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A NOTE ON UTILITY MAXIMIZATION WITH UNBOUNDED RANDOM
ENDOWMENT

KEITA OWARI

Graduate School of Economics, Hitotsubashi University
2-1 Naka, Kunitachi, Tokyo 186-8601, Japan

This paper addresses the applicability of the convex duality method for utility maximiza-
tion, in the presence of random endowment. When the price process is a locally bounded
semimartingale, we show that the fundamental duality relation holds true, for a wide class
of utility functions and unbounded random endowments. We show this duality by exploit-
ing Rockafellar’s theorem on integral functionals, to a random utility function.

1. INTRODUCTION

Maximization of expected utility has been a time-honored issue in the study of mathemat-
ical finance. Especially, the following version of the problem with random endowment is
important in view of its application to utility indifference valuation:

(1.1 maximize E[U(0-St + B)], overallf € O,

where U is an utility function, S is a semimartingale, ® is the set of admissible integrands
(strategies), and B is a random variable expressing a random endowment or a contingent
claim.

A sophisticated way of solving (1.1) is the convex duality method which pass (1.1) to a
minimization over the set of local martingale measures for S, through the (formal) duality
equality:

(1.2) ;:}@)E[U(@-ST + B)] =ir>1%Qié1JfME|:V (kg—g) +kj—gBi| ,

where V is the Fenchel-Legendre transform of the utility function U, and M is a set of
local martingale measures. The RHS of (1.2) is the optimal value of the dual problem.
Note that the inequality “<” is always true, while “>" may not. This equality is shown by
several authors in different settings, e.g., the case of no endowment (B = 0) by Kramkov
and Schachermayer [12] and Schachermayer [17], the case of bounded B by Bellini and
Frittelli [2], and the case of exponential utility with suitably integrable B by Delbaen et al.
[5], Kabanov and Stricker [11] and Becherer [1].

Then a natural question arises: to what degree of generality does the equality (1.2) hold
true ? This is the theme of this note. Under the fundamental assumption that S is locally
bounded, we shall prove the duality for a wide class of endowments B. Our idea is based on
a refinement of [2] from a slightly different point of view. Namely, we view the problem
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2 K. OWARI

(1.1) as the maximization of expected utility functional associated to the random utility
Sfunction (o, x) — U(x + B(w)). This allows us to take full advantage of Rockafellar’s
theorem on convex integral functionals.

2. RESULT
2.1. SETUP

Suppose we are given a complete probability space (§2, F, P) equipped with a filtration
F := (Fi)sefo,1] satisfying the usual conditions of right-continuity and completeness,
where T' € (0, 0o) is the fixed time horizon. We assume F = F7 for notational simplicity.
Let S be a d-dimensional cadlag locally bounded semimartingale on (£2, Fr,F, P), and
define

2.1 Opp ;=10 € L(S): 6y =0, 6 - S is uniformly bounded from below},

where L(S) = L(S, P) denotes the set of d-dimensional predictable processes 6 =
o1, ... Gd) which are (S, P)-integrable, and 6 - § = fo 05d Sy is the stochastic integral of
6 € L(S) w.rt. S. For the precise definitions and basic properties of stochastic integrals
and the set L(S), we refer the reader to Jacod [9, 10]. Any 6 € Oy, is called an admissible
strategy, and we explicitly include the condition 8y = 0 in the definition of admissibility
to avoid the contribution of the initial value 89Sy to the stochastic integral.

In this paper, we consider only a class of utility functions defined on the whole real line.
More precisely, we assume:

(A1) U : R — Risacontinuously differentiable, increasing, and strictly concave function
satisfying the so-called Inada condition:
(2.2) lim U'(x) =+oc0 and lim U'(x) =0.
X—>—00 x—>+o00
For a given utility function U, the Fenchel-Legendre transform of U is defined by

V(y) = su]PR(U(x) —xy), yeR.

