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Abstract

This paper studies the effects on equity premiums of “risks after dis-

asters”, which are defined as a sharp rise in volatility of real per capita

GDP growth rates immediately following disasters. This paper makes three

contributions. First, we analytically demonstrate that if and only if the

degree of relative prudence is higher than 2, risks after disasters decrease

equity premiums. Second, we find that the differences between equity pre-

miums with and without risks after disasters are quantitatively significant.

Third, equity premiums are still higher in the case of disaster than without

a disaster.
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Hitotsubashi University) from the Ministry of Education and Science, Japan. Of course, all
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1 Introdctuion

Many researchers pay serious attention to the potential impacts of disasters on

equity premiums. Disasters are defined as events such as wars, severe depressions

and natural disasters, which are infrequent but significantly reduce real per capita

GDP growth rates. Rietz (1988) and Barro (2006) argued that representative agent

models generate large equity premiums, if disasters are independently and iden-

tically distributed (hereafter, i.i.d.). On the other hand, Gourio (2008) examined

the fact that historically observed disasters tended to be followed by sharp rises

in real per capita GDP growth rates (hereafter, “recoveries”). Then he demon-

strated that disasters with possible recoveries generated small equity premiums,

if the degree of intertemporal elasticity of substitutions (hereafter, IES) was high.

However, as discussed in a later section, historically observed disasters tended to

be followed by persistent declines in real per capita GDP growth rates as well as

by recoveries. In other words, disasters tended to be followed by sharp rises in

volatility of real per capita GDP growth rates (hereafter, “risks after disasters”).

This paper studies the effects of such risks after disasters on equity premiums.

Then it demonstrates that precautionary saving, rather than IES, plays an impor-

tant role in determining the equity premiums. In particular, using a three-period

Lucas tree model, we analytically demonstrate that risks after disasters decrease

equity premiums if and only if the degree of relative prudence (hereafter, RP)1 is

higher than 2. This result suggests that ignoring risks after disasters causes com-

puted equity premiums to be too large. In fact, introducing risks after disasters

into Barro’s disaster model, we find that the differences between equity premi-

ums with and without risks after disasters are quantitatively significant. However,

we also find that the equity premiums are still higher than in the case where no

disaster occurs.

This paper is organized as follows. Section 2 constructs a three-period Lucas

tree economy and analyzes the effects of risks after disasters on equity premiums.

Section 3 introduces risks after disasters into Barro’s disaster model and explores

quantitative effects of precautionary saving on equity premiums. Section 4 offers

a conclusion.

1RP is a measure of precautionary saving proposed by Kimball (1990).
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2 A three-period economy with risks after disasters

In order to analyze the effects of risks after disasters on equity premiums, we

construct a three-period Lucas tree economy. In this economy, there are two

assets. One is an equity share in a Lucas tree, which produces a single perishable

consumption good as a dividend, and the other is a risk-free asset. In period 2, the

normal state (n) occurs with a probability of 1−p and the disaster state (d) occurs

with a probability of p. Once the normal state is realized in period 2, there is no

uncertainty in period 3. On the other hand, if the disaster state is realized in period

2, the dividend in period 3 is uncertain. The parameters yn
2 and yn

3 represent the

dividends of the Lucas tree in periods 2 and 3, when the normal state is realized

in period 2, whereas yd
2 and ỹd

3 represent the dividends in periods 2 and 3, when

the disaster state is realized in period 2. We assume that yn
2 > yd

2 . ỹd
3 is a random

variable, where ȳ ≡ E[ỹd
3 ] and δ2 ≡ E[(ỹd

3 − ȳ)2]. The parameter δ represents risks

after disasters2. E[·] denotes the mathematical expectation operator conditional

on information available in period 1. The parameter y1 represents the dividend of

the Lucas tree in period 1. We assume that there are no idiosyncratic risks.

