series, methods which only hinge on recurrence and do not rely on the information contained in
a potentially inaccurately estimated (in finite samples) stationary density may, arguably, be particularly suitable
for our problem.

We present preliminary ideas in the no jump case (dJ] = 0, dJ7 = 0) - Section 4. We then consider the
empirically-important case of jumps in volatility (dJ] = 0, dJ7 # 0) - Section 5. For clarity, two alternative
models (and corresponding identification methods) are presented. We first discuss a nonlinear version of the
square-root specification with exponential jump sizes of Duffie et al. (2000). Having received important empirical
validation in recent studies (see, e.g., Eraker et al., 2003), this is the specification we analyze in our empirical
work. We then discuss a nonlinear log-volatility model (f(0?) = log(c?)) with Gaussian jump sizes in the spirit of
Jacquier et al. (2001). Finally, we consider the case of jumps in both the return and the volatility process (dJ] # 0,
dJ? # 0) - Section 6. When focusing on the full system (in Section 7) we study nonparametric identification of
risk-return trade-offs (p(0?)) and (possibly nonlinear) leverage effects.

Our empirical work evaluates the S&P500 joint return/variance dynamics. Using intra-daily Spiders data
sampled between the beginning of January 1998 and the end of March 2006, we provide further evidence for the
need of jumps in both returns and variance. Estimation of a generalized (i.e., nonlinear) version of the square-root
stochastic variance model with exponential jumps in variance and Gaussian jumps in returns suggests the need
for richer (diffusive) variance dynamics than in existing parametric work. We show that a linear specification for
the variance’s diffusive variance is likely misspecified (and inferior to a CEV specification) even when allowing for
discontinuities in the variance dynamics.

We conclude this Introduction by pointing out that, in independent and concurrent work, Kanaya and Kris-
tensen (2008) have also tackled estimation of stochastic volatility models in the presence of spot volatility filtered
nonparametrically by virtue of the functional estimator proposed by Kristensen (2006). The focus of their stimu-
lating work is however somewhat different from ours. They study the impact of the measurement error induced by
high-frequency kernel estimates of spot volatility on both nonparametric and parametric estimates of stochastic
volatility models. We concentrate on the nonparametric case but allow for market microstructure noise (when
handling the first-stage spot volatility estimates) as well as for discontinuities in the volatility and return dynamics.
As we discuss below, these differences naturally result in different approaches to spot volatility estimation and
nonparametric modelling. In particular, while not being the substantive core of our analysis but only an input for
later developments, we view our theory of microstructure noise-robust and jump-robust spot variance estimation
(in Appendix A) to be a promising contribution of our approach. An interesting, recent paper related to ours is
also that of Comte et al. (2007) who, in the presence of a continuous stochastic volatility local martingale price
process, study least-squares functional techniques to identify the drift and diffusion function of their assumed
diffusive volatility while providing bounds for the estimators’ risk.

We begin with a description of the infinitesimal moment estimators and their logic.



2 The infinitesimal moment estimators

We assume availability of n equi-spaced price observations in the time interval [0,T] with A, r = % We also
assume availability of k£ (not necessarily equi-spaced) price observations in each interval [iA, 7,iA, r + ¢n7T].
The k intra-period observations are employed to evaluate integrated variance (XA/ZT /n) Over each sub-interval of size
G-

The functions driving the dynamics of diffusion and jump-diffusion models are known to have infinitesimal
conditional moment representations which can be exploited for the purpose of nonparametric identification (Bandi

and Phillips, 2004, for discussions). We identify the j-th infinitesimal moment of the variance process, i.e.,

0 () = lim <B[(floda) = F@D) lof =] =1, (3)

by virtue of

. B J
Z K < iT/n ) [f(ﬁi-mm) B f(gng/”)}

0 (z) = ji=1,..,
An,T ZK< zT/n_‘T)
~ v, > . . . T
where O'?T/n = ‘;T/T" and Vi, is a consistent estimate of sz//:Hb” " o2ds for fixed n, T, and ¢, 7.

Reno (2006) provides simulation evidence for the performance of gj(x) with 7 = 1,2 (i.e., the drift and the
diffusion case) while dealing with stochastic volatility models without discontinuities. This paper develops the
necessary theory for specifications with and without jumps in the presence of preliminary high-frequency spot
variance estimates & /-

The kernel function K(.) and the integrated variance estimates ‘A/iT /n satisfy the following properties:

Assumption 1. K(.) is a bounded, continuously-differentiable, symmetric, and nonnegative function whose
derivative K'(.) is absolutely integrable and bounded, and for which [K(s)ds =1, K1 = [ s*’K(s)ds < oo, and
K, = f K2 dS < Q.

Assumption 2. ‘A/iT/n is such that

~ iT/n+¢, T 2
V;'T/n sz/n Usds a
E,> | 67k - ~0 4
T d)n,T ¢n,T ( )
and —
~ iT/n+¢, r o
Vti n iT/n ’ Usds a n
Vo |8 ok | 22 Sy & (a(otrn) +0) (5)
¢n,T ¢’ﬂ,T

with « € (0, f} and § € [0,1] given T and n. E,2 and VU2 denote expectation and variance conditional on the
spot volatility path. a, b, and n are numbers. The symbol & denotes asymptotic equivalence for a large k and a

small ¢, .

Coherently with Bandi and Nguyen (2003) and Bandi and Phillips (2003), the asymptotics are derived under

T — oo (long span) and n — oo with A, r — 0 (infill). We also assume asymptotic increases in the number



of observations for every time span of size ¢,, - with ¢,, - vanishing to zero (i.e., k — oo with ¢,  — 0). The
relation between T', n, k, and ¢, 1 is made precise in the theorems. Assumption 2 deserves some attention. Its

meaning is spelled out in Remarks 1 and 2.

Remark 1. In Appendix A we show that the spot variance estimates 5o /n constructed by virtue of (almost)
all recently-proposed integrated variance estimators V;r,, have asymptotic variances and biases which may be
represented as in Eq. (5) and Eq. (4) (sometimes for a specific - large - number of subsamples or autocovariances).
Consider, for instance, the classical realized variance estimator (Andersen et al., 2003, and Barndorff-Nielsen and
Shephard, 2002) in the absence of market microstructure noise. In this case, o = %, 8=0,a=2,b=0,andn=1.

When allowing for noise, in the case of the two-scale estimator (Zhang et al., 2005) with a number of subsamples
2/3

q equal to 7k%/3 (with 7 fixed), we show that o = %, B=1,a=0,andb#0. lf g=1 (ﬁ) and ¢, 7 = k0

with —% <6 <0, then o = %7 g = %, a#0,b=0,and n= % Consider now the class of flat-top realized kernels

(Barndorff-Nielsen et al., 2006) with a kernel function g¢(.) satisfying ¢’(0) = 0 and ¢'(1) = 0, for instance. We

find that, if the number of autocovariances ¢ is such that ¢ = Tfi and ¢, r = k% with —% <0 <0, then a = %,
n,T ’

8= %, a#0,b=0,and n= % Explicit expressions for these estimators, as well as derivations, are provided in

Appendix A. In particular, the Appendix relates Assumption 2 to a broader class of integrated variance estimators

Vir/n tecently proposed in the literature while offering details on the form of the relevant parameters «, 3, a, b,

and 7, for each estimator.

Remark 2. (Spot volatility estimation using realized variance.) In the absence of market microstructure

noise, for realized variance we have:

~ iT/nt¢, v o iT/n+¢, v 4
v k% V;T/n fiT/n USdS a 9 (b”aT iT/n Usds e 9 4
o2 — ~ ) ~ 20,1 /n
¢n,T (bn,T ¢n,T

iT/n+d¢
f-l /ntén T otds as.

since T“‘T = ol /n 3 ¢, 7 — 0. By the modulus of continuity of Brownian motion, notice that
= iT/n+¢, v o iT/n+¢, v o
k% V;,T/n fiT/n Usd fz'T/n Usds o
- —oiT
(bn,T d)n,T d)n,T i/m
= iT/n+¢, v o
s Viryn  Jirn o5ds 1 2 2

= k2 - +kZ20q.s. sup N
¢n,T ¢n,T iL<s<iZto, '
=5 iT/'fH”d’n,T 2 1/2

= k7 Vijo _ Jiajn il +o0 k* <¢ log ( 1 >> /

= - 5 T =
(bn,T ¢n,T “ " ¢n,T

= 0p(1)

oL 1 1/2 o L 1/2 ) i
if k% (6008 (52-)) = 0. Thus, if k% (9, 7108 (52-)) = 0 with k — o0 and @, 7 — 0, then 522

n, n,T

converges in probability to afT /n (at speed k%). In addition, using classical weak convergence results (see, e.g.,
Jacod, 1994, and Jacod and Protter, 1998):

1 ‘Z‘T/n 2 4
k3 ( S oty 3 M (0.20%,.) (6)




where M N denotes a mixed Gaussian distribution.

Remark 3. (Spot volatility estimation using more general estimators.) Using Remark 1, by the same

argument as in Remark 2 above, 5?T /n = ‘;‘T/ ~ converges in probability to O'ZT /n (at speed d)ﬁ ke if (i)g k& — 00)

1/2
provided ka(bth ((bn,T log (ﬁ)) — 0. Furthermore, if the distribution of ViT /n is mixed normal (as is the

case for virtually all integrated variance estimators studied in the literature thus far), then

‘/}iT n n
ot (B2 ) 0 o et) 1) g

In the case of (kernel-based) estimators that are robust to market microstructure noise (such as the two-scale esti-
mator and the class of flat-top realized kernel estimators), the result also requires appropriate (limiting) relations
between the number of subsamples/autocovariances, the number of intra-period observations k, and the length
¢, r- Again, Appendix A provides details while specializing the weak convergence result in Eq. (7) to a variety
of estimators recently proposed to evaluate integrated variance in the absence as well as in the presence of noise.
The Appendix, for instance, shows that, in the presence of noise, the rate of convergence of the spot variance
estimates constructed using the two-scale estimator is k'/1°. Provided the kernel function g(.) satisfies ¢’(0) = 0

and ¢'(1) = 0, the spot variance estimates constructed using realized kernels may converge at rate k'/%.

Remark 4. (More on spot volatility estimation.) As emphasized above, the quantity &7 /n = % is a spot
variance estimator constructed using an integrated variance measure. Alternative spot volatility estimates have
been recently proposed, for instance, by Malliavin and Mancino (2008) and Kristensen (2007). Reno (2008) uses the
former to identify the functions m(.) and A(.) in Eq. (2) for the case without jumps in either volatility or returns.
When just aggregating squared continuously-compounded returns (i.e., the realized variance case) in the absence
of market microstructure noise, there is an important connection between the interesting approach advocated
by Kristensen (2007) and the one adopted here for the purpose of evaluating the full return/variance system.
Kristensen’s estimator uses all of the observations in the sample and smoothes squared continuously-compounded

returns locally, i.e.,

j—i/n :
z/n—hZK( > T 1=1,...,n,

where K(.) is a kernel function (largely) satisfying Assumption 1 and nk is the total number of observations
in [0,T] with T" = 1, for simplicity. If nkh — oo, Ef,?/n converges to the spot variance at i/n with a standard
nonparametric speed vnkh. Specifically, the weak convergence result

nkh(3%), — 03/,) = MN(0,2Ks07,,) (8)

holds if, in addition, nkh'*?? — 0, where 0 < v < 1 is the order of smoothness of o7 (see Kristensen, 2007,

Theorem 2). The latter condition guarantees disappearance of the asymptotic bias term. We now turn to our

approach when V;/,, is realized variance and noise is absent. Write

sz/n 2
g cizim 2
¢n,1 d)n,l ¢n 1 Z {0< G <1}TJ

k
2
P
=5 Z J nk
_J=1




P P
aggregating (using equal weights) observations in a local neighborhood of i/n, i.e., [i/n,i/n + ¢, 1]. Thus, ¢, ,

where 17y is the indicator kernel. Hence has an interpretation in terms of kernel smoother. We are simply
is effectively a bandwidth playing the same role as h in the case of af/n. This said, our derived asymptotic
distribution in Eq. (6) and the asymptotic distribution in Eq. (8) have to be consistent with each other when
K(.) = 1{;. In other words, if nk¢, ; — oo and nk¢, *" — 0,

n,1

v/ ke Vijn —o? = MN (0,2 12 ds | ot
n,1 ¢n ) i/n ’ {0<s<1} i/n | *

Now, notice that ¢, r is defined as an interval containing k observations, i.e., n¢, ; = 1. Thus, the (effective)

rate becomes vk, which is coherent with Eq. (6). Similarly, the asymptotic variance becomes 202l I which is also

consistent with Eq. (6). Finally, the condition for a vanishing asymptotic bias term nk¢}:'12"’ = k(bi?l = k1/ 297, =

o(1) is equivalent to k2 (¢n’T log (ﬁ))lﬂ = o(1) for our assumed degree of smoothness of the spot volatility
process.

From a theoretical standpoint, the use of smooth kernels, as in Kristensen (2007), yields efficiency gains over
the equal weighting implicitly delivered by our methods. In fact, the term Kj is generally smaller than 1 (it is,
for example, equal to ﬁ for a second-order Gaussian kernel). From an empirical standpoint, the presence of
intraday seasonalities (see, e.g., Andersen and Bollerslev, 1998, and the references therein) might affect estimates
based on smooth kernels in ways that are difficult to predict. Diurnal effects appear more likely to average out
when using equal weighting over a trading day as implied by integrated variance-type measures, such as realized
variance.

Importantly, the properties of (either smooth or discountinuous) kernel estimates of spot variance have not been
previously studied for the cases with jumps and market microstructure noise, which are relevant for our purposes.
We do so in Appendix A. Using equal weighting allows us to draw from the recent literature on integrated variance
estimation both in terms of asymptotic results and in terms of finite sample adjustments required for more accurate
empirical implementations. The latter have been advocated by Bandi and Russell (2006, 2008).> We leave the

study of smooth kernels for spot variance estimation in the presence of noise and return jumps for future work.