In the language of convex analysis, V is the convex conjugate of the convex function
@(x) = —U(—x). Under (Al), V is also differentiable with V’'(y) = —(U’)"!(y), and
has the explicit representation: V(y) = U(U)"'(y)) — y(U)"Y(y)if y > 0, V(0) =
U(+00) :=limy— 400 U(X), and V(y) = 400 if y < 0. Furthermore, we have

(2.3) limV’(y) = —co and lim V'(y) = 4o0.
{0 y—>00

Note in particular that V' is bounded from below. For utility functions, we assume also the
condition of reasonable asymptotic elasticities:

U’ U’
A2 AE o(U) = liminf LY S 1 4B, (U) = limsup 2L

< 1.
X N\(—00 U(x) x /'+00 U(X)

This condition is introduced by Kramkov and Schachermayer [12] and Schachermayer [17]
as a necessary and sufficient condition for the existence of optimal investment strategy.
Also, (A2) is equivalent to (see [6]): for any closed interval [a, b] C (0, 00), there exists
C1, Cy > 0 such that

2.4) ViAy) <CiV(y)+ Co(y + 1), Vy>0,A¢€]la,b].

A probability measure Q < P under which S is a local martingale is called an ab-
solutely continuous local martingale measure for S, and the set of all such measures is
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denoted by Mj,.. For the domain of the dual problem, we introduce the following subset
of Mjye:

My :={0 € My : E[V(dQ/dP)] < oo}.
Note that, by the consequence (2.4) of (A2), we have for all 0 <« P,
E[V(dQ/dP)]<oo <« E[V(AdQ/dP)] <oo, VA>0.

Generically, for any set Q of positive measures Q < P, we denote by Q¢ the set of
Q0 € Q with Q ~ P. We assume a version of no-arbitrage condition:

(A3) M5, # 0.
Finally, let B be a Fr-measurable random variable such that:
(A4) There exists some & > 0 for which,

(2.5) E[U(—=(1 4 &)B7)] > —oo0,
(2.6) E[U(—eB™)] > —o0.

2.2. MAIN THEOREM AND RELATED RESULTS

We are now in the position to state the main theorem. The proof will be given in Section 3.

Theorem 2.1. Under (Al) — (A4), the duality equality holds, i.e.,

. dQ dQ
27 E[U®- Sy + B)] = inf inf E A WA G
@D sup EIUE-Sr+ B =nf 1l [V( dP)+ apP ]

and the infimum in the RHS is attained by some (A, Q) € (0, 00) x M§,.

From a practical point of view, it is also important to ask whether the optimal expected
utility can be approximated by bounded stochastic integrals, i.e., by admissible strategies
such that 6 - S is bounded not only from below, but also from above. If the utility function
is bounded from above, the answer is positive. Let

(2.8) Op =1{0 € L(S): 6y =0, 08-S is uniformly bounded}.
Corollary 2.2. If, in addition to (Al) — (A4), U is bounded from above, then we have

NP dQ aQ
2.9 E[U@-S B)] = inf f E|\VIA— A—B|.
29) gseugb [ ( T+ )] )F>10 Qér/l\/iv |: ( dP) + dP :|

Finally, as pointed out by [5] in the case of exponential utility, the duality equality is

quite robust in the choice of admissible class. Let
(2.10)  Op:={0 € L(S): 6p =0, 0-S is a supermartingale under VQ € My }.

Corollary 2.3. Suppose (Al)—(A4), and let ©® C L(S) be sandwiched by Opp, (resp. Op
if U(oo) < 00)and Oy, i.e., Opp C O C Oy (resp. Op C O C Oy ). Then (2.7) remains
true with Oy, replaced by ©.

We conclude this section with a brief review of related literature. Generally speaking,
our result is an intermediate one among duality results of the type (1.2), in that, we require
S to be locally bounded, but give a duality of the classical-type (i.e., exclude the unpleasant
intervention of bizarre singular term, see below) for a wide class of U and B.
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Bounded Endowment. To our best knowledge, a duality result as our Theorem 2.1 appears
first in [2]. Their argument (from our view point) is based on the analysis of the functional
X +— E[U(X)] on L*°, and its conjugate defined on ba ~ (L°°)* (Banach space of
finitely additive signed measures), giving the duality for the case B = 0. Then the case of
bounded endowment follows by translation of the domain in L*°.