The parameters x1 and a1 represent agents’ holdings of the equity share and

the risk-free asset in period 1. P1 and Q1 represent the prices of the equity and

the risk-free asset in period 1. xs
t and as

t represent agents’ holdings of the equity

share and the risk-free assets in period t = 2, 3 and state s = n, d, and P s
2 and

Qs
2 represent the prices of the equity and the risk-free asset in period 2 and state

s = n, d.

The representative agent maximizes his/her expected utility subject to budget

constraints:

u(c1) + (1− p)
{

u(cn
2 ) + u(cn

3 )
}

+ p
{

u(cd
2) + E[u(c̃d

3)]
}

The parameter c1 represents consumption in period 1 and cs
t represents consump-

tion in period t = 2, 3 and state s = n, d. We assume that the periodic utility

u(·) has positive first and negative second derivatives; that is, u′ > 0 and u′′ < 0.

For simplicity, we ignore the subjective time preference. The budget constraints

in periods 1, 2, and 3 are as follows: c1 + P1x2 + Q1a2 = (P1 + y1)x1 + a1,

2While we assume that the level of the dividend in period 3 after the disaster state is uncertain,
we can interpret that the growth rate is stochastic because the dividend growth is defined as ỹd

3
yd
2
.
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cs
2 + P s

2 xs
3 + Qs

2a
s
3 = (P s

2 + ys
2)x2 + a2 for s = n, d, and cn

3 = yn
3 xn

3 + an
3 and

c̃d
3 = ỹd

3x
d
3 + ad

3. Then first-order conditions determine the asset prices, as follows:

P1 = (1− p)(P n
2 + yn

2 )
u′(cn

2 )

u′(c1)
+ p(P d

2 + yd
2)

u′(cd
2)

u′(c1)
, P n

2 = yn
3

u′(cn
3 )

u′(cn
2 )

, P d
2 = E

[
ỹd

3

u′(c̃d
3)

u′(cd
2)

]
,

Q1 = (1− p)
u′(cn

2 )

u′(c1)
+ p

u′(cd
2)

u′(c1)
, Qn

2 =
u′(cn

3 )

u′(cn
2 )

, and Qd
2 = E

[u′(c̃d
3)

u′(cd
2)

]
.

Hereafter, scaling u′(·) so that, without loss of generality, u′(y1) = 1.

Market clearing conditions are x1 = xs
t = 1, and a1 = as

t = 0 for t = 2, 3 and

s = n, d. Then, consumption always equals dividend: c1 = y1, cs
2 = ys

2, for s = n, d,

cn
3 = yn

3 , and c̃d
3 = ỹd

3 . Expected equity returns and risk-free rates in period 1 are:

Re =
(1−p)(P n

2 +yn
2 )+p(P d

2 +yd
2)

P1
and Rf = 1

Q1
. We define the expected equity premium

as Π ≡ Re
Rf

. Then equilibrium equity premiums are defined as follows3:

Π ≡ A + αP̂

B + pP̂
, (1)

where, A ≡ [
(1−p)2+(1−p)p

u′(yd
2)

u′(yn
2 )

]
yn

3 u′(yn
3 )+(1−p)2yn

2 u′(yn
2 )+(1−p)pyn

2 u′(yd
2)+

(1− p)pyd
2u

′(yn
2 ) + p2yd

2u
′(yd

2), α ≡ (1− p)p
u′(yn

2 )

u′(yd
2)

+ p2, B ≡ (1− p)yn
3 u′(yn

3 ) + (1−
p)yn

2 u′(yn
2 ) + pyd

2u
′(yd

2), and P̂ ≡ E[ỹd
3u

′(ỹd
3)]. P̂ is the equity price in the disaster

state, P d
2 , multiplied by marginal utility in the disaster state, u′(yd

2). However, we

hereafter refer to P̂ as the equity price in the disaster state.

Below, we analyze the effects of an increase in the risks after disasters, δ, on

the equity price, P̂ , and the equity premium, Π.

Lemma 1 When the degree of relative prudence, −ȳ u′′′(ȳ)
u′′(ȳ)

is higher (lower) than

2, P̂ is an increasing (decreasing) function of δ, for small δ.

