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Abstract

This article analyzes whether daily realized volatility, which is the sum of squared
intraday returns over a day, is useful for option pricing. Different realized volatilities are
calculated with or without taking account of microstructure noise and with or without
using overnight and lunch-time returns. The both ARFIMA and ARFIMAX models are
employed to specify the dynamics of realized volatility. The former can capture the long-
memory property and the latter can also capture the asymmetry in volatility depending on
the sign of previous day’s return. Option prices are derived under the assumption of risk-
neutrality. For comparison, GARCH, EGARCH and FIEGARCH models are estimated
using daily returns, where option prices are derived by assuming the risk-neutrality and
by using the Duan (1995) method in which the assumption of risk-neutrality is relaxed.
Main results using the Nikkei 225 stock index and its put options prices are: (1) the
ARFIMAX model with daily realized volatility performs best, (2) applying the Bartlett
adjustment to the calculation of realized volatility to take account of microstructure
noise does not improve the performance while the Hansen and Lunde (2005a) adjustment
without using overnight and lunch-time returns improves the performance, and (3) the
Duan (1995) method does not improve the performance compared with assuming the risk
neutrality.
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1. Introduction

One of the most important variables in option pricing is the volatility of the underlying asset.
While the well-known Black and Scholes (1973) model assumes that the volatility is constant,
few would dispute the fact that the volatility changes over time. Many time series models
are now available to describe the dynamics of volatility. One of the most widely used is
the ARCH (autoregressive conditional heteroskedasticity) family including ARCH model by
Engle (1982), GARCH (generalized ARCH) model by Bollerslev (1986) and their extensions.

The problem of using these models is that we must specify the model before estimating
the volatility and the estimate of volatility depends on the specification of volatility dynamics.
Recently, realized volatility has attracted the attentions of financial econometricians as an
accurate estimator of volatility. Realized volatility is independent of the specification of
volatility dynamics because it is simply the sum of squared intraday returns.

ARCH type models have already been applied to option pricing (Bollerslev and Mikkelsen,
1999; Duan, 1995). As far as we know, realized volatility has, however, not yet been applied
to option pricing while it has been applied to volatility forecasting (Koopman et al. 2005)
and Value-at-Risk (Giot and Laurent, 2004; Clements et al., 2008). This article applies
realized volatility to the pricing of Nikkei 225 stock index options traded at Osaka Securities
Exchange and compares its performance with that of using the ARCH family.

There are two problems in calculating realized volatility. First, realized volatility is influ-
enced by market microstructure noise such as bid-ask spread and non-synchronous trading
(Campbell et al., 1997). There are some methods available for mitigating the effect of mi-
crostructure noise on realized volatility (Ait-Sahalia et al., 2005; Bandi and Russell, 2006,
2008; Barndorff-Nielsen et al., 2007; Zhang, 2006; Zhang et al., 2005). It is worthwhile ap-
plying these methods and comparing the results. We use the method proposed by Hansen
and Lunde (2006), who employ the Bartlett kernel to take account of the autocorrelation
in intraday returns caused by microstructure noise. We analyze whether using this method
may improve the performance of option pricing. Second, the Tokyo stock exchange, where
the underlying asset of the Nikkei 225 stock index options are traded, opens only for 9:00-
11:00 and 12:30-15:00. We cannot obtain high-frequency returns during the period when the
market is closed. Adding the squares of overnight (15:00-9:30) and lunch-time (11:00-12:30)
returns may make realized volatility noisy. Following Hansen and Lunde (2005a), we cal-

culate realized volatility without overnight and lunch-time returns and multiply a constant



such that the sample mean of daily realized volatility is equal to the sample variance of daily
returns. We examine whether this method is effective in option pricing by comparing with
simply adding the squares of overnight and lunch-time returns.

Many authors have documented that realized volatility follows a long-memory process
(Andersen et al., 2001, 2003). We use the ARFIMA (autoregressive fractionally integrated
moving average) model to describe the dynamics of realized volatility. It is also well known
in stock markets that today’s volatility is negatively correlated with yesterday’s return. We
also extend the ARFIMA model to take account of this asymmetry in volatility.

For ARCH type models, we use the simple GARCH model proposed by Bollerslev (1986),
the EGARCH (exponential GARCH) model by Nelson (1991) that may capture the asymme-
try in volatility and the FIEGARCH (fractionally integrated EGARCH) model by Bollerslev
and Mikkelsen (1996) that may allow for the long-memory property of volatility.

We calculate option prices under the assumption of risk neutrality. Duan (1995) has
developed a more general method for pricing options in ARCH type models, which does not
assume risk neutrality. We also calculate option prices both assuming the risk neutrality and
by using the Duan (1995) method.

Main findings are: (1) the ARFIMAX model with daily realized volatility performs best,
(2) applying the Bartlett adjustment to the calculation of realized volatility to take account of
microstructure noise does not improve the performance while the Hansen and Lunde (2005a)
adjustment without using overnight and lunch-time returns improves the performance, and
(3) the Duan (1995) method does not improve the performance compared with assuming the
risk neutrality.

