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Abstract

We call the realized variance (RV) calculated with observed prices contaminated by (market) mi-
crostructure noises (MNs) the noise-contaminated RV (NCRV), referring to the bias component in the
NCRYV associated with the MNs as the MN component. This paper develops a state space method
for estimating the integrated variance (IV) and MN component. We represent the NCRV by a state
space form and show that the state space form parameters are not identifiable, however, they can
be expressed as functions of identifiable parameters. We illustrate how to estimate these parameters.
The proposed method also serves as a convenient way for estimating a general class of continuous-
time stochastic volatility (SV) models under the existence of MN. We apply the proposed method
to yen/dollar exchange rate data, where we find that most of the variation in NCRV is of the MN
component.
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1 Introduction

The variance of financial asset returns is known to change over time. More precisely, the variance, or
the square root of the variance (volatility), tends to be large (small) following successive large (small)
variances in previous periods. This phenomenon is known as “volatility clustering”. A huge number
of researchers have tried to estimate these changing variances. There are two popular classes of mod-
els for this sort of volatility dynamics, namely, generalized autoregressive conditional heteroskedastic
(GARCH) models and stochastic volatility (SV) models. Based on GARCH or SV models with esti-
mated model parameters, one can estimate the changing variances. See, for example, Bollerslev, Engle
and Nelson (1994), Palm (1996) and Zivot (2008) for comprehensive surveys on GARCH models, Ghy-
sels, Harvey and Renault (1996) for a review of some of the older papers on SV models and Shephard
(2005) for a list of selected papers in the SV model literature.

In the finance literature of continuous-time models, the value of the integrated variance (IV)!' has
played a crucial role for option pricing, risk management, optimal portfolio construction, etc. Roughly
speaking, the IV is a cumulative sum (or integral) of continuously changing instantaneous variances
over a specified period, for example, a day (a formal definition of IV will be given in Section 2). It
has been used as a measure of the variability, or risk, of financial asset returns. Various methods,
model-based and model-free, have been proposed for estimating the IV. We will briefly review a few
of those recently developed later in this section. See McAleer and Medeiros (2008) for more details
on those and other methods. Among those methods, we follow the line of the state space method
proposed by Barndorff-Nielsen and Shephard (2002). Specifically, we extend their method to the case
where the price observations contain measurement errors.

Recently, a new class of estimators for the IV, called the realized variance (RV), has received
increasing popularity in the field of financial econometrics. It has been developed by Barndorff-Nielsen
and Shephard (2001), Barndorff-Nielsen and Shephard (2002), Andersen, Bollerslev, Diebold, and
Ebens (2001), and Andersen, Bollerslev, Diebold and Labys (2001) among others. The RV employs
high frequency financial time series data such as minute-by-minute return data or entire records of quote
or transaction price data. The RV is defined as a sum of squared intra-period returns and is a model-
free estimator in the sense that we do not need a parametric specification for the volatility dynamics.
Under moderate assumptions, the RV converges in probability to the IV, as the sampling frequency
tends to be high for a fixed interval such as a day. One of the key assumptions for the consistency of
the RV is that there are no measurement errors, or (market) microstructure noises(MNs), in observed
log-prices. The MN emerges because of market microstructure frictions such as discreteness of prices,
bid-ask bounce and infrequent trading, etc. See, for example, Campbell, Lo and MacKinlay (1997) and
Owens and Steigerwald (2006) for extensive discussions on causes of the MN. When this assumption is
violated, the RV is no longer a consistent estimator for the IV; it diverges under the existence of MN,
as the sampling frequency increases for a fixed interval.

Barndorff-Nielsen and Shephard (2002) consider a situation with no MN and propose a state space
method for prediction, filtering, and smoothing the IV. They show that if the true price follows a
specific continuous-time SV model, then the IV follows an ARMA process.? They also show that the
RV can be represented as a state space form, namely, the sum of the IV and an discretization error,
which is a white noise uncorrelated with the IV.?> Thus, given the state space form parameters, one
can apply the Kalman filter and smoother to filter out the discretization error. Barndorff-Nielsen and
Shephard (2002) demonstrate that estimates of the IV by the Kalman smoother have much smaller
mean squared error than the RV. This ARMA representation result is further developed by Meddahi
(2003). Meddahi (2003) shows that the IV follows an ARMA process for a general class of continuous-
time SV models, which is called the square root stochastic autoregressive variance (SR-SARV) model
(Andersen, 1994; Meddahi and Renault, 2004). Meddahi (2003) derives explicit relationships between
the ARMA model parameters and the SV model parameters.

!nstead of integrated variance, the term “integrated volatility” is often used in the literature. We do not use this
term because integrated variance is a more appropriate term for what we estimate.

2We interchangeably use the term “ARMA process” and “ARMA model” in this paper.

3The discretization error is uncorrelated with the TV under the assumption of no “leverage effect”. See Meddahi
(2002a) for more details.



In this paper, we develop the state space method by Barndorff-Nielsen and Shephard (2002), using
the results of Meddahi (2003), for dealing with the problem of MN. Throughout the paper, we assume
that the true price follows the SR-SARV model and an observed log-price is the sum of the true
log-price and serially uncorrelated (but not necessarily i.i.d.) MNs (see Assumptions 1 and 2 in the
next section for more details). We call the RV calculated with observed log-prices (that are assumed
to be contaminated by MN) the noise-contaminated RV (NCRV), referring to the bias component in
the NCRV associated with the MN as the MN component (formal definitions of the NCRV and MN
component are given in Section 2.3). We show that the MN component follows a MA(1) process. Our
state space method can estimate the IV and MN component simultaneously. Note that we estimate
not MN but MN component, although we can estimate the variances of MN and its square. The main
idea of our state space method is to represent the NCRV by a state space form in that the NCRV
is the sum of three unobserved components: the IV, which follows an ARMA process, a white noise
(discretization error), and a MN component, which follows a MA(1) process. By applying the results
of Granger and Morris (1976), one can show that the sum of these three components, namely, the
NCRYV, follows an ARMA process.

One of the difficulties of state space approaches is verifying identifiability of state space form
parameters. In general, parameters of a state space form are not necessarily identified (see, for example,
Hamilton (1994, p.388) and Harvey (1989, p.205)*). Hence, one has to check the identifiability before
going to the estimation. We investigate the autocovariance structure of the NCRV, and show that the
state space form parameters of the NCRV are not identified in the sense that different sets of parameter
values can give the same autocovariance structure. See Section 4 for more details. This implies that
the state space form parameters cannot be directly estimated from the second order moment properties
of the NCRV. We solve the problem in this paper. We first show that the state space form parameters
can be expressed as functions of the unconditional mean and variance parameters of the underlying
continuous-time SV model and the variance parameters of the MN and its square. Then, we prove
that these MN and SV model parameters are uniquely identified. We illustrate how to estimate
these identifiable parameters and then the state space form parameters.” With estimates of the state
space form parameters, one can estimate the IV and MN components simultaneously by applying the
Kalman filter or smoother to the state space form. One advantage of our method, compared to other
existing methods described below, is that it can filter out not only the MN components but also the
discretization errors.

Our estimation strategy is model-based because we assume a certain general class of continuous-
time SV models for the underlying true log price process. Several MN-robust and model-free IV
estimators have developed. Zhang et al. (2005) propose the first consistent IV estimator under the
existence of i.i.d. MN. This estimator is called the “two-time scale RV (TSRV)”. They show that the
TSRV is n'/6 consistent. Zhang (2006) extends the TSRV, maintaining the i.i.d. MN assumption,
and propose “multi-time scale RV (MSRV)”, which achieves n'/* consistency. Barndorff-Nielsen et
al. (2008) propose a unified approach that they call “realized kernel (RK)” and show that RK can
have the same convergence rates and asymptotic distribution as TSRV or MSRV by properly choosing
kernels.% See also Zhou (1996) Hansen and Lunde (2006), Bandi and Russell (2006), and Bandi
and Russell (2008), for earlier works on model-free IV estimators under the existence of MN, and
Andersen, Dobrev, and Schaumburg (2009), Hansen and Horel (2009), Jacod,et al. (2009), Ubukata
and Oya (2009), and references therein for recent developments on some problems related to the MN.