Exponential Utility. The “Six-Author Paper” [5] and its refinement [11] develop a general
duality theory for the case of exponential utility: U(x) = 1 — e™*¥, giving the duality
equality under (2.5) and the boundedness from above of B. This assumption is weakened
by [1] to the condition corresponding to our (A4). More recently, Owari [13] extends this
framework to the robust exponential utility maximization.

General Semimartingales. Without doubt, the duality theory can be extended to the case
with non-locally bounded S. In this case, however, the duality equality holds only in a
generalized sense as (Biagini et al. [3]):

sup E[U(O-Sr + B)] = inf inf (E [V (der)] +20(B) +)L||QS||).

peHW A>0 Qe MW dP

where H" is the set of integrands of which @ - S is bounded from below by a suitable
random variable W, MW is a subset of ha, Q(B) is the “integral” of B w.r.t. a finitely
additive measure Q, and Q" (resp. Q°) denotes the regular (resp. singular) part of Q in
the Hewitt-Yosida decomposition. Our integrability assumption (A4) appears in [3]. In
this respect, Theorem 2.1 states that, in the case of locally bounded S, the singular term
automatically disappears, whenever B satisfies (A4), although the case where B satisfies
(2.5) and (2.6) for “Ve > 0” is covered by [3].

Other Case. Yet another approach is proposed by [14]. There the problem (1.1) is consid-
ered under the assumption that there exists x’, x” € R and 8’, 8” € Oy such that

2.11) x'+6"-Sp<B<x"+86"-Sr,

and 0’ - S is a martingale under every Q € My . This has no apparent relation to our
assumption. In contrast to this formulation, our approach has an advantage that we need
only the integrability conditions for B, which are easily checked a priori, while (2.11) is
hard to verify.

Remark 2.4. Since we focus only on the case of utility on R, articles on the case of
utility on R4 are omitted. For this direction, see e.g., Cvitani¢ et al. [4], Hugonnier and
Kramkov [7], Hugonnier et al. [8] and references therein.

3. PROOFS
3.1. OUTLINE

We first give the outline of the proof, which may help the understanding. Roughly speak-
ing, our idea is based on Bellini and Frittelli [2], but exploits Rockafellar’s theorem [15]
on convex integral functionals to a random utility function.

As most of literature on this subject, we first reduce the problem to a maximization of a
concave functional defined on L°°, and then appeal to the (L°°, ba)-duality. Define

3.1 C:={X € L*®:360 € Opp suchthat X <0 - St},

which is a convex cone containing L and IC := {6 - ST : 0 € Oy} (see e.g., [2]). As in
[2], we can show (Lemma 3.6 below):

sup E[U(6 - ST + B)] = sup E[U(X + B)].
Opp XecC
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Let¢c(X) = 0if X € C and = +o0 otherwise (i.e., ¢ is the indicator function of C in the
sense of convex analysis), and define (formally) a concave functional ug on L by

3.2) ug(X) := E[U(X + B)].
Then we have
supup(X) = sup (up(X) —éc(X)),
XeC XeLoe
Now if up is well-defined and regular enough, Fenchel’s duality theorem shows that
sup (up(X) —8c(X)) = min(8(v) —ug(v)) = min(vp(v) + 8z (v)),
XelLo® veba veba

where vp is the conjugate of up defined on ba by
(3.3) vp(v) :i= sup (up(X)—v(X)), vE€ba.
XelLoe

Thus, the key step is to verify the regularity of u g and to derive the explicit form of vp. We
will do this (Proposition 3.8) by exploiting Rockafellar’s theorem to u p which is a concave
integral functional defined by the random concave function Up on 2 x R: Up(w, x) :=
U(x + B(w)). In this step, the assumption (A4) plays a crucial role, giving the estimates
between U, Ug and V (Lemma 3.4).

3.2. PRELIMINARIES AND IMPORTANT ESTIMATES

We first introduce some additional notations and concepts used in the proof of Theorem 2.1.
The first one is the description of the space ba.