Proof. Taking a Taylor series expansion of P̂ around ȳ gives4:

P̂ ' ȳu′(ȳ) +
{

u′′(ȳ) +
ȳ

2
u′′′(ȳ)

}
δ2 + o(ỹ3).

Differencing P̂ with respect to δ yields ∂P̂
∂δ

= 2
{
u′′(ȳ) + ȳ

2
u′′′(ȳ)

}
δ. Therefore:

−ȳ u′′′(ȳ)
u′′(ȳ)

> (<)2 implies u′′(ȳ) + ȳ
2
u′′′(ȳ) > (<)0, thus ∂P̂

∂δ
> (<)0. (Q.E.D.)

3Derivations of equation (1) are described in the Appendix.
4o(ỹ3) refers to a higher-order term.
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Lemma 1 implies that there are two opposite effects of risks after disasters on

the equity price, P̂ . On the one hand, risks after disasters lower equity prices

because of risk aversion (u′′(ȳ)). On the other hand, risk after disasters raises

equity prices because of precautionary saving ( ȳ
2
u′′′(ȳ)). Thus, u′′(ȳ) + ȳ

2
u′′′(ȳ)

determines the total effects of risks after disasters on equity prices, P̂ . In fact, if

RP, −ȳ u′′′(ȳ)
u′′(ȳ)

, proposed by Kimball (1990) is higher than 2, u′′(ȳ) + ȳ
2
u′′′(ȳ) > 0

holds.

Lemma 2 Π is a decreasing function of P̂ .

Proof. Differencing Π with respect to P̂ yields:

∂Π

∂P̂
=

αB − pA

(B + pP̂ )2
. (2)

Expanding the sign condition, αB − pA, yields5:

αB−pA = p(1−p)
[{

(1−p)
u′(yn

2 )

u′(yd
2)
−(1−2p)

}
u′(yn

2 )−pu′(yd
2)

](
yn

3

u′(yn
3 )

u′(yn
2 )

+yn
2

)
. (3)

Thus,
u′(yn

2 )

u′(yd
2)

< 1 implies that the term in the bracket is negative. Now, we assume

that yn
2 > yd

2 ,
u′(yn

2 )

u′(yd
2)

< 1 always holds because of concavity of utility functions.

Thus, ∂Π

∂P̂
< 0. (Q.E.D.)

Lemma 2 argues that a rise in the equity prices in the disaster state implies

that an equity share becomes less risky and lowers the equity premiums. This

is intuitive because increases in P̂ mitigate capital losses on the occurrence of

disasters, when consumption is low and marginal utility is high.

We thus have a key proposition of this paper.

Proposition 1 : When the degree of relative prudence, −ȳ u′′′(ȳ)
u′′(ȳ)

, is higher (lower)

than 2, Π is a decreasing (increasing) function of δ, for small δ.

Proof. From Lemmas 1 and 2, ∂Π
∂δ

= ∂Π

∂P̂

∂P̂
∂δ

< (>)0. (Q.E.D.)

Proposition 1 suggests that precautionary saving plays an important role in

determining equity premiums in the context of risks after disasters. In particular,

proposition 1 suggests that when RP is higher than 2, ignoring risks after disasters

5Derivations of equation (3) are described in the Appendix.

5



makes calibrators overestimate the equity premiums. If RP is lower than 2, the

opposite occurs.

Proposition 1 holds in the case of possible recoveries, as discussed in Gourio

(2008), because Proposition 1 is independent of the magnitude relationship be-

tween ȳ and yd
2 . In addition, we can easily show that Proposition 1 holds in the

case of government default as discussed in Barro (2006)6.

Finally, we offer some examples of well-known utility functions.

Example 1 The quadratic utility implies that third derivatives are zero; that is,

there is no precautionary saving. Thus, risks after disasters always increase equity

premiums.

