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Abstract

We show that the value of a zero-sum Bayesian game is a Lipschitz
continuous function of the players�common prior belief, with respect
to the total variation metric (that induces the topology of setwise
convergence on beliefs). This is unlike the case of general Bayesian
games, where lower semi-continuity of Bayesian equilibrium payo¤s
rests on the convergence of conditional beliefs (Engl (1994), Kajii and
Morris (1998)). We also show upper, and approximate lower, semi-
continuity of the optimal strategy correspondence with respect to the
total variation norm, and discuss approximate lower semi-continuity
of the Bayesian equilibrium correspondence in the context of zero-sum
games.
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1 Introduction

Bayesian games describe situations where there is uncertainty about play-
ers�payo¤s, and players may have di¤erent private information about the
realized state of nature that a¤ects the payo¤s. Being a natural framework
for modelling numerous real world issues, it has been a subject of exten-
sive investigation in the literature. In particular, the question of continuity
of Bayesian equilibria (BE) with respect to changes in players�information
endowments received some attention.
One strand of research concentrated on the continuity of BE with re-

spect to changes in information partitions, or �elds (see, e.g., Monderer and
Samet (1996), Einy et al (2008)). Another strand considered the e¤ects of
small changes in the players� common prior belief (see, e.g., Milgrom and
Weber (1985), Engl (1995), and Kajii and Morris (1994, 1998)). Milgrom
and Weber (1985) showed upper semi-continuity (USC) of the BE corre-
spondence under a very general condition, that requires that the common
prior be su¢ ciently "spread-out" on the product of players�types. This con-
dition is satis�ed trivially in the important case where each player has at
most countably many types, which is equivalent to assuming that his private
information is given by a countable partition of the space of states of nature.
In this latter framework, Engl (1995) investigated (approximate) lower semi-
continuity ((A)LSC) of the BE expected payo¤ correspondence, under the
uniform setwise convergence topology on priors.
The ALSC means that for any BE in a game and any " > 0, there

is an "-equilibrium with close expected payo¤s in the same game, for any
close enough common prior.1 Engl (1995) showed that the BE expected
payo¤ correspondence is ALSC, assuming that the approximating "-BE are
with respect to ex-ante expected utilities. However, if players evaluate the
consequences of their strategic choices at the interim stage, following the
receipt of private information, they are in fact concerned with their interim
expected utility, that takes into account their private information and is based
on the correspondingly updated prior belief. But while ex-ante and interim
BE are the same, this is not true for the approximate, "-BE, since an ex-
ante "-best response may be hugely suboptimal for some realizations of the
player�s private information, albeit with small probability. Kajii and Morris

1The stronger notion of lower semi-continuity (LSC) requires that the BE expected
payo¤be approximable by expected payo¤s of true BE in games with close enough common
priors.
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(1994, 1998) showed that, if the approximate "-BE are taken in the interim
sense, ALSC of the BE expected payo¤ and strategy correspondences may
fail if priors are converging only setwise. They showed that to obtain ALSC
of the interim BE expected payo¤ correspondence, uniform across bounded
games, it is necessary (and su¢ cient) to additionally assume almost uniform
convergence of beliefs conditional on players�private information (i.e., that
the closeness of conditional beliefs becomes approximate common knowledge
with high ex-ante probability).
In this work we consider zero-sum Bayesian games. These games recently

came into spotlight, particularly in the context of comparing information
structures and measuring the value of information (see, e.g., Gossner and
Mertens (2001), Lehrer and Rosenberg (2006)). We start by showing that
the value of a zero-sum game is a Lipschitz continuous function of players�
common prior belief, with respect to the total variation metric on the set of
priors; see Theorem 1. (This metric induces the setwise convergence topology
on priors.)
Although being in line with Engl�s (1994) result on the ALSC of the

ex-ante BE expected payo¤ correspondence, Theorem 1 implies a previously
unnoticed fact. Since pairs of optimal strategies are both interim and ex-ante
BE in a zero-sum Bayesian game, and the value (�the expected BE payo¤) is
a continuous function of the common prior, the interim BE expected payo¤
correspondence is in fact LSC (and in particular ALSC) when restricted to
zero-sum games. Thus, the assumptions of Kajii and Morris (1998) on the
convergence of conditional beliefs, which are necessary for ALSC in the non-
zero-sum setting, are not needed in the context of zero-sum Bayesian games.
Theorem 1 bears semblance to another uniform continuity result for the

value of zero-sum games, in Einy et al (2008), which was established in
a di¤erent setting: the common prior of the players was �xed, but their
information �elds were variable, and the set of �elds was endowed with the
Boylan pseudo-metric. This result does not imply Theorem 1, however, as
the latter deals with variable common priors.
We further show that the optimal strategy correspondence is both USC

(Proposition 1) and ALSC (Proposition 2) with respect to the total variation
metric on priors. Since optimal strategies are both ex-ante and interim BE
strategies in zero-sum Bayesian games, Proposition 1 implies that the ex-ante
and the interim BE correspondences are USC. However, the notion of ALSC
uses "-optimal strategies to approximate the given optimal strategy, and "-
optimal strategies are de�ned with respect to the ex-ante expected payo¤s in

3



the game. Thus Proposition 2 implies that the ex-ante BE correspondence
is ALSC in zero-sum Bayesian games, but it sheds no light on the ALSC of
the interim BE correspondence in these games.
As was mentioned, the interim BE correspondence may not be ALSC with

respect to the total variation metric on priors, in cases where conditional be-
liefs do not converge almost uniformly (see Kajii and Morris (1994)). Our
last two results show that in some circumstances the interim BE correspon-
dence is ALSC in zero-sum Bayesian games without any assumptions on the
convergence of conditional beliefs. Proposition 3 identi�es one such instance
in games where each player has an in�nite information partition; the main
assumption is that knowledge of player�s own type allows him to guess the
type of the other player while making a bounded error. When at least one
of the players has a �nite information partition, ALSC of the interim BE
correspondence obtains without this asssumption, see Proposition 4.
The paper is organized as follows. The setup is described in section 2 and

our results are stated and proved in section 3.