An advantage of model-based methods is that it naturally provides a forecasting model unlike
model-free IV estimators such as the ones mentioned above. Model-free IV estimators provide ex-post
estimates of IV, and do not provide any forecasting model. Thus one has to elaborate a good forecasting
model separately from the problem of estimating the IV (cf. Andersen, Bollerslev, Diebold, and Labys,
2003). Also, model-based estimation methods are generally more efficient than model-free estimation

4See also Morley, Nelson and Zivot (2003) on the identification problem for some state space models

5 Alternatively, it might be possible to estimate the parameters using higher order moment properties of the NCRV
although proving it seems intractable and would require more stringent assumptions on moments of the MN than the
present paper does.

60ur state space, or filtering, method may be extended for filtering these model-free TV estimators, however, it is
beyond the scope of the current paper and would be a subject of future research.



methods if the true process can be well-approximated by the supposed model. See Jungbacker and
Koopman (2006, p.189) and Ait-Sahalia, Mykland and Zhang (2005) for discussions on the advantages
of model-based methods. Considering the well-known difficulty for estimating continuous-time SV
model parameters, it is also worth emphasizing that our state space method can serve as a convenient
way for estimating a general class of continuous-time SV models under the existence of MN.

We compare forecasting performances of our and the Barndorff-Nielsen, Shephard, and Meddahi
(hereafter BSM) state space methods” in our empirical analysis. We find that, in terms of mean square
error type forecasting criteria, our method provides much better forecasts than the BSM method when
the sampling frequency is relatively high (1 or 5 minutes). When the sampling frequency is relatively
low (more than 10 minutes), our method performs still better than the BSM method though the
differences are not much pronounced. This is because when the sampling frequency is enough low, the
MN effect is negligibly small and thus, the two methods work almost equally well. See Section 4 for
more details.

We note two other recently proposed state space methods that are also designed to work under the
existence of MN. Jungbacker and Koopman (2006) model a high-frequency return as a sum of an i.i.d.
MN and a discrete SV model.® This discrete SV model is an approximation to a simple continuous-
time SV model that is included as a special case of our more general class of continuous-time SV
models. They take into account of a diurnal pattern of daily volatility dynamics and try to capture it
by a flexible deterministic function. Owens and Steigerwald (2006) propose a state space method of
reducing the bias in RV caused by MN. They represent the observed high frequency return as a state
space form so that the return is the sum of the true return and a MA(1) noise. Then, they define their
IV estimator as the sum of squares of smoothed returns plus bias correction terms, where the smoothed
returns are obtained by running the Kalman smoother with estimated time-varying variances of the
true returns. Owens and Steigerwald (2006) provide only a limited theoretical justification for their
method, in particular, the method of estimating the time-varying variances of the true returns.

A fundamental difference between our and their state space methods is that their method is based
on state space forms of observed (noise-contaminated) high frequency returns, while our method is
based on a state space form of the NCRV. As a result, the estimation of our method is substantially
easier to implement than Jungbacker and Koopman’s (2006) method. Jungbacker and Koopman’s
(2006) modeling framework is essentially the same as that of usual discrete-time SV models for daily
returns, in that they replace the daily returns simply with high frequency returns, and therefore
the same difficulty for estimation (or rather increased difficulty due to the existence of MN) arises,
which requires a sophisticated, computer-intensive, and time-consuming method for estimating the
model parameters. By contrast, the estimation of our state space method is only as difficult as the
estimation of ARMA or linear state space models.” Jungbakcer and Koopman’s (2006) SV model is an
approximation to a simple continuous-time SV model, and for the approximation to work, the sampling
frequency needs to be high. On the other hand, apart from the assumptions on the MN, our state space
form is not an approximation but exactly holds for a general class of SV models regardless of sampling
frequencies. Also, unlike our method (and Barndorff-Nielsen and Shephard’s (2002) method for no MN
case), neither Jungbacker and Koopman’s (2006) method nor Owen and Steigerwald’s (2006) method
possesses the advantage of being able to filter out the discretization errors.

The rest of the paper is organized as follows. In the next section, we introduce the class of SV
models employed in this paper, namely, the SR-SARV model, and define formally the RV, IV, MN,
and MN component. In Section 3, we explain our state space method in detail, briefly summarizing
the results in Meddahi (2003) on the ARMA representation of the IV. In Section 4, we apply our
method to the yen/dollar spot exchange rate and compare forecasting performances of our and the
BSM state space methods. The last section provides a summary and concluding remarks. Appendix
A provides details on the proofs that are omitted in the text. In the text, we mainly focus on the

"We call the method so because we apply the state space method of Barndorff-Nielsen and Shephard (2002) combined
with the ARMA representation result of Meddahi (2003).

8 Jungbacker and Koopman (2006, p.191) assume that a return (rather than a log-price) is contaminated by an i.i.d.
MN for simplifying the estimation.

9 Another difference between our and Jungbacker and Koopman’s (2006) methods is that their estimation method
depends on the distributional assumption while ours is not.



one-factor SR-SARV model for ease of exposition. The results for the two factor model are presented
in Appendix B.

2 SR-SARV Model, IV, RV, and MN Component

In this section, we formally define the SR-SARV model, IV, RV, and MN component. We also show
that the MN component follows a MA(1) process.

2.1 Square root stochastic autoregressive variance (SR-SARV) model

Let p(t) be the log of the (efficient) spot price at time ¢. Throughout the paper, we assume:

Assumption 1 (true price process)
The logarithm of spot price, p(t), follows the SR-SARV model considered in Meddahi (2003), which is
given by the following class of continuous-time SV models:

dp(t) = o()dW (t), o*(t) = 0 + wi P(f(t) + w2 Pa(f(D)), (1)

where W (t) is a standard Brownian motion and f(¢) is a state-variable process (possibly bivariate)
independent of W (¢).' The functions P;(-) and Py(-) are defined so that:

E[P(f(1)] = EIR(f(1)] =0, var[Pi(f(8)] = var[P(f(t))] =1,

cov[Py(f(t ), P »(£(8)] =0, )
B[P (f(t+h))|f(5),p(s),s < 1] = exp(=Mh)P1(f (1)),
E[P,(f(t+ h))|f(s),p(s),s < 1] = exp(=Xh) P2 (f(t)), Vh>0

where A\; and )\ are positive real numbers.

Assumption 1 implies that the unconditional mean and variance of o2(t) are E[o%(s)] = o2 and
var[o?(s)] = w? + w3, respectively. Let x; = exp(—A;) and ks = exp(—\z). Hereafter, we describe our
results with k1 and ko instead of A\; and Ay for notational convenience. Thus, the model has a total of
five free parameters: o2, w?, w3, k1 and K.

The model given in (1) and (2) is called the “two-factor SR-SARV model”. When ws = 0, the
model is refereed to as the “one-factor SR-SARV model”. The SR-SARV model includes many known
models, such as constant elasticity of volatility processes, GARCH diffusion models (Nelson, 1990),
eigenfunction stochastic volatility models (Meddahi, 2001) and positive Ornstein-Uhlenbeck Levy-
driven models (Barndorff-Nielsen and Shephard, 2001). See Meddahi (2003) for more details.

2.2 Integrated and realized variances

Given the process of o2(t), the IV at time ¢ is defined as:

t
Iv;z/ o?(s)ds, t=1,2,..,
t—1

where the unit of ¢ is determined depending on the research objective. For example, if the researcher is
interested in changes in variances of daily (weekly) returns, ¢ is interpreted as a day (week). It follows
from Assumption 1, that

r¢|IVy ~ N(0,IV;), and hence ~ N(0,1),

Tt
VIV,

where r; = p(t) — p(t — 1).

10 As a consequence of independence between W (t) and f(t), there is no leverage effect in this price process.



Under Assumption 1, we can consistently estimate the IV by the estimator known as the RV,
denoted by RV;(m), which is defined as:

RV = i L(m)2

t—1+-L

where rgm) =p(t) — p(t — L), and m is a positive integer. Here, and hereafter, the superscript “(m)”
implies that its value depends on m (note that the sampling frequency increases as m increases). If ¢
denotes a day and we take observations every five minutes, then m = 288, because one day is 5 x 288
minutes. It is well known that, as m — oo, RV;(m) 51V, (see, e.g., Barndorff-Nielsen and Shephard,
2002).