The article proceeds as follows. Section 2 explains realized volatility and ARFIMA (X)
model to describe its dynamics. Section 3 explains ARCH type models used in this article.
Section 4 explains how to calculate option prices using ARFIMA (X) model with daily realized
volatility and ARCH type models with daily returns. Section 5 explains the data and Section

6 compares the performance of option pricing. Section 7 concludes.

2. Realized Volatility and ARFIMA (X) Model

We start with a brief review of realized volatility using the following diffusion process.

dp(s) = p(s)ds 4 o(s)dW (s), (1)



where s is time, p(s) is the log-price, W (s) is a standard Brownian motion, and pu(s) and
o(s) are the drift and the volatility respectively, which may be time-varying but are assumed
to be independent of dW (s). In this article, we call o(s) or o%(s) volatility interchangeably
although o(s) is usually called volatility in the finance literature.

Then, the volatility for day ¢ is defined as the integral of o%(s) over the interval (¢t — 1,t)
where ¢ — 1 and ¢ represent the market closing time on day ¢ — 1 and ¢ respectively, i.e.,

t
IV, = / o?(s)ds, (2)
t—1

which is called integrated volatility.

The integrated volatility is unobservable, but if we have the intraday return data (Tt—1+1 /ns

T4—142/ny - - - ,rt), we can estimate it as the sum of their squares
n
2
RVi=Y 7 isim (3)
i=1

which is called realized volatility. If the prices do not include any noise, realized volatility
RV} will provide a consistent estimate of IV, i.e.,

plim RV, = IV;. (4)

n—00

There are two problems in measuring realized volatility using equation (3). One problem is
the presence of the microstructure noise in transaction prices. If there presents microstructure
noise, equation (4) may not be true. The other problem is the presence of non-trading hours.
The Tokyo Stock Exchange is open only for 9:00-11:00 (morning session) and 12:30-15:00
(afternoon session) except for the first and last trading days in every year, when it is open only
for 9:00-11:00. It is impossible to obtain high-frequency returns for 15:00-9:00 (overnight) and
11:00-12:30 (lunch-time). We calculate several realized volatilities using different methods
for dealing with overnight and lunch-time returns and microstructure noise and compare the
results.

Suppose that we have overnight return r, |, A, n{™) returns in the morning ses-
sion (rt_1+A(n)+A, ... ,rt_1+A(n)+n(m)A), lunch time return 7,1, Ay pemaam and n(@)
returns in the afternoon session (rtfHA(n)+A(z)+(n(m)+1)A, ces 7Tt—1+A(”)+A(’)+(n(m)+n(“))A)
where A A and A denote the time interval for overnight, lunch-time and returns when

the market is open and A + A 4 (n(™) £ p(@))A = 1. We first calculate realized volatility



by summing the squares of all these returns.

nlm)

_ 2 2 2
RVNy = 7] oo+ D i amsin T Thots AG) fnlm ALA®
=1
n(a)

2
+ Z i1 A L AD 4 (™) 1) A" (5)
=1

This realized volatility may be subject to discretization error because the time interval
A®™ and A® are long. Hansen and Lunde (2005a) propose to calculate realized volatility

(0)

only when the market is open, which is denoted as RV, ", and multiply a constant ¢ such

that the sample mean of realized volatility is equal to the sample variance of daily returns,

ie.,
T _ B2
RVHL, = cRV,”), ¢= Zt:%(Rt (lj) (6)
> i1 RV
where (Ry,...,Rr) is the sample of daily returns and R is the sample mean'.

We calculate RVt(O) in the following two ways. Omitting the microstructure noise, we

first calculate RVt(O) simply by adding the squares of returns when the market is open.

(0) _ 2 2
RV,” =3 1t liamaint D P14 A L AD 4 (n0m) 45)A° (7)
i=1 =1

The obtained RVt(O) is adjusted to RV H L; using equation (6).

The microstructure noise may produce autocorrelation in intraday returns. To take this

(0)

autocorrelation into account, we also use the Bartlett adjustments to calculate RV,

(0)
RV 7 (q)
n(m) q nm) g
oD SLATRONEE) ST D RIVAFCREN
t—1+AM 44A k t—1+A) AT 1AM L (i4+k)A
i=1 k=1 i=1
n(a)
2
+ Z P14+ AM L AD 4 (n(™) ) A
Jj=1
q n(®)—]
+ZZ‘*’Z Z Tt 1+ A + ADO +(n(m) 4+ 5) ATt 1+ A+ AD +(n (™) +5+1) A (8)
I=1 j=1

where w; is the Bartlett coefficient defined as

J .
w=1l-—g =l (9)

!See Martens (2002) and Hansen and Lunde (2005b) for the other methods.



Following equation (6), we adjust RVt(O)(q) as follows.
T D)2
(Rt — R
RVHIL(q) = cRV{(q), c¢= ZtT—l( e S, (10)
Zt:l R‘/t (q)
We set ¢ = 1,2. In sum, we calculate four different realized volatilities: RVN, RVHL,
RVHL(1) and RVHL(2).

Many researchers have documented that realized volatility may follow a long-memory pro-
cess. Let p(h) denote the h-th order autocorrelation coefficient of variable X. Then, X follows
a short-memory process if Y 7° ;|p(h)| < 0o and a long-memory process if Y > |p(h)| = oc.
A stationary ARMA model is a short-memory process. As h increases, the autocorrelation
coefficient p(h) of the long-memory process decays more slowly than that of the short-memory
process. More specifically, the former decays hyperbolically and the latter decays geometri-
cally.