Intuition. We now turn to the logic behind our estimation procedure. Given Remark 2 and 3, the rate of
convergence of 5?T/n to afT/n is ko‘d)ﬁ,T (if ko‘d)ﬁj — 00, of course, and k“qﬁij (¢n,T log (ﬁ)) 1/2 — 0), where
o € (0,3] and B = [0,1]. Loosely speaking, if k — oo at a fast enough pace as h,, 7 — 0, then one may hope
to control (asymptotically) the estimation error induced by the preliminary spot variance estimates so that 5j (z)
identifies 67 (z) consistently (in probability). A set of conditions that are sufficient for this to happen (and for
the moments to have well-defined limiting distributions) is listed in the theorems below. Identification of all the
functions (and parameters of interest) of the model in Eq. (1) and Eq. (2) will rely on consistent estimation of

9’ (2), for j =1, ..., as we discuss in Section 5 below.

This paper presents the main ideas in the context of classical Nadaraya-Watson kernel estimates. Extensions

to functional estimates with improved asymptotic and finite sample properties are rather immediate given our

2For the case with no jumps in returns, the working paper version of this paper (Bandi and Reno’, 2008) estimates the S&P 500
index’s spot variance using the two-scale estimator and appropriate realized kernels. In both cases, the finite-sample properties of the
estimators are optimized by minimizing the estimators’ MSEs (under microstructure noise) as suggested by Bandi and Russell (2008).
We refer the interested reader to that version of the paper for details.



procedures and are, in some cases, discussed below (see, e.g., Remark 10). Among other methods, 9 (z) could be

a local linear estimator of the form

n—1

| SR @) [[@iemya) = @]
mt S TKi (@, har)
i=1

~ ~? — ~2 E? n_ .
where K; (z, hy, 1) = hﬂ%K ( ZT/L pe > R x)ﬁK Z;T Iy1 with

=1, (9)

~2
~ 1 Oir/n — 7T
Fn’s = Z(U?T/n - l’)shn TK ( / >

hn,T

for s = 1,2. More generally, it could be a local polynomial estimator defined as the solution {ag, a1, ..., o} to

n ~2
1 ~ “ OiT/n — L .
Z (A T (f(o'%i—&-l)T/n) - zT/n Z Oéu zT/n - ) ) K </) i=1,.,

h
i=1 n,T

where %(x) = ap(z) for p = 1. Local polynomial methods for diffusions are studied by Fan and Zhang (2003) and,
under recurrence, by Moloche (2002). Alternative, interesting approaches for diffusion estimation under a variety

of assumptions, including weak recurrence assumptions, have been recently proposed, inter alia, by Kristensen
(2008) and Xu (2006, 2007).

3 Recurrence

Consider a complete probability space (2, P,{S¢}i>0) and the compensated N-dimensional jump-diffusion

process X; defined as

Xt:X0+/Ot( )ds+/ dW+// Xs—,y)v(ds, dy),

where {W;, St} is a standard m-dimensional Brownian motion and

o(dt,dy) = N(dt,dy) — E(N(dt,dy))
N(dt, dy) — TI(dy)dt

is a compensated Poisson random measure on [0,00) x RV independent of W;.

Assumption 3. The terms u(.), o(.), and c(.,y) are at least twice continuously-differentiable vector functions
of the Markov state. pu(.) = {p1;(.)}1<;<n» and (., y) = {ci(,y)},<i<n » are N x 1 Borel measurable vectors, and

o(.) ={0ij(.)}1<i<n is a N xm Borel measurable matriz. There exists a constant C such that, for any z,z € RN,
1<j<m

Iu(w)—M(Z)\2+HG(»’C)—0(2)||2+/\C(w,y)—C(Z,y)lzﬁ(dy) < Clo -2,

(@) + @) + / le(e, ) [2TT(dy)

IN

Cla —|2))*.



Write a(z) = o(x)o(x)T. In addition, there exists a number « > 0 so that

ZTa(z)z > alz|? for all  and z.
Assumption 3 guarantees the existence of a nondegenerate strong solution X;.
Assumption 4. For each = € RY,

sup/ (ln W)Qﬁ(dy) =C,.

z#0 ‘y|
If Assumption 3 and 4 are satisfied and, for r > 0, there exists 1 = €1(r) > 0 and n; = n,(r) > 0 so that, for
any |z| >r and z € RV,

Zziui(z—i—m) - Zaij(z—I—x)zizj . Zaii(z—i—x)

|22 2|z[? 2|z[?

T - a;i(z2+x)ziz;
o (e S <o B

then the process X; is recurrent (In-Suk Wee, 2000).

+

-,

Remark 5. The model in Eq. (1) and Eq. (2) is not compensated. This is of course not problematic since we
could compensate it and redefine the drift vector as being equal to p(.) = {u(.),mp)()}T = {A"(), A5, ()} o
{E[(c"(.,y")], E[(c?(-,y7)]}T, where o denotes element-by-element multiplication. The conditions in Assumption 4
would therefore have to apply to the system with a re-defined drift term.

Under recurrence, for any z € R and r > 0,

P, (| Xt — x| < r for a sequence of times increasing to co) = 1.

In other words, the process returns to open sets in its range an infinite number of times over time, thereby
making consistent point-wise kernel estimation possible even in the absence of a time-invariant stationary density.
Recurrent processes for which a stationary density exists converge to it and are called positive recurrent (or
ergodic). They are called strictly stationary when started at the stationary density. Recurrent processes which are
not endowed with a stationary density are called null recurrent. See, e.g., Bandi and Phillips (2004) for discussions.

Importantly for our purposes, while it is of course hard to argue against the stationarity properties of return
and variance series, the persistence features of variance should be a concern when identification is conducted by
heavily relying on the informational content of the variance process’ stationary density. The use of identification
methods which do not hinge on stationarity is expected to lead to less distorted estimates in regions where the
variance’s stationary density cannot be estimated reliably and, as we will show below, a somewhat more objective
representation of statistical uncertainty. In effect, the size of the point-wise (asymptotic) confidence bands of each
infinitesimal moment estimate will be shown to be an inverse function of the number of visits made by the spot
variance process in the local neighborhood of each spatial point, i.e., the local time of the process.

Here we provide conditions for recurrence only in the case of our most general system with jumps. When
specializing to individual equations (either variance or returns) and/or when considering the benchmark framework
without jumps, we refer the reader to the conditions for multivariate diffusion processes in Hasminskii (1960) and
Bhattacharya (1978).



4 A preliminary case: dJ; =0 and dJ{ =

In the absence of jumps, the estimated infinitesimal moments are known to directly identify the functions of

interest since 0'(z) = m(x), 6%(x) = A%(x), and 6’ (z) = 0 Vj > 3. Theorems 2 and 3 below present conditions on
~1 ~2

T,n, k, ¢, 7, and the bandwidth h, 7, which guarantee 6 () Lom(z) and 0 (z) 2 A2(z) while yielding asymptotic

Gaussian distributions. We begin with the limiting properties of the averaged kernel function.

Theorem 1 (Convergence to the chronological local time.) Assume T is fived (T =T). If k,n — oo and

h, 7, ¢, 7 — 0 so that

T T
1 1 1
lim + ¢, 7log | ——
k,n— o0 hn,Tkad)i T hn,T ( T <¢n,T>

with o € (0,%] and B = [0, 1], then,

ho7 = n,T
where L2 (T, x) is the chronological local time of the spot variance process.

Proof. See Appendix B.

Remark 6. In functional estimation methods for recurrent continuous-time semimartingales, chronological local
time (i.e., the time spent by the process in the vicinity of a point) drives the rate of convergence of the functional
estimates (see, e.g., Theorem 3 and 4, below). Since recurrent processes visit each open neighborhood of a point
infinitely often over time (Section 3), then local time diverges with 7. The divergence rate is linear (in T for
positive recurrent (ergodic) or stationary processes (since Ly2(T,z)/T % p(z), where p(z) is the time-invariant
stationary density at z) but is lower for null recurrent processes and, importantly, unknown in general. One
important exception in the null recurrent class is Brownian motion for which v(7T) = T/2. In what follows, we
write L2 (T, x) o< v(T), where v(T) is a regularly-varying function at infinity (see, e.g., Bandi and Moloche, 2004,

for discussions).

Remark 7. In practise, the nature of the divergence properties of local time is immaterial for our purposes. All
we will need, in order to express the (effective) rate of convergence of our functional estimates (and, of course,
their limiting variance), is an in-sample characterization of the local time factor. As Theorem 1 implies, one can

do so by using kernel methods similar to those employed for estimating classical stationary densities.

Theorem 2 (The volatility drift.) If k,n,T — oo and hy1, ¢, — 0 so that

lim h,rv(T) = oo, (11)

n,T'—oo

) o(T) 1 \Y?
iy <A"’T log AH,T>

To(T)' | To(T)! (sbn,Tlog (1)>1/2 - (13)

ki T=00 A, phy pk@d? . Do rhar Pn1

Il
=
—

—

\)
~




with o € (0, 3] and B = [0,1], then,
0 (@) % m(w),
where Ly2(T,z) o< v(T). If
Jm_hnrol) =
Jm R aol) =
1/2
N C
, To(T)~*/? To(T) 1/ 1 \\"?
bR, o Anrh2keg? - N <¢”’Tlog (cbn,T)) -
then,
hurLy2 (T, z) {El(z) — (@) = (@) } = N (0, K2A%(2))
with

Tpn(z) = hfl’TKl lm/ (x)i(x) + }m” (:c)} ,

where s(dx) is the diffusion’s speed measure and Cy is a constant.
Proof. See Appendiz B.

Theorem 3 (The volatility diffusion.) If k,n,T — oo and hy 1, ¢, 7 — 0 so that
lim v(T)
n,T'—oo n,T

1 1/2
<An,T 10g An’T)
Tv(T)

-1 1 1/2
lo
AmThfn,T <¢n7T 5 <¢n,T>>

To(T)™ !
1n B
k,n,T—o0 An’Thn,Tka(me

with o € (0,%] and 8 = [0,1], then,
(z) = A%(2),
where Ly2(T,z) o< v(T). If
lim hi,TU(T) .
n,T—o0 An,T N
(T 1 \"?
1 AW
n,’]lgloo n,T < T 108 An,T)
To(T)~1/?

k, n1T~>oo A3/2 1/2 ka(bﬁ

10

Tv(T)_1/2< ( 1 ))1/2
+ ¢y 1 log =
AYZRIE o G

Clv (]‘4)

0, (15)



then,

9’ () — A2(z) — Ta(e)} = N (0,2K:0%(2)

with
s (x)

where s(dx) is the diffusion’s speed measure and Cy is a constant.
Proof. See Appendiz B.

Ta(z) = h2 1K, [AZ’ (@) %A (x)} ,

Remark 8 (The bandwidth conditions) In order to discuss the meaning of the bandwidth conditions, we
simply focus on the drift estimator. Similar observations can be made in the diffusion case and will apply to the
more general infinitesimal moment estimators in the next section. Eq. (11) is analogous to the classical condition
nh — 0o, which is necessary for consistency of the Nadaraya-Watson kernel estimator in discrete-time. Here the
local time’s divergence rate (v(7T')) replaces the divergence rate of the number of observations (n). Eq. (12) hinges
on the Brownian modulus of continuity and guarantees that the continuous sample path of the process can be
approximated (in the limit) by virtue of discretely-sampled data. This condition is important to replicate the
"infinitesimal" features of the moment(s), as implied by Eq. (3). Eq. (12) is the condition which allows us to
eliminate (asymptotically) the measurement error which is, necessarily, induced by the preliminary spot variance
estimates. This condition ought to be slightly strengthened (in Eq. (15)) for weak convergence to hold. When
deriving weak convergence, the additional condition in Eq. (14) guarantees optimality of h,, 1 by appropriately
balancing the estimator’s asymptotic bias and variance. It is analogous to nh> = O(1) in the case of classical

Nadaraya-Watson kernel estimators in discrete-time.

Remark 9 Since A, r — 0, the diffusion estimator has a faster rate of convergence than the drift estimator. In
both cases, optimal rate selection for the smoothing parameter h, r yields an asymptotic bias term which has
a familiar form (from more conventional kernel estimation in discrete time) but, in light of the mildness of our

assumptions, depends on the process’ invariant (speed) measure rather on the process’ time-invariant stationary

1/5
density, which is not assumed to exist. The drift’s optimal bandwidth rate is (ﬁ) . The corresponding

1/5
e (Anr
diffusion’s value is ( TER) )

Remark 10 (Local linear estimates) As pointed out in the Introduction and in Section 2, while we illustrate
the main issues by virtue of traditional Nadaraya-Watson estimates, extensions to kernel estimators with superior
asymptotic mean-squared error properties can be conducted similarly. Consider, for example, local linear estimates
of the drift and diffusion as in Eq. (9). All bandwidth conditions would be preserved. In fact, the statements
of Theorems 2 and 3 would remain unchanged with the exception of intuitive (given existing work in discrete

time) modifications of the asymptotic biases: T'y,(x) would become A2 K (ém” (a:)) and Ty (z) would become

h2 K, (%AZN (m)).
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5 Jumps in volatility: dJ; =0 and dJ{ # 0

Recent empirical work has emphasized the importance of models allowing for rapid increases in stock returns’
conditional volatility (see, e.g., Bates, 2000, Duffie et al., 2000, Pan, 2002, and Eraker et al., 2003). Such increases
cannot be yielded by the small Gaussian changes implied by classical diffusive stochastic volatility models. Jumps
in volatility provide an important means by which sudden volatility jumps translate, due to persistence in the
volatility dynamics, into lasting, higher volatility levels (see Eraker et al., 2003, for discussions).

In the presence of jumps in volatility, the high-order infinitesimal moments of the volatility process can be
employed to learn about the intensity of the jumps and the moments of the jump size distribution as suggested,
in other contexts, by Johannes (2004) and studied formally by Bandi and Nguyen (2003).> To clarify ideas, we
consider nonlinear versions of two stochastic volatility models which have drawn particular attention in recent
years, namely the square-root stochastic volatility model with exponential jumps of Duffie et al. (2000) and a
log-volatility model with Gaussian jumps in the spirit of Jacquier et al. (2002). Alternative specifications may of

course be easily adopted provided the identification scheme is modified accordingly.