Definition 3.1 (ba($2, Fr, P)). ba := ba(§2, Fr, P) is the set of all bounded finitely
additive measures absolutely continuous w.r.t. P,i.e., v € ba(§2, Fr, P) if and only if v
is a real valued function on Fr such that (1) supge £, [v(4)| < oo, (2) for every A € Fr,
P(A) = 0 implies v(A) = 0, 3)if A,B € Frand AN B = @, then v(A U B) =
v(A)+v(B). Also, bay (resp. ba?) denotes the set of positive (resp. o-additive) elements
of ba, and set ba$ := bay N ba’, bai’l :={v € ba% :v(£2) = 1}, and

Qv :={v € bal : E[V(dv/dP)] < oo}.

Only facts which will be used here are: (1) ba is a Banach space equipped with the
total variation norm, and ba >~ (L°)*, (2) every v € ba has a unique decomposition
v = v" 4+ v, where v € ba® and v* is purely finitely additive. ba‘fr’1 is nothing but the
set of probabilities Q on (§2, F7) with Q0 <« P. Also, as a direct consequence of (2.4),
Qy is a convex cone having the following representation:

Lemma 3.2.

1. If V(0) = U(oc0) < 00,

(3.4) Qv ={AQ: 1 >0, Q €ba', E[V(dQ/dP)] < c0}.
2. If V(0) = +o0,
(3.5) Qv ={A0: A >0, Q €ba', E[V(dQ/dP)] < oc}.

Recall that the set C (defined by (3.1)) is a convex cone containing L*°. The following
relation between C and M, is well-known (e.g., [2, Lemma 1.1]): for every Q € baf_’l,

(3.6) 0eMy, < E2X]<0 forVXeC.
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Let 65 be the conjugate of the indicator function §¢, i.e.,

56(v) = sup (v(X)—8c(X)) =supv(X), Vv eba.
XeLo® XeC
The above observations immediately yield the next lemma.
Lemma 3.3. §5(v) = +ooifv € ba, and for all v € ba¥,
if v e cone(Mj,e)

+00 otherwise.

(3.7) §5(v) =

Here
cone(Mjoe) =440 : A >0, O € My, ).

Proof. If v ¢ ba, there exists X € L with v(X) < 0. Since L>® C C, we have —AX € C
for all A > 0, hence

§5(v) > sup —Av(X) =
A>0

The fact that C is a cone implies that §3 is {0, +oc0}-valued, and 63(v) = 0 if and only
if v(X) < Oforall X € C. If v € ba?, the latter condition is equivalent to saying that
v € cone(Mj,.) by (3.6). O

The following estimates are elementary, but play a key role in the proof of theorem.
Lemma 3.4. Lete> 0.

(a) For every random variable Y > 0,

T Vx)-vQa)+U=1+¢eB7)

IA

V(Y)+YB

(38) 1+e

V(YY) — U(—sB+).

(b) For every Y > 0 and every random variable X,

e 1+e¢ 1
U|l—X —U—l B)<UX+ B

(3.9) 1 L

— V() + XY — —U( eB™).
Remark 3.5. 'We make some remarks on the consequences of (A4).

1. (3.8) implies that V(Y) € L! if and only if V(Y) + YB € L', and in this case
YB e L'and E[V(Y) + YB] = E[V(Y)] + E[YB]. In particular, for any Q € bay’,
E[V(dQ/dP)] < oo implies B € L'(Q).

2. The map (A, Q) — E[V(AdQ/dP) + A(dQ/dP)B]on R4 x baﬂ:’l to (—oo, +00] is
well-defined (note that V' is bounded from below), and is finite if and only if AQ € Qy.
Let A, O be such a pair. Then by Jensen’s inequality,

dP dP 1+

In particular, infy>o perr,, E[V(AdQ/dP) + A(dQ/dP)B] > —oo, since again V' is
bounded from below.
3. (A3) and (A4) implies that U(X + B) € L! for every X € L®. Indeed, the LHS of

(3.9) is integrable for any X € L since U is monotone, while the RHS is integrable
forY =dQ/dP with Q € My.

(3.10) E[V( dQ) 2%, :|>—(V()L)—V(1))+E[U( (1+¢)B7)).
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Proof of Lemma. (a) Forany Y > 0,
(3.11) eYB <Y(eBT) < V() —U(—eB™"),
by Young’s inequality, thus,
1 1
V(Y)+YB < —5V(¥) - ~U(-eB™).
e e

and we get the second inequality in (3.8). On the other hand,

YB™

—(l—i—s)B < ( —i——Y) (1+¢B~

1+ 1+¢ 1+
& 1 _
SV(1+8+TY)_U(_(1+8)B)
STV(YH-—VU)—U( (1+¢)B7).