The most widely used for a long-memory process is ARFIMA (p, d, q) model?

(L)1 — L)*X; = 0(L)us, us ~ NID(0,0?), (11)

where L denotes the lag operator and ¢(L) =1—-¢1L—---—¢,LP and (L) =1—-6,L—---—
04L9 are the p-th and ¢-th order lag polynomials assumed to have all roots outside the unit
circle. The order of integration d is allowed to take non-integer values. If d = 0, ARFIMA
model collapses to stationary ARMA model and if d = 1, it becomes non-stationary ARIMA
model. If 0 < d < 0.5, X; follows a stationary long-memory process and if 0.5 < d < 1, X;

follows a non-stationary long-memory process. (1 — L)? may be written as follows.

o0

(1—L)d:1+Zd(d_1)"];!(d_k+1)(—L)k. (12)
k=1

We assume that u; follows an independent normal distribution with zero mean and variance
o2
By setting p = 0 and ¢ = 1, which are selected by SIC, and X; = In(RV}) — p where p is

the unconditional mean of In(RV}), we consider the following model.
(1 — L) [In(RV}) — p] = ug + Ouy—y, uz ~ NID(0,0?). (13)

We estimate parameters d, ;1 and @ jointly using the approximate maximum likelihood method
(Beran, 1995), where it is assumed that In(RV;) = p (t = 0,—1,...). We can estimate o2 as

the sample variance of residual.

2See Beran (1994) for the details of long-memory and ARFIMA model.



It is well-known that there is a negative correlation between today’s return and tomorrow’s
volatility in stock markets. To take into account this phenomenon, we extend the above

ARFIMA(0,d,1) model (13) to the following ARFIMA(0,d,1)-X model.
(1 — L)d [ID(RVt) — Ko — /L1|Rt_1| - /LQD;_1|Rt_1|] = Ut + 0ut_1, Ug ~ NID(O,UZ), (14)

where D;_; is a dummy variable that takes one if the return on day ¢ — 1 is negative and
zero otherwise.

We estimate parameters d, po, p1, po, @ and o2 using the same method as that for
ARFIMA model. If the estimate of uo has a statistically significant positive value, it is
consistent with a well-known negative correlation between today’s return and tomorrow’s

volatility in stock markets.

3. ARCH Type Models

We also estimate ARCH type models using daily returns. We define daily return as
Ry = In(S}) — In(S—1), (15)

where S, is the closing price on day t.

We specify daily return as
Rt = E(Rt|It_1) + €, € = 02, 2t ~ NID(O, 1), (16)

where F(R;|I;—1) is the expectation of R, conditional on the information up to day ¢ — 1
and 2 is assumed to follow an independent standard normal distribution. Then, o7 is the
variance of R; conditional on the information up to day ¢t —1. We will explain how to specify
E(R¢|I;—1) later.

For volatility specification, we use three different ARCH type models. First is the GARCH
model proposed by Bollerslev (1986). Specifically, we use the GARCH(1,1) model

02 =w+ Bol | +ael |, w>0, B,a>0, (17)

where w, 8 and « are parameters, which are assumed to be non-negative to guarantee that
volatility is always positive. This model can capture the volatility clustering. Volatility is
stationary if |5 + «| < 1, and the speed for which the shock to volatility decays becomes

slower as 8 + « approaches to one.



As has already been mentioned, another well-known phenomenon in stock markets is
volatility asymmetry, which cannot be captured by the above GARCH model. To capture
this phenomenon, we also use the EGARCH model proposed by Nelson (1991). Specifically,
we use the EGARCH(1, 0) model

ln(of) = w+o [ln(of_l) — w] + 0z 1 +7v(ze-1| — Elze-1l), 9| < 1. (18)

While the GARCH model specifies the process of o7, the EGARCH model specifies that of
its logarithm. Thus, it does not require non-negativity constraints for parameters. If 8 < 0,
it is consistent with the volatility asymmetry in stock markets. In this model, volatility is
stationary if |¢| < 1, and the speed for which the shock to volatility decays becomes slower
as ¢ approaches to one. Since z; 1 is assumed to follow the standard normal distribution,
E|z 1| = /2/7.

Neither GARCH nor EGARCH models allow volatility to have long-memory property.
Hence, we also use the FIEGARCH model proposed by Bollerslev and Mikkelsen (1996). Since
this model is an extension of the above EGARCH model to allow the long-memory of volatil-
ity, it can also capture the volatility asymmetry. We use the following FEGARCH(1,d, 0)

model.
(1= ¢L)(1 = L) [In(07) — w] = 021 + 7 (|2e=1| = Elz—1]), o] < 1. (19)

Similarly to the EGARCH model, it is consistent with the volatility asymmetry in stock
markets if < 0. As for d, the same argument as that for the ARFIMA model holds.

FIGARCH (Baillie et al., 1996) and FIAPGARCH (Tse, 1998) models can also take into
account the possibility that the volatility follows a long-memory process. These models,
however, has some drawbacks. First, the variance of return will be infinite even though
0 < d < 0.5 (Schoffer, 2003). Second, the parameter constraints to guarantee that the
volatility is always positive are complicated (Conrad and Haag, 2006). Thus, we do not use
these models in this article.