Meddahi (2003) shows that, for the two-factor SR-SARV model, the variance and autocovariances
of IV, are expressed in terms of the SV model parameters as:

2wl (k) —logry — 1)  2w3 (ks —log ks — 1)

I —
varlIVi] (log 1 )2 (log ra)?

; (3)

and
Wl —k1)?  w3(l— k)2

cov[IVi, IVi_1] = (log 1 )2 (log K2)?

(4)

The discretization error, d\™, is defined as d\™ = RV,"™ — IV;. Let 2™ = var[d\™]. For m > 1,
we have:
4

2(’”)ZQL 4w?m (%—l %_1) 4w3m (%_1 %_1) .
o — +7(10gm)2 Kq og K{ +7(log/$2)2 K 0g KJ . (5)

It can be shown that az(m) — 0 as m — co. See Meddahi (2003) for these results.

2.3 Microstructure noise (MN) component

Now, assume that the observed log-price p*(¢) is contaminated by a measurement error or MN so that
p*(t) is the sum of p(t) and a MN, &(#):

p(t) = p(t) +e(t).

We assume the following properties for €(t):

Assumption 2 (properties of MN)

(a) E[e(t)] =0, var[e(t)] = 02, var[e?(t)] = w? < oo for all ¢,
cov[ek (t),e(s)] = cov[e?(t),e2(s)] = 0 for & = 1,2,3 and t # s, and
BE()e(s)e(w)] = El()e(s)e()e(v)] = 0 for ¢ # 5 # u # v.

(b) &(t) is independent of W (s) and f(s) (hence p(s) too) for all s and ¢.1*

We do not assume any specific distribution for (). These assumptions on MN seem reasonable for
exchange rate return data that we analyze in the empirical section, where the return data clearly
indicates its MA(1) structure, which is deduced from Assumption 2 as stated in (7).12

«(m)

The observed return r, is expressed as:

™ =pt ) —p (= L) =™ ™, (6)

m

1 This assumption can be relaxed to some extent, albeit leading to rather complicated conditions difficult to interpret,
instead.
12See Ubukata and Oya (2009) on estimating and testing for serial dependence in MN.



where egm) =¢(t) —e(t — X). Under Assumptions 1 and 2, it is easy to show that

E [r:(m)] =F [egm)] =0, var [rz(m)] = %2 + 202, var [egm)] =202,

and
“(m) x(m) (m) _(m) —o? i=1,
cov [rt ’Tt—i] = cov [et ’et—i] = 0 i>2 (7)
Therefore, we have
2
w(m) *(m ——e =1, m) (m -0.5, i=1,
R G s A I CLE ) B i S T

Note that the result in (7) implies that the noise-contaminated observed return, r; (m), follows a zero
mean MA(1) process. Note also that the first order autocorrelation of r; (™) increases and converges

to —0.5 as m — oo.
We define the NCRV, denoted by RV;"™, as RV,"™ = 3" +*(™2_ Here, we formally define the

t—1+L
i=1 T
“MN component”.

Definition 1 (MN component)
The NCRV has the following representation:

m

RV =3 (r(m> 4 e )2 = RV™ 4 ul™), )

t—1+-L1 t—1+-L
i=1

where
m

(m) _ (m) _(m) TN (m)2
e = 22rt—l+#et—1+% + Zet—1+%'
=1

i=1
We call u\™ an MN component.
Note that, unlike RVt*(m), uﬁ’") is not necessarily positive because the first term of uﬁ’") can be negative

and larger in absolute value than the second term. We propose a way of estimating the IV as well as
the MN component in the next section. The following lemma is proved in Appendix A:

Lemma 1 Under Assumptions 1 and 2, the mean and autocovariances of MN component, uﬁ’"), are

given as:

80202 4+ 2(2m — 1)w? + 4mo? t=s,

g

E [ugm)] =2mo? and cov [ugm),ugm)] = w? t=s+1, (10

£
0 otherwise.

Thus, ui’") has the autocovariance structure of a MA(1) process. Without loss of generality, we can
express the MA(1) process as:

uf™ = ™ 4™ g™ e™ ~ WN(,07™), (11)
where WN(0,a) denotes a white noise process with variance a.'*> The mean and autocovariances of
ugm), in terms of /™, 8™ and ag(m), are:

1+t ™ b=,
E [ugm)] =c™ and cov [ugm),ugm)] = ggm)gg(m) t=s+1, (12)

0 otherwise.

13The proof of Lemma 1 in Appendix A implies that §£m) is conditionally heteroskedastic for a fixed m, but this does
not matter for our results because the assumption that the variance process is stationary implies that the unconditional

variance of §Em) is constant for a fixed m, which is all what we need for our results in this paper.



In the next section, we utilize these two different expressions of the moments of uﬁ””) (i.e., (10) and
(12) ) to derive the implicit relationships among the SV and MA(1) process parameters.

3 State Space Approach

In this section, we explain our state space method in detail. First, we briefly summarize the result of
Meddahi (2003) for the one-factor SR-SARV model in Section 3.1. Then, we give a state space form
of the NCRV in Section 3.2. In Sections 3.3 and 3.4, we show that the state space form parameters
are not identifiable, however, they can be expressed as functions of identifiable parameters. In Section
3.5, we illustrate how to estimate these identifiable parameters.

In what follows, we focus on the case of wy = 0, i.e., the one-factor SR-SARV model for ease of expo-
sition. Corresponding results for the two-factor SV model can be derived in a similar manner although
relevant calculations are more involved. The results on the two-factor SV model are summarized in
Appendix B.

3.1 ARMA representation for the one-factor SR-SARV model

Meddahi (2003, Proposition 3.1) shows that if the true process of p(t) follows a one-factor SR-SARV
model, then I'V; follows an ARMA(1, 1) process:

IWVi=civ+r1IVig +n +01m-1, (13)

where £ is defined as in the statement below (2), 7, is a white noise process with var(n,) = o7."*

Other ARMAC(1, 1) model parameters ¢y, 61 and af, are expressed in terms of the one-factor SR-SARV
model parameters 02, w? and k; as:

_ _ 2
2 g = LoV (14)

Ciy = (]. — h:l)O' y =

2p
and
52— (1 + &?)var[IV;] — 2I€21COV[IW, IV}—l], (15)
n 1+ 67
where
b= —k1 + corr[IVy, IV, 4] (16)

1+ k2 — 2k corr[IV;, V1]

It can be shown that p is equal to 01 /(1+6?%), i.e., the first order autocorrelation of the MA(1) process,
N + 61m—1, in (13). See Meddahi (2003) for more details on these results.

3.2 State space form of the NCRV
Substituting RV;™ = IV, + d\™ into (9), we have:
RV™ = 1V, +d™ + ui™. (17)
The following lemma is proved in Appendix A:
Lemma 2 Under Assumptions 1 and 2,
covldy™, mi] = covldi™, &™) = covlmi, &™) =0, (18)

where dEm) = RVt(m) —IV;, and ft(m) and n: are given as in (11) and (13), respectively.

MMeddahi (2003) shows that n: is conditionally heteroskedastic, but because of the stationarity assumption of the
variance process, it is unconditionally homoskedastic, which is all what we need for our results in this paper.




Let n, and €™ be denoted by state variables a; and B\™, respectively. From (11), (13), (17), and

x(m).,

(18), we have the following state space form of RV,

Observation equation

v,
(m)
RV;™ = [1 10 0]| " |+dm, (19a)
Qg
(m)
t
State equation
i I(I/:‘,) crv k1t 0 6 0 II{t—)l 1 0
m (m) (m) m
Uy Cu 0 0 0 6y Uy q 01 UL
= m | 19b
a o |Tlo oo o o [T 10 (m) (19b)
LB 0 000 0 gim) 0 1
where
[ dEm) 0 Uz(m) 0 0
N ~ 01|, 0 072, 0 . (19c¢)
m 2(m
E ) 0 0 0 UE( )

2 (m) plm)  2(m) (m)

n Cuy w 0'5 and 0'3
applying the Kalman filter to the state space form.'> One problem of the state space form is how to
estimate those parameters. One may simply think that we could estimate them directly from the state
space form by, for example, the quasi-maximum likelihood (QML) estimation with Gaussian innovation
assumption. We show, however, that this approach is not applicable for the state space form given in
(19a) — (19c¢).