Generalized Duffie, Pan, and Singleton (2000) model. Write Eq. (2) with f(0?) = 02 and dJ? = £7dNY,
where €7 ~ exp(p¢). In Duffie et al. (2000) and Eraker et al. (2003), m,2(07) is affine (i.e., linear in 07), Ay2(07)
is a square-root process (A2;(07?) is also affine) as in Heston (1993), and A,2(07) (i.e., the intensity of the Poisson
jump N7 is constant and, hence, independent of the state (see, also, Andersen et al. (2002) for an affine stochastic
volatility model with \,2(0?) = 01). Provided the variance drift, diffusion, and intensity satisfy the conditions

laid out in Section 3, we leave their functional forms unspecified. Now, notice that

0'(2) = (@) + pehos () (16)
P(z) = Ala(a) +2u2\0(a) (17)
0°(x) = 6ugr,2() (18)
0*(z) = 24M§Agz (x) (19)
Hence, consistent (in probability) identification of the relevant functions may be conducted by computing:
~4
. 1< 0 (Giryn)
Pe = o =3 ~2/ ’ (20)
i=1 40 (UiT/n)
~4
Sr(e) = 28 (21)
244,
R(@) = 0'(x) - 20s(2), (22)
M2(z) = 0 (2) — figho=(2). (23)

3 A different methodology based on pre-filtering the data with a threshold function is explored in Mancini and Renod (2006).

4Other papers allowing for jumps in returns, stochastic volatility, but no jumps in volatility are, for example, Bakshi et al. (1997),
Bates (2000), and Pan (2002). These papers find evidence for misspecification in the volatility dynamics pointing to the likely presence
of discontinuities in the volatility sample path.

12



Alternative (possibly superior) identification methods can of course be employed. One could, for instance, consider

> Here we lay out the main ideas by considering the most intuitive identification

higher-order approximations.
scheme. Below, we show empirically, and by simulation, that this approach may perform very satisfactorily in

practise.

Log-variance. Write Eq. (2) with f(07) = log(o7) and dJ7 = £7dNy, where {7 ~ N(0,0%). This model is in
the spirit of Jacquier et al. (2002), among others. As earlier, we generalize it by allowing for a nonlinear drift,

diffusion, and intensity of the jumps. Write

91 (.73) = mlog o2 (.73), (24)
0*(x) = A120g o2(z) + 0§>\10g -2(T), (25)
04(17) = 30—21)‘105; o2 (I)v (26)
0%(z) = 150¢Nogo2(2), (27)
A potential identification method (Bandi and Nguyen, 2003, and Johannes, 2004) is now:
n 508,~2
~2 1 0 (Gir/m)
UE = - Z 1 _ B (28)
" i=1 50 (JzQT/n)
~4
~ 0 (x
)‘IOg o2 (x) = 3/(\4> ) (29)
T¢
—~ ~2 o~
A120g o2 (33) =0 (ZI?) - Ug)‘log o2 (x)v (30)
~1
mloga2(x) =0 (Z‘) (31)

This identification procedure has proved successful in the analysis of the temporal dynamics of spot interest
rate series in continuous time (Johannes, 2004). As discussed earlier, it can be generalized when needed (see, e.g.,

Section 9, Eq. (36) and Eq. (37)).

Using linear specifications with no jumps in either returns or variance, Andersen et al. (2002) and Chernov
et al. (2002) find that the log-volatility and the square-root model provide very similar fit to the data. In light
of the recent empirical validation provided by Eraker et al. (2003) to the affine square-root model with jumps in

both volatility and returns, a nonlinear version of this model will be the subject of our empirical work.

Theorem 4 presents conditions on 7', n, k, ¢,, 7, and the bandwidth h,, v, guaranteeing 9’ (z) RN 67 (z) for all j,
and by an application of Slutsky’s theorem, consistency (in probability) of the relevant functions and jump size
moments. Our discussion in the previous section provides intuition for several aspects of the Theorem. Below, we

focus on what is specific to the case with discontinuous jumps.

Theorem 4. (The infinitesimal moments.) If k,n,T — oo and hy 1, ¢, r — 0 so that

5We do so when evaluating the return dynamics in order to achieve more accurate finite sample performance (see Section 10).
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lTim hnoo(T) = oo,

1/2
tm A (An,Tlog ! ) _—

n,T'— oo n,T An,T

_ _ 1/2
lim To(T)~* N To(T)* (¢nT10g< 1 >> _ 0
’ ¢n,T

k,n,T— o0 An,Thn,Tka¢§ T An,Thn,T

with « € (0, %} and B =10,1], then,

where L2 (T, x) oc v(T). If

gm hnov(T) = oo,
lim hoo(T) = Cs,
. o(D) 1 \Y? _
n,’%riloo n,T (AmTlOg An,T) o 0’
, To(T)~1/2 To(T)~1/2 1 1/2
‘hm (1/3 3 + ( )1/2 (gzﬁn,Tlog ()> = 0,
FonT=00 Ny phy /2 k@) 1 Aprh, 7 P,
then,
h Loz (T, ) {éj (2) = 07(@) = Ts(w) b = N (0. Kab¥(2)),  Vj =1
with

/

s (x)
s(x)

where s(dx) is the process’ invariant measure and C3 is a constant.
Proof. See Appendix B.

' 1 7
Lgi(x) = hi,TKl le (z) + 59 (33)] )

Remark 11. Contrary to the no jump case, all infinitesimal moments converge at the same rate. In particular,

an enlarging span of data (" — oo) is necessary to guarantee h, 7Lyz2(T, ) 2% o0 and, hence, consistency of all
1/5
moments. As earlier, selection of the optimal bandwidth rate ((U(lT)) > yields an asymptotic bias term which

depends on the process’ invariant measure and may be eliminated by slight undersmoothing.

5.1 The implied drift, diffusion, intensity of the jumps, and jump size: asymptotic
properties

For both models presented earlier, we now discuss asymptotic inference on the functions and parameters of interest.
In all cases, the bandwidth h,, r is set so as to avoid the presence of an asymptotic bias term (as implied by the

condition in Eq. (32)).
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We initially assume that the moments of the jump sizes are estlmated by averaging higher-order infinitesimal

~2 )
— n ag; n "0 (Uif ﬁ)
moments over a fixed time period T. In other words, fi; = = E — T and Ag =41 E % with
i=1 ( zT/n) i=1 50 (O—iT/W)

T/m — 0 as m — oo over a fixed T < T. Importantly, for consistency (see Remark 11), the higher-order moments
5‘7 used to compute fi; and 32 continue to be estimated (before the averaging) over an asymptotically expanding
T. As we will show, the fixed T case is theoretically interesting when dealing with generic (stationary and
nonstationary) recurrent processes. Specifically, it guarantees that the averages i, and Eg are asymptotically
well-behaved in the null recurrent (nonstationary) case.5 We will relax the fixed T condition (and let T diverge

with T') when focusing on ergodic (or strictly stationary) systems (Remark 12).

Theorem 5. (Variance moments: Weak convergence.)

Assume
lim h,rv(T) = oo,
n,T'— oo
lm B o(T) = 0, (32)
(D) 1\
n,’.lllrlloo h"7T <An,T lOg AmT) a 0’
. To(T) /2 To(T) /2 1\
knthlooA rhi2kegl N Anrhy/7 Pu.r 108 P17 -0
with o € (0,%] and B = [0, 1], where Ly2(T, z) < v(T).

Generalized Duffie et al.’s model

Ezxpected jump size:

where

1 2
1) = [ i) <LE§?>E ( 1 <s”>4"(””>)g<f“>3> iz,

Jump intensity:

Diffusive function:

2
b Lor (T.2) {82:(2) = A22(2) | = N [ 0, Kodo2(2)E ((&”)2 - 121% <s“>4>

6 A similar asymptotic design is adopted in Bandi and Phillips (2007) in a different context. We refer the interested reader to that
paper for details. In particular, Bandi and Phillips (2007) emphasize that the assumption is made only for theoretical convenience but
is empirically immaterial.
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Drift function:

2
Bt Lo (T, ) (g (1) — moa(2)} = N 0,Ky [ AZ(2) + A (2)B (5“ : <§”>4>

Log-variance model

Jump standard deviation:

(T(7))"?2To¢ {5 — 0c} = N(0,1),

where

Jump intensity:

Nog o2 (2)E ((€)°)

8
905

hy 7 Loz (T, ) {Xlog 22(2) = Aogo? (x)} N [0,K,

Diffusive function:

2
B Lo (T,) { A 2 (2) = A 02 (2) b = N { 0, Ko Nigg2 (2)E <(€a)z - 3;@ (§U)4>

Drift function:
Viin, 2 Lgs (T.2) {fiiog 2(2) = miog o2(2)} = N (0, Ko (A5 02(2) + Mg o2 (@E ((€7)7) )

Proof. See Appendix B.

Remark 12 (The ergodic case) In the positive recurrent and strictly stationary case, v(T) = T and w 2
p(z), where p(z) is the stationary density of the spot variance process. Hence, the rate of convergence of the point-
wise estimates and the denominator of their asymptotic variances have a familiar look. The former is \/m
The later depends on the volatility process’ time-invariant probability distribution, p(x).

As expected, due to the averaging, the moments of the jump components converge at a faster (parametric)
rate than that of the remaining functions. Even in this case, the look of their asymptotic distributions is more

recognizable when setting 7 =n — oo and T =T — oo with A, 7 = A_ = — 0. In this case, in effect,

9] 4 2
\/T{ﬂf - /J/&} = N |0, [m /\02 (.Jj‘)E <4031(x) (60)4 _ 4(093((‘:3))2 (50)3> p(.]j)dl' s

and

2
N 1 o 1 - ond
\/T{Uﬁ—af}éN 07402/00 >\log02(x)E (594@) (€ )6_5(94(’5))2(5 ) ) p(x)dx
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Remark 13 (Asymptotic covariance estimation) In light of Theorem 5, statistical inference on all functions
and parameters of interest is now straightforward given estimates of the relevant asymptotic variances. To this
extent, assume that the bandwidth conditions yielding consistency of the infinitesimal moments (as expressed in
Theorem 4) are satisfied. Also, assume the usual asymptotic scheme. In the case of the generalized Duffie et al.’s

model, we notice that:

2 R AN\ 2 ~6 n EfT/n_g?T/w
hr (D) z”: 7" 200" N () Z]_1K< o >
— 3\2 3 4 52 2
U E = BT (@) 16(8) 16(?) ) ook < JT/ZnﬁTiT/n>

> I2.(T,x) 1 6 (x) ’
o[ @ | B ( (i €)' 2P ) |
) o2 , L 49 (il?) 4 (9 (.’1?))
o\8
i'@) , @B ()
—
(24)27i¢ (24)2¢ 7
26°(w) 0 () 1 ’
~4 x x p o\ 2 i
- = Ay2(2)E ,
(z) 22 T (z) ((5 ) 12,2 (&%) )
and
20 (x) 0 (2) 1 ’
52 z T p 2 o o\4
- S A (z)+ A2 (2)E | | €7 - 13
(z) YR (x) (z) ( 24u§’( ))
Furthermore,

2 " = ~6 2 -8 n S0 m
(o (L ()7 T ()
= 2 3 AN 4 52 52
ez A S g5 (54) 25 (@4) 25 (9 ) S K <]T/Zn,T”/">

b [ L2.(T,x) L e @) o)
—>/700/\10ga2(33) <L02(T,x)>E (594@)(5 ) —W(f ) ) dz,

9 (2) p Mogo2(@)E ((fa)8>

05 9% ’
4 20 (@) » ce 1)
0 (z) - %2 1 oo = Alog o2 (2)E ((5 ) —Q(S )) ,
and, of course,
~2

07 (2) B> Ay 2 () + Mogo2 (0)E ((€7)7)

in the log-variance case.”

"The proofs of these results follow from the methods laid out in Appendix B. For brevity, we do not report them here. However,
they may be provided by the authors upon request.
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6 Jumps in returns and volatility: dJ; # 0 and dJ7 # 0

When allowing for the empirically-important case of discontinuities in the price process, realized variance, realized
kernels, and the two-scale estimator, inter alia, identify the continuous quadratic variation component of the
price process oids, as earlier, in addition to the sum of the squared jumps. We therefore need to consider
estimators which solely identify integrated variance. The realized bipower variation measure of Barndorff-Nielsen
and Shephard (2004, 2005), which we formally define in Section 8 below, achieves, among other procedures, this
goal.

1/2
Remark 14 (Bipower variation in the no noise case.) Provided ﬁ (% log (ﬁ)) — 0 with ¢, 7 — 0

o ~2 Vit/n 5 <1 s . . .
and k — oo, the quantity ¢;7/, = ¢:/T , where Vir/,, is bipower variation, is consistent for afT Jp 0 the presence

of jumps in returns and

1/2 1/2
~2 2 _ L 1 ¢7L,T k i
7t = itn = Op ((‘Z’"’Tk’g (o)) > o (m (s (55) ) +0,( 1)

In other words, while Assumption 2 is technically not satisfied (when jumps play a role) in the bipower variation

case due to the presence of an asymptotic (jump-induced) bias-component (whose order is given by the second

8 our theory continues to be valid with a = % and 8 = 1. As done earlier when

term in the above expression), 5

using spot variance estimates for which Assumption 2 (and a classical mixed normal theory of inference) hold,
these choices, in fact, are sufficient to eliminate the measurement error induced by the estimated spot variances.
Appendix A provides more details and discusses the more general case of multipower variation-based spot variance

estimation.