2 Preliminaries

2.1 Zero-Sum Bayesian Games

We consider zero-sum games with two players, i = 1; 2: Games are played in
an uncertain environment, which a¤ects payo¤ functions of the players. The
underlying uncertainty is described by a probability space (
;F ; �) ; where 

is a set of states of nature, F is a �-�eld of events in 
; and � is a countably
additive probability measure on (
;F) that represents the common prior
belief of the players about the distribution of the realized state of nature:
The information endowment of player i is given by an (at most) countable
and F-measurable partition �i of 
: Given ! 2 
; denote by �i (!) the
element of the partition �i that contains !: If ! was realized, player i only
knows that the realized state of nature belongs to �i (!) :
Each player i = 1; 2 has a set Si of strategies, which is a convex and

4



compact subset of a Euclidean space2. Additionally, there is a measurable3

real valued payo¤ function u : 
 � S1 � S2 ! R: At every state of nature
! 2 
; u (!; s1; s2) is the payo¤ received by player 1; and �u (!; s1; s2) is the
payo¤ of player 2, when each player i chooses to play si: We assume that,
at every ! 2 
; each player�s payo¤ is continuous and concave in his own
strategy; that is, u (!; �; s2) is continuous and concave for a �xed s2 2 S2, and
u (!; s1; �) is continuous and convex for a �xed s1 2 S1: We further assume
that juj is bounded on 
�S1�S2 by someM > 0 (Remark 1 below explains
the necessity of this assumption).
The probability space (
;F ; �) ; information endowments �1 and �2;

strategy sets S1 and S2; and the payo¤ function u fully describe a zero-sum
Bayesian game. To concentrate on the e¤ects of changes in the common prior,
we keep all the attributes of the game �xed henceforth, with the exception
of � 2 �(
;F) �the set of all countably additive probability measures on
(
;F). For any � 2 �(
;F) ; the associated zero-sum Bayesian game will
be denoted by G(�):
A Bayesian strategy of player i is a �i-measurable function xi : 
! Si;

i.e., xi is constant on any �i 2 �i: The set of all Bayesian strategies of player
i will be denoted by X i: Clearly; X i can be identi�ed with the function
space (Si)�

i

; which is convex and compact in the product topology, and also
metrizable in it since �i is at most countable. Given � 2 �(
;F) ; the
expected payo¤ of player 1 (and the expected loss of player 2) when xi 2 X i

is chosen by i = 1; 2 is

U�(x
1; x2) �

Z



u
�
!; x1(w); x2 (w)

�
d� (!) :

Remark 1. In order for the expected payo¤ function U� to be well
de�ned for a given � 2 �(
;F) ; �-integrability of an F-measurable

f (!) � sup
(s1;s2)2S1�S2

��u �!; s1; s2���
2All our results, with the exception of Proposition 3, use only the fact that Si is

a compact and metrizable subset of a topological vector space. For Proposition 3, the
assumption of Si being a Banach space, not necessarily of �nite dimension, would have
su¢ ced. We, however, con�ne ourselves to the �nite-dimension framework, so as to avoid
unnecessary generality.

3The measurability is with respect to the �-�eld F in the �rst coordinate, and with
respect to the Borel �-�elds in the second and third coordinates.
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would have su¢ ced, without the need to assume uniform boundedness of
u as we did earlier. However, since our interest lies in changing common
priors in the game with a �xed utility function, f needs to be integrable
with respect to all � 2 �(
;F) : This, in fact, implies the existence of
M = sup!2
 f (!) <1:

With our assumptions on u; the expected payo¤ function U� is continuous
and concave in x1 2 X1 for a �xed x2 2 X2; and continuous and convex in
x2 2 X2 for a �xed x1 2 X1 (the continuity is implied by the bounded
convergence theorem). Thus, Sion minimax theorem (see, e.g., Theorem A.7
in Sorin (2002)) guarantees existence of the value v(�) in each game G(�):
the following inequality holds,

min
x22X2

max
x12X1

U�(x
1; x2) = max

x12X1
min
x22X2

U�(x
1; x2); (1)

and v(�) is de�ned as the common value of the two expressions in (1).
Given " � 0; bx1 2 X1 is called "-optimal for player 1 in G(�) if

U�(bx1; x2) � v(�)� "
for any x2 2 X2: Similarly, bx2 2 X2 is called "-optimal for player 2 in G(�)
if

U�(x
1; bx2) � v(�) + "

for any x1 2 X1: If a strategy xi is 0-optimal for player i, it is called optimal
for i. The set of "-optimal strategies of player i in G(�) will be denoted by
Oi
" (�) : It is convex and compact. The notation for Oi

0 (�) ; the set of optimal
strategies, will be simpli�ed to Oi (�).
Optimality of a strategy is closely related to the concept of equilibrium.

