REVISED PROOF OF SKOLEM'S THEOREM*

TAKASHI NAGASHIMA

In [N 91], the author intended to present an easy finitary proof of Skolem's Theorem but unfortunately it turned out to contain some serious errors. This corrected version is self-contained and readers' knowledge of [N 91] is not assumed. Skolem's Theorem is the following statement: In the classical predicate logic, let f be a k-ary function symbol not contained in a formula $\forall x_1 \ldots \forall x_k \exists y A(x_1, \ldots, x_k, y) \supset B$. Then

$$\forall x_1 \ldots \forall x_k \exists y A(x_1, \ldots, x_k, y) \supset B$$

is valid if and only if

$$\forall x_1 \ldots \forall x_k A(x_1, \ldots, x_k, f(x_1, \ldots, x_k)) \supset B$$

is valid.

We use the logical symbols \neg , \wedge , \vee , \supset , \vee and \exists . Different letters are used for free variables and for bound variables. Any set consisting of function symbols and predicate symbols is called a *language*. The language obtained by adding function symbols f, g, ... and predicate symbols P, Q, ... to any language \mathcal{L} is written $\mathcal{L} \cup \{f,g,...,P,Q,...\}$. Terms and formulae are constructed according to the usual syntactic rules. Any formula of the form $(A \supset B) \wedge (B \supset A)$ is abbreviated as $A \equiv B$. For any formula A(a), the formula

$$\exists x A(x) \land \forall x \forall y (A(x) \land A(y) \supset x = y)$$

is abbreviated as $\exists !xA(x)$. If two formal expressions A and B differ only in their bound variables, A and B are congruent [K 52, §33] or A is an alphabetical variant of B [T 75, §3].

A cedent is a sequence of zero or more formulae separated by commas. A sequent is an expression of the form

$$\Gamma \longrightarrow \Theta$$

where Γ and Θ are any decents. Partition of cedent is defined as follows:

- (1) If Γ is the empty cedent then $[\Gamma; \Gamma]$ is the only partition of Γ .
- (2) If $[\Gamma_1; \Gamma_2]$ is a partition of Γ then $[\Gamma_1, A; \Gamma_2]$ and $[\Gamma_1; \Gamma_2, A]$ are partitions of Γ, A . A partition of a sequent $\Gamma \rightarrow \Theta$ is an ordered pair (of sequents)

$$[\Gamma_1 \longrightarrow \Theta_1; \Gamma_2 \longrightarrow \Theta_2]$$

^{*} This research was partially supported by Grant-in-Aid for scientific Research Nos. 62540145 and 05640253, Ministry of Education, Science and Culture of Japan.

where $[\Gamma_1; \Gamma_2]$ is any partition of Γ and $[\Theta_1; \Theta_2]$ is any partition of Θ . For any formula or a cedent or a sequent S, let

FV(S)=the set of free variables occurring in S,

BV(S)=the set of bound variables occurring in S,

Func(S)=the set of function symbols occurring in S.

For any formula or a cedent or a sequent S, $Pred^+(S)$ (resp. $Pred^-(S)$) denotes the set of predicate symbols occurring positively (resp. negatively) in S and Pred(S) denotes the set of all predicate symbols occurring in S.

Let \mathcal{L} be a language. A term t is an \mathcal{L} -term if $\operatorname{Func}(t) \subset \mathcal{L}$. If $\operatorname{Func}(A) \cup \operatorname{Pred}(A) \subset \mathcal{L}$ then A is an \mathcal{L} -formula. The language $\operatorname{Func}(A) \cup \operatorname{Pred}(A)$ is called the language of A and denoted as $\mathcal{L}(A)$. Similar notations and terminologies are used for cedents and sequents.

For any formal expression S and for any (free or bound) variable v, S[v:=t] denotes the result of replacing all occurrences of variable v in S with t. When a formula is denoted as A(a), the expression A(a)[a:=t] is abbreviated as A(t).