7 dJj #0, dJ] # 0, risk-return trade-offs, and leverage effects

We now turn to the full system for our more general case with both jumps in returns and in volatility. Given spot
variance estimates 5?7« /n (obtained by using bipower variation or alternative identification methods robust to jumps
in returns) as well as infinitesimal moment estimates for the return process (/9\1(02) with j = 1,2, ...), the relevant
functions and the features of the return jump distribution can be identified by using a scheme similar to those in

Section 5. One could assume, for instance, Gaussian mean-zero jumps, i.e., dJ; = ¥dN; with ¢ ~ N(0, 03}),9 and

employ
7 %2
~2 1 QT(O—ZT/H)
5, = =Y ——, (33)
" i=1 59T(O—§T/n)
A
~r 0.(c2
Vit = 2o, (34)
O'q/)
~/ 2 )
p(e®) = 0.(0%). (35)

8The presence of jump-induced limiting biases in bipower (and multipower) estimates of integrated variance as been discussed by
Barndorff-Nielsen et al. (2006) and Woerner (2006). Here, of course, we focus on the spot variance case.
9See, e.g., Eraker et al. (2003).
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where,

s a:ZQT/n -0’ J
Z K|{——— (Ing(iJrl)T/n - logpiT/n)

i 1 = hn, 1 ,
000" = 5 = R j=1..
n, iT/n
K| —/—
()

Should 7i(c?) be a statistically increasing function of o2, then a risk-return trade-off would exist. Theorem 6

discusses consistency and weak convergence of i(o?).

Theorem 6. (Risk-return trade-offs: consistency and weak convergence.) If k,n,T — oo and
b,y ¢, 7 — 0 so that

lTim hnrv(T) = o0,
. o(T) 1 \"?
| Aprl = 0,
"Jlr_r’loo n,T ( 708 An,T>

_ _ 1/2
Tu(T)~! N Tu(T)~! (cﬁn.Tlog( 1 )) _
/ ¢n,T

k,n,T—o0 An,Thn,Tka¢§ T An,ThnyT

with o € (0,%] and B = [0,1], then,

fi(o?) = u(a®),
where Ly2(T,02) o< v(T). If

gm hnov(T) = o0,
gm ho po(T) = Cy,
. o(T) 1\ /2
1 A, 7l = 0
n,ﬂlr—r»loo n,T < T 208 A?L,T> !

. To(T)~1/2 To(T)~1/2 1 i
Hhm (1/3 3 + 0 1/2 <¢”’T10g ( )) -
kyn,T—00 An,ThmTka%,T An,Thn,T ¢n,T

then,
Vs L2 (T, 02) {fi(0?) — u(0?) = Tu(0?)} = N (0, Ko6%(c2)) |
with
r 2 h K / 2 SI(J2) 1o 2
M(J )_ n,T+>1 /J(O' )8(0'2) +§,U, (J) )
where

0°(0%) = 0® + X" (6>)E(¢?),
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s(do?) is the variance process’ invariant measure, and Cy is a constant.
Proof. See Appendix B.

The leverage function!’ can be identified as follows:

C(o?)

o) = 2
O'QAf(_)(02)

e 5?T/n - 02 ~2 ~2
Z K f (IOg(p(i-‘rl)T/n) - IOg(piT/n)) (f(J(i+1)T/n) - f(UiT/n))

A’I’L'T n T - 2 ’
, iT/n 2
ZK< ) 0285, (@?)

where K?(_)(oz) may be estimated by virtue of Eq. (22) or Eq. (30) (depending, of course, on the assumed variance

model). Our empirical work will use Eq. (22). In light of the independence of the jumps in returns and volatility
and the independence between jumps and Brownian shocks, p(c0?) identifies p(c?) consistently, as we show in

Theorem 7. The theorem assumes that the same bandwidth is used to estimate numerator and denominator of
p(a?).

Theorem 7. (Leverage: consistency and weak convergence.) If k,n,T — oo and h, 1,9, v — 0 so that

1 \1/2
(An,T log A T) = 0,

To(T)~! To(T)~! 1 \\"?
lim o(T) —+ o) <¢nT10g <>) =0
k,n,T—o0 An,Thn,Tka(bn,T An,Th’rL,T ’ (bn,T

with o € (0,%] and 8 =[0,1], then

lim @

n,T'—oo Ny T
,

where Ly2(T,0?) o< v(T). If

. h?«LT”(T)
N

1 \V2
(A"’TIOgA T) = 0,

. Tv(T) =1/ T (T)~1/2 ( 1 \\"?

lim + — ¢, log [ —— = 0,
oo 3/241/2 4.4 3/2,1/2 n,

R T—o0 AY2p1 2kl o AR On1

n,T nT n,T""n,T

lim v(T)

n,T—oo h’rL,T

then,

’W [8(c*) - C(6) ~ Telo?) } = N (0,Ka6(0%)) .

10Tnfluential recent work on leverage estimation in stochastic volatility models includes Harvey and Shephard (1996), Jacquier et al.
(2004), and Yu (2005), among others. Yu (2005) also provides a thorough discussion of the existing literature.
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with

0 (0%) = A} (1 (7)o (1 4 p*(0%)) + 0°AF( (D) EIE’] + Af (07N (0P E[Y?] + AF () (0*) B[]\ (0*)E[47],
and

s (o2 p
5((02)) +%Z (02) )

Ta(0?) = b2 1Ky |2 (07)

where z(x) = /xA sy (z)p(z), s(dx) is the variance process’ invariant measure, and Cs is a constant. Finally, if

lim h,v(T) = oo,
n,T'— oo
. 5 o
n,’lluiloo hn,T”(T) - 07
(T 1 \"?
A iT) <A”7T log An,T) =0
, To(T)~1/2 To(T)~1/2 1 \\"?
lim (1/2) E + < 1/2 (¢n,T log ( )) = 0,
k,n,T—oo An,Thn,Tka¢n,T An,Thn,T ¢7L,T

then

Vi Lo (1,09 (5(0) — plo)} = N (0,5:0°(0?))

ar 0P (2) — P (o7) A2 (o2
with 0°(0?) = 4A?(>(02)Asyvar (Af(_)(a )) and

Asyvar (R3(69) = X2 (2)B (W -5 (5”)4>

if f(.)=0?% or

Asyvar (K?(.)(02)> = A\ogoz(2)E ((50)2 - 3;? (50)4>

if f(.) =logo?.
Proof. See Appendix B.

8 High-frequency spot variance estimates and data

We are interested in the joint S&P500 return/variance dynamics. We start with a description of the high-frequency
variance estimates used to identify spot variance. We then present the data. The next section reports estimates
of the functions and parameters driving the S&P500 return/variance evolution in the context of the generalized

Dulffie et al’s model discussed in Section 5.
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8.1 Bipower-based spot variance

As earlier, we assume availability of k price observations log(p;) in each interval [iA, r,iA, 1 + ¢, 7] With

i=1,...,n. Write r; =log(p;) — log(p;—1) with j =2,...,k and

> — k
o Vi w20l .
UzT/n = ¢ = ¢ t1=1,...,1n
n,T n,T

with u = E(|Z]), where Z denotes the standard normal random variable. In the absence of market microstructure
noise but, importantly, regardless of the presence of jumps in the return process, Appendix A shows that 5?T /n 18
consistent (when ¢,, 7 — 0 and k& — oo at appropriate rates) for 5?T/n for all ¢ (c.f., Section 6).

Importantly, alternative spot variance estimates (such as those based on the two-scale estimator and the
family of realized kernels) would give us robustness to market microstructure noise but would be affected by price
discontinuities (when focusing on the variation of the continuous price component). Here, in agreement with our
more general specification in Egs. (1) and (2), as well as much recent evidence in empirical asset pricing, we opt
for being general in terms of return dynamics and allow for discontinuities in the return sample path.!!

However, in order to break the first-order dependence in the observed high-frequency returns induced by
microstructure noise contaminations in the k price observations, we employ a "staggered version" of bipower

variation and write

i7Stag. —9 (k—2\"l —k

~2 ‘/iT/ang K ‘() > j—slrjllri—2| _

0iT/n = = 1=1,..,n.
¢n,T ¢H,T

This correction does not yield theoretical consistency of the estimator in the presence of noise but preserves
consistency in the no noise case and, importantly for our empirical purposes in this section, has been shown to
perform well when applied to noise-contaminated price observations, as is the case in practice (see, e.g., Andersen
et al., 2007, and Huang and Tauchen, 2005).'2

8.2 Data

Our sample period is January 2, 1998 to March 31, 2006. We employ daily returns on the S&P500 index and
high-frequency price data on the Standard and Poor’s depository receipts (Spiders) to construct the index’s (daily)
variance estimates.'® Specifically, we use Spiders mid-quotes on the NYSE sampled between 10am and 4pm. We
delete quotes whose associated price changes and/or spreads are larger than 10%. In our sample, the average
duration between quote updates is 11.53 seconds. The average spread and the average price level are 0.0015 and
117.27, respectively. Hence, in terms of our previous notation, 7' =9, n = 2,053, and the average k is about 1,873
(the number of seconds in a 6-hour period divided by 11.53).

We follow common practise in the literature and convert the integrated variance estimates V into daily measures.

Since the original estimates are for an intra-daily 6-hour period, we multiply them by a constant factor § defined

11 As is well-known, the study of integrated (and spot, in our case) variance estimates which are robust to both return jumps and
market microstructure noise is an open area of research.

12For an interesting, alternative approach to integrated variance estimation using bipower variation we refer the reader to Corsi et
al., 2008. Their approach employs the threshold methods proposed, in other contexts, by Mancini (2007).

13Spiders are shares in a trust which owns stocks in the same proportion as that found in the S&P500 index. Spiders trade like a
stock (with the ticker symbol SPY) at approximately one-tenth of the level of the S&P500 index. They are widely used by institutions
and traders as bets on the overall direction of the market or as a means of passive management.
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n 2 n N
as 0 = Z (T;%‘%I;5OO> /Z Vir/n, where rngj?OO is the return on the S&P500 index over day 4. This procedure
i=1 i=1

ensures that the average of the transformed variances, i.e., 6‘7, is equal to the average of the squared daily returns.
Alternatively, one could add the squared overnight returns to the original estimates. Qualitatively, we find similar
results when using the latter procedure and only report results relying on the adjustment §.'4

In what follows, the S&P500 returns and the spot variance estimates are expressed in daily terms (¢,, 7 = ﬁ)
The returns are further expressed as percentages (x100). In agreement with this scaling, the daily spot variances
are multiplied by 10,000. As always, market returns display little autocorrelation (-0.026), little skewness (0.069),
and excess kurtosis (5.57). The bipower-based spot variance estimates are strongly right-skewed (5.943) and
persistent (0.761).

9 Stochastic volatility dynamics

We estimate the generalized Duffie et al.’s jump-diffusion model presented in Section 5. We choose a simple
identification scheme, as laid out in Eq. (20) through Eq. (23), but, contrary to existing parametric work, allow
for a nonlinear drift, diffusion, and jump intensity.!®> The validity of this scheme is verified below by simulation.
Drift function, diffusion function, and intensity of the jumps are reported in annual terms. Figure 1 contains
the functional estimates (along with the corresponding drift and diffusion function for the case with no variance
jumps). The (asymptotic) confidence bands are obtained by using the limiting results in Theorem 5 along with
asymptotic covariance estimates evaluated as discussed in Remark 13. We note that the (daily) spot variance
process makes most of its visits at levels between about 0.1 and 0.8, i.e., for a volatility of annual S&P500 returns
between about 5% and 15%, as implied by the variance’s estimated local time. Not surprisingly, the point-wise
confidence bands are relatively tighter in this range (c.f. Figure 1).

The estimated drift denotes mildly nonlinear mean-reversion. The diffusive function conforms more naturally
with a nonlinear constant-elasticity-of-variance (CEV) specification than with a linear structure (i.e., a square-root
specification for diffusive volatility), as introduced by Heston (1993) and adopted by several others. In the relevant
variance range, the intensity estimates suggest between 0 and 6 volatility jumps per year (with point estimates
around 2 annual jumps). The estimated expected size of the jumps is about 2.5.

We compare our findings to the parametric estimates (converted to annual figures) of Eraker et al. (2003, Table
ITI, Column 5). In Eraker et al. (2003) the drift is linear, the diffusive volatility is square-root, and the intensity
of the jumps is constant. Our nonparametric (nonlinear) drift implies more mean-reversion. Despite differences
in the point estimates, their jump intensity and average jump size are statistically supported by our data. So is
their variance’s diffusion function. This said, our diffusive variance’s point estimates differ from those in Eraker
et al. (2003) in important ways. We find more volatility associated with the process’ continuous component. As
indicated above, we also find that the variance’s diffusive function is more accurately represented by a flexible

CEV specification (i.e., A%(z) & 2%/2)'% than by a square-root model for diffusive volatility (or a linear model for

14 Hansen and Lunde (2005) provide a theoretical justification for this traditional adjustment while studying the optimal combination
of overnight squared returns and intra-daily realized variance for the purpose of daily integrated variance estimation.

5 The infinitesimal moments’ bandwidths are set equal to cj * stde (52) x*n~1/5 where ¢;j is chosen by cross-validation. In general,
c1 > c2 and ¢j > ca for j > 2 (the first and higher moment’s bandwidths are larger than the second moment bandwidth). We use a
second-order Gaussian kernel for all moments.

16We assume a linear mean-reverting drift, a constant jump intensity, and exponential jumps for spot variance. Applying GMM to
the infinitesimal first, second, third, and fourth moments, we find A2?(z) = 0.123/2. The t-statistics associated with these estimates
are equal to about 3 and 4.
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diffusive variance). Using specifications without jumps in variance, Chacko and Viceira (2001) and Jones (2002)
also emphasize the need for nonlinear structures in the variance of variance. In Chacko and Viceira (2001) such
a need diminishes with the addition of jumps in returns. For brevity, given the largely methodological nature of
this paper, we do not dwell on this important empirical point here. However, we refer the reader to the broader
empirical treatment in Bandi and Reno (2008)!7 for residual-based procedures and nonparametric tests based on
high-order moments which confirm (i) the need for richer variance-of-variance structures and (i) the importance
of variance jumps.

It is now of interest to assess whether the reported differences between our estimates and those obtained in
Eraker et al. (2003) are simply due to the use of different sample periods (Eraker et al., 2003, employ S&P500
return data sampled between January 2, 1980, and December 31, 1999) or whether they are a genuine by-product
of alternative variance filtering methods (in Eraket et al., 2003, daily variance is filtered from daily returns using
MCMC methods).