A pair (bx1; bx2) 2 X1�X2 is called an ex-ante Bayesian "-equilibrium (hence-
forth "-EBE for short) if

U�(bx1; bx2) � U�(x1; bx2)� " (2)

for any x1 2 X1; and

U�(bx1; bx2) � U�(bx1; x2) + " (3)

for any x2 2 X2: Denote by EBE" (�) the set of all "-EBE in G(�); and
simplify EBE0 (�) to EBE (�) : If (bx1; bx2) 2 EBE (�) ; we will call it an
ex-ante Bayesian equilibrium (EBE for short).
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Remark 2. Note that, for every " � 0;

O1
" (�)�O2

" (�) � EBE2" (�)

and
EBE" (�) � O1

2" (�)�O2
2" (�) :

In particular,
O1 (�)�O2 (�) = EBE (�) ;

and the value v(�) is the unique EBE payo¤ (to player 1) in the game G(�).

Example 1 (Matrix Bayesian Game). Assume that each player i has
ni pure strategies, and Si is the (ni � 1)-dimensional simplex of i�s mixed
strategies. Assume further that in each ! 2 
; the payo¤ function is given
by

u
�
!; s1; s2

�
= s1A(!)s2; (4)

where strategy s1 2 S1 is regarded as a row vector, s2 2 S2 �as a column
vector, and A(!) is an n1�n2-matrix, with A(!)j;k being the payo¤ of player
1 when he chooses pure strategy j and 2 �pure strategy k, which is uniformly
bounded across 
: Then the strategy sets of players and the payo¤ function
satisfy all the conditions listed above, and the associated zero-sum Bayesian
game is amenable to our analysis.

2.2 Interim Expected Payo¤s

The notions of the value of a game, and of the optimality of strategies, are
de�ned with respect to players�ex-ante expected payo¤s. In other words,
players are assumed to evaluate their utilities before any private information
is revealed. However, they may conceivably want to evaluate the conse-
quences of their strategic choices at the interim stage, following the receipt
of private information. In other words, players may be concerned with their
interim expected payo¤, that takes into account their private information
and is based on the appropriately updated prior belief.
To formalize the discussion, let � 2 �(
;F) : For any ! 2 
 and i = 1; 2;

denote by �i (!) the element of partition �i that contains !: If � (�i (!)) >
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0; denote by ��i(!) 2 �(
;F) the conditional belief of player i; given his
information at !; i.e., for any A 2 F ;

��i(!) (A) = �
�
A j �i (!)

�
=
� (A \ �i (!))
� (�i (!))

: (5)

The function U��i(!)(�; �) will be referred to as the interim expected payo¤
given �i (!) :
For " � 0; a pair (bx1; bx2) 2 X1 � X2 is called an interim Bayesian "-

equilibrium (henceforth, "-IBE for short) in G(�) if

U��1(!)(bx1; bx2) � U��1(!)(x1; bx2)� " (6)

for every x1 2 X1 and every ! 2 
 with � (�1 (!)) > 0; and

U��2(!)(bx1; bx2) � U��2(!)(bx1; x2) + " (7)

for every x2 2 X2 and every ! 2 
 with � (�2 (!)) > 0: Denote by IBE" (�)
the set of all "-IBE in G(�); and simplify IBE0 (�) to IBE (�) : If (bx1; bx2) 2
IBE (�) ; we will call it an interim Bayesian equilibrium (IBE for short).

Remark 3. When " = 0; there is no distinction between IBE and EBE.
De�nitions embodied in (2), (3) and (6), (7) are equivalent, as are indeed
the notions of IBE and EBE in general, non-zero-sum, games. Accordingly,
neither the value of a zero-sum Bayesian game (viewed as the ex-ante payo¤
in an IBE) nor the optimal strategies (viewed as IBE strategies) need not be
rede�ned in the interim expected payo¤s setting.

Remark 4. When " > 0; the de�nition of "-IBE is signi�cantly more
demanding than that of "-EBE. Although any "-IBE is in particular an "-
EBE, i.e., IBE" (�) � EBE" (�) ; as follows from integrating both sides in
(6) and (7) over 
, the opposite is not true. In terms of the interim expected
payo¤s U��i(!)(�; �), the de�nition of (bx1; bx2) 2 EBE" (�) implies that

U��1(!)(bx1; bx2) � U��1(!)(x1; bx2)� "

� (�1 (!))
(8)

for every x1 2 X1 and every ! 2 
 with � (�1 (!)) > 0; and

U��2(!)(bx1; bx2) � U��2(!)(bx1; x2) + "

� (�2 (!))
(9)
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for every x2 2 X2 and every ! 2 
 with � (�2 (!)) > 0: This indicates that
although an "-EBE strategy bxi is ex-ante an "-best response against bxj, it
may be hugely interim-suboptimal in states of nature ! with low probability
� (�i (!)), thereby failing to be an "0-IBE strategy for all su¢ ciently small
"0: (See, e.g., Example 2 in section 3.3.)