Example 2 The HARA (Hyperbolic Absolute Risk Aversion) utility is usually

represented as u(c) = 1−η
η

(
λc

1−η
+ χ

λ

)η

with λ > 0 and χ > 0. Then, RP ≡
cλ2−η

1−η

(
λc

1−η
+ χ

λ

)−1

and RRA = cλ
(

λc
1−η

+ χ
λ

)−1

. Thus, RP > 2 implies that

RRA > 21−η
2−η

in the case of η < 1.

Example 3 In the case of CRRA (Constant Relative Risk Aversion) utility, RP =

2 implies that the degree of relative risk aversion (hereafter, RRA) equals 1, which

is the case of the log utility. That is, when a calibrator uses the CRRA utility

with a moderate degree of RRA, ignoring the risks after disasters caused computed

equity premiums to be too large.

However, Proposition 1 in this section is based on Taylor expansion arguments

for a small δ. In section 3, then, we conduct calibration exercises and evaluate

quantitatively the effects of empirically plausible degree of risks after disasters on

equity premiums.

3 Calibration: Barro model with risks after disasters

To explore the quantitative effects of precautionary saving on equity premiums, we

introduce risks after disasters into Barro’s disaster model. Barro’s disaster model

is the infinitely lived representative agent model with CRRA utility.

6Barro (2006) computed equity premiums using equity returns and defaultable government
bond returns instead of risk-free rates.
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To conduct calibration exercises, we begin by characterizing empirically plau-

sible degrees of risks after disasters from cross-country evidence of real per capita

GDP growth rates in disasters presented by Barro (2006, Table I, p.828-829).

Duration of disasters is distributed between one and eight years with a mode of

three years. Then, we define three years from the beginning of the disaster as a

disaster period and the succeeding three years as an aftermath period. Figure 1

shows a histogram of real per capita GDP growth rates during the disaster and

the aftermath period, where the growth rates in the disaster period are lower than

-10%7.

From Figure 1, we find that growth rates in the disaster period are distributed

between -50% and -10% with a mode of -20%. On the other hand, growth rates in

the aftermath period are distributed between -40% and 50% with a mode of 10%.

Thus, we find that disasters tended to be followed by persistent declines in real

per capita GDP growth as well as recoveries. In other words, disasters tended to

be followed by a sharp rise in risks after disasters. In fact, the average growth rate

in the aftermath period is 10.06% and the standard deviation is 21.73%.

Figure 1. Cross-countries distribution of real per-capita GDP growth

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

5

10

15

20

growth rates; %

disaster
aftermath

We introduce risks after disasters into Barro’s disaster model. Consumption

growth follows:

∆ log ct = µ + (σ + δst)εt, with probability 1− p

= µ + σεt + log(1− b), with probability p

where the parameter εt represents i.i.d. standard normal random variables with a

distribution of N(0,1) and b represents the size of disasters. If the previous period

7From Maddison’s (2003) data, we limit our study to 46 events in 27 countries.
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is a disaster, st = 1, otherwise, st = 0. That is, risks after disasters are σ + δ while

risks in normal times are σ. If δ = 0, the model is the same as that of Barro.

Because it is difficult to obtain an analytical solution in the case of δ 6= 0, we must

use a numerical technique to compute equity premiums.

Following Barro, we specify the calibration parameters as presented in Table

I. In our setup, since the duration of a disaster is stochastic, we do not use the

historical distribution of b but the single value b = 43.15% in order to replicate

Barro’s equity premium if there are no risks after disasters. From Figure 1, since

standard deviation of consumption growth in the aftermath period is 21.73%, we

compute equity premiums when δ is between 3% and 23% with an increment of

5%. Table I reports results from the default considered equity premiums.

Table I. Equity-risk premiums (the case of bond default) (%)
no disasters disasters

Total risks after disasters: δ + σ 2 5 10 15 20 25
RRA: γ = 4 0.16 3.53 3.48 3.18 2.95 2.43 1.67
RRA: γ = 1 0.04 0.37 0.37 0.39 0.41 0.45 0.49
subjective time preference ρ = 0.03, average growth µ = 2.5%,
standard deviation of consumption growth in normal times σ = 2%,
the probability of occurrence of disasters p = 1.7%,
and the default probability of government bonds in disaster q = 40%.