9.1 The joint volatility /return dynamics

We estimate a (possibly) nonlinear model for returns with Gaussian jumps (Fig. 2). The identification scheme is
therefore consistent with Eq. (28)-Eq. (31) applied to returns rather than to log-variances, see Eq. (33) through
Eq. (35) in Section 7.!® However, identification of the quantities which heavily hinge on high-order moments,
namely the standard deviation of the jump size and the price jump intensity, is conducted by also allowing for

higher (first) order terms in the relevant conditional moment representations. Specifically, write

62(02) = 3X"(0%)0%, + 3 [02(6)]” Anr + O(A2 1),
| —]

correction
and
0°(c?) = 15X (0%)0, + 1593(02)(3AT(02)0$)A%T +O(A2 1)
correction
— 15N (62)0%, + 1562(0%) (02(02) — 3 [02(6)]” Anr)Apr + O(AZ ).
Hence,

_ 6 ~2 4 2 2
B B 052 m) = 150, (5 2) 0 () = 3 [0,F )| Anr) Ay )
9y = = 5 2 ;
= 0,5 )~ 3 (0,650 Anr
~ 2 2
T QT(J?T/W,) -3 |:9T(012T/n):| An,T
V(o) = = : (37)
P

To define 312/, we further weigh the quantities in the sum by the corresponding local density. The additional terms

(in 83} and A (0?)) are asymptotically negligible (thereby not affecting our limiting results), but play an important

17This is the unpublished working paper version of the current paper.

18The bandwidths are set using cross-validation as indicated in Footnote 15 above. In particular, the constants c¢; and cj, with
cj > 2, are equal to about 3, whereas c2 is equal to about 2. The corresponding bandwidths of the variance process are generally
slightly larger. A second-order Gaussian kernel is again used to define all infinitesimal moment estimators.
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role in finite samples (when estimating return dynamics) as we show below by simulation. As earlier, we employ
the results in Theorem 1 (and Remark 13) to characterize the sampling error by virtue of asymptotic confidence
bands.

For clarity, we again compare our estimates to the parametric estimates of the affine model with Gaussian
jumps in returns of Eraker et al. (2003). In Eraker et al. (2003) the return drift and the intensity of the
Gaussian jumps are constant. The return dynamics suggest the presence of a statistically-insignificant nonlinear
risk-return trade-off. The insignificance of the trade-off is of course not surprising and fully consistent with much
empirical work on the evaluation of the relation between conditional mean returns and conditional variance at
low (daily, here) frequencies (see, e.g., Bandi and Perron, 2008, for references). Importantly, in our case the use
of high-frequency data does not yield a stronger dependence between conditional mean and conditional variance
as suggested in some recent work (see, e.g., Bali and Peng, 2006). Similarly, Eraker et al. (2003) stress that
experimentation with a linear risk-return model did not deliver significant estimates using their filtering methods
and, therefore, resorted to a specification with a constant mean (whose numerical value is reported in Fig. 2(a)).
We find mildly hump-shaped (in the spot variance level) leverage effects around —0.5. We also find smaller jump
sizes (implying about 95% jumps between 4.5% and -4.5%) and a slightly higher number of jumps (between 2 and
6 in the relevant variance range) than in Eraker et al. (2003).12 We again refer the interested reader to Bandi and
Reno (2008) for a broader set of empirical results providing additional evidence in favor of discontinuities in the

return (and variance) process. We now turn to simulations.

10 Simulations

Consider the bi-variate system:

Teien, = AL+ oi D] + 1, J], (38)
otin, — 07 = K(O—0))A+ /oI NE] +E7T7, (39)

where {J]', J7} are Bernoulli random variables with constant intensities \"A; and A7 Ay, {e},e7} are standard
Gaussian random variables with correlation p, ¢, is a mean zero Gaussian random variable with standard deviation
oy, & is an exponential random variable with mean p,, and At is a time-discretization (one day). We generate
2,053 observations (as in our sample) for every sample path and 1,000 paths. The parameters are those in
Table III, Column 5, of Eraker et al. (2003) with the exception of o, (set equal to 0.31). The specification
A%(0?) = 0.1(0?)%/? provides superior fit for our data, as indicated previously (Bandi and Reno, 2008, for further
discussions). Consistent with the empirical work, we use cross-validated bandwidths.

Figs. 3 and 4 report the 10th, 50th, and 90th percentile of the distribution of the estimates. We start with the
variance dynamics. Drift and diffusion function are estimated fairly accurately. In light of our empirical results

regarding the shape of the variance’s diffusive variance, this is an important finding. If anything, the diffusion

19The negative value of the estimated jump intensity at high spot variance levels (i.e., at values that are hardly visited in-sample)
should not be surprising. It is a by-product of the scarcity of observations in this range combined with bias-corrected estimates (as
discussed in the main text) which are not guaranteed to remain positive in finite samples. This is a general issue in the nonparametric
literature sometimes caused by the identification scheme, sometimes even caused by the (implied) kernel function used (as in the
case of local polynomial estimates, for example, see Xu, 2007). While this paper lays out an identification methodology which is
shown (through simulations and applied work) to be very informative even in a relatively simple form, future research should focus
on identification schemes which explicitly address the non-negativity issue in finite samples.
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estimates tend to be slightly downward biased, thereby possibly reinforcing our previous results about the need
for a higher variance of variance. The jump features are accurately estimated. The expected jump size is very
slightly downward biased (with the true value being well within the 95% band), while the intensity of the jumps
is only mildly upward biased and tends to increase when moving away from the bulk of the data.

We now turn to the return and joint dynamics. The return drift and the leverage parameter are fairly accurately
estimated. However, interestingly, if one were to use a straightforward identification scheme as in Section 7,
the standard deviation of the Gaussian jumps would be excessively downward biased whereas the return jump
intensities would be biased upward with, again, an increasing nonlinear trend when moving to values away from
the center of the simulated data. Importantly, similar patterns would be observed in the data had this simple
identification scheme been employed. The use of first-order adjustments (as done with data previously) improves
finite sample performance drastically. The "corrected" sigma estimates are now much closer to the true value
resulting, in conjunction with a bias-corrected fourth moment, in substantially more accurate lambda estimates.

We conclude with three observations. First, we find that the most important departure from affine stochastic
volatility models with Gaussian jumps in returns and exponential jumps in variance is the nonlinear shape of the
variance’s diffusion function. Simulations show that this function is estimated accurately. Second, the features
of the jumps (their probability and jump distribution) appear to be more easily identifiable for variance than
for the (noisier) return process, thereby requiring finite sample corrections in the later case. We provide these
corrections, when needed, and emphasize their potential importance for applied purposes, in general. Third, we
stress that, while very informative, natural identification schemes and straightforward bandwidth choices have
been used throughout. More efficient schemes potentially making use of the informational content of alternative
infinitesimal moments could have been employed. Different bandwidth choices capable of adapting to the sparsity
of the data (as implied by our asymptotic results) may also have been used. These issues are better left for future

work.

11 Conclusions

We study stochastic volatility modelling in continuous time by employing functional estimation procedures. Pre-
liminary nonparametric estimates of spot variance (for which we provide a theory of inference) are employed, in
conjunction with functional estimates of the model’s conditional moments, to learn about the functions and para-
meters driving the joint return/variance dynamics. The model and identification methods allow for nonlinearities
in the drift and diffusion functions as well as in the intensities of the return/variance jumps. Nonlinear leverage
effects are also permitted. Our limiting results control for the measurement error induced by the preliminary
spot variance estimates and are derived under the weaker (than stationarity) assumption of recurrence. We show
consistency and weak convergence of all the relevant functions and jump parameters of generalized (i.e., nonlinear)
versions of two widely-employed stochastic volatility models.

A very succesful, recent literature as focused on the efficient use of intra-period price observations for the
purpose of estimating variance over the period. This literature aims at being as much as possible model-free. In the
same "model-free" spirit, we view this paper has an initial effort to render this literature’s contributions operative
in the context of continuous-time finance modelling under weak assumptions in terms of model specification and

conditions needed for identification.

26



A Appendix A: A theory of spot variance estimation

e Vit /m e . . . . . . .
Write afT/n = ¢:/T’, where Vir/, is an integrated (over ¢,  — 0) variance estimator constructed using k intra-daily

observations (with £ — o). In this Appendix we show that Assumption 2 and the stronger weak convergence result

¢ k{5 — oty = MN (0, a(otrm)" + b)

k'aoo,d)n)THO
are satisfied, under assumptions, by a large class of integrated variance estimators ‘Z-T/n recently proposed in the literature

if ¢2 . k® — oo and k%¢° . (¢, plog [ Y2 0
n,T n,T n,T g ¢n,T .

As we clarify below, depending on the estimator, the result hinges on the absence of jumps in the return process, on the
absence of market microstructure noise, or both. For some (kernel-based) estimators, the result also requires appropriate
conditions on the number of autocovariances. We provide these conditions for the two-scale estimator and for the family of
flat-top kernel estimators. More generally, by specifing the values of «, 3, a, b, and 7 for various estimators, we provide an
inferential theory for spot variance estimation under alternative estimators and different data generating processes allowing
(or not) for discontinuities in the price process and market microstructure noise. Extensions to additional estimators can

be conducted along similar lines.

Case 1. dJ; =0, without microstructure noise.
1. Realized variance (Andersen et al., 2003, and Barndorff-Nielsen and Shephard, 2002): « = %, B8=0,a=2,b=0,
and n=1.
2. Bipower variation (Barndorff-Nielsen and Shephard, 2004, 2005): « = %, B=0,a~26,b=0,and n=1.
3. Realized range (Christensen and Podolskij, 2007): a = %, 6=0,a~04,b=0, and n=1.

4. Fourier estimator (Malliavin and Mancino, 2008): same as realized variance.

Case 2. dJ{ # 0, without microstructure noise.

5. Bipower variation (Barndorff-Nielsen and Shephard, 2004, 2005): The above weak convergence result does not hold.

1/2
However, if ﬁ (% log( k )) — 0, then ﬁf/n = 0lp/p + 0p(1) and
n,T

bn,T

1/2 1/2
s =0 ((onrios () ) won (3 (B we (GE)) ) w0 (35)

6. Multipower variation: Assume multipower variation is computed by summing up z adjacent absolute values of

(:—1)/2 -
equilibrium returns |rjs|*'* with z > 2. If % (d}”‘T log( k )) — 0, then a?/n = O'?T/n + o0p(1) and
n, T

k Pn,T

~ 1 1/2 1 N k (z—1)/z 1
oo =0r((suron (5)) ) wor (515 (e (55)) ) o ()

1 1 1/2 k% b & (z—1)/z
If k2 ((bn’T log (ﬁ)) — 0 and o (% log (¢ T)) — 0, then the above weak convergence result

holdswithaz%,ﬁzo,a;ﬁo,nzl, andb:O.

7. Threshold realized variance (Mancini, 2007): o = %, B=0,a=2,b=0, and n=1.

8. Threshold bipower variation (Corsi et al., 2008): a = %, B=0,ax26,b=0, and n=1.

Case 3. dJ; = 0, with microstructure noise.

The market microstructure noise is assumed to satisfy the assumptions that are common to Zhang et al. (2005) and
Barndorff-Nielsen et al. (2006). Write log(p;)* = log(p;) +n; (for j = 1,...,k over ¢, 1), where the shocks n; are iid in
discrete time with mean zero and variance E(n?). Below, the symbol E(e?) denotes the variance of the contaminations in
the return process (i.e., E(e?) = 2E(n?)).

The two-scale estimator (Zhang et al., 2005): Define ¢ non-overlapping sub-grids U of the original grid of k arrival
times with ¢ = 1,...,q. The first sub-grid starts at to and takes every g-th arrival time, i.e., v = (to, tot+q, to+2qs -+ ),
the second sub-grid starts at ¢; and also takes every g¢-th arrival time, i.e., v = (t1,t14q,t1+2q, -y ), and so on. Given
the generic i-th sub-grid of arrival times, define Vo = th’tj_*_e\l,(i) (log(ptﬁ)* — log(pt].)*)z, where t; and t;4 denote
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. —~ q o (2) —_ _
adjacent elements in ¥, The two-scale estimator is constructed as VZM4 = Zi:lTV — kE(£?), where k = % and

E(?) =

oy (log(mj+ )" —log(pt; )" ) 2
% .

~ q
Realized kernels (Barndorfi-Nielsen et al., 2006): Write VENHLS — 5 4+ 5™ w,(J, +5_,), where 7, = 3% TITI s

with s = —q, ..., ¢, rj = log(p;)" —log(p;-1)", ws = g (Sgl

=1
s=1 J

) , and g(.) is a kernel function on [0, 1] satisfying ¢g(0) = 1 and

g(1) =0.
9. Two-scale estimator: If ¢ = 7k*3, then 8 =1, a = s.a=0,and b= (%) (E(EQ))Z.
E(s ) /8 2\1/3
10. Two-scale estimator: If ¢° =7 (ﬁ) with T < ) , then 3 = %, o= %7 a=2 (12 (E(52)) ) )
n, T /n
n= %, and b= 0. The optimal rate is k*/1°.
11. Realized kernels: If ¢ = 7k?/3 then =1, a = 5,a=0,and b=4 (E(52))2 T—lz{g/ (0)* + ¢'(1)%}.
2/3 ’ , 1/3 22)2 1/3
12. Realized kernels: If ¢° = 7 (%) with T = (W) ((Ei ) ) , then B = %, a = %, a =
n, T Je iT/n
T 0V2 0 (1)2 1/3 1/3
6 (72{9 Ot @ }) 90 (B())*, n=2, and b=0.
13. Realized kernels: Assume g,(O) =0and g¢(1) = 0. If q = kY2, then B = 1, a = %, a =0, and b =
1" 2
4[ 249" 0% + 92"} = 1 {g27}] (B(Y))".
. , , w1/2 ) B 1/2 (E(EQ)F 1/2 )
14. Realized kernels: Assume g (0) =0 and ¢'(1) =0. If ¢° = =Ty with T = ( g%fo ) , then B = 3,
. 1T/n

a=1,a=38 {—99’2}1/2 {g9’0}1/2 (E(<€2)2)1/27 n =%, and b= 0. The optimal rate is EY/S,

Proof of 5. Write

- iT/ntéy,, . AT/t
VONS fijn T okds _UPNS fij Todds o (¢"’T log( - ))1/2
P ¢ ¢ bl

¢7L,T ¢n,T ¢7L,T ¢7L,T n,T k" n,T

where ‘A/CBNS is the bipower variation estimator without jump components and the last term is the order of the jump term.
Clearly, as in 2. above,

"}CBNS ZTT//:H)"T o2ds ( 1 >
¢n,T ¢n,T 7 \/E .