2.3 Topology on Common Priors

Consider the total variation metric d on �(
;F) ; given by
d(�; �0) = sup

E2F
j�(E)� �0(E)j (10)

for any �; �0 2 �(
;F).
The following lemma shows that the expected payo¤ U� is a Lipschitz

function of � with respect to d; for a �xed (x1; x2) 2 X1 �X2:

Lemma 1. For any (x1; x2) 2 X1 �X2 and �; �0 2 �(
;F),��U�(x1; x2)� U�0(x1; x2)�� � 2Md(�; �0)

Proof. For any �; �0 2 �(
;F) ;

sup

Z



f (!) d (�� �0) (!) = 2d(�; �0); (11)

where the supremum is taken over all F-measurable functions f : 
! [�1; 1]
(see, e.g., Lemma 1 on p. 360 in Shiryaev (1996)). Given any (x1; x2) 2
X1 �X2, note that, by the boundedness of u and (11),

��U�(x1; x2)� U�0(x1; x2)�� =

����Z



u
�
!; x1(!); x2(!)

�
d� (!)

�
Z



u
�
!; x1(!); x2(!)

�
d�0 (!)

����
=

����Z



u
�
!; x1(!); x2(!)

�
d(�� �0) (!)

����
� 2Md(�; �0):

�
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3 Results

3.1 Continuity of Value

Our main result establishes Lipschitz continuity of the value:

Theorem 1. The value v(�) is a Lipschitz continuous function of � with
respect to the metric d: for any �; �0 2 �(
;F),

jv(�)� v(�0)j � 2Md(�; �0): (12)

Proof. Let x̂1 2 O1 (�) and x2 2 X2. The optimality of x̂1 in G (�)
and Lemma 1 imply that

U�0(x̂
1; x2) � U�(x̂

1; x2)� 2Md(�; �0)
� v(�)� 2Md(�; �0):

This holds for every x2 2 X2, and hence it follows that

v(�0) = max
x12X1

min
x22X2

U�0(x
1; x2) (13a)

� min
x22X2

U�0(x̂
1; x2)

� v(�)� 2Md(�; �0): (13b)

Similarly, starting with x̂2 2 O2 (�) we obtain

v(�0) = min
x22X2

max
x12X1

U�0(x
1; x2) (14a)

� max
x12X1

U�0(x
1; x̂2)

� v(�) + 2Md(�; �0) (14b)

The combination of (13) and (14) yields (12). �

Theorem 1 implies, in particular, that the single-valued EBE (or, equiv-
alently via Remark 3, IBE) expected payo¤ correspondence is both lower
and upper semi-continuous with respect to the total variation metric on the
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common prior, when restricted to zero-sum Bayesian games. This stands in
contrast to the general, non-zero-sum case. As was shown by Kajii and Mor-
ris (1998), IBE payo¤s in a non-zero-sum Bayesian game G(�) may be quite
far from "-IBE payo¤s in G(�0) for all small enough " > 0; even if d(�; �0)
is arbitrarily small, when the beliefs conditional on each player�s private in-
formation do not converge uniformly. But, in the zero-sum case, the IBE
payo¤ in G(�) is approximated by the true IBE payo¤ in G(�0) (not merely
an "-IBE payo¤) when d(�; �0)! 0:

3.2 Upper Semi-continuity of Optimal Strategies

In addition to the value of a zero-sum Bayesian game, optimal strategies also
have strong continuity properties with respect to the total variation metric
on the common prior. Given a sequence f�ng

1
n=0 � �(
;F) such that

limn!1 �n = �0; we say that the optimal strategy correspondence is upper
semi-continuous (USC) along f�ng

1
n=1 if the following holds: for any player i

and any sequence fx̂ing
1
n=1 � X i such that limn!1 x̂

i
n = x̂

i
0 and x̂

i
n 2 Oi (�n)

for each n � 1, x̂i0 2 Oi (�0).

Proposition 1. The optimal strategy correspondence is USC along any
convergent sequence f�ng

1
n=1 � �(
;F).

Proof. Let f�ng
1
n=1 � �(
;F) and fx̂ing

1
n=1 � X i be such that limn!1 �n =

�0; limn!1 x̂
i
n = x̂

i
0; and x̂

i
n 2 Oi (�n) for each n � 1. We will assume i = 1,

the case of i = 2 being analogous. Take any x2 2 X2: By assumption, for
any n � 1

U�n(x̂
1
n; x

2) � v(�n): (15)

Using Lemma 1, we obtain��U�n(x̂1n; x2)� U�0(x̂10; x2)��
�

��U�n(x̂1n; x2)� U�0(x̂1n; x2)��+ ��U�0(x̂1n; x2)� U�0(x̂10; x2)��
� 2Md(�n; �0) +

��U�0(x̂1n; x2)� U�0(x̂10; x2)�� ;
and thus

lim
n!1

U�n(x̂
1
n; x

2) = lim
n!1

U�0(x̂
1
n; x

2) = U�0(x̂
1
0; x

2)
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by continuity of U�0 in the �rst variable. Now, taking the limits of both sides
in (15) and using Theorem 1 yields

U�0(x̂
1
0; x

2) � v(�0):

Since this holds for every x2 2 X2; x̂10 2 Oi (�0). �

Since O1 (�) � O2 (�) = EBE (�) for every � 2 �(
;F) ; as was men-
tioned in Remark 2, Proposition 1 also establishes that the EBE correspon-
dence (and, equivalently by Remark 3, the IBE correspondence) is USC in
zero-sum Bayesian games.