We estimate parameters in GARCH, EGARCH and FIEGARCH models using the max-

imum likelihood method?.

3See Taylor (2001) for the estimation method for FIEGARCH model.



4. Option Pricing

We first calculate option prices under the assumption of risk neutrality. If the traders are

risk neutral, the expected return may be represented by
1,
E(R|I;1)=r—d— 3015 (20)

where r and d are continuously compounded risk-free rate and dividend rate.
The price of European option will be equal to the discounted present value of the expec-
tation of option prices on the expiration date. For example, the price of European put option

with the exercise price K and the maturity 7 is given by
Pr = exp(—r7)E [Max(K — Srir, O) I, (21)

where §T+T is the price of the underlying asset on the expiration date T + 7.
We cannot evaluate this expectation analytically if the volatility of the underlying asset
follows ARFIMA (X) or ARCH type models. We calculate option prices by simulating 5'T+T

from ARFIMA(X) or ARCH type models. Suppose that (S(I) glm

Tir - Sy,) are simulated.

Then, (21) may be calculated as follows.

1 «— ;
Pr ~ exp(=r7)— 3~ Max(K ~ S ,0). (22)
=1

We set m = 10000. For variance reduction, we used the control variate and the Empirical
Martingale Simulation proposed by Duan and Shimonato (1998) jointly.

Duan (1995) relaxed the assumption of risk neutrality to derive option prices when the
price of underlying asset follows ARCH type models. We also use this method. Following
Duan (1995), we set

E(R|I;-1) =r—d— %a,? + Aoy, (23)

where Aoy captures the risk premium.

Unless the traders are risk neutral, we must convert the physical measure P into the
risk neutral measure @ and evaluate the expectation in equation (21) under the risk neutral
measure ). Duan (1995) makes the following assumptions on @), called local risk-neutral

valuation relationship (LRNVR).
1. Ry|I;— follows a normal distribution under the risk neutral measure Q.

2. EC[exp(Ry)|I;_1] = exp(r — d).



3. Var9[Ry|I,_1] = Varf [Ry|I,_1] a.s.

Under assumptions 1 and 2, daily returns under the risk neutral measure () must be repre-
sented by
1
Ri=r—d- 503 +&, & =ow, v ~NID(O,L). (24)

Comparing equation (24) with equations (16) and (23) leads to

€ = & — Aoy, (25)
Zt = Ut—>\. (26)

Since assumption 3 means that volatilities are the same between P and @, all we have to do
for volatility is to substitute equations (25) or (26) into €; in the GARCH volatility equation
or z; in the EGARCH and FIEGARCH volatility equations. For example, the GARCH(1,1)

volatility equation will be

of =w+Po; 1+ a1 — Ao 1)’ w>0, B,a>0. (27)

Equations (24) and (27) constitute the GARCH(1, 1) model under ). Hence, we can evaluate

the option prices as follows.

[l ] Estimate the parameters A, w,  and « in the GARCH(1,1) model under P that
consists of equations (16), (23) and (17).

[2 ] Simulate St using the GARCH(1,1) model under Q that consists of equations (24)

and (27) by setting the parameters A\, w, 5 and « equal to their estimates in [1].

[3 | Substitute (5’5}3_7, ce S&T_)T) simulated in [2] into equation (22) to obtain the option

price.

Similarly, we can calculate the option price using the EGARCH and FTIEGARCH models.
The EGARCH(1,0) and FIEGARCH(1, d, 0) volatility equations under @ will be

n(o?) =w+ ¢ n(of)) — ] + 01 = N+ (Jo 1= A = v2/r),  (28)
(1= ¢L)(1 = L) [In(0) = w] = O(vp1 = A) + (|vH — X - \/2/7) . (29)

For comparison, we also calculate option prices using the Black-Scholes formula with

volatility o as the standard deviation of daily returns over the past 20 days.



5. Data

We analyze the Nikkei 225 stock index options traded at Osaka Securities Exchange. The
underlying asset is the Nikkei 225 stock index, which is the average of the prices of 225
representative stocks traded at Tokyo Stock Exchange. The sample period is from May 29,
1996 to September 27, 2007. Following equation (15), we calculate the daily returns for
the underlying asset as the log-difference of the closing prices of the Nikkei 225 index in
consecutive days. Table 1(a) summarizes the descriptive statistics of the daily returns (%)
for the full sample. The mean is not significantly different from zero. While the skewness
is not significantly different from zero, the kurtosis is significantly above 3, indicating the
well-known phenomenon that the distribution of the daily return is leptokurtic. LB(10) is
the Ljung-Box statistic adjusted for heteroskedasticity following Diebold (1988) to test the
null hypothesis of no autocorrelations up to 10 lags. According to this statistic, the null
hypothesis is not rejected at the 1% significance level although it is rejected at the 5% level.
We do not consider autocorrelations in the daily return in the following analyses.