When RRA = 4, the equity premiums equal 0.16% in the case where no dis-

aster occurs, 5.71% in the case of disaster, and 3.53% in the case of disaster with

bond default. Risks after disasters lower equity premiums because of strong pre-

cautionary saving. In particular, the default considered equity premium is 2.43%

when σ + δ = 20% and 1.67% when σ + δ = 25%. These values indicate that the

differences in the equity premiums with and without risks after disasters are quan-

titatively significant. In addition, we find that the larger risks after disasters imply

smaller equity premiums. Thus, these calibration exercises demonstrate that we

must pay serious attention to potential impacts of risks after disasters. However,

we also find that equity premiums are much higher in the case of disasters than

the case where no disasters occur. Table I also reports the results in the case of log

utility, where RP equals 2. In this case, while risks after disasters always increase

equity premiums, magnitudes are very low.
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4 Conclusion

This paper studies the effects of risks after disasters on equity premiums. On

the one hand, we demonstrate that ignoring risks after disasters causes computed

equity premiums to be too large, if and only if RP is higher than 2. In addition,

we find that the differences in equity premiums with and without risks after dis-

asters are quantitatively significant. In fact, many calibration exercises in asset

pricing literature tended to employ CRRA utility with RRA higher than 2, and

some empirical researchers found that RP is higher than 28. Thus, we must pay

serious attention to potential impacts of risks after disasters. On the other hand,

the equity premiums are much higher than in the case where no disaster occurs.

Thus, these results are quantitatively instructive because disaster models proposed

by Rietz and Barro are potentially important. Therefore, future research should

investigate whether historically observed disasters were empirically or statistically

consistent with historically observed equity premiums and other asset prices.
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Appendix

Derivation of the equation (1) We describe the derivation of the equation

(1) in detail. Using the definition of asset prices and the first order conditions, the

equity premium is written as:

Π ≡ Re

Rf

=
(1− p)(P n

2 + yn
2 ) + p(P n

2 + yn
2 )

P1

Q1

=

(
(1− p)

{
yn

3
u′(yn

3 )

u′(yn
2 )

+ yn
2

}
+ p

{
E

[
ỹd

3
u′(ỹd

3)

u′(yd
2)

]
+ yd

2

})(
(1− p)

u′(cn
2 )

u′(c1)
+ p

u′(cd
2)

u′(c1)

)

(1− p)
{

yn
3

u′(yn
3 )

u′(yn
2 )

+ yn
2

}
u′(yn

2 )

u′(y1)
+ p

{
E

[
ỹd

3
u′(ỹd

3)

u′(yd
2)

]
+ yd

2

}
u′(yd

2)

u′(y1)

As discussed above, we assume that u′(y1) = 1. Then, the denominator is written

as:

(1− p)
{

yn
3

u′(yn
3 )

u′(yn
2 )

+ yn
2

}
u′(yn

2 ) + p
{

E
[
ỹd

3

u′(ỹd
3)

u′(yd
2)

]
+ yd

2

}
u′(yd

2)

= (1− p)yn
3 u′(yn

3 ) + (1− p)yn
2 u′(yn

2 ) + pE
[
ỹd

3u
′(ỹd

3)
]

+ pyd
2u

′(yd
2)

Thus, the denominator is written as B + pP̂ , where

B ≡ (1− p)yn
3 u′(yn

3 ) + (1− p)yn
2 u′(yn

2 ) + pyd
2u

′(yd
2)

P̂ ≡ E[ỹd
3u

′(ỹd
3)].