3.3 Approximate Lower Semi-continuity of Optimal Strate-

gies, EBE, and IBE

De�ning lower semi-continuity of the optimal strategy correspondence re-
quires some care. Its straightforward version will not work: given f�ng

1
n=0 �

�(
;F) with limn!1 �n = �0 and x̂
i
0 2 Oi (�0) ; we may not be able to �nd

a sequence fx̂ing
1
n=1 � X i such that limn!1 x̂

i
n = x̂i0 and x̂

i
n is optimal in

G (�n) for each n � 1: Indeed, even in a simple decision problem (i.e., a one-
player game) not all payo¤maximizers may be approximable by maximizers
in nearby problems. Thus, the appropriate notion of lower semi-continuity
of the optimal strategy correspondence with respect to the common prior is
the following. We will say that the optimal strategy correspondence is ap-
proximately lower semi-continuous (ALSC) along a sequence f�ng

1
n=1 with

limn!1 �n = �0 if the following holds: Given any x̂
i
0 2 Oi (�0) for some player

i; and any " > 0; there exists a sequence fx̂ing
1
n=1 � X i with limn!1 x̂

i
n = x̂

i
0;

such that x̂in is (merely) "-optimal in G (�n) for every n � 1:
Similarly, the EBE (respectively, IBE) correspondence is de�ned to be

ALSC along a sequence f�ng
1
n=1 with limn!1 �n = �0 by the requirement

that, given any (x̂1; x̂2) 2 EBE (�0) (respectively, IBE (�0)) and any " > 0;
there exists a sequence f(x̂1n; x̂2n)g

1
n=1 � X1 � X2 with limn!1 (x̂

1
n; x̂

2
n) =

(x̂10; x̂
2
0) ; such that (x̂

1
n; x̂

2
n) 2 EBE" (�n) (respectively, IBE" (�n)) for every

n � 1:
It follows from the next proposition that the optimal strategy correspon-

dence is ALSC, with the sequence fx̂ing
1
n=1 being the strategy x̂

i
0 itself:
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Proposition 2. For every �; �0 2 �(
;F) and every i = 1; 2;

Oi (�) � Oi
4Md(�;�0) (�

0) :

Proof. As in the proof of Proposition 1, we will only consider the case
of i = 1. Fix any � 2 �(
;F) and let x̂1 2 O1 (�). By Lemma 1, optimality
of x̂1, and Theorem 1, for any x2 2 X2 and any �0 2 �(
;F),

U�0(x̂
1; x2) � U�(x̂

1; x2)� 2Md(�; �0)
� v(�)� 2Md(�; �0)
� v(�0)� 4Md(�; �0):

This shows that x̂1 is indeed 4Md(�; �0)-optimal for player 1 in G(�0). �

According to Proposition 2, if limn!1 �n = �0 then, for a given " > 0; any
x̂i0 which is optimal inG (�0) is also "-optimal inG(�n) for all su¢ ciently large
n: However, while optimality of a strategy has an interpretation in terms of
both ex-ante and interim expected payo¤s (since O1 (�)�O2 (�) = EBE (�)
= IBE (�), by Remarks 2 and 3), this is no longer so with "-optimality which
is a purely ex-ante concept (as expounded in Remark 4). Thus, although
Proposition 2 trivially implies that the EBE correspondence is ALSC along
any converging sequence f�ng

1
n=1 (since EBE (�0) = O1 (�0)�O2 (�0) and

EBE" (�n) � O1
"
2
(�n) � O2

"
2
(�n) by Remark 2), it remains mute on IBE.

And indeed, a pair (x̂1; x̂2) 2 O1 (�0) � O2 (�0) = IBE (�0) may fail to be
in IBE" (�n) for all n � 1 and all small enough " :

Example 2. Let 
 = N (the set of positive integers), S1 = [0; 1] ;
S2 = f0g ; �1 = �2 � ff2n; 2n� 1g : n 2 Ng ; and, �nally,

u
�
!; s1; s2

�
�
�
� (s1)2 ; if ! is odd;

0; is ! is even.
:

If �0 is a probability measure with the full support on f2n : n 2 Ng ; then,
clearly, x̂10 (�) � 1 is an optimal strategy of player 1 in G(�0): Consider,
however, a sequence f�ng

1
n=1 of probability measure, such that, for every

13



n, �n is identical to �0 on all subsets of 
n f2n; 2n� 1g ; but �n (f2ng) =
�n (f2n� 1g) = 1

2
�0 (f2ng) : Then clearly limn!1 �n = �0; but (x̂

1
0; 0) =2

IBE" (�n) for every n � 1 and all " 2 [0; 12):

However, the failure of some (x̂10; x̂
2
0) 2 IBE (�0) to be in IBE" (�n) for

all small enough " > 0; does not rule out that the IBE correspondence is
ALSC: it does not preclude the possibility that (x̂10; x̂

2
0) is approximable by

a sequence f(x̂1n; x̂2n)g
1
n=1 with (x̂

1
n; x̂

2
n) 2 IBE" (�n) for each n � 1: Indeed,

the IBE (x̂10; 0) in Example 2 is the limit of the sequence f(x̂1n; 0)g
1
n=1 ; where

x̂1n (f2k; 2k � 1g) �
�
1; if k 6= n;
0; if k = n

for all k 2 N; and f(x̂1n; 0)g
1
n=1 are "-

IBE (and even IBE) in fG(�n)g
1
n=1 : It is therefore natural to ask under what

conditions the IBE correspondence is ALSC in general zero-sum Bayesian
games.
It is well known that the IBE correspondence in non-zero-sum Bayesian

games is not ALSC with respect to the total variation metric on �(
;F) :
It is shown in Kajii and Morris (1994) (Example 1, Section 4.2 there) that
an IBE in a non-zero-sum Bayesian game G(�) may be far from all "-IBE
in G(�n); for all su¢ ciently low values of ", and in all states of nature.
What is at fault in that example is a non-uniform (across 
) convergence
of prior beliefs conditional on players�private information (i.e., of measures�
(�n)�i(!)