The system LK_e (LK with equality) is an extension of LK obtained by adding the following schemata for initial sequents:

$$\longrightarrow t = t$$
$$s = t, A(s) \longrightarrow A(t)$$

where a is a free variable, s and t are terms and A(a) is an atomic formula. This system is equivalent to LK_e in [T 75, §7]. LK_e is also equivalent to the system LKG [N 66], which is an extension of LK obtained with additional inference schemata

$$\frac{t=t, \ \Gamma \longrightarrow \Theta}{\Gamma \longrightarrow \Theta} \quad \text{and} \quad \frac{\Gamma \longrightarrow \Theta, \ A(s) \ A(t), \ \Delta \longrightarrow \Lambda}{s=t, \ \Gamma, \ \Delta \longrightarrow \Theta, \ \Lambda}$$

where a is a free variable, s and t are terms and A(a) is an atomic formula.

A derivation (or a proof figure) is defined as usual. A sequent S is LK-provable and denoted as $\vdash S$ is there exists an LK-derivation of S. If there exists an LK-derivation \mathscr{H} of a sequent S and if all sequents in \mathscr{H} are \mathscr{L} -sequents, then S is LK-provable in \mathscr{L} and denoted as $\mathscr{L} \vdash S$. Corresponding terminologies and notations are used aldo for LK_e . If the equality symbol = is not contained in \mathscr{L} , then LK_e -provability in \mathscr{L} is clearly equivalent to LK-provability in \mathscr{L} .

If $A(a_1,...,a_n)$ is a formula and $x_1,...,x_n$ are distinct bound variables not occurring in this formula, then the formal expression

$$\lambda x_1 \dots x_n \cdot A(x_1 \dots, x_n)$$

is an *n*-ary abstract [T 75, §20]. If V is $\lambda x_1...x_n.A(x_1,...,x_n)$ and if $t_1,...,t_n$ are terms then $V(t_1,...t_n)$ denotes the formula $A(t_1,...,t_n)$. For any *n*-ary abstract V, define

$$\operatorname{Func}(V) = \operatorname{Func}(V(a_1, \ldots, a_n)),$$

$$Pred(V) = Pred(V(a_1,...,a_n))$$

where $a_1,...,a_n$ are free variables not occurring in V. An abstract V is an \mathcal{L} -abstract if $\operatorname{Func}(V) \cup \operatorname{Pred}(V) \subset \mathcal{L}$.

For any k-ary predicate symbol P and any k-ary abstract V, the result of substituting V for P in a formula or a cedent or a sequent S is denoted as S[P:=V].

The key idea of our proof is replacing a function symbol by a predicate symbol [K 52, §74]. Let \mathcal{L} be a language, let f be a k-ary function symbol not contained in \mathcal{L} and let F be a (k+1)-ary predicate symbol not contained in \mathcal{L} . The (f;F)-transformation applies to $\mathcal{L} \cup \{f\}$ -terms and to $\mathcal{L} \cup \{f\}$ -formulae. Any $\mathcal{L} \cup \{f\}$ -term is transformed into a unary $\mathcal{L} \cup \{f\}$ -abstract and any $\mathcal{L} \cup \{f\}$ -formula is transformed into an $\mathcal{L} \cup \{f\}$ -formula. Definition is by the following induction.

- (1) a^* is $\lambda u.(u=a)$.
- (2) $f(t_1,...,t_k)^*$ is $\lambda u.\exists x_1...\exists x_k (t_1^*(x_1) \wedge ... \wedge t_k^*(x_k) \wedge F(x_1,...,x_k,u))$ where $u, x_1,...,x_k \notin BV(t_1^*) \cup ... \cup BV(t_k^*)$.
- (3) $g(t_1,...,t_n)^*$ is $\lambda u.\exists x_1...\exists x_n(t_1^*(x_1) \wedge ... \wedge t_n^*(x_n) \wedge u = g(x_1,...,x_n))$ where $u, x_1,...,x_n \in BV(t_1^*) \cup ... \cup BV(t_n^*)$.
- (4) $P(t_1,...,t_n)^*$ is $\exists x_1...\exists x_n(t_1^*(x_1) \land ... \land t_n^*(x_n) \land P(x_1,...,x_n))$ where $x_1,...,x_n \notin BV(t_1^*) \cup ... \cup BV(t_n^*)$.
- (5) $(A \wedge B)^*$ is $A^* \wedge B^*$, $(A \vee B)^*$ is $A^* \vee B^*$, $(A \supset B)^*$ is $A^* \supset B^*$ and $(\neg A)^*$ is $\neg A^*$.
- (6) $(\forall x A(x))^*$ is $\forall y A^*(y)$ and $(\exists x A(x))^*$ is $\exists y A^*(y)$ where y is any bound variable such that $y \notin BV(A(a)^*)$.