Using this,
V(Y)+YB>V(Y)—YB™ > ——V(Y) = ——V(1) + U(=(1 + &) B").
1+e¢ 1+¢

These prove the assertion (a).
(b) For any random variable X and positive random variable Y,

UX+B)=<V({¥)+Y(X+ B)
1+e
<

IA

—VY)+ XY — —U( eB™),

by (3.11). Also, since U is concave and monotone increasing,

e l+e 1
UX+B)=U . X -(1 B
(X + B) (1+s £ +1+8(+8))

£ 1+e¢ 1
U( X)—i— leSU((lﬁ—e)B)

T 14e £
> _° U(1+£X)+ L v +e8).
T 14e¢ £ 1+e¢
This completes the proof. O

We now reduce the problem to a minimization in C.
Lemma 3.6. We have

(3.12) sup E[U@-ST + B)] = sup E[U(X + B)].
0Oy Xe

Proof. The inequality “>" is immediate from the definition of C and the monotonicity of

U. Let 0 € Opp. Then forany k € N, Xy := (6 - S7) Ak isin C. Since 0 € Oy, there

exists x > 0 with 6 - § > —x uniformly, a.s., hence X; > —x, a.s. We have

(3.13) UXx + B) /U@ -Sr + B), as.

Now Lemma 3.4 (b) implies that U(X; 4+ B) > 57 U(==2 (1+€)x) + 3z U(—(1 + &) B"),
for each k, which is in L! by (A4). On the other hand, taking Q € My (by (A3)),
U@-St+ B) < %V(dQ/dP) +60-S7dQ/dP — %U(—8B+) € L', since §-Sisa
Q-supermartingale, and U(—eB ™) € L! by (A4). Therefore, the convergence (3.13) takes
place in L! by the dominated convergence theorem, hence limy_o, E[U(X; + B)] =
E[U(O - ST + B)]. This proves the inequality “<”. O
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The final lemma in this subsection states that the infimum in the dual problem must not
attained neither by A = O norby Q £ P.

Lemma 3.7. Ifv € Qy \ Qf, there exists V € QY, such that

Elv (Y Pl celv(), &g
ar ) T ap ar) T ar’|

Proof. This is trivial if V(0) = +o0 since then Qy = Qf,, thus we assume V(0) < oo.
Letv € Qy and b € QF,(# @ by (A3)). Set vy :=ab + (1 —a)v € Qy (a € [0, 1]). Note
that v, € Q‘{, for ¢ € (0, 1). Set also,

d d
Ou :=V( ”"‘)+ aperl

dpP ) " dP

Since & > @, (w) is convex for a.e. w, & — (¢, — @o)/a is increasing in o, hence
Po — Po
— \\Z, as.,
a

for some random variable Z. Since (¢; — ¢@o)/a € L', we can apply the monotone
convergence theorem to get

(3.14) lim E
a0

I:‘/)ot - 900] — E[Z].

On the other hand,
dv dv dv dv
J— / - —_— — — _— =
Z_(V (dP)+B)(dP dP) o On%dP 0}’

since V'(0) = —oo (by (Al)) and v € Qf,. Therefore, (3.14) shows that if v £ P, there
exists o € (0, 1) such that

zlv dvg +dvaB zlv dv +de -
dp ) " dp ap) " ap -

Since v, € 9%, we have the desired result. O

3.3. DESCRIPTION OF THE CONJUGATE FUNCTIONAL

We now come to the key step, namely, the regularity of up defined by (3.2), and the
description of its conjugate vp defined by (3.3).

Proposition 3.8. Assume (Al) — (A4). Then

(a) up is well-defined and continuous on L*° w.r.t. the norm topology.
(b) vp has the expression:

vp(v) = E[V (5_1’) + 5—133] ifv e Qy

+o00 otherwise.