We calculate realized volatility using the Nikkei NEEDS-TICK data. This dataset in-
cludes the Nikkei 225 stock index for every minute from 9:01 to 11:00 in the morning session
and from 12:31 to 15:00 in the afternoon session. Sometimes, the time stamps for the closing
prices in the morning and afternoon sessions are slightly after 11:00 and 15:00 because the
recorded time shows when the Nikkei 225 stock index is calculated. In such cases, we use all
prices up to closing prices. Using these one-minute prices, we calculate four different realized
volatilities RV N, RVHL, RV HL(1) and RV HL(2) defined by equations (5)-(10), where the
adjustment coefficient ¢ defined by equation (6) or (10) is calculated using the full sample.

Figure 1 plots these realized volatilities and Table 2 summarizes their descriptive statis-
tics. The means of RVHL, RVHL(1) and RV HL(2) are the same because they are adjusted
such that the mean of realized volatility is equal to the sample variance of daily returns.
RV N is not adjusted and its mean is much lower than those of the others. Among RV HL,
RVHL(1) and RVHL(2), RVHL has the smallest standard deviation and RV HL(2) has
the largest standard deviation, but the difference is small. The standard deviation of RV N
is much smaller than those of RVHL, RVHL(1) and RV HL(2). These results are confirmed
by Figure 1. Figure 1(a) shows that the difference among RVHL, RVHL(1) and RV HL(2)
is small while Figure 1(b) shows that RV HL is larger on average and more volatile than

RV N. The values of skewness and kurtosis indicate that the distributions of all realized

10



volatilities are non-normal. LB(10) is so large that the null hypothesis of no autocorrelation
is rejected. Table 1 (c) shows the descriptive statistics for log-realized volatilities. They are
qualitatively the same as those of Table 1 (b) except skewness and kurtosis. While realized
volatilities are positively skewed, log-realized volatilities are negatively skewed. The kurtosis
of log-realized volatilities is much smaller than those of realized volatilities. The kurtosis of
In(RVHL), In(RVHL(1)) and In(RV N) is not significantly above 3 at the 5% level. The dis-
tributions of log-realized volatilities are much closer to the normal distribution than those of
realized volatilities. Thus, we use log-realized volatility as a dependent variable in ARFIMA
model (13) and ARFIMAX model (14).

To measure the performance of option pricing, we also use prices of Nikkei 225 stock index
options traded at Osaka Securities Exchange. Nikkei 225 stock index options are European
options and their maturities are the trading days previous to the second Friday every month.
For the Nikkei 225 stock index options, put options are traded more heavily than call options
and the options with the maturity more than one month are not traded so much. Thus we
concentrate on put options whose maturity is 30 days (29 days if the day when the maturity
is 30 days is a weekend or holiday). On such days, we consider all put options with different
exercise prices whose bid and ask prices are both available at the same time between 14:00
and 15:00. For each option, we use the average of bid and ask prices at the same time closest
to 15:00 as the market price at 15:00. The reason why we use the average of bid and ask prices
instead of transaction prices is that transaction prices are subject to market microstructure
noise due to bid-ask bounce (Campbell et al., 1997).

We estimate ARFIMA and ARFIMAX models using 1200 daily realized volatilities (RV H L,
RVHL(1), RVHL(2) and RVN) up to the day before the options whose maturity is one
month are traded, where the adjustment coefficient ¢ defined by equation (6) or (10) is cal-
culated using the same 1200 realized volatilities with 1200 daily returns. We also estimate
ARCH type models using the same 1200 daily returns with risk-free rate and dividend. As
mentioned, the daily returns are calculated as the log difference of closing prices. We use
CD rate as a risk-free rate and fix the annual dividend rate as 0.5% following Nishina and
Nabil (1997). The first date when options whose maturity is one month are traded is April
11, 2001. We first estimate the parameters in the ARFIMA(X) and ARCH type models
using 1200 daily realized volatilities and returns up to April 10, 2001, where we calculate the
adjustment coefficient ¢ using the same 1200 daily realized volatilities and returns. Then,

given the obtained parameter estimates, we calculate the put option prices on April 11, 2001

11



using CD rate and the Nikkei 225 index at 15:00 on that date. The next date when options
whose maturity is one month are traded is May 9, 2001. We first estimate the parameters in
the ARFIMA(X) and ARCH type models using 1200 daily realized volatilities and returns
up to May 8, 2001, where we calculate the adjustment coefficient ¢ using the same 1200 daily
realized volatilities and returns. Then, given the obtained parameter estimates, we calculate
the put option prices on May 9, 2001 using CD rate and the Nikkei 225 index at 15:00 on
that date. We repeat this procedure up to September 2007.

Figures 2 (a)—(d) plot the estimates of all parameters in all models for each of the above 78
iterations. Figures 2 (a) and (b) plot the estimates of parameters in ARFIMA and ARFIMAX
models using RV HL defined by equations (6) and (7). The estimates of d in ARFIMA and
ARFIMAX models move around 0.5 and are above 0.5 in the latter half, indicating the long-
memory and the possibility of non-stationarity of log-realized volatility. The estimates of 9
in ARFIMAX model are positive for all periods, indicating the well-known phenomenon of
a negative correlation between today’s return and tomorrow’s volatility. Figures 2 (c)—(e)
plot the estimates of parameters in ARCH type models using daily returns. The sum of the
estimates of § and « in the GARCH model and the estimates of ¢ in the EGARCH model
are close to 1 for all periods, indicating the well-known phenomenon of volatility clustering.
These models, however, do not allow for the long-memory of volatility. The estimates of d in
FIEGARCH model are more volatile than those of ARFIMA(X) model. They move around
0.5 in the first half while they move up to 0.54 and down to 0 in the latter half. These
results provide evidence that a structural change may occur during our sample period, but
we leave it for the future research. The estimates of # in EGARCH and FIEGARCH models
are negative for all periods, indicating a negative correlation between today’s return and

tomorrow’s volatility.