Finally, using the Brownian modulus of continuity, we obtain the result in the statement. W

Proof of 6. Obvious using the same expansion as in the proof of 5. B
Proof of 9. From Bandi and Russell (2005), Theorem 2, when ¢,  — 0 and k¥ — oo, the dominating terms of the

. . s . o iT/n+dy
estimator’s variance decomposition, i.e., V2 (VZMA - [ mT g2ds), are

iT/n
4 iT/ntdnr (E(e%))?
| o / o.ds | v+ 8——
3 ( wT iT/n v2k
provided v = £ — 0. As for the bias term, i.e., E,2 (VZMA — fi;T//:+¢"’T Ugds), the dominating terms are
i on 62 qg AT /nt b7
B A—— U/ osds.
v iT/n
Ifg= Tk2/3, then v = % = Tkll/a and
~ iT/n+én T 2 iT/n+dy, 7 o 2
v L6 pzMA T/ osds 4 sz/'n sds 8 (E(52))
Gt bt ~yTonr g t\m) e
7, n,T n,T

or
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~ iT/n+én T 2
VZ]WA T/ ’ USdS 8 201 2
V2% ¢, pk° - ~ (7 E(%).
W ¢n,T ¢n,T 2 ( )
Notice, also, that
N iT/n+d,, iT/n+én T 2 ;
1/6 VZMA fiT/n T 52ds 1/6 fiT/n T o2ds EL/6 [iT/nténr
’ G o Tk?/ Kt/ iT/n
|
s 1/3
Proof of 10. If ¢ = 74, Tk2/3 with 7¢ . = 1,£2T(/En(j¢))T and ¢,, 1 is so that { — 0, then
, » =\ e G o)
~ iT/n+¢p, iT/n+¢n T 4 2
V2 kY6 VAMA [, T okds 4, ) Jirjm """ o5ds 8 (E(*)
o2 - ~ 2 on n,
G, &, 3 fmrimd i,T iﬂ,,T ¢i,T
1/3 , . 2/3
2 (12 (B(2)*) " (Jig/n " otds)
~ 4/3
(¢n,T)
and
—~ iT/n+én T 2
ZMA : " osds 1/3
R CTAY ~2(12(BE)°) T (o) (40)
¢n,T ¢n,T

Importantly, for d)}L{;kl/G — oo and ¢,, 7 — 0, it has to be the case that ¢,, » = k% with —% < 6 < 0. If this condition is

satisfied, then the condition { = % = 452/371]&/3 — 0 is also satisfied. Now write
n, T n,T
—~ 'L.T/7L+¢n1T 2 iT/7L+¢n1T 2 iT/n+¢>n1T 2

. (¢ )1/3 Lo pzmMA iT/m osds 11/6 fiT/n oids < k )2/3 L1/6 fiT/n osds

o2 n — ~ — — _

o ()bn,T ¢n,T k 2/3 ¢2/3 ¢n,T k (ZS?/;
¢n,T n,T !

kl/G /iT/"‘i’d’n,T R
— o5ds — ————05r/n — 0,

k213 Jir s ki@(ﬁlm o

since qzﬁi/;kl/?’ — 0. The optimal rate can be derived more explicitly. Since

R iT/n+¢y,, 1z v
pzMA _ [ . cr?ds =0y (% (¢”’T)2) +0p (%)

T/n
L \2/3 Y
the optimal number of subsamples ¢° is such that ¢° = 7 (¢ T) . Hence, provided % — 0,
. 2/3 .
—~ iT/n+¢, k iT/n+¢y,
v rzma T o2ds 4 (dm,r) 5 Jizm " osds L3 (E(<€2))2 k (¢n,T>4/3
o2 - ~ 3T
o1 Do 3 k v d’i,T 7—2¢$L,T k
and
~ iT/n+én T 2 211 2
pzMA f.T/ "t oids 4 ( (e ))
A% 1/5 . 1/6 — = ~ =TOp iy 8
o2 ¢7L,T (bn,T ¢n,T 37—0- T/ + 7.2
22\ 1/3
The optimal 7 is therefore equal to (%) which leads to
iT/n
~ iT/n+dn T 2 211 2
zma T olds 4 E(e 1/3
V2 { ¢t/3 10 _ ) : ~ STt + g (EE) 2)) ~2 (12 (E(52))2) (o).
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1/3
. E(:?))?
The final expression is the same as that in Eq. (40) above since ¢ = 74, Tk2/3 with 74, = ( ( :l'ii"(/n(jcb))T " ) can
’ ’ <bn,T fi,T/n " Usd's

2/3
be re-defined as ¢ = 74, ( k ) (¢n,T)2/3 ~q°. N

¢n,T

Remark (i) (The rate of convergence.) The condition ¢, = k? with —1 < 6 < 0 (which implies qﬁi{%klm — 00)

1/2
combined with ¢/>k/6 log ( —— — 0 (which is necessary to eliminate the asymptotic bias term), leads to
n,T n,T ¢n,T

roughly = k% with —1 < 0 < —L. Hence, one could choose @ = —%, and the implied rate of convergence of the spot
n,T 2 5 5

variance estimator would be k/°, which is slower than the rate of convergence of integrated variance (k'/°).

Proof of 11. Using Barndorfl-Nielsen et al. (2006), Eq. (15), and Bandi and Russell (2005), Theorem 3, write

v {PBNHLS o/ntén,T 2, 0,0 InténT
o2 - osas ~4g, ¢n,T osds | v
iT/n iT/n

1 4 0,2 2 T/ntén,m 2 2,2
4l 0 (0) + 0P 2B / o?ds + B()?)
vk iT/n
B [ (g (02 + 4/ (1%} + s (g (0)2 + 0%} — 4B(=2)2 2 14 (0)?
2k v3k2 * vk 2 ’

where the kernel-related g terms are defined in Barndorff-Nielsen et al. (2006). Hence, as earlier, in the general case there
are two dominating terms (provided v = £ — 0) and

SBNHLS T/nténr 0,0 /nténr 2v2 1 7 o 14\ 2
Ve |V —/ osds | p ~4gs qbn,T/ osds | v+ 4E(e”) ﬂ{g (0)°+¢'(1)7}.

T/n T/n

Similar expressions as in the two-scale case arise. In particular, if g = Tk 3. then

{}BNHLS f‘f/nJﬂi’n,T a?ds (z)n . Ii;:/nJrqﬁn,T a‘slds
V2 { kYC _ 2/n ~ 479" T/ 2
¢n,T ¢n,T (¢n,T)
1 1 ’
+——EB(®) 54{g (0’ +¢'(1)*}
((bn,T) T
and
~ iT/n+én T 2
BNHLS Pl T 52ds 1
Vo2 6,0k [ L _ ~4E(€*)’ {9 (0)* +4'(1)*}.
’ ¢n,T ¢n,T T
|
2/3
Proof of 12. Assume now ¢° =7 (ﬁ) . Hence,
iT/n 2/3 T /n
v yZMA z‘TT//n T g2ds 47 g0 (‘7’:,T ) " iTT//n T glds
52 — ~ n
(o G * k - QfL,T
(E(Ez))2 Lo 4/3 ’N2 142
~— k| — 4 0 1
Pk () a0 o)
and ——
SIZMA ‘Z n n,To_2ds E€2 2 ,
VAR AL Qs Jizn - ~ 479000t + %4{9 0)*+4'(1)*}.
] ¢n,T ¢n,T T
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The optimal 7 is now

(2{9’(0>2 4 g'<1>2}> v ((E(a-?)f ) v
99’0 U?T/n .

This choice implies

T ¢n,T (an,T

—~ iT/n+é, 7 o ’ 1/3
ZMA ) T o2ds 2 101)2
v d gy (V2 L N6<2{9 (0)° +4'(1) }) 00

|
Proof of 13. Now notice that if gl(O) =0 and ¢'(1) = 0, then

~ iT/n+¢n, T iT/n+én, T
V,2 VBNHLS—/ olds ~ 4g2° qbnT/ oads | v
iT/n " JiT/n

1 02 2\2 gy [T/nFenT
AR HEEY + 2B () | o2ds)
vk iT/n

HBE | e 07 + 4]

If ¢ = 762, then

VBNHLS ’TT//;H_%‘T o2ds
¢n,T
iT/n+dn T o
sds 1
nT zT/n _ 2.2
4rg2" » 7 47k1/2 e
2
E(e 1 0,4
+ )2 il 0+ 2]
n,T
and
=~ iT/"+¢n.T 2
{7BNHLS P o2ds 1w 1
V2 by, rk/* — ~ 4|07 (0 + g0} - = {g07} | (B(”)”.
¢n,T ¢n,T T T
| |
Proof of 14. If ¢ = 75—, then
= iT/n+e,, iT/n+dé,,
V.2 vEnes _ fiT/" ' Uids ~ 49010 ¢ iT/n ! 4d8 T 1
7 ¢n,T ()bn,T * ¢37,,T k1/2¢n,T
. L [T/t
g O HEE)" 2B [ o%ds}
iT/n
4 (BE)° | 007+ ).
and
—~ iT/n4+¢, v 2
BNHLS o2ds 1
V2 o/ 2k v _ i ~ 4rg?® (o)) — 4={g0?} (B(e2))”.
¢nT ¢nT T
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172 [ m(e2))2 1/2
Now select 7 = ( gg‘ ) <M> . This choice yields,

L] iT/n
SenmLs  [IT/mtenr 24
v e (V00 e DT L ) (o) )
¢n,T ¢n,T

[ ]
Remark (ii) (The rate of convergence.) The condition ¢, , = k® with —3 < @ < 0 (which implies ¢:L/772«k1/4 — 00)
combined with qﬁi{%kl/‘l ((bn’T log (%1

(roughly) ¢, = k® with —% <0< —i. Hence, one could choose 6 = —%, and the implied rate of convergence of the spot

variance estimator would now be k%, which appears to be optimal for this problem.

1/2
T)) — 0 (which is necessary to eliminate the asymptotic bias term), leads to

B Appendix B

We begin with useful preliminary lemmas.

Lemma B.1. (Bandi and Phillips, 2003) Assume dJ7 = 0 Vt. Also, assume App = % — 0 and hnr — 0 (as
T x 1/2 a.s. = a.s.

% (An’T log(Aij)) = 0 and hnrLy2(T,xz) = oo, where
L2 (T, x) is the chronological local time of 0. Then,

ZK ( I > (f(@Girnyr/n) = (0T /m)

m(x) = - = m(z).
’ ZK< iT/n >

If, in addition, h;r’“Tfaz (T,z) = Oq.5.(1), then

n,T — o0) in such a way as to guarantee that

with

where s(x) is the diffusion’s speed measure.

Lemma B.2. (Bandi and Phillips, 2003) Assume dJ{ = 0 Vt. Also, assume Ap 1 = % — 0 and hnr — 0 (as
T B 1/2 4. - . .

n,T — o00) in such a way as to guarantee that % (An,T log (A—lT)) 30, where L,2(T,x) is the chronological

local time of o2. Then,

Z K < e "”) (F(olirryrsn) = F(0Tr/n))

A2 _ a.s. AQ )

@)=z mn - S A% ()

ZK
n T
If, in addition, W = Oq.5.(1), then
hn,TLo-Q (T7 13) {KQ(.CL’) _ AQ(.’L‘) _ FA(LU)} =N (O, 2K2A4(.’B)) ,
A'n,,T

with

Ta(z) = hi Ky

A (@) (g’)) + ;A2”(x)} 7

where s(x) is the diffusion’s speed measure.
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Lemma B.3. (Bandi and Nguyen, 2003) Assume dJZ # 0. Also, assume Ap 1 = % — 0 and hn,r — 0 (as n, T — )

in such a way as to guarantee that w

chronological local time of 0. Then,

hn,T

n 2
n,T OiT/n — %
Z 7
i—0 hn,T

If, in addition, hf’l’ngz (T,z) = Oq.5.(1), then

Vhor Ly (T, ) {Ej (z) — 67 (z) — Ty (m)} ~N (o, K20% (:c)) ,

n—1 0.2 — j
Z K (W) (F(olirnyrym) = Folrm))

e(x) V>l

with

Ls () = hp, K [oj’(r)’;((;) + 507 (:c)] :

where s(dx) is the process’ invariant measure Vj > 1.