Example. In case of k=1, $(f(a)=b)^*$ is (any alphabetical variant of)

$$\exists x \exists y (\exists z (z=a \land F(z,x)) \land y=b \land x=y).$$

For any (k+1)-ary predicate symbol F, the existence condition [Mo 82] Ex(F) is the formula

$$\forall x_1...\forall x_k \exists y F(x_1,...,x_k,y)$$

and the uniqueness condition [Mo 82] Un(F) is the formula

$$\forall x_1...\forall x_k\forall y\forall z (F(x_1,...,z_k,y) \land F(x_1,...,x_k,z) \supset y=z).$$

Lemma 1. An \mathcal{L} -sequent is LK-provable if and only if it is LK-provable in \mathcal{L} . An \mathcal{L} -sequent is LK_e -provable if and only if it is LK_e -provable in $\mathcal{L} \cup \{=\}$.

Proof. The first part of Lemma is a direct consequence of Gentzen's cut-elimination theorem [G 35]. The latter part follows from cut-elimination theorem of LK_e [T 75, §7] or cut-elimination theorem of LKG [N 66].

Lemma 2. Let P be a k-ary predicate symbol, V be a k-ary \mathcal{L} -abstract and S be any \mathcal{L} -sequent. If $\mathcal{L} \vdash S$ then $\mathcal{L} \vdash S[P:=V]$. \square

Proof. Case LK: By cut-elimination theorem, there exists an cut-free LK-derivation \mathcal{H} of S. Applying redesignation of free variables [G 35, III 3.10], \mathcal{H} can be converted into a cut-free LK-derivation \mathcal{H}' of S such that no eigenvariable of \mathcal{H}' occurs in V. Substitute V for P in every sequent of \mathcal{H}' . The result of substitution is easily verified to be an LK-derivation of S[P:=V]. Similarly for Case LK_e . \square

Now let a k-ary function symbol f and a (k+1)-ary predicate symbol F be fixed. We state some Lemmas concerning the (f;F)-transformation.

Lemma 3. For any \mathcal{L} -term t,

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F) \longrightarrow \exists !xt^{*}(x). \quad \Box$$

Proof. By induction on the structure of t.

Lemma 4. For any free variable a, any L-term t and any L-formula A,

$$\mathcal{L} \cup \{=\} \vdash_{e} \longrightarrow t^{*}(a) \equiv a = t,$$

$$\mathcal{L} \cup \{=\} \vdash_{e} \longrightarrow A^{*} \equiv A. \quad \Box$$

Lemua 5. For any free variable a and any \mathcal{L} -terms s and t,

$$\mathscr{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F), t^{*}(a) \longrightarrow s^{*}(b) \equiv s[a:=t]^{*}(b). \quad \Box$$

Proof. By induction on the structure of s. \square

Lemma 6. If $= \notin \mathcal{L}$, $F \notin \mathcal{L}$, a is a free variable, t is a \mathcal{L} -term and A is a \mathcal{L} -formula, then

$$\mathscr{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F), t^{*}(a) \longrightarrow A^{*} \equiv A[a:=t]^{*}. \quad \Box$$

Proof. By induction on the structure of A. \square

Lemma 7. If $= \notin \mathcal{L}$, $F \notin \mathcal{L}$, a is a free variable, t is an \mathcal{L} -term and A(a) is an \mathcal{L} -formula, then

$$\mathcal{L} \cup \{=,F\} \vdash_{\epsilon} \mathsf{Ex}(F), \mathsf{Un}(F), \forall x A(x)^* \longrightarrow A(t)^*,$$

$$\mathcal{L} \cup \{=,F\} \vdash_{\epsilon} \mathsf{Ex}(F), \mathsf{Un}(F), A(t)^* \longrightarrow \exists x A(x)^*. \quad \Box$$