In general, parameters of a state space form are not necessarily identified. More precisely, there
are cases that those parameters are not identified from the autocovariance structure of the dependent
variable in the sense that there are infinitely many sets of parameter values that give the same au-
tocovariances. See for example, Hamilton (1994, p.388) and Harvey (1989, p.205) for more details.
Thus, we have to check whether state space form parameters are uniquely identified before proceeding
to their estimation. We consider this problem in the next subsection. In fact, we show that the above
parameters in the state space form cannot be uniquely identified.'®

Given the values of cry, k1, 01, 0 , we can estimate IV; and uﬁ””) by

3.3 Identification failure of state space form parameters

Because RVt*(m) is the sum of three components, I'V; (an ARMA(1, 1) process), dEm) (a white noise
process), and ugm) (an MA(1) process), RVt*(m) itself follows an ARMA(1, 2) process (see Granger

and Morris, 1976) so that it is expressed as:
(1 =k LRV ™ = ) 4+ (1 4+ 6™ L+ 6{M L2)7™, 7™ ~ WN(0,02(™). (20)

Note that the AR coefficient ; is the same as that of the IV} in (13). The ARMA model representation
of a state space form is commonly referred to as a reduced form or ARMA reduced form. Parameters
of the ARMA reduced form are identifiable.

15Note that here n; and ft(m) do not follow a Gaussian distribution. In this case, the Kalman filter provides the best
linear estimator (Anderson and Moore, 1979; Hamilton, 1994, Chapter 13). See Durbin and Koopman (2001) for more
details on the Kalman filter.

16The analysis in the subsequent subsections also show that the identification restriction suggested in Barndorff-Nielsen
and Shephard (2002) does not work to identify the state space form parameters (and is not necessary to identify the SV
model parameters) in the current context.



From (11), (13) and (17), we have

(1 -k L)RV;™ = (1= s L)IVy + (1 — k1 L)d\™ + (1 — 5, L)u{™
erv A+ 4 Oy +d™ — gy d™) el (21)
(1= )™ + (05 — k)ET — R10TVET.

The two expressions on the right-hand sides in (20) and (21) are of the same process and hence their
means and autocovariances must be identical. The autocovariances of the MA process in (20) are given
as

n = 6+ 88y, (22)
) = 5 g2m)

and v; = 0 for j > 3. It is easy to show that the autocovariances of the MA process in (21) are

W™ = (L0702 + (L4 kD)o ™ + (14002 = 200 ky + 17+ K390)02 ™, (25a)
'yim) =610, — maz(m) + (0™ — k1 — k1002 + H?GEL"L))U?(""”), (23b)
A = g2, (23¢)

and v; = 0 for j > 3. By equating the means of the MA processes in (20) and (21), we have
) = erv + (1= k)™ (23d)

Given the ARMA(1, 2) model parameters, cg%";”,), K1, 01, 0 and o2™) . we can calculate 'yJ(-m), j=0,1,2.

Then, unknown parameters in the equations (23a)~(23d) are only the state space form parameters,

crv, b1, 03, cm. ol ag(m) and oz(m). Observe that there are seven unknown parameters and only

four equations. Hence, we cannot uniquely identify these parameters from these equations. In other

words, for a given ARMA(1, 2) reduced form, there are infinitely many sets of values of ¢y, 61, 03,,
clm) —glm) — 2(m) 2(m)
u 9y Yu d

P and o that give the same autocovariance structure as the ARMA(1, 2) reduced

form.

3.4 Identifiable parameters
From (10) and (12), we obtain the following equations:

™ = 2mo?, (24a)

(1+62)0 ™) = 80202 + 2(2m — 1)w? + 4mo?, (24b)

01([")02(’”) =w?. (24c)

Assuming that the MA parameter satisfies the invertibility condition, i.e., |01(Lm)| < 1, we can solve the
equations (24a) ~ (24c) for ™, 65™ and ag(m) as:

2
™ = 2mo?, o™ = gt(d% and 0™ = A —\/A2 -1, (25)
where A = 4”5;3 +2m—1+ 2m5—§. The details of the calculation is given in Appendix A. Note that

€

0< 01([“) < 1 because 4 > 1.
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From (3), (4), (15), and (25), we see that crv, 61, o7, amgm) Ug(m) and Uz(m) are expressed
as functions of k1, 02, w?, 02 and w?.!” To make the functional relationship explicit, we may denote

them as:

CIV(’<‘7170-2)7 61(51)7 U?](Hl:w%)7 Cgm)(O'E), 01([")(0'2,0'3,6&)5),

(26)
o3 ™ (k1,0%w3), and o, ™ (02, 07,w2).

Note that 6, is a function of only x; and hence can be assumed to be known (because &, is identified
from the reduced form). Substituting the expressions in (26) into Equations (23a)~(23d), we have
four equations for the four unknown parameters o2, w?, o2, and w?. Hence, the order condition for
identification is satisfied. However, this result does not imply that one can uniquely identify o2, w?,
02, and w?.

To show the uniqueness of the identification, we explicitly derive the representations of o2, w?, o
and w? in terms of c%"{/), K1, VJ(-m)
identification:

2
€

, 7 =0,...,2. The following proposition assures the uniqueness of the

(m)

Proposition 1 Given cgy/, k1, 'yj(.m), j =0,..,2 and (26), under the condition o2 > 0, Equations
(23a)~(23d) are uniquely solved for 0%, w?, 02 and w? as:

m m I‘L4 m
a8, logm)leng™ 4+ (14 ™ 4 B o7
¢ K1 ’ ! (1—&1)3(1+I€1) ’
m)2 m m m
o2 = iy _ @m0 "™ - 2Dw} — 294 (27h)
€ 2m2(1 — k)2 2mekq 4m(1 + K?) ’
and
o? = & — 2mo? (27¢)
1-— K1 e’
where
1 1
21 _ (1421 2k —1—logky
D=B+m(l+#?)C, B="L ( +“21) BRL nd O = ( ~ ) (27d)
(log 1) (log rn)

Proof See Appendix A.

Proposition 1 implies that the four parameters, 02, w?, 62 and w? are uniquely identified from the
ARMAC(1, 2) reduced form in (20). Hence, in principle, we can estimate them. Again, it should
be emphasized that these results do mot imply that one can directly estimate the state space form
parameters but rather that one can estimate the above four parameters by replacing the state space
form parameters with the functions of the four parameters. The estimates of the state space form
parameters are obtained by substituting the estimates of the four parameters into these functions.
Corresponding results for the two-factor model are given in Proposition 2 in Appendix B.

3.5 Estimation of model parameters

We illustrate how to estimate the four parameters. There are two possible approaches: direct and
indirect. Below, we illustrate first the indirect and then the direct approach. In both approaches, we
apply QML estimation assuming Gaussian innovations.

We showed in (27) that these four parameters have explicit expressions in terms of the ARMA(1,
2) reduced form parameters. This suggests the following indirect approach for estimating these four
parameters.

Summary of the indirect approach

7They depend also on m, as the notation implies.
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Step 1 For a given m, calculate RVt*(m).
Step 2 Estimate the unrestricted ARMA(1, 2) model in (20) by QML estimation assuming Gaussian
innovations.'®

Step 3 Given the estimates of cg‘l,), K1, (55”1), (55’“) and o2 obtained in Step 2, calculate the first three

autocovariances of the MA process, namely, 7J(.m), j=0~2asin (22).
Step 4 Given the estimates of cg';”/), k1 and 7J(.m), j = 0 ~ 2 obtained in Steps 2 and 3, calculate w?,

02, w? and o2 applying the results in (27a) — (27d).

This approach is simple and easy to implement, however, does not guarantee that the resulting pa-
rameter estimates are positive because of the intrinsic uncertainty of the ARMA model estimation.
For example, if the estimate of vém) is positive, then the estimate of w? by this approach is negative
because k1 > 0 by assumption.

Alternatively, one can directly estimate these four parameters. In this approach, one calculates the
log-likelihood directly from the four parameters and maximizes it with respect to the four parameters.
Thus, one can easily impose the positivity of the four parameters. Below, we summarize how to obtain
the QML estimates by this approach.