Proof of Theorem 1. Fix T. We wish to show that

n ~2 T 2
~ ag; — T —
Ln(x):AwTZK<AM>_/ %K(U ””)dszop(l)_
0

hn,T i—1 hn,T n,T hn,T

Since K(.) is continuously-differentiable and bounded by Assumption 1, then
n—1 (i4+1)T/n 5? — 2
Z/ K| &nr = —K<US ””) ds
=0 iT/n hn,T hn,T
~2
AnT 5(2)*1' AnT O‘"AnTix
i K ) K 3
+‘ hn,T ( hn,T + hn,T hn,T
o (T || (7= T
hn,T hn,T

—1 .
1 % (i+1D)An 1
<
hn,T Ay, T
where, by the mean-value theorem, o2 is a value on the line segment connecting O?An , With o2. Now notice that

i=0
1 1/2
o2 — G?AH’T‘ = Oa.s. ((qﬁn’T log ((ﬁ—)) )
n,T

by the Brownian modulus of continuity. Also, given Assumption 2,

iT/ntén T 2
~2 fiT/n osds < 1 )
- = Op

Py -
o On1 k9l
sup

1 1/2
0’3 - U?An T. = Oa.s. (An,T log ( )) .
iT<s<iTya, p ’ An,T
1 1 1/2 1 1 1/2 1
=0 o log | —— + A,rlo ( )) 4+
P (hn,T <¢ T8 (¢n,T )) h’ﬂ»T ( rios An,T ka(lﬁz’Thn,T

= Op(g(T, n7k7¢n,T))

=~ 1
<

hn,T

ds 4+ 2C10q.s. <%) ,

n,T

iT/ntép, T 2
fiT/n o2ds )
sup — O, r < sup sup

i 3 - T - T
i<n d)n,T i<n z;SsSl;-&ﬂme

uniformly over ¢ = 1,...,n. Finally,

This implies that

2 ~2
0s — O—iAn,T

sup
i<n

hn,T
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(An,T log (ﬁ)) —' 0 and hn,7L,2(T,x) = oo, where L,2(T,x) is the



and, ignoring the negligible (under our assumptions on the bandwidth hn,7) term Ogq.s. (ﬁ’%) ,

’ 2 —
K ("S a +op(1))
An,T hn,T

’ 2 _
K (US i —i—op(l)) ’ ds

hn,T

ds

T Op(g(Tv na ka ()bn,T)) it /(i+1)An,T

hn,T

=0
_ Op(g(Tfn7k7¢n,T)) /T
0

hn,T

= Oyl ko)) [ |K w0 op0)] T (Tt + ) do
= C2OP(9(T7naka¢n,T))zoz (T7 .CL‘) )

by the occupation time formula for semimartingales (see, e.g., Protter, 1995, Corollary 1, p.168) and the integrability of
K’ (.) from Assumption 1. If (T, n,k, ¢, 5) — 0, then L, (z) %0, and convergence to the chronological local time (at T'

and z) of the spot variance process derives from another application of the occupation time formula to fOT ﬁK (ﬁ;;) ds.
= . ,
Proof of Theorem 2. We show how the estimation error induced by the preliminary spot variance estimates is handled
asymptotically in the drift case. Similar derivations apply to all infinitesimal moments (in both the diffusion and the
jump-diffusion case) and are omitted for brevity. Write

f.iT/nJr(bn’T szs

~2 2 iT/n
~ Oir,r — T Oin, r — T - o Z
K =K ~) K=K ~) K=K On.1
hn,T hn,T hn,T

~ 1/2
Immediately, given the arguments in Theorem 1 above, K;— K = O, (é) JKi— K =0, <# (¢n7T log (ﬁ)) ) ,

hn’TkaqbgyT hn,T

K 1 1 1 1/2
Ki—K:=0 + (n lo (—)) = 0,(¢(T,n, ky b,y 7)),
? (hn,Tk%ﬁj on. 1 n,7log . p(a( b))

and

f(a:%iﬁ*l)An,T) - f(&'?An,T) = f(U?i+1)An7T) - f(U?A.,L,T) + OP (h”ﬂqu(Ta n, k: ¢n,T)) .

Now, write

/él (x) _ Z?:l I:K'L + OP (q(Ta n, k7 ¢n,T)):| [f(o-?iﬁ»l)An,T) - f(U?A.,L,T) + OP (h”ﬂqu(Ta n, k: ¢n,T))]
An,T Z:?:l [Kl + OP (Q(T7 n, kv ¢7L,T))]

and, since

1 1 TOP(Q(T7 n7k7¢n T))
'n = n - - +0 q(T7n7k"7¢n )
A Zi:l [KI +Op(q(T, . k, ¢nT))] An,T Zi:l Ki (A"vT Z?:l Ki)2 vl T))

then, neglecting smaller-order terms in ¢(T,n, k, ¢,, 1),

)
TOp (‘Z(T7 n, k, ¢n,T)) 2?21 [Kz +Op (Q(Tv n,k, ¢n,T))] [f(‘f?i-‘-l)AmT) - f(a?An’T) +Op (hn,TQ(T: n, k, ¢n,T))]
(A”’T > i Ki)2
+Z?:1 Op(q(T,n, k, ¢n,T))[f(U?i+l)AnyT) - f(Uz?An,T) +Op (hn,T‘I(T: n, k, ¢n,T))}
Anr >t K
1 KiOp(hn,rq(T, 1, k, ¢, 7))
Anr Z?:l K;
= m(z)+Ri+ Rz + Rs.

Since m(z) = m(z)+o0,(1) from Lemma B.1, we only need to show that the remaining terms are so that Ri+R2+R3 = 0,(1).
Write
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R3 =0, ( Anr =0y An,TkO‘(bf%T + Anr &1 08 o — 0

under our assumptions (see Eq. (15)). Now write

TO(a(T, 1.k, by 1)) S0y Kilf(0Fi1)a, ) = f(03a, 1) + Op (hnra(T .k, &, 7))]
( n,T Zi:l Ki)2
TOP(Q(Ta n, k, ¢n,T)) 22;1 OP(Q(Ta n, k, ¢n,T))[f(G?i+l)AnyT) - f(UfA,L,T) + Op (hn,T(J(Ta n, k, ¢n,T))]
(A"’T Z?:l Ki)2

R, =

+

= R4+Rs.

Since i:; S Ki B Lo (T, x) from Theorem 1 and L2 (T, x) o< v(T), then

TQ(T7n7k7¢n,T) 1 1/2 qu(Tanakja¢n,T) p
R4 a Op < ’U(T)hn,TAn,T An"T 10g An,T + U(T)An,T - 0’

R _ O T’I’L T n, k ¢n T) lo 1/2 an?)(Ta n, k7¢n7T)hn»T
5 P T)2h2 An,rlog o(T)2h2 1
- 0 T2 T n, ]{i ¢n T lo 1/2 T2q3(T7 n7k7¢n,T)h"vT
R Wl 2hnT P o(T)?h2 At
0 T2u0(T)2¢*(T, n, k, Gpr)An,r A o 1 1/2 N TQU(T)_Q(]3(T,H,I<J,¢7L’T) £
? h?z TAEI T 08 AH,T hn,TAn,T ’
and
q(Tvnaka()bn T)n 1 1/2 nq2(T7n7ka¢n T)hn,T
R, = = 7R (AL ] :
> = O ( Tonro(T) T8\ Anr T (D)
_ o (TTnkbnr) (1 V2T (T n,k,y ¢y g )hn, 1
N P hn,TU(T)An,T T 08 A'n,,T hn,TU(T)An,T
TU(T)_lq(T7 n7k7¢n,T) 1 1/2 T/U(T)_qu(T7n7k7¢n,T) D
N OP < hn,TAn,T (An’T log <A7L,T)) + An,T - 07
since
To(D)'q(T\n, k.6, 1)  To(T)"* L (@) (¢ o < 1 ))”2 o
An,T B An,Thn,Tka(ZS?L,T Anhnr nT 8 ¢n,T .

As for weak convergence, note that

\ hor L2 (T, z) {51(x) - m(:c)}

=\ hurL (T, ) {i(x) — m(2)} + \ hwrLy2 (T, 2) {Ry + Ra + Rs)}

= R To(T)~ /2 To(T)~Y/?
ho,rLy2(T,x) {m(z) — m(z)} + O + ¢y, 7 log
) e O\ S oo, A\

)7

= VhorLy2 (T, 2) {f(z) — m(@)} + op(1).

Lemma B.1. now gives the limiting distribution. W
Proof of Theorem 3. The result follows from using the method of proof of Theorem 2 combined with Lemma B.2. B
Proof of Theorem 4. The result follows from using the method of proof of Theorem 2 combined with Lemma B.3. B
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Proof of Theorem 5. For brevity, we focus on two representative cases in the context of the generalized Duffie et al.’s
specification (f(o?) = o2 and £ ~ exp(ft¢))- In particular, in order to illustrate the relevant issues, we detail the method of

proof for (1) a point-wise functional estimator (on (x)) and (2) a semiparametric estimator (fi). Similar methods apply
to all estimators in Theorem 5. In all cases below, the estimation error induced by the spot variance estimates is handled
as in proof of Theorem 2.

We begin with A,2(z). Using a Taylor expansion, write the dominating terms in the estimation error decomposition as

A - A = — . 41
o2 (1‘) o2 (w) 24’[/221 24#21 24#21 24#2 ( )

X }:%)_94@) o) - 0') A0 (@) — o)

By an application of Ito’s lemma for Leévy processes (see, e.g., Cont and Tankov, 2004, Proposition 8.15) to (:E — (T?T/n)4, the

L5z 11K<7’T/” )f%*?”"(s“>4n<ds,ds“>

[ J

~4
dominating term in the limiting distribution of  ()—68*(z) is easily shown to be

2 —x
()
Write the (standardized by 1/hn,7) numerator of the previous ratio as

n—1

n-l ) (G+1)T/n 4
= Z’w(fij/n)/ /(5 ) Uo(ds,dE”) = ZujT/n,(j+1)T/n7
j=1 iT/n j=1
o2 -
where w(U?T/n) = \/hln—TK ( J;ZTLT 1) For all T', the objects {ujT/n,(jH)T/n, Sjn,1<j<n, n> 1} constitute a zero-

mean, square-integrable, martingale difference array. The conditional variance of U, r is

G+1)T/n 2
v, = Zw 2rm) {(/T/ / (s">4va<ds,ds")) %}
— (G+D)T/n
(”f) B { < / A(O?)E((é")g)d8> mn}

A"an_l 2 (Ohrm = 2 o8
= K @B + o)

j=1
2

EA— /OT K? (u) Ao )E((€7)%)ds = U.

Ap,7—0 hn,T hn,T

If an appropriate negligibility conditions (i.e., a conditional version of the Lindeberg condition) is satisfied, namely

n—1
2 P
Ve>0,% E {ujT/n,(j+1>T/n1(\ujT/n,<j+1>T/n|>e>|3m} =0, (42)
j=1
then 1
U,,r = Z, with characteristic function E( (3)<p(—§U:‘,2))7 (43)

which is a generalized martingale central limit theorem (Hall and Heyde, 1980, Theorem 3.2, Corollary 3.1). We now show
that Eq. (42) holds. Write

n—1
2
> E {“jT/m(iJrl)T/n1(\u,vT/n‘(j+1>T/n|>e)|%jT/n}
j=1
n—1 n—1
2 2
= Z E {ujT/'rL,(jJrl)T/nl%jT/n} - Z E {ujT/n,(z‘+1)T/n1(|ujT/n,(j+1)T/n\Se) |%iT/n}
j=1 j=1

= INJ?T* E U2‘Tn‘1Tn1 ® ISi7/m ¢,
" ; s ('K<M> LA OTI™ [(67 )47, (ds,dg7) | <e ) o

Vhn,T
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,T

o2 —x 1
but K ( JZ:" )f]-(qjﬂﬁ)T/nf(fg)zl Uo(ds,d§%) = Op(+/An,r). Hence, the indicator converges in probability to 1 and,
given boundedness of U, Eq. (44) converges in probability to 0 (as A, r — 0). Thus, by Eq. (43), Un,T = Wg,

n T

where W denotes Brownian motion. In addition,

Un,T

= W
2 Ap,7—0 Pl
Ap, T 0 oir/n " ’ 1 T Ts="" ) 4s
\/hn,T Zj:l K B T hn,T Jo hn,T

Now, by the ratio-limit theorem for Harris recurrent processes (see, e.g., Revuz and Yor, 1994, Theorem 3.12),

U
T K (";” )ds
b e K () A@B(E))s(a)da
T e %K (#52) s(a)da

S K (u )/\(UhnT+$) ((€7)®)s(uhn, + x)du

</:: K (w) du) A<cc>E((£°’)8).

Finally, W o = ( KgA(x)E((§U)8)> Z, where Z is a standard normal random vari-

P r) A,L_’T—>O7 T—o0, hy,7—0
ds

1 Tg|Zs=
T o T

able, by Skorohod embedding (see, e.g., Van Zanten, 2000, Theorem 4.1). Hence,
- 'S 4 o\8
(Vhorloro) {f'@ -}, oz (VEA@R(E) 2
It then follows that

K2\ (2)E((€7)7)

Ap.7—0, T—00, hy 7—0 24u§

( hor Ly (T, x)> {Xcz (z) — Ay2 (m)} Z, (45)
since, as we will show below, iy — p1; converges at a faster rate than 54(33) — 0*(x) and, therefore, has an estimation error

which does not affect the resulting limiting distribution. This proves the stated result for on (x). We now turn to fi,. Write
the estimation error as

7 802 a2
T Ty 0 (Uﬁ/ﬁ) 0 (JzT/n)
T(ﬁfiﬂf):iz =3 3 + 0p(1)
miE \40 (%)) 46°(0% )
T 4/ 2
= r 1 ot 40 2 0 (Uﬁ/ﬁ) ~3 . o 3, 2
= G2 | wpr 5 0l 0l - = (0 — 0t ) (46)
i=1 iT /7 0 (0_7 )
T /7
An 7, T,i -
n,m,T,7
+op(1). )
o2 o2
o S IIK(W> ST (67) i (ds,de”)

Again, the dominating term in the limiting distribution of [ (o2 T )— 94(0%/i) is

AT v g I/
R, m “3=1 R,

Write
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- G+1D)T/n

Angr == ZAMTFZ @) [ €Y s e

— iT/n

Bl
H'M:\

2
where w(ojr/,) = P
3 n i n

0N T S K R

>> . Given previous results, A, » 7 is an average of asymp-

totically normal random variables. chcated applications of the occupation time formula yield its limiting variance:

AnnT

- nTZw 020N ) BE)®) + 0p(1)

S

3T /n
hn,T

nT

n—1 n hnl,T ( 7T/fTLLn,T1T/”> 2 2 8
= An,T Z Z 2 o2 )‘(UjT/n)E((fo-) ) + Op(l)
2 e (57 e ()

1 o2_—o2_ 2
T T e K (ﬁ)
B / / P du | A(o®)E((€7)%)ds + 0,(1)
T oL_—05_
0 0 49%(52_) (h'nl,T Iy K <T) de)

( ) Lo2(T,a)da | AB)E(E7)*)L,2(T,b)db + o0,(1)

B /:; (/Z 4a) f°° ( )L 2 (T, c)de

b K (f) - ’ e
/oo 403(b_fhnT f K ) (T uh+b— fha, T) L02(T7b_fhn,T)df> )\(b)E(({ ) )LHQ(T7b)db

= [ s | E ) e T e+ 0y (1)
—00 16(6°(0))? \ (L,2(T,b)

= A+o0,(1)
Thus
o\ —1/2
(A) (Anmr) = Z, (48)
A, 7—0, T—o0, hy 7—0
o2 o
e o1 K (%) G;;;)T/n(& )35 (ds,dE”)

Similarly, the dominating term in the limiting distribution of 9 ( ) 0*(o ZT/H) is

AnT 7T
hp, o ~i=1 hp,T

In this case, write

T n-l 9 G+1)T/n o3 .
Bn,ﬂ,T = = ZBn,ﬂ,T,i = Z w(UjT/n)/ (€ ) ﬁa(d&dg )7
ni j=1 JT/n
02—t
1 iT/n” 7T /m
9 7 & 6% (o2 T ) hn,TK< hn,T ) ) .
where w(o5r,,) = % > e 5 3 . Following the same steps leading to Eq. (48) we
i= 32 An iT/n_ "iT/m
oo \ o]
obtain:
N\ —1/2
(B) " Bumr =~ z,
Ay —0, T—00, hy 7 —0

where
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s [ () ((TaT0) e
B= /,w 16 (63(b))* <(L02 e b))2> A(D)E((€7)") Loz (T, b)db.