Proof. Let $a \notin FV(\forall x A(x)) \cup FV(t)$. By Lemma 6,

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F), t^{*}(a) \longrightarrow A(a)^{*} \equiv A(t)^{*}.$$

Hence

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F), t^{*}(a), A(a)^{*} \longrightarrow A(t)^{*},$$

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F), t^{*}(a), \forall x A(x)^{*} \longrightarrow A(t)^{*},$$

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F), \exists x t^{*}(x), \forall x A(x)^{*} \longrightarrow A(t)^{*}.$$

By Lemma 3,

$$\mathcal{L} \cup \{=,F\} \vdash_{\epsilon} \mathsf{Ex}(F), \mathsf{Un}(F), \forall x A(x)^* \longrightarrow A(t)^*.$$

The latter half is proved similarly.

Lemma 8. For any $\mathcal{L} \cup \{f\}$ -sequent $\Gamma \rightarrow \Theta$, if $\mathcal{L} \cup \{f\} \vdash \Gamma \rightarrow \Theta$ then

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F), \Gamma^* \longrightarrow \Theta^*. \quad \Box$$

Proof. By cut-elimination theorem, there exists a cut-free $\mathcal{L} \cup \{f\}$ -LK-derivation \mathcal{H} of $\Gamma \rightarrow \Theta$. It suffices to prove by induction that

$$\mathscr{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F), \Phi^* \longrightarrow \Psi^*$$

for any sequent $\Phi \to \Psi$ occurring in \mathcal{H} . The statement is evident for initial sequents. We divide cases according to the inference whose lower sequent is $\Phi \to \Psi$. Case $(\to 3)$. Let the inference be

$$\frac{\Delta \longrightarrow \Lambda, A(t)}{\Delta \longrightarrow \Lambda, \exists x A(x)} (\rightarrow \exists).$$

Since $\mathcal{L} \cup \{f\} \vdash A \rightarrow A, A(t),$

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F), \Delta^{*} \longrightarrow \Lambda^{*}, A(t)^{*}$$

by the inductive hypothesis. By Lemma 7,

$$\mathcal{L} \cup \{=,F\} \vdash_{\epsilon} \operatorname{Ex}(F), \operatorname{Un}(F), A(t)^* \longrightarrow \exists x A(x)^*,$$

hence

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F), \Delta^{*} \longrightarrow \Lambda^{*}, \exists x A(x)^{*}.$$

Case $(\forall \rightarrow)$. Similarly by Lemma 7.

All the other cases are straightforward.

Theorem 9 (Lyndon). For any partition $[\Gamma_1 \rightarrow \Theta_1; \Gamma_2 \rightarrow \Theta_2]$ of an LK-provable sequent $\Gamma \rightarrow \Theta$, if

$$\operatorname{Pred}^{-}(\Gamma_{1} \longrightarrow \Theta_{1}) \cap \operatorname{Pred}^{+}(\Gamma_{2} \longrightarrow \Theta_{2}) \neq \phi$$

or

$$\operatorname{Pred}^+(\Gamma_1 \longrightarrow \Theta_1) \cap \operatorname{Pred}^-(\Gamma_2 \longrightarrow \Theta_2) \neq \phi$$

then there exists a formula C satisfying the following properties:

- (1) $\vdash \Gamma_1 \rightarrow \Theta_1$, C and $\vdash C, \Gamma_2 \rightarrow \Theta_2$.
- (2) $FV(C) \subset FV(\Gamma_1 \rightarrow \Theta_1) \cap FV(\Gamma_2 \rightarrow \Theta_2)$.
- (3) $\operatorname{Pred}^+(C) \subset \operatorname{Pred}^-(\Gamma_1 \to \Theta_1) \cap \operatorname{Pred}^+(\Gamma_2 \to \Theta_2)$.
- (4) $\operatorname{Pred}^{-}(C) \subset \operatorname{Pred}^{+}(\Gamma_1 \to \Theta_1) \cap \operatorname{Pred}^{-}(\Gamma_2 \to \Theta_2)$.

Any formula C satisfying (1)-(4) is called a Lyndon interpolant of the partition $[\Gamma_1 \rightarrow \Theta_1; \Gamma_2 \rightarrow \Theta_2]$.

Lyndon's proof is not finitary but a finitary proof can be carried out with Maehara's method [Ma 73, §8.3], [T 75, §6].