Summary of the direct approach

Step 1 For a given m, calculate RVt*(m).

2 ) g 2 (m)

. 2 .
Step 2 Given k1, 02, wf, 02 and wZ, calculate ¢y, 61, 02, cu and o, according to

(3), (4), (15), and (25).

Step 3 With the ¢;v, 61, o7, cm . o), ag(m) and az(m) obtained in Step 2, calculate the Gaussian

log-likelihood of the state space form given in (19a)—(19¢) for RV;".

Step 4 Maximize the log-likelihood obtained in Step 3 with respect to the five parameters 1, 02, w?,
02 and w? to obtain the QML estimates.

This approach provides consistent estimators for the four parameters (and x1). One can obtain esti-
mates for the state space form parameters by substituting the estimates by either of the above two
approaches into the functions in (26).

Before closing this section, it should be noted that if we can obtain estimates properly by the
indirect approach, we do not need to proceed to the direct approach, because both approaches will
give the identical estimates in this case.

4 Empirical Analysis

In this section, we conduct an empirical analysis with exchange rate data using the proposed state
space method.

4.1 Data description

The yen/dollar spot exchange rate series we analyze are the mid-quote prices observed every one minute,
which are obtained from Olsen and Associates. The full sample covers the period from January 1, 2000
to December 31, 2006. Figure 1 plots the daily returns calculated from the price data.

[ Figure 1 around here]

181t is possible to apply the GMM estimation instead of the QML estimation in this step.

12



We apply the previous tick method, i.e., we use the most recent observed price, where price data
are missing. There are trading days that display too many missing values or low trading activity.
Following Andersen, Bollerslev, Diebold and Labys (2001), we remove the data of inactive trading
days. Whenever we do so, we always remove the price data from 21:00 GMT on one night to 20:59 the
next evening because we define one trading day as the 24 hours from 21:00 GMT on one night to 21:00
GMT the next evening. For details on the motivation behind this definition of “day”, see Andersen,
Bollerslev, Diebold and Labys (2001), Andersen and Bollerslev (1998) and Bollerslev and Domowitz
(1993). We cut the data according to the following criteria, which are similar to the criteria adapted
in Beine et al. (2007):

(1) the days where there are more than 500 missing price observations,

(2) the days where there are more than 1000 minutes of zero returns

3) the days where the price does not change for more than consecutive 35 minutes.
g

By these criteria, we could remove all weekend data. However, the days such as US holidays that
Andersen, Bollerslev, Diebold and Labys (2001) and Beine et al. (2007) remove are not necessarily
removed by these criteria. This is because even when the US market is closed, transactions are made
in other markets. Eventually, we are left with 1809 complete days, or 1809 x 1440 = 2604960 price
observations, from which we calculate returns with various m’s, namely, one-minute (m = 1440),
five-minute (m = 288), ten-minute (m = 144), fifteen-minute (m = 96), and thirty-minute (m = 48)
returns.'® Table 1 reports the sample means, sample variances, sample standard deviations, and sample
autocorrelations of these returns. The autocorrelations beyond the first lag are close to zero, which
indicates that these return data would be approximated as MA(1) processes (except for the cases of
m = 288 and m = 144 in that the second order autocorrelations remain relatively high).

[ Table 1 around here]

With these returns, we calculate five series of daily NCRV, namely, one-minute (m = 1440) five-
minute (m = 288), ten-minute (m = 144), fifteen-minute (m = 96), and thirty-minute (m = 48) NCRV
series. Table 2 reports the sample means, sample variances, sample standard deviations, and sample
autocorrelations of these NCRV series. Figure 2 plots these NRCV series. The sample means of these
NCRYV series increase as the sampling frequency tends to be high, or m — co. This is consistent with
the existence of MN (see (23d) and (24a)). The autocorrelations of these NCRV series are somewhat
lower than usually expected for changing variances of financial time series. This may be because of
the existence of MN. In fact, in the next subsection, we show that estimates of the autocorrelations of
IV are significantly higher than these values.

[ Table 2 and Figure 2 around here]

4.2 Estimation of parameters, IV and MN component

For these NCRV series, we estimate the parameters of the one- and two-factor SR-SARV models
(hereafter, simply one- and two- factor models) in (1) and (2), by the method described in Section
4.3 (and in Appendix B for the two-factor model). Note that, in general, the values of these NCRV
series are different although they all are estimates of the same IV series. Consequently, the estimates
of the SV model parameters for different NCRV series are different. We estimate the parameters by
the direct approach. Table 3 displays the estimation results for these NCRV series. For both the one-
and two-factor models, the estimates of parameters are very similar across these NCRV series, expect
for &2, or estimates of the variance of the square of MN. Interestingly, it seems that &2 increases
inversely proportional to m. This result implies that the fourth moment increases in proportion to the

19These returns are calculated from price data combined after the removals of the prices of inactive trading days
according to the above criteria. The way of adjusting the data is slightly different from the previous version of the paper
(Nagakura and Watanabe, 2009), where we first calculate returns, and then remove the returns of inactive trading days
according to the above criteria. The results obtained are not significantly different.
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sampling interval although the variances of MNs are constant across different sampling frequencies.
The estimates of the persistence parameters for the two-factor model (i.e., &1 and K») imply that there
are two factors with significantly different levels of persistence. One is very persistent, and the other is
moderately persistent. For the one-factor model, the persistence of these two factors must be captured
by only one parameter, k1. As a result, the estimates of k; for the one-factor model are somewhat
lower than those for the two-factor model.

[ Tables 3 and 4 around here]

The estimates of the state space form parameters in (19) (and in (50) for the two-factor model) are
computed from the estimates of the SV model parameters. The results are shown in Table 4. Again,
the estimates of the parameters that do not depend on m are very similar across different m’s, for both
the one- and two-factor models. Also, for a fixed m, the estimates of the MN component parameters,
that depend on m, for the one-factor model are very similar to those for the two-factor model. This
implies that the number of factors employed does not affect the estimates of MN component parameters
very much. The bias of the NCRV series is equal to the value of c&m). Its estimate, d’”), decreases
as m decreases, and is almost negligible for m < 288, but then the estimate of the variance of the
discretization error, Bz(m), increases, as expected from the bias-variance trade off of NCRV that the
theory implies.

[ Table 5 around here]

Table 5 reports the estimates of some important values including autocorrelations of the IV, uncon-
ditional variances of the IV and MN component, and their ratios to the unconditional variance of the
NCRV. For both the one- and two-factor models, the estimates of the autocorrelations are significantly
higher than the sample autocorrelations of the NCRV. This result suggests that apparent low autocor-
relations of the NCRV do not reflect the correlations of the IV but is due to the existence of MN. The
estimated ratio of the unconditional variance of the MN component to the unconditional variance of
the NCRV implies that about half of the aggregate fluctuations of the NCRV series is due to the MN
component. This result can be confirmed visually in Figures 3 and 4, which plot the estimates of the
IV and MN component series by the Kalman smoothing (hereafter, we call them smoothed IV and MN
component series, respectively), along with the corresponding NCRV series, for different m’s and for
the one- and two- factor models. Note that these estimates are of the same underlying I'V series whose
values do not depend on the value of m (on the other hand, the underlying MN component series differ
for different m’s). These smoothed IV series are very similar across different m’s. From these figures,
we can see that there are “spurious increases in the NCRV”; the NCRV occasionally takes a large value,
however, it is mostly due not to the IV but to the MN component. In fact, the smoothed IV rarely
takes the values more than 1.5. The smoothed IV series of the one-factor model seem smoother than
those of the two-factor model. This is expected from the result that the (estimated) autocorrelations
of the IV series of the two-factor model are lower, which implies that they are relatively closer to white
noise compared with the smoothed IV series of the one-factor model.