(3.15)

We shall prove this by exploiting Rockafellar’s theorem on convex integral functionals.
We begin with some preparation.

Definition 3.9. A map f : 2 xR — R U {400} is called a normal convex integrand if:

(a) f is jointly measurable (i.e., F x B(R)-measurable),
(b) x — f(w, x) is a lower semicontinuous proper convex function for a.e. .

Also, the conjugate random convex function of f is defined by

(3.16) [ (w,y) = suﬁ(xy — f(w,x)), (w,y)e€ 2 xR.
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We cite here Rockafellar’s theorem in a form suited to our purpose.

Theorem 3.10 (Rockafellar [15], Theorem 1, Corollary 2A).

1. Let f : 2 x R — R be a random convex function such that
(a) there exists some X € L™ such that, f(-, X())T € L,
(b) there exists some Y € L' such that, f*(-Y(-))T € L.
Then the map

(3.17) I5(X) := E[f(X)] =/9f(a),X(a)))P(da)), Xel™®

is well-defined as a convex functional on L*°, and the conjugate I; :ba — RU {400}
is expressed as:

(3.18) IF(v) = Ip= (V") + 8;0m(lf)(vs), v € ba,

where,
d r
10" = £ @ 1) = [ £ (0.5 @) Pdo,

Szom(lf-)(vs) = sup VS(X)-
: X edom(Ir)

2. Ifin addition f(-,X(-)) € L" for every X € L, then Iy is continuous on L* and
E[f*(dv/dP)] ifv e ba®

(3.19) IF(v) =
f( otherwise.

Remark 3.11. In [15], the notion of normal convex integrands is introduced in a slightly
different way, which is equivalent to our Definition 3.9 if the underlying probability space
is complete as we assumed. See Rockafellar and Wets [16], Ch.14 for detail. Also, the
original version of Theorem 3.10 in [15] is stated and proved on a o-finite measure space,
rather than a probability space.

Proof of Proposition 3.8. We apply Rockafellar’s theorem to the random convex function
flw,x) =-U(=x + B(w)),

which is clearly jointly measurable, convex and continuous in x, hence normal. The con-
jugate f* is given by

[ @.y) =V(y) + yB(w),

and I (X) = E[-U(—X + B)] = —up(—X), thus If* = vp.

Forevery X € L*°, f(X) = —U(—X + B) is integrable by Lemma 3.4 and Remark 3.5.
On the other hand, we can take Q € My by (A3), so that f*(d Q/dP) = V(d Q/dP) +
(dQ/dP)B € L', by Lemma 3.4. Hence we can apply Theorem 3.10 to get the assertion
(a), and that

E[v(%)+ %8| ifveba

vp(v) = If(v) = )
400 otherwise.

It remains to show that vp(v) = +o0if v € ba® \ Qy. Suppose v € ba’ \ ba. Since
f*(dv/dP) =V(dv/dP)+(dv/dP)B = +ooontheset{dv/dP < 0} which has a pos-
itive probability, the estimate (3.8) of Lemma 3.4 shows that vg(v) = E[f*(dv/dP)] =
+o00. Finally, forany Y > 0 f*(Y) € L' if and only if V(Y) € L' by Remark 3.5, hence
vp(v) < oo ifand only if v € Qy. O
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3.4. PROOF OF MAIN RESULTS

Proof of Theorem 2.1. We apply Fenchel’s theorem for (L°°, ba) to ug and §¢. By Propo-
sition 3.8, dom(up) = L and up is continuous, hence epi(up) has non-empty interior
w.r.t. the product topology of L°°xR. Indeed, (0, up(0)—1) is an interior point of epi(up).
Also, dom(ug) N dom(S¢) = C has an interior point, since L*° C C,and X = —1 is an
interior point of L°. Using (3.6), Lemma 3.4, and (A4),

sup (up(X) —dc(X)) = sup E[U(X + B)]

XeLo® XeC
Ateg [V (d—Qﬂ ~ L EuceB ) + sup E9[x]
e dP g XeC
l+e¢ do\| 1 -
=— E|:V (_dP):| sE[U( eB™)] < o0.