�
i=1;2;!2


), which may occur despite that limn!1 �n = �0 in the to-

tal variation metric (see also Example 2 above). More precisely, the problem
lies in the lack of almost uniform convergence of conditional beliefs, which
is de�ned, roughly speaking, by the requirement that the closeness of con-
ditional beliefs becomes approximate common knowledge with high ex-ante
probability.4 Our next Proposition 3 indicates that the (almost) uniform
convergence of conditional beliefs may not be necessary for the IBE corre-
spondence being ALSC in zero-sum Bayesian games. The proposition makes
certain assumptions on the support of f�ng

1
n=0 that guarantee ALSC behav-

ior along this sequence with respect to the total variation metric, without

4The notion of almost uniform convergence of conditional beliefs is de�ned and ex-
pounded upon in Kajii and Morris (1994). We do not attempt to give a formal de�nition
here, since this would require a lengthy digression, and this notion�s relevance is primarily
for the issue of IBE expected payo¤ continuity in general (non-zero-sum) games, which is
not our focus.
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any additional requirement on the convergence of conditional beliefs.5

Before we state Proposition 3, the following convention is in order. For
each i = 1; 2; we will write the elements of the (at most countable) partition

�i as an indexed sequence
�
�ij
	T i
j=1
; where T i 2 f1g [ N: When i�s private

information is given by �ij (i.e., when the realized state of nature ! is such
that �i (!) = �ij), the index j of �

i
j may be referred to as the type of player

i:

Proposition 3. Let f�ng
1
n=0 � �(
;F) be such that limn!1 �n = �0;

and assume that in zero-sum Bayesian games fG (�n)g
1
n=0 :

(I) there exists C > 0 such that, for every ! 2 
; the payo¤ function
u (!; �; �) is Lipschitz continuous with a constant C with respect to the Euclid-
ean norm on S1 � S2;

(II) T 1 = T 2 = 1; and there exist functions t1; t2 : N ! N with
limn!1min(t

1; t2) (n) = 1; and an integer K > 0 such that, for every
i = 1; 2 and every j � 1 :

(a) (�0)
�
�ij
�
> 0;

and
(b) for every n � 0; if (�n)

�
�ij
�
> 0 then the measure (�n)�ij has a

support on the set
ti(j)+K[
k=ti(j)

��ik ; where �i denotes the rival of player i:

Then the IBE correspondence is ALSC along f�ng
1
n=1 :

Note that assumption (I) is implied by the uniform boundedness of u
if fG(�n)g

1
n=0 are Bayesian matrix games (see Example 1). Assumption

5Indeed, under the assumptions of Proposition 3, the conditional beliefs of the players
may not converge uniformly. Moreover, it is easy to �nd examples (in the spirit of Example
1 in Kajii and Morris (1994)) of f�ng

1
n=0 ; adhereing to the assumptions, such that the

weaker, almost uniform, convergence of conditional beliefs also fails.
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(IIb) means that although player i may be unsure of the type of his rival;
he can estimate it via the function ti and in doing so make an error of at
most K (given the knowledge of his own type). This assumption is satis�ed,
for instance, by the information structure in the electronic mail game of
Rubinstein (1994).

Proof of Proposition 3. Let f�ng
1
n=0 � �(
;F) be a sequence

satisfying all the assumptions. Fix (x̂10; x̂
2
0) 2 IBE (�0) and " > 0: Con-

sider, additionally, a sequence f(by1n; by2n)g1n=1 � X1 �X2 such that (by1n; by2n) 2
O1 (�n)�O2 (�n) for each n � 1: Let

0 < � � �0 �
"

8CK2 (maxs12S1 ks1k+maxs22S2 ks2k)
; (16)

where k�k denotes the Euclidean norm on both S1 and S2: De�ne a sequence��
x1n;�; x

2
n;�

�	1
n=1

� X1 �X2 as follows: for every n � 1; i = 1; 2; and j � 1;
set

xin;�
�
�ij
�
� max (1� �j; 0) bxi0 ��ij�+min (�j; 1) byin ��ij� : (17)

Let J (�) �
�
1
�

�
+1 be such for all j � J (�) and i = 1; 2; ti (j) �

�
1
�

�
+1:

Since limn!1 �n = �0; it follows from assumption (IIa) on �0 that there
exists N > 0 such that

"0 � "

2
inf
�
�n
�
�ij
�
j i 2 f1; 2g ; 1 � j � J (�) ;N � n

	
> 0: (18)

By Proposition 2, the assumption that limn!1 �n = �0, and the fact that
(x̂10; x̂

2
0) 2 O1 (�0)�O2 (�0) (implied by the choice of (x̂

1
0; x̂

2
0) and Remark 3),

there exists N (�) � N such that for every n � N (�), (x̂10; x̂20) 2 O1
"0 (�n) �

O2
"0 (�n) :We claim that

�
x1n;�; x

2
n;�

�
2 IBE" (�n) for each n � N (�) :We will

only show that

U(�n)�1
j

(x1n;�; x
2
n;�) � U(�n)�1

j

(x1; x2n;�)� " (19)

for every x1 2 X1, every j � 1; and every n � N (�) : It could then be
established similarly that

U(�n)�2
j

(x1n;�; x
2
n;�) � U(�n)�2

j

(x1n;�; x
2) + " (20)

for every x2 2 X2; every j � 1; and every n � N (�) ; and thus (6) and (7)
in the de�nition of "-IBE will follow.