6. Results

To measure the performance of option pricing, we use four loss functions, MAE (Mean
Absolute Error), RMSE (Root Mean Square Error), MAPE (Mean Absolute Percentage
Error) and RMSPE (Root Mean Square Percentage Error) defined as

1 - 1 /- 2
MAE:N;H—H, RMSE = N;(H—Pi),

12



1 N
RMAPE = N.Zl

P, — P,

N ~ 2
1 P - P
MSPE = ,| — - .
. RMS NZ( 7 )

1=1

i
where N is the number of put options used for evaluating the performance, P; is the price of
the ith put option calculated by each model and P; is its market price.

Following Bakshi, Cao and Chen (1997), we classify put options into four categories such
as DITM (deep-in-the-money), ITM (in-the-money), ATM (at-the-money), OTM (out-of-
the-money) and DOTM (deep-out-of-the-money) using the moneyness which is the ratio of
the underlying asset price over the exercise price. Table 3 shows this classification. We
examine the performance in each category as well as in total.

Table 4 shows the values of loss functions for ARCH type models with daily returns,
ARFIMA (X) models with RV HL, and BS model. In total, the ARFIMAX model performs
best no matter which loss function is used. It is also true for ATM and ITM. In OTM,
ARFIMAX model performs best for RMSE while ARFIMA model performs best for the
other loss functions. In DOTM, ARFIMAX model performs best for RMSPE and MAPE
while FIEGARCH model performs best for the other loss functions. In DITM, GARCH or
EGARCH models perform best. Although there are some exceptions depending on moneyness
and loss function, we may conclude that the ARFIMAX model performs best.

Table 5 shows the values of loss functions for ARFIMAX model with four different realized
volatilities RVHL, RVHL(1), RVHL(2) and RV N. In total, RVHL is the best for RMSE,
MAE and RMSPE while RV HL(1) is the best for MAPE but the difference between RV HL
and RV HL(1) is minor. It is true for most loss functions and moneyness. This result means
that the Bartlett adjustment to take account of microstructure noise does not improve the
performance of option pricing. On the other hand, in total, the loss functions of RV N have
much larger values than those of RVHL, RVHL(1) and RV HL(2) and it is true for some
loss functions and moneyness. This result means that it is better to use the Hansen and
Lunde (2005a) adjustment without adding the squares of overnight and lunch-time returns.

So far, we assumed the risk neutrality. As explained in Section 4, Duan (1995) has
proposed a method for GARCH option pricing relaxing this assumption. We also apply this
method to GARCH, EGARCH and FIEGARCH models. Table 6 shows the result. The
values of loss functions using this method are not different so much from those assuming
the risk neutrality. This result means that the Duan (1995) method does not improve the

performance of option pricing compared with assuming the risk neutrality.
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7. Conclusions

This article compares the performance of option pricing among the ARFIMA (X) model with
daily realized volatility and ARCH models with daily returns. Main results are: (1) the
ARFIMAX model with daily realized volatility performs best, (2) the Bartlett adjustment
to take account of microstructure noise does not improve the performance while the Hansen
and Lunde (2005a) adjustment without adding the squares of overnight and lunch-time re-
turns improves the performance, and (3) the Duan (1995) method does not improve the
performance compared with assuming the risk neutrality.

Several extensions are possible. First, we only used the Bartlett adjustment to take
account of microstructure noise. Some other methods are available such as the selection
of optimal time interval of intraday returns (Ait-Sahalia et al., 2005; Bandi and Russell,
2006, 2008) and two (multi) scale estimator (Zhang et al., 2005; Zhang, 2006) and the
resampling (Barndorff-Nielsen et al., 2007). It is worthwhile applying these methods and
comparing the results. Second, we did not consider jumps in returns. It is important to take
account of jumps to calculate realized volatility (Barndorff-Nielsen and Shephard, 2002a,
2004). Third, we only used ARFIMA(X) model for realized volatility. There are other
models available such as HAR (heterogeneous interval autoregressive) model (Corsi, 2004)
and UC (unobserved components) model (Barndorff-Nielsen et al., 2004; Barndorff-Nielsen
and Shephard, 2001, 2002b; Nagakura and Watanabe, 2009). It is worthwhile applying these

models and comparing the performance.
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Table 1

Descriptive statistics of daily returns

Mean

Standard Deviation
Min

Max

Skewness

Kurtosis

LB(10)

—0.0095
(0.0270)
1.4261
—7.2340
7.6605
—0.0616
(0.0464)
4.9003
(0.0927)
18.69

The numbers in parentheses are standard errors. LB(10) is the Ljung-Box statistic adjusted for heteroskedas-

ticity following Diebold (1988) to test the null hypothesis of no autocorrelations up to 10 lags.