Finally, the asymptotic covariance between A, » r and B, m,r can be expressed as

=~ [ (') [ (L2(T.0) o
€= /_oo 16 (6°(b))° < T.(T.b )A(b)E((f ) VLy2 (T, b)db.

In sum,
~ ~ ~\ —1/2 _
(A+2C+B) " T{i - ne} NP e 4 (49)
which proves the result as stated in the main text. We conclude by noting that
N2
(D) T {fe — e} A1 —0, T—500, hyy 7—0

where

At S\ 16(8) 16(0°)" 16 () e

(as in Remark 13) since (11 +2C + ]§) /D 2 1. Also, from Eq. (49), the rate of convergence of fi; to p, is effectively

_ . R ~4\2 6 JT/" i/w
TN R AN GLAR K (D)

Op((Ly2 (T, x))1/2), This (semiparametric) rate is of course faster than the (nonparametric) rate of convergence of v’ (z) to

07 (x) V4, namely Op((hn, 1Ly (T, x))1/2), thereby justifying the asymptotic negligibility of the second term in Eq. (41). B
Proof of Theorem 6. The result follows from using the method of proof of Theorem 2 combined with Lemma B.3. B
Proof of Theorem 7. For brevity, we only consider the case f(o?) = o2, £ ~ exp(u). The case f(6?) = logo?,
&7 ~ N(0, Ug) can of course be handled analogously. We start by separating measurement error as in the proof of Theorem
2 and write

- 2
S K (5 ) outrsrnyrn) ~ os(irn)) @iy = )
iT/ o?
s Ex )

n=1 o2 —o2
2 K <7;L/'7) (log(p(i+1)T/n) - IOg(piT/n)) (U?i+1)T/n - U?T/n)
= = + Ro,

TiT/n %" —o?
nTzK( B T )

where Ro — 0, under our assumed bandwidth conditions. Now notice that Ito’s lemma yields

Co?) =

(i+1)T/n
(10g (P(i+1)7/n) =108 (Piz/n)) (olirryz/m = Tir/n) = / ) (03— —ofr/n) p(o3-)ds
iT/n
GO/ 5 (i+1)T/n 5 )
+/ (037 - U,-T/n) o dW. +/ /(037 - U,-T/n) Yo (ds, dy)
iT/n iT/n
(i+1)T/n ) (i+1)T/n 9 "
+// (log(ps-) — log (piT/n))m(o-s*)ds—"_// (log(p,-) —log (pir/n)) Alos-)dW;
iT/n iT/n
(i+1)T/n . .
+/ / /(log(ps*) - IOg (plT/n))é- Ua‘(dsadé- )
iT/n
) G+OT/n )
+ > (Alog (ps) Ac?) + / p(o3-)o - A(o2-)ds,
iBp r<s<(i41)An 1 iT/n
where Alogp. = logps — logp,— and Ag? = o2 — 02_. For convenience in what follows We compensate the random

measures vr(ds, dv), v, (ds, d§7) and, consequently, write m(a?)+ Ao (022 )E[¢7] in place of m(c?_) and fi(o?_) = pu(o?-)+
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Ar(0?2)E[Y] in place of p(o?_). In other words, we add and subtract the conditional first moment of the jump size to

S
render the discontinuous components martingale difference sequences. With this, one can show (see below for an explicit

derivation of the rates of convergence) that

—1
. 1 ) K( lT/n > [L(;/ri)T/n( — U?T/n) as_dW;}
R, = mT 3
nT ZK< iT/n “2>
’n T

n—1
. K( b ) [ fﬁim” 8(p.-) — log(pir/n)) Ao )WY | ( "
) (50)
)>

+ = —_—
AnT aiT/n_Uz hn, 7 Ly2 (T, 02
Ry
and
n—1
o K (e ) 572§ (@2 = o%0) wmn(ds, du)|
i=
Re = T TiT/n "% —o?
Z K ( ho, T )

Raq

YK (/—’) S5 | (10g(pa-) = log(pizn)) €7 Ta (ds, d€7)] ( <
) nr (51)
)

n 1 Ly2 (T, 02

+ 3 =
s i (Te”)

Rop

Thus, R1 + Rz 2 0, under our conditions on the bandwidth. Using the process’ modulus of continuity and the ratio-limit
theorem, write

hn,T
R; = e
s (B
n—1
5K ( e ) 2 (108(pa-) = 10g(pir/a)) (m(2-) + Moo )EIE"]) ds]
02
s ()

ZK( oty ) [[50T/" (02 = 0%y0) (w(0?-) + Ae(o?- VB[] ds]

IN
Q
)
W
RS
>
3
|
3
(OS]
/N
>
3
H
——
—
—
~
[V
l@
o

Notice also that,

n—1 o2 52
T K (%) [ 5 AlogpsAaﬁ}
= ; iT/n<s<(i+1)T/n

TiT/n %" -2
nTZK< B T )

since, by independence of the jumps, the probability of common jumps is zero (see, e.g., Cont and Tankov, 2004, Proposition
5.3). Finally,

= Oa.s.(1)7
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by K( e ) L2 plo?-)a - Al )ds
o2
n T Z K ( zT/nnT )

2 C(a? P

) = oaram A
consistent estimate of A(c?), as implied by Theorem 5. We now turn to weak convergence and clarify the origin of
the rates in Eq. (50) and Eq. (51). Start with Rj;. Express the conditional variance of the standardized numerator

= h
num __ n,T num
1.6 = ( rl’T) 1,b as

p(c®)Vo2A(0?),

C(0®)=Ro+Ri+Ra+Rs+ Ry + =

by the ratio-limit theorem. This implies, by Slutsky’s theorem, that p(c o?), provided /A\(a2) is a

(+1)T/n

n—1 2 2
= num)? 1 Oir/n — O
(w0 = s S (T T )R ) e sttt |
1

n,TAn,T . h’n,T iT/n
Noting that

(log p,— — log piryn)”

S

= 2/‘ (log p,— — log pir/n) ﬁ(ai-)dU+2/ (logp,— — log pir/n) ou—dWy

iT/n iT/n
A
+2/ /(logpu, — log pir /s ) v (du, dip) +/ o2 _du +/ A (o2 - )E(l/)2)du+/ /1b v(du, dip),
iT/n iT/n iT/n T/n
C B

write

~ 2
num
( Lo )

n—1 2 i+1)T/n
1 2 UzT/n g /(+ 2 .2 2
= — K E logp,— —logpir/n)” A% (05-)ds|Sin
Tt B 2 ( Tt ) { o (log p, gpiT/n) A (07-)ds|S;,
n—1 2 i+1)T/n 2/ 2
1 2 JzT/n o /( + A (U *)
= — K E 3 lo — —logpir/ntd{logp —log piT/n}s|Sin
AN ; ( hn,T ) { iT/n (Ui, JrAr(Ui,)E(sz)){ gDPs g DiT/ } { gP g PiT/ } ‘\9,
+o,(1)
_ 1 nil K2 J?T/n -0’ A2( 0iT/n T Oa.s. (1)) E { {logps— — logpiT/n}2 ‘(iJrl)T/n'%i n}
b, 7B, m = hn, T (@20, + Ar(o 2.T/H)E(w )+ 04.5.(1)) 2 iT/n :
+o,(1)
2
1 n—1 o 0_2 AQ(U?T/n + 0(149 ((fl(;:/‘ri)T/n 0’3— + )\T(O—i—)E(sz)) “(\yv,n)
— ZKQ iT/n
L ATA hn,T 2027 + A (077, E®?) + 0a.5.(1))
+0p(1)
2o L1 [Tge (T2 par )2y (o2 ) ds (52)
An,T—’O 2 hn,T 0 hn,T To=) 1%s= s ’

where the term {logp,- — logp;r/,} defines the measure f:T/n (02_ + A (02 )E(¥?)) du. We now justify the o,(1) term
above by showing that the neglected terms (in A, B, and C) are negligible. Write A = A; + Az. The term A; is clearly
not problematic being of higher order than {logp,- —logp;r/n}. The terms C and Az are of higher order than B. We
therefore focus on B. Using integration by parts (see, e.g., Protter, 2005), we obtain
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n—1 2 i
1 TiT/n (H+DT/n
Frdnr 2K ( ; ) e (/ b BAE
’ =1 n
n—1 2 i l)T/n (i+1)T/n
1 2 UzT/n / + 2 / / 2—
= - K E o:_)ds Yu(ds, dy) | |Sin
hn,TAn,T; ( ) << T/n ( ) iT/n ( )|
n—1 (+1)T/n s
v ZKQ( e )E( /T/ ( » AQ(ai_)du> / w%(ds,dw)] |%>
n-1 2 SN (+DT/n
o
= o 2 () () et ([ [ easao) o)
n, n,T T/n iT/n
V)

since E ([IZ(TZJ;;)TM (ffT/n 2(02 du) fw v(ds,d | ml) = 0. Now write

2 (+1)T/n 2 i+ 1)T/n
1 2 iT/n — O j;,T/n A ( )ds /( + / 2
K |———|E v(ds,d Sin
hn T Z < n T ) An,T T ﬁ) ( 1/’) |\f,

2
- hl ZK2< ZT/HT ? )E (A2(G?T/n)+0a‘s‘ <A1/2 log (AlT))) Z (Alogps)2 1Bim

n iT/n<s<(i+1)T/n

= i — O i+1)T/n
o 2 irm =0 242 1/2 1 /( i 213 (o2 S
hn,T ; K < hn7T > E <(A (O-zT/n) + 0a.s. (A 10g (An,T)>) ( T E(l/) ))\r(asf)ds ‘\fz,n
1 1 T 0_27 _ 0_2
_ A2 / K2 s B2\ (02
Op ( n,T og An,T Op hn,T o hn,T ('IZ} ))\ (0'57 )dS An,_T>—»0 07

since B (ZiT/ngsg(iH)T/n (Alogps)® |3, n) - (fi(;ﬁi)T/" E(1/12))\7-(a§7)ds|%i,n) =0.

Finally, note that {f(;E)T/n (log Pe— — logpiT/n) A(o? 2 dwe, Sy n} is a square-integrable martingale difference array.

The same methods as in the proof of Theorem 5 show that a conditional Lindeberg condition is satisfied for R"”m =

fn 7 R num Hence, using a generalized martingale convergence theorem and Skorohod embedding as in the proof of

An 1,b
Theorem 5:
Ly (T, 02 RyY™ 1
h T (7'2( g ) - 1,b = \/K27 (02+)\r(02)E[w2D A2(0_2) A
An,T L0'2 (T7 0_2) Ay, 7—0, T—oo, hp,7—0 2
Similarly,
= 2 num
fnrlo2(Ty0%) | Ria N \/K21 (Ao (02)E[E?] + A2(02)) 02 | Z.
Apr L. (T, 02) A, 7—0, T—o0, hy,y 7—0 2

In addition, the asymptotic conditional covariance term can be expressed as:

asyeon [, f (T,02) R&™  |h, f (T,02) Ryum
An, L. T02 An, L,(T,0?)

SKap?(0%)0? A2 (o).

A, 7—0, T—o00, hyy 7—0 2

This result yields:

hn,1Ly2 (T, 02)

R
A'n,,T !

N \/K (32 (0IEIE0? + G0 GDBIIARG) + (14 52(02) 0202(0%) ) 2
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Using the same reasoning (combined with the independence of the jumps), we obtain:

hn,T o2 (T, 0'2)

L
An,T

oK (8307 4 A BIEDA (GBI + (07 4 An(o? B A ()BT Z

Ro

A,

As earlier, the bandwidth conditions guarantee that Ro = 04.s.(R1 + R2) and, by independence of the jumps, R3 =
0a.s.(R1 + Rz). Finally, consider the bias term

b K( T )J;%%’T/" 02 )o, A(o?-))ds
nTZK( iT/n a2>
n T

Define 2(.) = /;p(.)A(.). An application of the ratio-limit theorem combined with a second-order Taylor expansion leads
to

— p(c®)Va2A(5?).

Fc(0'2) =

1 §'(o?
FC(U2) = hn T (22//(02) + ZI(OZ) S((O'Z))> + 0a.s.(1).
Thus,
hn,ng2 (T, 02) Ao 2 2 (o]
A, {O(U ) —2(07) —Tolo )} A7 —0, T—00, hy 7 —0 N (O’K29 (o )) ’
with

09 (0°) = A*(6%)0” (1 4 p*(07)) + 07 As (0*)EIE?] + A (6) A\ (0 B[] + Ao (0*)E[E°] A (0*) E[)°].
Now, by the delta method,

(%) = p(e®)}

{(
_ Clo C(c?)
oA(o?)

A
- 1 2 Apr ) 2 1T .
" ) {O(""*T”O”< e ) e e ([t preo

Hence, the asymptotic distribution of the leverage function is driven by /A\2(02) — A*(0?) and has variance

[ (((sf’f - <§”>4)2>

Asyvar(p(c®)) = % (Asivar (KZ (02)>) = ZAE:ZO') T2 Toa (T, 0%) + 0p(1).

Finally, under one of our assumptions on the bandwidth sequence (namely, lim,, r— o0 h} 70(T) = o(1)), p(0?) — p(0?) has
a vanishing asymptotic bias. l
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