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REVISED PROOF OF SKOLEM’S THEOREM*

TAKASHI NAGASHIMA

In [N 91], the author intended to present an easy finitary proof of Skolem’s Theorem
but unfortunately it turned out to contain some serious errors. This corrected version
is self-contained and readers’ knowledge of [N 91] is not assumed. Skolem’s Theorem is
the following statement: In the classical predicate logic, let f be a k-ary function symbol not
contained in a formula ¥x, . . . ¥xdyA(xy, . .., Xe,y) D B. Then

VXp ... YX3YA(xy, ..., Xk,))DB
is valid if and only if

VX ... VX A(Xy, oy X f(Xys - - -, X)) DB

is valid.

We use the logical symbols —, A, V, D, v and 3. Different letters are used for free
variables and for bound variables. Any set consisting of function symbols and predicate
symbols is called a language. The language obtained by adding function symbols f, g, . . .
and predicate symbols P, Q, . . . to any language & is written % U {f.g,....P,Q,...}. Terms
and formulae are constructed according to the usual syntactic rules. Any formula of the
form (4> B) A(BD A4) is abbreviated as A=B. For any formula 4(a), the formula

3xA(x) A VXV P(A(x) A A(y) D x=Y)

is abbreviated as 3lxA(x). If two formal expressions 4 and B differ only in their bound
variables, A and B are congruent [K 52, §33] or A is an alphabetical variant of B [T 75, §3].

A cedent is a sequence of zero or more formulae separated by commas., A sequent is
an expression of the form

r—o0
where I and 6 are any decents. Partition of cedent is defined as follows:
(1) If I’ is the empty cedent then [["; I"] is the only partition of I".

(2) If[Iy; I's]is a partition of I” then [I"y,4; I's} and [I7;; I"»,A4] are partitions of I",4.
A partition of a sequent I'—@ is an ordered pair (of sequents)

[—>6,; [,— 6]
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where [I°;; I',] is any partition of I" and [@,; @,] is any partition of 6.
For any formula or a cedent or a sequent S, let

FV(S)=the set of free variables occurring in S,
BV(S)=the set of bound variables occurring in S,

Func(S)=the set of function symbols occurring in S.

For any formula or a cedent or a sequent S, Pred*+(S) (resp. Pred=(S)) denotes the set
of predicate symbols occurring positively (resp. negatively) in S and Pred(S) denotes the
set of all predicate symbols occurring in S.

Let &7 be a language. A term ¢ is an -term if Func(t)c & If Func(4)U Pred
(A)c F'then 4 is an F-formula. The language Func(4) U Pred(4) is called the language
of A and denoted as ¥“(4). Similar notations and terminologies are used for cedents and
sequents.

For any formal expression S and for any (free or bound) variable v, S[v:=t¢] denotes
the result of replacing all occurrences of variable v in S with . When a formula is denoted
as A(a), the expression A(a)[a:=t] is abbreviated as A(r).

The system LK. (LK with equality) is an extension of LK obtained by adding the fol-
lowing schemata for initial sequents:

— =
s=t,A(s)— A(t)

where a is a free variable, s and ¢ are terms and A(q) is an atomic formula. This system
is equivalent to LK, in [T 75, §7]. LK, is also equivalent to the system LKG [N 66], which
is an extension of LK obtained with additional inference schemata

t=t, [ — 6 d I'— 0, A(s) A(),d— 4
I—@ an s=t,I,4— 0, 1

where a is a free variable, s and ¢ are terms and A(a) is an atomic formula.

A derivation (or a proof figure) is defined as usual. A sequent S is LK-provable and
denoted as - S is there exists an LK-derivation of S. If there exists an LK-derivation 5%
of a sequent S and if all sequents in ¥ are -sequents, then S is LK-provable in & and
denoted as &“S. Corresponding terminologies and notations are used aldo for LK..
If the equality symbol = is not contained in &, then LK,-provability in & is clearly equiv-
alent to LK-provability in .&7.