Table 2

Descriptive statistics of daily realized volatilities

(a) Daily realized volatilities

RVHL RVHL(1) RVHL(2) RVN
Mean 2.0331 2.0331 2.0331 1.1366
(0.0306) (0.0314) (0.0336) (0.0163)
Standard Deviation 1.6144 1.6602 1.7760 0.8611
Min 0.1700 0.1389 0.0948 0.0774
Max 26.2450 23.6369 21.8362 11.5341
Skewness 3.5715 3.2168 3.2811 2.8283
(0.0464) (0.0464) (0.0464) (0.0464)
Kurtosis 33.9767 24.2832 22.6734  21.3087
(0.0927) (0.0927) (0.0927)  (0.0927)
LB(10) 1862.35 1880.76 1716.72  1737.20

RV HL is the realized volatility calculated using the Hansen and Lunde (2005a) adjustment without overnight

and lunch-time returns and without the Bartlett adjustment. RV HL(q) is the realized volatility calculated

using the Hansen and Lunde (2005a) adjustment without overnight and lunch-time returns and using the

Bartlett adjustment with lag-length q. RV N is the realized volatility calculated simply using the squares of

overnight returns and lunch-time returns without the Bartlett adjustment. The numbers in parentheses are

standard errors. LB(10) is the Ljung-Box statistic adjusted for heteroskedasticity following Diebold (1988) to

test the null hypothesis of no autocorrelations up to 10 lags.
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(b) Log daily realized volatilities

In(RVHL) In(RVHL(1)) In(RVHL(2)) In(RVN)

Mean 0.4594 0.4481 0.4214  —0.1099

(0.0137) (0.0140) (0.0146) (0.0163)
Standard Deviation 0.7230 0.7375 0.7725 0.7048
Min —1.7722 —1.9743 —2.3555 —2.5592
Max 3.2675 3.1628 3.0836 2.4453
Skewness —0.2055 —0.2010 —0.1915 —0.2098

(0.0464) (0.0464) (0.0464) (0.0464)
Kurtosis 3.0190 3.1633 3.2741 3.1395

(0.0927) (0.0927) (0.0927) (0.0927)
LB(10) 6347.39 5772.89 5271.76 4738.12

RV HL is the realized volatility calculated using the Hansen and Lunde (2005a) adjustment without overnight
and lunch-time returns and without the Bartlett adjustment. RV HL(q) is the realized volatility calculated
using the Hansen and Lunde (2005a) adjustment without overnight and lunch-time returns and using the
Bartlett adjustment with lag-length q. RV N is the realized volatility calculated simply using the squares of
overnight returns and lunch-time returns without the Bartlett adjustment. The numbers in parentheses are
standard errors. LB(10) is the Ljung-Box statistic adjusted for heteroskedasticity following Diebold (1988) to

test the null hypothesis of no autocorrelations up to 10 lags.

Table 3

Moneyness of put options

S/K <091 deep-in-the-money (DITM)
091 < S/K <0.97 in-the-money (ITM)
097< S/K <1.03 at-the-money (ATM)
1.03 < S/K < 1.09 at-the-money (OTM)
1.09 < S/K deep-out-of-the-money (DOTM)

S =price of underlying asset and K =exercise price.
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Table 4

Put option pricing performance using different models

DOTM OTM ATM ITM DITM  Total

Sample size 269 102 115 99 145 730
RMSE
GARCH 26.112  54.245  73.784  71.062  49.788" 51.935

EGARCH 23.727 57713 77.483  69.895  50.204  52.743
FIEGARCH 22.388* 50.265 67.407 65.271  50.293  48.308
ARFIMA 26.129  48.442  64.183  66.471  51.232  48.466
ARFIMAX 25,513  47.465" 63.321* 65.245% 51.322  47.820*

BS 32.531  68.651 96.101 76.962  52.183  62.029
MAE
GARCH 11.359  35.794  59.921  50.821  38.082* 33.083

EGARCH 11.561  43.465 65.403 50.182  38.164  35.022
FIEGARCH 9.839* 35.291 55.689 45.015  38.227  31.027
ARFIMA 10.700  26.777* 48.077  45.034  39.112  29.134
ARFIMAX  10.516  27.035  47.730* 44.224* 39.054  28.926*

BS 13.973  45.020 68.107  49.908  39.000 36.684
RMSPE
GARCH 0.889 0.617 0.291 0.091 0.021 0.599

EGARCH 1.698 0.851 0.318 0.088 0.020*  1.086

FIEGARCH 1.516 0.643 0.268 0.081 0.021 0.958

ARFIMA 0.659 0.327*  0.207 0.078 0.022 0.427

ARFIMAX  0.643*  0.328 0.204*  0.076*  0.022 0.418*
BS 0.805 0.527 0.263 0.088 0.024 0.538

MAPE

GARCH 0.665 0.430 0.218 0.065 0.015 0.351

EGARCH 1.036 0.603 0.244 0.063 0.015*  0.516

FIEGARCH 0.828 0.463 0.206 0.057 0.015 0.413

ARFIMA 0.578 0.248*  0.158 0.055 0.015 0.283

ARFIMAX  0.564*  0.253 0.157*  0.054*  0.015 0.278*
BS 0.729 0.442 0.209 0.061 0.016 0.375

This is calculated using RV H L with the Hansen and Lunde (2005a) adjustment without overnight and lunch-