16



Given x1 2 X1 and j � 1; consider two cases.

Case 1: j � J (�) : Note that, by (17) and the de�nition of J (�) ;
x1n;� (!) = by1n (!) for every ! 2 �1j and x

2
n;� (!) = by2n (!) for every ! 2

t1(j)+K[
k=t1(j)

�2k: Thus, by assumption (IIb),

U(�n)�1
j

(x1n;�; x
2
n;�) = U(�n)�1

j

(by1n; by2n) (21)

and
U(�n)�1

j

(x1; x2n;�) = U(�n)�1
j

(x1; by2n): (22)

But (by1n; by2n) 2 O1 (�n) � O2 (�n) = IBE (�n) (see Remarks 2 and 3). This
fact and (21), (22) imply (19).

Case 2: 1 � j < J (�) : Denote

x
1
n;� � max (1� �j; 0) bx10 +min (�j; 1) by1n

and
x
2
n;� � max

�
1� �t1 (j) ; 0

� bx20 +min ��t1 (j) ; 1� by2n
(note a subtle but important di¤erence between xin;� and x

i
n;� �in the former

the coe¢ cients in the convex combination are state-dependent): It follows
from the de�nition of xin;� and x

i
n;� and assumptions (I) and (II) that����U(�n)�1

j

(x1n;�; x
2
n;�)� U(�n)�1

j

(x
1
n;�; x

2
n;�)

����
(by assumption (IIb))

�
k=t1(j)+KX
k=t1(j)

Z
�1j\�2k

���u �!; x1n;�(w); x2n;� (w)�� u�!; x1n;�(w); x2n;� (w)���� d (�n)�1j (!)
(by the de�nition of x1n;� and x

1
n;�)

=

k=t1(j)+KX
k=t1(j)

Z
�1j\�2k

���u �!; x1n;�(w); x2n;� (w)�� u�!; x1n;�(w); x2n;� (w)���� d (�n)�1j (!)
17



(by assumption (I) and the de�nition of x2n;� and x
2
n;�)

�
k=t1(j)+KX
k=t1(j)

Z
�1j\�2k

C�
�
k � t1 (j)

� �bx20 (w)+ by2n (w)� d (�n)�1j (!)
� 2C�K2 max

s22S2

s2 :
Similarly, it can be shown that����U(�n)�1

j

(x1; x2n;�)� U(�n)�1
j

(x1; x
2
n;�)

���� � 2C�K2 max
s22S2

s2 :
Thus,

U(�n)�1
j

(x1; x2n;�)� U(�n)�1
j

(x1n;�; x
2
n;�) (23a)

� U(�n)�1
j

(x1; x
2
n;�)� U(�n)�1

j

(x
1
n;�; x

2
n;�) + 4C�K

2 max
s22S2

s2 : (23b)
By the choice of N (�), xin;� 2 Oi

"0 (�n) for i = 1; 2 and every n � N (�) ; being
a convex combination of "0-optimal strategies. Therefore, by (8) in Remark
4, for every n � N (�)

U(�n)�1
j

(x1; x
2
n;�)� U(�n)�1

j

(x
1
n;�; x

2
n;�) �

"0

�n
�
�1j
� : (24)

From (23) and (24), for every n � N (�)

U(�n)�1
j

(x1; x2n;�)�U(�n)�1
j

(x1n;�; x
2
n;�) �

"0

�n
�
�1j
�+4C�K2 max

s22S2

s2 � "; (25)
by the de�nition of "0 and the choice of � (see (16), (18)).
We conclude that (19) and (20) hold, and thus indeed

�
x1n;�; x

2
n;�

�
2

IBE" (�n) for each n � N (�) :
It can be assumed w.l.o.g. that

�
N
�
�0
k

�	1
k=1

is a strictly increasing se-
quence of positive integers (recall the de�nition of �0 in (16)). Consider a

sequence f(x̂1n; x̂2n)g
1
n=1 � X1 � X2 de�ned by (x̂1n; x̂

2
n) �

�
x1
n;
�0
k

; x2
n;
�0
k

�
if

N( �0
k
) � n < N( �0

k+1
) for k = 1; 2; :::; and (x̂1n; x̂

2
n) � (by1n; by2n) if n < N(�0):

It follows from (17) that limn!1 (x̂
1
n; x̂

2
n) = (x̂

1
0; x̂

2
0) : Furthermore, since for

18



every 0 < � � �0 and every n � N (�) it was shown that
�
x1n;�; x

2
n;�

�
2

IBE" (�n) ; it follows that (x̂
1
n; x̂

2
n) 2 IBE" (�n) for every n � 1: �

When at least one player has a �nite number of types, ALSC obtains
without assuming either (I) or (II) of Proposition 3. Convergence of common
priors implies, in this case, almost uniform convergence of conditional beliefs,
and thus the IBE expected payo¤ correspondence is ALSC (for general, not
just the zero-sum, games), according to the main result of Kajii and Morris
(1994, 1998). The ALSC of the IBE strategy correspondence transpires from
the proof of that result. For the sake of completeness, however, we state and
prove the following proposition, for zero-sum Bayesian games with a �nite
number of types for at least one player.