If A(ay,...,as) is a formula and x,...,x, are distinct bound variables not occurring in
this formula, then the formal expression

Ay Xn. A(Xy. ., X0)

is an n-ary abstract [T 75, §20). If V is Axy...Xn.A(Xy,...,Xs) and if #,,...,t, are terms then
V(ty,...t,) denotes the formula A(ty,...,t,). For any n-ary abstract V, define
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Func(¥V)=Func(V(ay,...,a.)),
Pred(V)=Pred(V(ay,...,a.))

where a,,...,a, are free variables not occurring in ¥. An abstract V is an -absrtact if
Func(V)U Pred(V) c &,

For any k-ary predicate symbol P and any k-ary abstract V, the result of substituting
V for P in a formula or a cedent or a sequent S is denoted as S[P:=V].

The key idea of our proof is replacing a function symbol by a predicate symbol [K 52,
§74]. Let & be a language, let f be a k-ary function symbol not contained in & and let
F be a (k+ 1)-ary predicate symbol not contained in &2, The (f;F)-transformation applies
to U {f}-terms and to .U {f}-formulae. Any .$2U {f}-term is transformed into a unary
£ U {=,F}-abstract and any .%°U {f}-formula is transformed into an &2V {=,F}-formula.
Definition is by the following induction.

(1) a*is rau(u=a).

) Sty 0)*is

Ae3xy. . 3 (H* () A A ¥ (X)) A F(xq,...,Xe,1))
where u, x,,...,%: EBV(,*) U ... U BV(2,%).

B) glty,....,ta)* is

A3xy. . 3xa(HF () A o A ¥ (X)) A u=g(xy,...,X2)
where u, X;,...,X, EBV(1,*) U ... UBV(2,%).

@) P(ty,....tn)* is

3Xp. X (¥ () A o At*(xa) A P(xy,...,X0))
where x;,..., X, EBV(5,*) U ... UBV(1,*).

(5) (AAB)*is A* AB*, (AV B)* is A*V B*, (A5 B)* is A*> B* and (—A)* is —A4*.

(6) (YxA(x))* is vyA*(y) and (axA(x))* is 3yA*(y) where y is any bound variable

such that yeEBV(A4(a)*).
Example. In case of k=1, (f(a)=>b)* is (any alphabetical variant of)

Ix3y(3z(z=a A F(z,x)) Ay=b A x=Y).
For any (k+ 1)-ary predicate symbol F, the existence condition [Mo 82] Ex(F) is the formula
V1. YXAYF (X, X0k, p)
and the uniqueness condition [Mo 82] Un(F) is the formula
VX1 YXVIVZ(F(xy,. o 200) A F(Xy,.. . X0,2) D y=2).

Lemma 1. An “sequent is LK-provable if and only if it is LK-provable in &7, An -
sequent is LK -provable if and only if it is LK.-provable in U {=}. O

Proof. The first part of Lemma is a direct consequence of Gentzen’s cut-elimination the-
orem [G 35]. The latter part follows from cut-elimination theorem of LK, [T 75, §7] or
cut-elimination theorem of LKG [N 66]. O

Lemma 2. Let P be a k-ary predicate symbol, V be a k-ary F-abstract and S be 'any -
sequent. If LS then LA-S[P:=V]. If F}.S then £ S[P:=V]. O
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Proof. Case LK: By cut-elimination theorem, there exists an cut-free LK-derivation 527
of S. Applying redesignation of free variables [G 35, III 3.10}, 5# can be converted into a
cut-free LK-derivation 57’ of S such that no eigenvariable of 57’ occurs in V. Substitute
V for P in every sequent of S#'. The result of substitution is easily verified to be an LK-
derivation of S[P:=V]. Similarly for Case LK,. []

Now let a k-ary function symbol f and a (k+ 1)-ary predicate symbol F be fixed. We
state some Lemmas concerning the (f;F)-transformation.