[ Figures 3 and 4 and Table 6 around here]

To see the similarities among the smoothed IV series with different m’s, we calculate the mean
absolute differences (MADs) and correlations among these smoothed IV series. Table 6 presents them.
For the one-factor model, the MAD takes the largest value of 0.0913 with the combination of m = 1440
and 96, and takes the smallest value of 0.0165 with m = 144 and 96. On the other hand, the correlation
is 0.9843 at the largest with m = 144 and 96, and is 0.8700 at the smallest with m = 1440 and 96. It
is observed that the closer the values of m’s are, the smaller are the differences between corresponding
smoothed IV series. In any case, the differences among the smoothed IV series are very small. The
results for the two-factor model are qualitatively very similar and thus the same comment applies
although the corresponding values are slightly different. All these results imply that our method works
well regardless of m.
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[ Table 7 around here]

One informal way of assessing the quality of IV estimates is to see whether the daily return nor-
malized by the square root of these IV estimates are enough close to the standard normal as the
theory suggests. In this regards, we calculate the Jarque-Bera normality test (hereafter, JB test) for
the return normalized by the square root of the NCRV and smoothed IV, which are the estimates of
VIV, or the integrated volatility. To see the point of this argument, let r; and z; denote the daily
return and the return normalized by the integrated volatility, i.e., z; = r;//IV;, respectively. For an

IV estimator, IV ¢, such as the NCRV or smoothed IV, the daily return normalized by the square root
of the IV estimate, z;, is written as z; = z; exp(v;), where v; = —0.5(log IV, — log I'V;). Thus, strictly
speaking, even if z; follows the standard normal distribution, z; does not, unless v; = 0. However
it is likely that if z; follows the standard normal and IV V, is a good estimator so that v; is enough
close to zero, the JB test does not reject the null of normality.2’ In other words, if the JB test rejects
the null hypothesis, it implies either (or both) z; does not follow a normal distribution or (and) IV,
is not a good estimator of IV;. Hence, though not a formal procedure, it is still helpful for roughly
checking the quality of IV estimates to see whether the JB test rejects the null of normality for the
return normalized by the square root of the IV estimates.

Table 7 shows the results of the JB test along with the sample mean, sample standard deviation,
sample skewness, and sample kurtosis of the normalized return with different m. For the daily return
without normalization, the normality is clearly rejected. In particular, the sample standard deviation
and sample kurtosis are 0.5802 and 4.3475, respectively, which are far from the theoretical values of
1.0 and 3.0 for the standard normal distribution. For the daily return normalized by the square root
of NCRV, the normality is rejected for m < 288. The sample kurtosis of the normalized daily return
with m < 288 is platykurtic, or less than 3.0. In the case of m = 1440, the sample kurtosis is 3.0101
and the JB test does not reject the normality, however, the sample standard deviation is 0.7586, which
is far below from 1.0. In sum, the series of the square root of the NCRV do not seem to work well
as integrated volatility estimates that are consistent with the theory. On the other hand, the results
for the square root of the smoothed IV are closely consistent with the theory, in particular, for the
two-factor model. For the one-factor model, the sample kurtoses of the normalized returns tend to
be leptokurtic, namely, greater than 3, but the sample standard deviations are reasonably close to
1 (ranging from 0.9445 to 1.1065), and the normality is not rejected for the cases of m = 288 and
m = 144. For the two-factor model, the results are amazingly good. The sample standard deviations
and kurtosis are reasonably close to 1 and 3, respectively, for any m, and the normality is not rejected
for any m.

4.3 Comparing forecasting performances

In this subsection, we compare forecasting performances of our and the Barndorff-Neilsen, Shephard,
and Meddahi (hereafter BSM) methods. We call the latter method so because we apply the state space
method of Barndorff-Nielsen and Shephard (2002) combined with the ARMA representation result of
Meddahi (2003).2! Following Andersen, Bollerslev, Diebold, and Labys (2003), we run the so called
Mincer-Zarnowitz style regressions. We also calculate the conventional mean absolute errors (MAEs).
The forecasting performances are evaluated by the values of R? and MAE.

We consider only one day ahead forecasting. Let I V(ﬁﬁ) and [ VﬁiM) ™) denote one day

ahead IV predictions by our (NR stands for “noise robust”) and the BSM methods, respectively, where
unknown model parameters are estimated from RVt*(m). Because the IV is not observed, we have to
use a proxy for the IV in evaluating forecasting performances. Following Andersen, Bollerslev, Diebold,
and Labys (2003), we use RV;*(48), namely, 30-minute NCRV, as a proxy for the IV, which is supposed
to be much less subject to the bias attributed to the MN, albeit a very noisy proxy.22

20Note that the JB test is a test not for the standard normal but for normality. Thus, if v¢ is close to a constant (not
necessarily zero), then the JB test will not reject the null in this case.

21Using the result in Meddahi (2003) makes it easier to implement the state space method in Barndorff-Nielsen and
Shephard (2002).

22Using a RV as a proxy for the IV leads to a downward bias in the R? of the Mincer-Zarnowitz regression. Andersen,
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We run the following three regressions for both the one- and two-factor models:

(i) RV = a0 + ar IV D™ 40"

(ii): RS = bo + by IV 0",

R)m) | oo py(BSMm) ()

(iii): RV;Y = ¢+ e IV, g

t+1]t
for m = 96,144, 288, and 1440, which correspond to 15-, 10-, 5-, and 1-minute.

We conduct both in- and out-of-sample forecasting. For in-sample forecasting, first, we estimate
unknown parameters with all available samples of RVt*(m) (t =1,...,1809), and calculate I Vt(+X1)|E ),
X ={NR,BSM}, for t =1,...,,1808, with the estimated parameter values. Then, we run the regres-
sions (i) ~ (iii) for t = 1,...,1808, and calculate the associated R? and MAE values. For out-of-sample
forecasting, we estimate unknown parameters using only most recent 1200 samples previous to the time
point for which we wish to forecast, and calculate IVt(Jrl)‘Em) X = {NR,BSM}, for t = 1200, ...1808
with the estimated values. Then, again we run the three regressions for ¢ = 1200, ..., 1808, and calculate
the R? and MAE values. We also calculate the mean absolute differences (MADs) and correlations be-
tween the predicated IV series by our and the BSM methods to see the similarities among the forecasts

by the two methods.
[ Table 8 around here]

Table 8 shows the results for the in-sample forecasting. First, we compare the results for the one-
and two-factor models. For both our (the regression (i)) and the BSM (the regression (ii)) methods
and for any m, the two-factor model performs better than the one-factor model in terms of R? values.
Specifically, for the regression (i), R? increases by 0.0082 at the largest when m = 288, and by 0.0056
at the smallest when m = 1440. The improvements in R? are more pronounced for the BSM method.
The largest and smallest increases in R? for the regression (ii) are by 0.041 when m = 288, and 0.011
when m = 144, respectively. For the regression (iii), similar comments as the case of the regression (i)
apply, where R2 values are close to those of the regression (i). In terms of the MAE criterion, there is
no significant difference in the forecasting performances between the one- and two- factor models for
both our and the BSM methods.

Next, we focus on the comparison between our and the BSM methods. We first compare the results
for the one-factor model and then for the two-factor model. For the one-factor model, the results in
Table 8 shows that our method is superior to the BSM method in terms of the both criteria. The R>
values in the regression (i) are better (larger) than those in the regression (ii) for any m. In terms of
MAE criterion, again, our method has smaller MAE values than the BSM method for any m. This
can be confirmed visually in Figures 5 (a) and (b), that plot the predicted IV series by our and the
BSM methods along with the 30-minute NCRV for m = 1440 and 288, respectively. These figures show
that the predictions by the BSM method have large upward biases due to ignoring the MN effects, in
particular for m = 1440. The results for the regression (iii) also imply that our method works better
than the BSM method. Adding the forecasts by the BSM method does not significantly improve the
R? values compared with the regression (a), and the coefficients of the forecasts by the BSM method
are not significantly different from zero for any m.