Proposition 4. Assume min(T 1; T 2) < 1: Let f�ng
1
n=0 � �(
;F) be

such that limn!1 �n = �0; and (�0)
�
�ij
�
> 0 for every i = 1; 2 and every 1

� j < min(T i+1;1): Then the IBE correspondence is ALSC along f�ng
1
n=1 :

Proof. Assume w.l.o.g. that T 1 < 1: Let f�ng
1
n=0 � �(
;F) be a

sequence satisfying all the assumptions, and �x (x̂10; x̂
2
0) 2 IBE (�0) ; " > 0:

Also consider a sequence fy2ng
1
n=1 � X2 such that y2n is an (ex-ante, or,

equivalently, interim) best response of player 2 to the strategy x̂10 of player 1
in the game G (�n) ; for each n � 1:
Let

0 < � � �0 �
"

16M
min

1�j�T 1
�0
�
�1j
�
; (26)

and let an integer 0 < J (�) < min(T 2+1;1) be such that �(
J(�)[
j=1

�2j) > 1��:

De�ne a sequence
��
x2n;�

�	1
n=1

� X2 as follows: for every n � 1;

x2n;� (!) �

8><>: x̂20 (!) ; if ! 2
J(�)[
j=1

�2j ;

y2n (!) ; otherwise.

(27)
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The strategy x̂10; being inO1 (�0) by Remarks 2 and 3, is also inO1
4Md(�n;�0)

(�n)

by Proposition 2; and thus, for every 1 � j � T 1 with �n
�
�1j
�
> 0 and every

x1 2 X1;

U(�n)�1
j

(x̂10; x̂
2
0) � U(�n)�1

j

(x1; x̂20)�
4Md(�n; �0)

�n
�
�1j
� (28)

by (8) in Remark 4. Since clearly, for every such j and x1����U(�n)�1
j

(x1; x̂20)� U(�n)�1
j

(x1; x2n;�)

����
� 2M (�n)�1j

0@
n J(�)[
j=1

�2j

1A � 2M�

�n
�
�1j
� ;

(28) implies that

U(�n)�1
j

(x̂10; x
2
n;�) � U(�n)�1

j

(x1; x2n;�)�
4M(d(�n; �0) + �)

�n
�
�1j
� : (29)

By our assumptions on f�ng
1
n=0 ; there exists N1 (�) > 0 such that d(�n; �0)

� �0 and min1�j�T 1 �n
�
�1j
�
� 1

2
min1�j�T 1 �0

�
�1j
�
for every n � N1 (�) : The

choice of � in (26) and the inequality (29) guarantee that

U(�n)�1
j

(x̂10; x
2
n;�) � U(�n)�1

j

(x1; x2n;�)� " (30)

for every 1 � j � T 1, every x1 2 X1; and every n � N1 (�) :
Just as in (28), for every 1 � j � J (�) with �n

�
�2j
�
> 0 and x2 2 X2

U(�n)�2
j

(x̂10; x̂
2
0) � U(�n)�2

j

(x̂10; x
2) +

4Md(�n; �0)

�n
�
�2j
� : (31)

By our assumptions on f�ng
1
n=1, there existsN2 (�) > 0 such thatmin1�j�J(�) �n

�
�2j
�

> 0 and max1�j�J(�)
4Md(�n;�0)

�n(�2j)
� " for every n � N2 (�) ; and therefore for

every 1 � j � J (�) ; every x2 2 X2; and every n � N2 (�)

U(�n)�2
j

(x̂10; x̂
2
0) � U(�n)�2

j

(x̂10; x
2) + ":

But by (27), x̂10 (!) = x
2
n;� (!) for all ! 2 �2j ; and thus in fact the following

inequality holds:

U(�n)�2
j

(x̂10; x
2
n;�) � U(�n)�2

j

(x̂10; x
2) + ": (32)
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When j > J (�) ; x2n;� (!) = y
2
n (!) for all ! 2 �2j ; and by the de�nition of

fy2ng
1
n=1 as the sequence of best responses to x̂

1
0 in the games fG (�n)g

1
n=1 ;

U(�n)�2
j

(x̂10; x
2
n;�) � U(�n)�2

j

(x̂10; x
2)

for every J (�) � j < min(T 2 + 1;1); every x2 2 X2 and every n � N2 (�) :
Thus, (32) in fact holds for every 1 � j < min(T 2 + 1;1); every x2 2 X2;
and every n � N2 (�) : This fact, coupled with (30), shows that (x̂10; x2n;�) 2
IBE" (�n) for each n � N (�) � max (N1 (�) ; N2 (�)) :
Since lim�!0 x

2
n;� = x̂20; the construction in the last paragraph of the

proof of proposition 3 can be repeated to create out of
�
x2n;�

	1
n=1

a se-
quence fx̂2ng

1
n=1 � X2 such that limn!1 (x̂

1
0; x̂

2
n) = (x̂10; x̂

2
0) ; and (x̂

1
0; x̂

2
n) 2

IBE" (�n) for every n � 1: �
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