where Q is an element of My (# @ by (A3)). Therefore, we can apply Fenchel’s theorem
to get

sup up(X) = XsuLpoo(uB(X ) =8¢ (X)) = min(vg(v) + 3¢ (v))

XeC
dv dv
= min (E|V|— —B 8¢
i (e[v (37) + 8] +oe)
aQ dQ
= i E|V{A—= A—1.
A= 0.0eME, [ ( dP) * dP}
Here, the third equality follows from Proposition 3.8, and the fourth from Lemma 3.3 and

Lemma 3.7. Now Theorem 2.1 follows from Lemma 3.6. O

Proof of Corollary 2.2. This is a direct consequence of the following minor modification
of Kabanov and Stricker [11], Lemma 5.1. O

Lemma 3.12. Suppose that U is bounded from above. Then for any 0 € Oy, there exists
a sequence (0") C Oy, such that (68 — 0") - S) — 0 in probability and

(3.20) E[U(O-Sr + B)] = lim E[U®" - St + B)].

Proof. Since S is locally bounded, we can take a increasing sequence (t,), of stopping
times with S7 < n, and 7, /' T, stationarily, a.s. Then ((61po,;,j —0) - S)7 — 0
in probability, for any 6 € L(S). Thus, if 8 - § > —x, we have U( - S}” + B) —
U(6 - ST + B) in probability, and this sequence is uniformly bounded from below (resp.
above) by I%_SU(@XH— ILHU(—(I +¢&)B7) € L (resp. U(oo) < 00) by Lemma 3.4
(b) and (A4). Hence the dominated convergence theorem shows that

lim E[U@© - S7* + B)] = E[U® - ST + B)].

This reduces the assertion to the case where S is uniformly bounded by some constant c.
Suppose that 6 - S is uniformly bounded from below by a > 0. Set

0" = Olgg<ny, Tw:=inf{t:60-S; >n}, on:=inf{t: (0" —0)-S)F =1} AT.

Note that 6" - §on > a — 1. Indeed, on . S§% > @ . §% — 1 by the definition of ¢,, and

A" . SO = 91{|9‘5H}AS0” = 1{|9‘5H}A9 . S
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hence
" . S = " . S 4 AG" .S > 089 — 1 + 1yjgj<ny AG - SO

= l{|9|5n}9 -89 4 l{‘9|>n}9 -89 — 1 >qa—1.

Now let 67 := é"lﬂo,gnmnﬂ. Then 6" - § = 6" - 9™ > q — 1, and
0" -S =0"-S_+ AB"-S < 0" - SO L O] g <y ASTHN

<6.8%"n L1 4+2cn<n+1+2cn.
Hence 6" € ®). On the other hand, we have ((é” —0)-8)7 = ((Olgge>ny) - S)7 — 0
in probability (note that & € L(S) if and only if ((01{9<n}) - S)nen is a Cauchy sequence
w.r.t. the semimartingale topology). This implies also that P(0,, < T) — 0 (i.e.,0n /T,
stationarily, a.s.), thus ((6" — 6") - §)7 — 0 in probability. Hence ((6" —0) - S)7 — 0
in probability. Finally, since 6" - S is uniformly bounded from below by a — 1, and U is

bounded from above, we can use as above the dominated convergence theorem to conclude
lim, 0o E[UO" - ST + B)] = E[U(0 - ST + B)]. O

Proof of Corollary 2.3. Let Opp, C ©® C Op. For any 8 € ©, we have by Young’s

inequality,

U(@-ST+B)§V(xj—IQ))JrAZ—g(e-STJFB), VA >0, V0 e My,

hence

E[U®-St+ B)| < E [V ( Z—g) + AZ—%B} + AEC[6 - S7]

dpP dp

since 0 - S is a supermartingale under each Q € My . Then Theorem 2.1 implies that

§E[V(Ad—Q)+Ad—QBi|, VO e®, VA>0, V0 € My,

sup E[U® - ST + B)] < inf inf E |:V( d—Q) +/\d—QBi|
A>0 QeMy

0ecO dpP dP
= sup E[U(6-St + B)],
9€@bb
The converse inequality follows from the inclusion ®p; C ©. Finally, if U(c0) < oo, we
can replace all ®; above by ©p, and the proof is complete. O
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