Theorem 10. If a sequent S contains no equality symbol and if $\vdash_e S$ then $\vdash_e S$. \square

Proof. This is an easy application of cut-elimination theorem of LK with equality [Ma 73, §6.6], [T 75, §7], [N 66]. \square

Theorem 11 (Skolem). Let f be a k-ary function symbol not occurring in

$$\forall x_1 \dots \forall x_k \exists y A(x_1, \dots, x_k, y), \Delta, \Lambda.$$

If

$$\vdash \forall x_1 ... \forall x_k A(x_1, ..., x_k, f(x_1, ..., x_k)), \Delta \longrightarrow A$$

then

$$\vdash \forall x_1 ... \forall x_k \exists y A(x_1, ..., x_k, y), \Delta \longrightarrow A. \quad \Box$$

Proof. For the sake of simplicity in notation, we assume k=1. Let $\mathcal{L} = \mathcal{L}(\forall x \exists y A(x,y), \Delta, \Lambda)$ and let F be a 2-ary predicate symbol not contained in \mathcal{L} . Assume

$$\vdash \forall x A(x, f(x)), \Delta \longrightarrow \Lambda.$$

Whence follows

$$\mathcal{L} \cup \{f\} \vdash \forall x A(x, f(x)), \Delta \longrightarrow \Lambda \tag{1}$$

by Lemma 1. By Lemma 8,

$$\mathcal{L} \cup \{=,F\} \vdash_{\epsilon} \operatorname{Ex}(F), \operatorname{Un}(F), \forall x A(x,f(x))^*, \Delta^* \longrightarrow \Lambda^*. \tag{2}$$

Because $f(a)^*(b)$ is $\exists x(x=a \land F(x,b)),$

$$\{=,F\} \vdash_{\bullet} f(a)^*(b) \equiv F(a,b).$$
 (3)

$$\mathcal{L} \cup \{=\} \vdash_{\epsilon} \longrightarrow A(a,b)^* \equiv A(a,b) \tag{4}$$

and

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \mathsf{Ex}(F), \mathsf{Un}(F), f(a)^{*}(b) \longrightarrow A(a,b)^{*} \equiv A(a,f(a))$$
 (5)

follows immediately from Lemmas 4 and 6 respectively. From (3), (4) and (5) we obtain successively

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F), F(a,b) \longrightarrow A(a,f(a))^{*} \equiv A(a,b),$$

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F), F(a,b) \longrightarrow A(a,f(a))^{*} \equiv F(a,b) \land A(a,b),$$

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F), F(a,b) \longrightarrow A(a,f(a))^{*} \equiv \exists y (F(a,y) \land A(a,y)),$$

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F), \operatorname{Ex}(F) \longrightarrow A(a,f(a))^{*} \equiv \exists y (F(a,y) \land A(a,y)),$$

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F) \longrightarrow \forall x A(x,f(x))^{*} \equiv \forall x \exists y (F(x,y) \land A(x,y)).$$

$$(6)$$

By Lemma 4,

$$\mathcal{L} \cup \{=\} \vdash_e \longrightarrow B^* \equiv B$$

for any member B of Δ , Λ . Therefore

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \operatorname{Ex}(F), \operatorname{Un}(F), \forall x A(x,f(x))^{*}, \Delta \longrightarrow \Lambda$$
 (7)

follows from (2). From (6) and (7) follows

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \forall x \exists y (F(x,y) \land A(x,y)), Ex(F), Un(F), \Delta \longrightarrow A.$$
 (8)

Consider the partition

$$[Un(F) \longrightarrow ; \forall x \exists y (F(x,u) \land A(x,y)), Ex(F), \Delta \longrightarrow \Lambda]$$

of this sequent. Then

$$\operatorname{Pred}^{-}(\operatorname{Un}(F) \longrightarrow) = \{=\}, \operatorname{Pred}^{+}(\operatorname{Un}(F) \longrightarrow) = \{F\}$$

and

$$F \notin \text{Pred}^+(\forall x \exists y (F(x,y) \land A(x,y)), Ex(F), \Delta \longrightarrow A),$$