10



On the other hand, the numerator is written as:

(
(1− p)

{
yn

3

u′(yn
3 )

u′(yn
2 )

+ yn
2

}
+ p

{
E

[
ỹd

3

u′(ỹd
3)

u′(yd
2)

]
+ yd

2

})(
(1− p)u′(yn

2 ) + pu′(yd
2)

)

= (1− p)2
{

yn
3 u′(yn

3 ) + yn
2 u′(yn

2 )
}

+ p(1− p)
{

E
[
ỹd

3

u′(ỹd
3)

u′(yd
2)

]
u′(yn

2 ) + yd
2u

′(yn
2 )

}

+(1− p)p
{u′(yd

2)

u′(yn
2 )

yn
3 u′(yn

3 ) + yn
2 u′(cd

2)
}

+ p2
{

E
[
ỹd

3u
′(ỹd

3)
]
+ yd

2u
′(yd

2)
}

=
{

(1− p)2 + (1− p)p
u′(yd

2)

u′(yn
2 )

}
yn

3 u′(yn
3 ) + (1− p)2yn

2 u′(yn
2 ) + p(1− p)yd

2u
′(yn

2 )

+(1− p)pyn
2 u′(yd

2) + p2yd
2u

′(yd
2) +

{
p2 + p(1− p)

u′(yn
2 )

u′(yd
2)

}
E

[
ỹd

3u
′(ỹd

3)
]

Thus, the numerator is written as A + αP̂ , where

A ≡
{

(1− p)2 + (1− p)p
u′(yd

2)

u′(yn
2 )

}
yn

3 u′(yn
3 ) + (1− p)2yn

2 u′(yn
2 )

+(1− p)pyn
2 u′(yd

2) + (1− p)pyd
2u

′(yn
2 ) + p2yd

2u
′(yd

2)

α ≡ (1− p)p
u′(yn

2 )

u′(yd
2)

+ p2.

As a result, we derive equation (1), that is, Π ≡ A+αP̂

B+pP̂
.

Derivation of the equation (3) We describe the derivation of the equation

(3) in detail.

αB − pA

=
{

(1− p)p
u′(yn

2 )

u′(yd
2)

+ p2
}{

(1− p)yn
3 u′(yn

3 ) + (1− p)yn
2 u′(yn

2 ) + pyd
2u

′(yd
2)

}

− p
[{

(1− p)2 + (1− p)p
u′(yd

2)

u′(yn
2 )

}
yn

3 u′(yn
3 ) + (1− p)2yn

2 u′(yn
2 )

+(1− p)pyn
2 u′(yd

2) + (1− p)pyd
2u

′(yn
2 ) + p2yd

2u
′(yd

2)
]
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=
{

(1− p)2p
u′(yn

2 )

u′(yd
2)

+ p2(1− p)− p(1− p)2 − (1− p)p2 u′(yd
2)

u′(yn
2 )

}
yn

3 u′(yn
3 )

+
{

(1− p)2p
u′(yn

2 )

u′(yd
2)

+ p2(1− p)− p(1− p)2
}

yn
2 u′(yn

2 )− (1− p)p2yn
2 u′(yd

2)

= (1− p)p
{

(1− p)
u′(yn

2 )

u′(yd
2)
− (1− 2p)u′(yn

2 )− pu′(yd
2)

}
yn

3

u′(yn
3 )

u′(yd
2)

+(1− p)p
{

(1− p)
u′(yn

2 )

u′(yd
2)
− (1− 2p)u′(yn

2 )− pu′(yd
2)

}
yn

2

Thus, the sign condition is written as equation (3),

αB− pA = p(1− p)
[{

(1− p)
u′(yn

2 )

u′(yd
2)
− (1− 2p)

}
u′(yn

2 )− pu′(yd
2)

](
yn

3

u′(yn
3 )

u′(yn
2 )

+ yn
2

)
.

When the term in the bracket is negative,

{
(1− p)

u′(yn
2 )

u′(yd
2)
− (1− 2p)

}
u′(yn

2 )− pu′(yd
2) < 0

⇔ (1− p)
(u′(yn

2 )

u′(yd
2)

)2

− (1− 2p)
u′(yn

2 )

u′(yd
2)
− p < 0

Therefore, if
u′(yn

2 )

u′(yd
2)

< 1, the term in bracket is negative, which implies that the

sign condition is negative.
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