Our method seems to work equally well for any m, while the BSM method performs worse as m
increases. This is because our method takes into account the MN effects, whereas the BSM method
does not, and consequently, the forecasts by the BSM method are deteriorated by the MN effects, as
m increases. Even when m is relatively small (m = 144 or 98), our method still works better than
the BSM method, however, the differences in R? and MAE values between the two methods are small.
In fact, the two methods provide very similar forecasts, as implied by the values of the MAD and
correlation between the two forecasts reported at the bottom of Table 8 (for example, the correlation

Bollerslev and Meddahi (2005) propose a method for correcting the bias, however, because their method multiplies R?
by the same correction term regardless of the forecasting method employed, it does not alter the order of R? values, and
hence is not necessary for our purpose of comparison of different forecasting methods.
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between the forecasts by the two methods is 0.9383 when m = 98). This can also be checked in Figures
5 (c) and (d), that plot the predicted IV series by the two methods for m = 144 and 96, respectively,
where the two predicted IV series overlap and hard to distinguish visually. This result is natural
because the MN effects vanish as m gets small so that the BSM method works as well. Our empirical
results confirm that the MN effects are almost negligible when m < 144, or the sampling frequency is
more than 10 minutes, for the exchange rate data.

[ Figures 5 and 6 around here]

We next turn to the results for the two-factor model. Interestingly, unlike the case of the one-factor
model, even when m = 1440, the predicted IV series by the BSM method capture the “dynamics” of
the 30-minute NCRV well, as seen in Figure 6 (a), though their “levels” are severely biased upwardly.
This is the reason why the R? values in the regression (i) (the BSM method) are as good as those
in the regression (i) (our method) even when m = 1440, whereas the MAE values of our method are
significantly better than those of the BSM method. As m gets small, again the differences in the
forecasting performances by the two methods become small for the same reason as in the case of the
one-factor model.

[ Table 9 around here]

Table 9 reports the results for the out-of-sample forecasting. Figures 7 and 8 plots the predicated
IV series by our and the BSM methods for the one- and two-factor models, respectively, for the out-
of-sample forecasting. The results are qualitatively very similar to those for the in-sample forecasting,
and hence the same comments apply.

[ Figures 7 and 8 around here]

5 Summary and Concluding Remarks

In this paper, we extended the state space method proposed by Barndorff-Nielsen and Shephard (2002)
to the situation in which there exist MNs. Our method is based on the result in Meddahi (2003), who
shows that when the true log-prices follow a general class of continuous-time SV models, the IV follows
an ARMA process. We showed that under the existence of MN, the observed RV, or the NCRV, also
follows an ARMA process. We represented the NCRV by a state space form and established the
uniqueness of the identification of the state space form parameters. The proposed method was applied
to yen/dollar exchange rate data, where we find that most of the variations in the NCRV are due to
the MN component.

We used only one NCRV series for the estimation of unknown model parameters. It would be
possible to combine several NCRV series to obtain more accurate estimates. This is a subject for the
future research. It is also important to relax the assumption of no leverage effect (see footnote 10) in
order to apply our method to stock return data.
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Appendix A: Proofs
Hereafter, we suppress the superscript “(m)”, and let &; denote £(t) for notational simplicity.

Proof of (25)
From (24c), we have o7 = w?/6,,. Substituting this into (24b), we have:

2
€

1+ 92)0— = 80202 + 2(2m — 1)w? + 4mo?.

Multiplying both sides by 8, /w? and rearranging, we have:

2 2
02 —2 (422 4 2m— 1+ 2m =
CU

€

6, +1=0.

ot
E
2
wE

The two solutions of this quadratic equation for 6, are given by
0202 ot
= +2m —1+42m—.

0, =A++\A2—-1, where A= 4 »

Because A > 1 for m > 1, we have A — VA2 —1 <1< A+ VA% — 1. Assuming that 6, satisfies the
invertibility condition, we obtain 6, in (25).

Proof of Lemma 1
Because E(e?) = 202 and r; is independent of e; by Assumption 2, we have:

Elu] = 2i§E[rt_1+%et_1+#]+ZE[t 14 ]
= QZg:IE[rt_H%]E[et_H#]+2m05

2

= 2mo?.

To derive var[u] and cov|u, us—1], we first calculate cov[rses, ree;] and cov [et, s] For cov(rses,riet],
when t = s, we have:

cov [rier, reer] = [rt et] (E [ried])?
= BlGlE[r 2] (E [r:])*(E [ex))?
= 202E[(J,_,,,, 0(s)dW (5))’] (28)
= 20°FE f: Vm© (s)ds]

The fourth equality comes from the Tto isometry. When ¢ # s, we have:

cov[rses,rier] = Ersesries] — Erses] E [rreq]
= OE[eset] E[r]E[r] — E[rs] Eles] E[r] E'[ed]

2 2
Next, for cov[e?, €Z]

covley,ef] = Elet] — (E[e}])?

E [52‘ —defe, 1 +6e7e?_ , —deed_ L + 6?_i] — 402
E[e}] + 202

= 2w?+40l

, when ¢ = s, we have from Assumption 2(a):

18



When ¢ = s + L, we have from Assumption 2(a):

2 .2 _ 2 2
cov [es,es_i] = cov [es+%,es]
— 2 2 2 2
= cov e 1 —2ss+%ss+ss,ss —258587% +€S*%] (30)
= var[e?]

— 2
= w:.

Similarly, when t = s+ - for i > 2, we easily have cov[e?, e?] = 0. Furthermore, we have cov[r,e,, 2] =

tr“s s
0 for any ¢t and s because:

covlrier, el = Elriee?] — Elrie E[e?]
= OE[Tt]E[eteﬁ] — E[r]Ele.] E[e?] (31)

From (28) ~ (31), we have:

var[ut]—var[22rt 144 €14 +Zet o ]
i=1

=1

m
:4var[Zrt_H_%et_H_%]+var[Zet 14 ]+4cov[2rt 144 € H_Z,Zet i
=

i=1

m

m m m
— 2
_421 Elcov[rt 142 C—1p LT 1y 7€ 1+]]+§ > cov[t 14406 1+]]
=

= i=1j=1

TI'L m 2

433 cov [rt e Hl,tw]
1= Jf

=8020% + m(2w? + 402) + 2(m — 1)w?
=8020% 4+ 2(2m — 1)w? + 4ma?,

and
m m m m
cov[ug, ug1] = cov {2 PORIRTE RN S DE--ENNTESD DL NI S DF
i=1 i=1 *:n =1 'rr::1 m
> Te14 L€ 1415 Z ei,

i=1 i=1 m

2 2
+ cov 26t71+%,26t+£
= 1=

—4cov{2rt 145 € Hl,ZereH + 2cov

i=1 =1

+2cov ZereHz,Zet 1t

Z_
= cov |e7, e, 1
=w?.
It is easy to check that cov|u, uss;] = 0 for ¢ > 2, and hence we have (10).

Proof of Lemma 2
From Assumption 2(b), it follows that, for all ¢ and s and for any real numbers A > 0 and A’ > 0,

t

t+A s+A’
cov [ [ o*(u)du, e, x f w)dW (u )]

t+A s+A' t+A s+A'
=Eles] E tfﬁ(u)dux [ o(uw)dW(u)| — Eles] E tfﬁ(u)du E|l [ a(u)du]
-0,
|'t+A

s s

cov [/ o? (u)du, eEJ =0, cov[r},rees] =0, and cov[r},e] = E[rjel] — E[r{]E[e?] = 0.
t
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Hence, we have

m  t—l+a m s—1+ m
cov[IVi,us]= cov |3 [ o*(udu, 3 epix [ o(wdW(u) |+ e .
i:1t71+i;1 i=1 m s—14 i1 i=1 m

i=lj=1 b—1+’;1 s+t
m m t_1+%
+5 3 cov [ o?wdu, &
=1 ]:1 t_1+z—1 +
= O,
(32)
cov[RVi,us] = cov {Zl Ty yio Z:lrsfpr ieg i+ Z:les 1+1]
= moog= 7 m
= Ccov |:Z Tt_l_;,_L) Z Ts—l—‘,-ies 1+i:| + cov |:Z T't_1+L, Z 65_1+L
i=1 m =1 i=1 =1 ™
= 0,
and thus,
cov [dy, us] = cov [RVy — IV;,us] = cov [RVy, us] — cov [IVi,us] =0, (33)

for all t and s. Meddahi (2002a) shows that, under no leverage effects, cov [IV;,d;] = 0. It is easy to
extend his proof to show

cov[IV;,d,] =0, (34)

for all ¢ and s. From (32) and (34), and noting that 7, can be expressed as 1, = ¢(L)IV;, where ¢(L)
is an appropriate lag polynomial, we have

cov [, us) =0 and  cov[n,ds] =0, (35)
for all ¢ and s. From (33) and (35), and noting that & = (1 — 6, L) u,**we have
cov[m,&) =0 and cov[ds,&] =0,

for all £ and s, which completes the proof of Lemma, 2.