*

time returns and without the Bartlett adjustment. indicates the best model which minimizes the loss

function.
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Table 5

Put option pricing performance using different realized volatilities

DOTM OTM ATM IT™M DITM  Total

Sample size 269 102 115 99 145 730
RMSE
RVHL 25.513% 47.465* 63.321* 65.245* 51.322  47.820*

RVHL(1) 25.533 48.197 64.222 65991 51.298* 48.161
RVHL(2) 26.099 50.656 65.546 67.926 51.626  49.622

RV N 33.917 72502  75.034 69.487 51.395  56.787
MAE
RVHL 10.516  27.035* 47.730* 44.224  39.054  28.926*

RVHL(1) 10.380* 27.295 48.332 44.767 39.031  29.077
RVHL(2) 10.502 28.708 49.845 46.265 39.315  29.817

RV N 16.995  48.187  48.753  39.513* 38.622* 33.706
RMSPE
RVHL 0.643 0.328*  0.204 0.076 0.022 0.418*

RVHL(1) 0.639* 0.345 0.208 0.077 0.022 0.418

RVHL(2) 0.665 0.372 0.215 0.079 0.022 0.437

RV N 0.875 0.446 0.182*  0.074*  0.021*  0.562

MAPE

RVHL 0.564 0.253*  0.157 0.054 0.015 0.278

RVHL(1) 0.551*  0.262 0.158 0.054 0.015*  0.275*
RVHL(2) 0.563 0.282 0.163 0.056 0.016 0.283

RV N 0.861 0.407 0.140*  0.046*  0.015 0.406

RV HL is the realized volatility calculated using the Hansen and Lunde (2005a) adjustment without overnight
and lunch-time returns and without the Bartlett adjustment. RV HL(q) is the realized volatility calculated
using the Hansen and Lunde (2005a) adjustment without overnight and lunch-time returns and using the
Bartlett adjustment with lag-length q. RV N is the realized volatility calculated simply using the squares of
overnight returns and lunch-time returns without the Bartlett adjustment. * indicates the best model which

minimizes the loss function.
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Table 6
Put option pricing performance of ARCH type models assuming the risk-neutrality and using

the Duan (1995) method

DOTM OTM ATM ITM DITM  Total

Sample size 269 102 115 99 145 730
RMSE
GARCH
Risk neutral 25.889 53.891 73.216 70.538 49.701 51.601
Duan 26.112 54.245 73.784 71.062 49.788 51.935
EGARCH
Risk neutral  23.727 57.713 77.483 69.895 50.204 52.743
Duan 23.920 57.739 77517 70.047 50.295 52.831
FIEGARCH
Risk neutral  22.388 50.265 67.407 65.271 50.293 48.308
Duan 22,419 49.747 65.562 63.739 50.624 47.625
MAE
GARCH
Risk neutral 11.359 35.794 59.921 50.821 38.082 33.083
Duan 11.326  35.652 59.489 50.118 38.042 32.880
EGARCH
Risk neutral 11.561 43.465 65.403 50.182 38.164 35.022
Duan 11.706 43.341 65.352 50.200 38.236 35.067
FIEGARCH
Risk neutral 9.839 35.291 55.689 45.015 38.227 31.027
Duan 9.788 34.563 53.426 42.929 37.708 30.164

“Risk neutral” shows the results assuming the risk-neutrality, which are the same as those in Table 3. “Duan”

shows the ones using the Duan (1995) method without assuming the risk-neutrality.
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Table 6 (Continued)
Put option pricing performance of ARCH type models assuming the risk-neutrality and using

the Duan (1995) method

DOTM OTM ATM ITM DITM Total

Sample size 269 102 115 99 145 730
RMSPE
GARCH
Risk neutral 0.889 0.617 0.291 0.091  0.021 0.599
Duan 0.944 0.624 0.290 0.090 0.021 0.630
EGARCH
Risk neutral 1.698 0.851 0.318 0.088 0.020 1.086
Duan 1.790 0.849 0.319 0.088 0.021 1.139
FIEGARCH
Risk neutral 1.516 0.643 0.268 0.081  0.021 0.958
Duan 1.328 0.624 0.258 0.078  0.020 0.846
MAPE
GARCH
Risk neutral 0.665 0.430 0.218 0.065 0.015 0.351
Duan 0.686 0.431 0.217 0.064 0.015 0.359
EGARCH
Risk neutral 1.036 0.603 0.244 0.063 0.015 0.516
Duan 1.068 0.599 0.244 0.063 0.015 0.527
FIEGARCH
Risk neutral 0.828 0.463 0.206 0.057 0.015 0.413
Duan 0.798 0.449 0.197 0.054 0.015 0.398

“Risk neutral” shows the results assuming the risk-neutrality, which are the same as those in Table 3. “Duan”

shows the ones using the Duan (1995) method without assuming the risk-neutrality.
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Fig 1. Realized Volatility
(a) With or without the Bartlett adjustment
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(b) With or without the Hansen and Lunde (2005a) adjustment
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Fig 2. Parameter Estimates
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(e) FIEGARCH
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