Lemma 3. For any & -term t,
LU {=,F}—Ex(F),Un(F)—alxt*(x). O

Proof. By induction on the structure of t. [
Lemma 4. For any free variable a, any &-term t and any & -formula A,

LU {=l-.— M@ =a=t,

LUu{=l.—A*=4. [
Lemwa 5. For any free variable a and any & -terms s and t,
LU {=,F}—Ex(F),Un(F),t*(a) — s*(b)=sla:=11*(). [
Proof. By induction on the structure of s. [
Lemma 6. If =& &%, F&E 7, ais a free variable, t is a F-term and A is a ~formula, then
LU {=,F}—Ex(F),Un(F),t*(a)—> A*=Ala:=t]*. O

Proof. By induction on the structure of 4. [

Lemma 7. If =« %7, F&E.%, a is a free variable, tis an Z-term and A(a) is an F-formula,
then ‘

LU {=,F}Ex(F),Un(F),yxA(x)* — A(1)*,
LU {=,F}—Ex(F),Un(F),A(t)* —axA(x)*. O
Proof. Let aeFV(vxA(x))U FV(¢t). By Lemma 6,
U {=,F}Ex(F),Un(F),t*(a)—> A(a)* = A(1)*.

Hence
LU {=,F} Ex(F),Un(F),t*(a),A(a)* — A(t)*,
LU {=,F}Ex(F),Un(F),t*(a),¥yxA(x)* —> A(t)*,
FU {=,F}—Ex(F),Un(F),axt*(x),yxA(x)* — A(1)*.
By Lemma 3,

2 U {=,F}.Ex(F),Un(F),vxA(x)* — A(t)*.
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The latter half is proved similarly. []

Lemma 8. For any Z U {f}-sequent -0, if & U {f}I"—6 then
LU{=,F}—Ex(F),Un(F),['* — 6*. []

Proof. By cut-elimination theorem, there exists a cut-free .<2U {f}-LK-derivation S# of
I'—06. It suffices to prove by induction that

LU {=,F}-Ex(E),Un(F),0*—> v*

for any sequent §—¥ occurring in 5#°. The statement is evident for initial sequents. We
divide cases according to the inference whose lower sequent is @—¥.
Case (—3). -Let the inference be

4— 4, A(t)
d— 4, axA(x) (—a).

Since U {f}-4— 4,A(2),
LU {=,F}Ex(F),Un(F),4* —> A1* A(1)*
by the inductive hypothesis. By Lemma 7,
LU {=,F}-Ex(F),Un(F),A(t)* — 3xA(x)*,
hence
LU{=,F}Ex(F),Un(F),4* — A*,axA(x)*.

Case (v—). Similarly by Lemma 7.
All the other cases are straightforward. []

Theorem 9 (Lyndon). For any partition [I',—6,:'s—@,) of an LK-provable sequent I'—
e, if

Pred=(I'y;— 6;) N Pred*(I"y— 0,)*¢
or

PredH(I";—> 0,) N Pred~(I"'y— @,) %4

then there exists a formula C satisfying the following properties:

(1) +ry—e, Cand C,I'y;—8,.

(2) FV(O)cFV(I—6)NFV({'y—6,).

(3) Pred*(C)cPred~(I',—6,) N Pred*(I"y,—O,).

(4 Pred~(C)cPred*(I",—0) N Pred~(I"s—>6,). [

Any formula C satisfying (1)-(4) is called a Lyndon interpolant of the partition [I";—
O1; I':—0,).