Let C be a Lyndon interpolant of this partition. Then C satisfies $Pred(C) \subset \{=\}$,

$$\mathcal{L} \cup \{=,F\} \vdash_{e} \mathrm{Un}(F) \longrightarrow C \tag{9}$$

and

$$\mathcal{L} \cup \{=,F\} \vdash_{e} C, \forall x \exists y (F(x,y) \land A(x,y)), Ex(F), \Delta \longrightarrow \Lambda.$$
 (10)

Substitute $\lambda uv.(u=v)$ for F in (9) and apply Lemma 2. Then

$$\mathcal{L} \cup \{=\} \vdash_{e} \forall x \forall y \forall z (x=y \land x=z \supset y=z) \longrightarrow C,$$

hence

$$\mathcal{L} \cup \{=\} \vdash_{e} \longrightarrow C. \tag{11}$$

From (10), (11) and

$$\mathscr{L} \cup \{F\} \vdash_{e} \forall x \exists y (F(x,y) \land A(x,y)) \longrightarrow \operatorname{Ex}(F),$$

it follows

$$\mathscr{L} \cup \{=,F\} \vdash_{e} \forall x \exists y (F(x,y) \land A(x,y)), \Delta \longrightarrow \Delta.$$

By substitution of $\lambda uv.A(u,v)$ for F, we obtain

$$\mathcal{L} \cup \{=\} \vdash_{e} \forall x \exists y (A(x,y) \land A(x,y)), \Delta \longrightarrow \Lambda.$$

Hence

$$\mathcal{L} \cup \{=\} \vdash_{\epsilon} \forall x \exists y A(x,y), \Delta \longrightarrow \Lambda. \tag{12}$$

By Lemma 10, we conclude

$$\mathcal{L} \vdash \forall x \exists y A(x,y), \Delta \longrightarrow \Lambda. \square$$

Remark. Another proof is sketched in [Mo 82], which can be stated as follows. From (8) we have

$$\mathscr{L} \cup \{=,F\} \vdash_{e} \forall x \forall y (F(x,y) \supset A(x,y)), \operatorname{Ex}(F), \operatorname{Un}(F), A \longrightarrow A. \tag{13}$$

Since $F \notin \operatorname{Pred}^-(\forall x \forall y (F(x,y) \supset A(x,y)), \Delta \to \Lambda)$,

$$\mathscr{L} \cap \{=,F\} \vdash_{e} \forall x \forall y (F(x,y) \supset A(x,y)), Ex(F), \Delta \longrightarrow \Lambda$$
 (14)

by [Mo 82, Theorem 1]. We obtain (12) by substituting $\lambda uv.A(u,v)$ for F. Acknowledgement. The author would like to thank Professor T. Uesu for his helpful advices.

REFERENCES

- [G 35] Gerhard GENTZEN: Untersuchungen über das logische Schließen. Math. Zeitschr. 39 (1935), 176-210, 405-431. English translation in [G 69].
- [G 69] Gerhard GENTZEN: Collected Papers. Edited by M.E. Szabo. North-Holland, 1969.
- [K 52] S.C. KLEENE: Introduction to Metamathematics. North-Holland, 1952.
- [L 59] R.C. LYNDON: An Interpolation Theorem in the Predicate Calculus, Pacific J. Math. 9 (1959), 129-142.
- [Ma 60] MAEHARA Shôji: Craig no interpolation theorem ("Craig's interpolation theorem," in Japanese), Sûgaku 12 (1960), 235-237.
- [Ma 73] MAEHARA Shôji: Sūrironrigaku ("Mathematical Logic," in Japanese). Baifūkan (Tokyo), 1973.
- [Mo 82] Motohashi, Nobuyoshi: Elimination Theorems of Uniqueness Conditions, Zeitschr. Math. Logik Grundlagen Math. 28 (1982), 511-524.
- [N 66] NAGASHIMA, Takashi: An Extension of Craig-Schütte Interpolation Theorem, Ann. Japan Assoc. Philos. Sci. 3 (1966), 12-18.
- [N 91] NAGASHIMA, Takashi: A Proof of Skolem's Theorem, Hitotsubashi J. Arts Sci. 32 (1991), 71-77.
- [T 75] TAKEUTI, Gaisi: Proof Theory. North-Holland, 1975.