Lyndon’s proof is not finitary but a finitary proof can be carried out with Maehara’s
method [Ma 73, §8.3], [T 75, §6].
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Theorem 10. If a sequent S contains no equality symbol and if \-.S then S. [

Proof. This is an easy application of cut-elimination theorem of LK with equality [Ma
73, §6.6], [T 75, §7], [N 66]. [0

Theorem 11 (Skolem). Let f be a k-ary function symbol not occurring in
vX1.. . ¥XeAVA(Xy,.. ., X6, )),d, 4.
If

—¥Xg. . VX AKX [ (X0, X0)),d — A
then

vy VXA PA(Xy,. . Xey),d— 4. [

Proof. For the sake of simplicity in notation, we assume k=1. Let &= (vxayA(x.y),
4,4) and let F be a 2-ary predicate symbol not contained in <. Assume

FvxA(x, f(x)),4—> 4.
Whence follows
LU yxA(x, f(x)),d—> 4 (1)
by Lemma 1. By Lemma 8§,
LU {=,F} - EX(F),Un(F),yxA(x, f(x))*,4* — A*. (2)

Because f(a)*(b) is ax(x=a A F(x,b)),

{=.F}+.f(@)*(b)=F(a,b). (3)
LU {=}-e—> A(a,b)* = A(a,b) (4)

and
LU A{=,F} - Ex(F),Un(F), f(a)*(b) — A(a,b)* = A(a, f(@)) (5)

follows immediately from Lemmas 4 and 6 respectively. From (3), (4) and (5) we obtain
successively ’

LU {=F}Ex(F),Un(F),F(a,b)—> A(a, f(@))*= A(a,b),

LU {=,F}-.Ex(F),Un(F),F(a,b)— A(a,f(a))* = F(a,b) A A(a,b),

LU {=F}Ex(F),Un(F),F(a,) — A(a.f(@))* =3y(F(a.y) A A(a.y)),

LU {=,F}-Ex(F),Un(F),Ex(F) — A(a. f(@))* =3y(F(a.y) A A(a,y)),

LU {=,F} Ex(F),Un(F)—> VxA(x, f(x))* = Vx3)(F(x,)) A A(x,)). (6)

By Lemma 4,
ZLU{=}t~.—>B*=B
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for any member B of 4,4. Therefore

LU {=,F} - Ex(F),Un(F),vxA(x, f(x))*,d~—> 4 (7)
follows from (2). From (6) and (7) follows
L U{=,F}-vxay(F(x,y) A A(x,y)),Ex(F),Un(F),d—> A. (8)

Consider the partition
[Un(F)—>  ;vx3p(F(x,u) A A(x,)),EX(F),d —> A}
of this sequent. Then
Pred=(Un(F)— )={=}, Predt(Un(F)— )={F}
and
F &Predt(vxay(F(x,y) A A(x, ), Ex(F),d —> 4),
Let C be a Lyndon interpolant of this partition. Then C satisfies Pred(C)c {=},
LU{=F}Un(F)—C (9)
and
LU{=,F}-.Cvxay(F(x,y) A A(x,y)),Ex(F),d—> A. (10)
Substitute Auv.(u=v) for F in (9) and apply Lemma 2. Then
LU {=}evxvyvz(x=y Ax=z>y=z)—C,
hence
LU{=}.—C. an
From (10), (11) and
LU {F}ovxay(F(x,y) A A(x,y)) — Ex(F),
it follows
LU{=,F}eyx3p(F(x,) A A(x,y)),d— 4.

By substitution of auv.A(u,v) for F, we obtain

LU {=}evxap(A(x,y) A A(x,y)),d— A.
Hence
LU {=}.vxayA(x,y),d—> A. (12)

By Lemma 10, we conclude
LryxiyA(x,y),d—s 4. [

Remark. Another proof is sketched in [Mo 82], which can be stated as follows. From
(8) we have
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LU {=,F}e¥xyy(F(x,y) D A(x,»)),Ex(F),Un(F),d — 4. (13)
Since F &Pred—(vxVy(F(x,y) D A(x,y)),d— A),
LN {=,F}evxVy(F(x,y) D A, ), EX(F),d —> A (14

by [Mo 82, Theorem 1]. We obtain (12) by substituting 2uv.A(u,v) for F.
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