Proof of Proposition 1
From (23c) and (24c), we have w? = —22, which is the first result in (27a). From (3), (4), (5), and
(15), we have

b2 2Bw?
T1467

> _ 20° 2
and o; = g +2mCuwy, (36)

239, is invertible. See the statement below (25).
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where B and C are as given in (27d). From w? = 6,07 in (24c), we have:

(1462 — 20,51 + K2 + K262)0% = [(GA + 0u) (1+K2) — 2m] w2, (37)
and

(B — k1 = k162 + £30,)0% = (1413 = (G +0u) ma| 2. (38)

Substituting (36), (37) and (38) into (23a) and (23b), we have:

1+ k7 1
Y = 2Dw? + 275104 + [(0— + t‘)u) (1+k7) — 2&1} wZ, (39a)
and
2 k1 4 1 2v(,,2
v =2Ewi — — 5 +6y ) k1 — (1 +k7)| ws, (39b)

where D = B+ m(1+ k%)C, E = pB — m#:C and p = 01/(1 + 6%). From (39), we have:
1o+ (1+ kD) = 2[kD+ (1 +kDE]wi + [(1+ k1) — 263] w2,
2 [k1 + (14 k})p] Bwi + (1 + k})w?,
(]. — Iil)S(]. + Iil)
(log k1)?

(40)

wi + (1+ K1)w?,

where, to obtain the third equality, we use the alternative expression of p in (16). From (40), we have:

o (logk1)?[k170 + (1 + kD)1 — (14 k7)w?]

e (1= r0)?(1+ K1)
Substituting w? = —22, we obtain the second result in (27a). Next, note that from (25), we have:

1 1462

—~ 49, = u

b, " 0.
1+ (A-vAT-1)? (41)
a A—VA2 1
= 24.

From (23d) and (24a), we have:

— (1= 2
cry = (1 — k1) (02 + 2m0§) , or o= CR‘;(I (_ M;;L)U . (42)

Substituting o2 in (42) into A in (25), we have:

o2 c —(1—k1)0? m [ c —(1—k1)0o? 2
2= [t (smplomit) 4o - 14 2 (smpimet )]

2 2
we we

[ - a1 ez .
= S - 4 2(2m - 1) + ey — S +
= pakeT. - 30 1 9(2m - 1) + B
From (39a), (41) and (43), we have:
Yo = 2Dw? — ( :f%) ot + 2((11-1;’?1))075‘/ o? +2(2m — 1)(1 + k3)w? + 7((114;?1))02%; — 2kw2. (44)
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Multiplying both sides in (44) by m/(1 + x7) and rearranging, we have:

2 2 — 2Dw} + 2k w?
4 ZORV o SRy T (o L maee) 2m(2m — 1)w? = 0.
11—k (1 —ky)? 1+ k37

Solving this quadratic equation for o2, we have:

5  CRV 2¢% m (yo — 2Dw? + 2K1w2)
= + 2m(2m — 1)w?2 — . 45
s \/(l—fil)2 - 2m(2m = 1)z (14 &%) (45)

From o2 > 0, 1 < 1 and (42), we must have e > o?. Hence, the sign of the second term in (45) is
negative. From (42) and (45), we have:

m (vo — 2Dw? + 2k1w?2)

1 2¢2
2 RV
5 +2m(2m — w? — )

T\ T-mp o

g

From (45) and (46), we obtain (27b) and (27c).
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Appendix B: Results for the Two-factor SR-SARV Model

In this Appendix, we provide the results for the case of the two-factor SR-SARV model (w3 # 0).

ARMA representation for the two-factor SR-SARV model

First, we summarize the ARMA representation result in Meddahi (2003). Meddahi (2003, Proposition
3.3) shows that if the process of p(t) belongs to the two-factor SR-SARV model, then I'V; follows an
ARMA(2, 2) process:

IVi = crv + (k1 + k2) Vi1 — KikoIVieo + e + O011i—1 + 0212, (47)

where k1 and k» are defined as in the statement below (2), 7, is a white noise process with var(n;) = 0.
Let ¢1 = k1 + ko and ¢y = —k1k2.2% Other ARMA(2, 2) model parameters in (47), crv, 01, 02 and

o2 are expressed in terms of the two-factor SR-SARV model parameters, 02, w?, w?, k1 and Ky as:

n
1—+y4s+1 Vis+1—-2s—1
crv = (1= 1 — ¢2)0?, 91:f&, 0 = ,
P2 2s
(48)
o2 — myvar[IVy] — 2mocov[IVy, IVi_1] — 2¢ocov[IVy, IV, o]
n 1+ 6% + 63 ’
where
mo=1+¢7 +¢3, m=di(1—2),
2 2 2
_ _P3 I < 1 ) pi
s=——% |1+ — —sign 1+ —) — =,
p? 25 SlEnlr 2)\/ 20> 03
_ =O1(1 = o) + (1 + ¢F — @p)cort[IV;, IVs 1] — grcorr[IV;, IV; o] (49)

PL= T+ 02+ ¢2) — 261(1 — do)cort[IVy, IV,_1]| — 2dacort[IV;, IV;_s]’

_ —¢o — ¢rcorr[IVy, IV;_1] + corr[IV;, IV, 5]
P2= T+ @+ 62) — 261 (1 — ga)cort[IV;, [Vi_1] — 2¢scort[IV;, [Vi_o]’

UJZK, —K 2 (IJ2K,‘) — K2 2
corr[IVt,IVt—2]:7%\/%‘3}{/‘;]“2], cov[IV;, IV; 5] = 1(1(1)2151)21) + 2(1;&2)2‘) )

and sign(ps) = 1 if py > 0 and sign(p2) = —1if ps < 0. We assume that p» # 0, which implies
that 6, # 0. As in the one-factor case, we can show that p; = (01 + 0162)/(1 + 6% + 63) and p =
02/(1+ 07 + 63), i.e., p1 and py are the first and second order autocorrelations of the MA(2) process
N + 0171—1 + Oami—o in (47), respectively. See Meddahi (2002b) and Meddahi (2003) for more details.

Assume that we # 0. Let n; and & be denoted by the state variables a; and S, respectively. From
(11), (17), (18), and (47),%° we can express the NCRV in the following state space form:

Observation equation

A
IV,
Ut
Qg
Qg1
B

24Note that k1 = 1[p1 + (3 + 4¢2)'/2] and Ky = L[¢1 — (67 + 462)1/2].
25The proof of Lemma 2 is valid for the two-factor model without any modification.

RVy= [1 010 0 0] +dy, (50a)
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State equation

IV crv $1 2 0 01 02 O IV, 10

v, , 0 1 000 0 0 Vi » 0 0

U _ Cu 0O O 0 o o0 6, Ui 01 Nt

aw |1 o Tl o 0o o0 o0 0 o0 aas | T11 0 [gt » (50b)
s 0 0 0 0 1 0 0 s 0 0

3, 0 0 0 00 0 0 Bii 0 1

where the mean vector and variance matrix of (dg,m:, &)’ are as given in (19c).

Autocovariance functions

For the two-factor model, by applying the results in Granger and Morris (1976), we can show that the
NCRYV follows an ARMA (2, 3) process:

(1—¢1L — o L)RV* = cpy + (L+ 61 L + 62 L% + 63131, 7 ~ WN(0,02). (51)
The same NCRV can alternatively be expressed as:

(1 =1L — L )RV = cry +me + 01me—1 + Oame—s + dy — prdi—1 — dadi—q
+(1 =1 — d2)cu + & + (Ou — d1)6—1 (52)
_(¢2 + ¢19u)£t72 - ¢)20u£t737

The autocovariance functions of the MA process in (51) are given as:

'70:(1‘1'(5%4'(5%'1'(5%)0'3, Y1 :((514—(51(524—(52(53)03,
(53)
V2 = (02 + 0103)07, v3 = 03072,

and v; = 0, for j > 4. Also, simple calculations lead us to the following autocovariance functions of
the MA process in (52):

1
Y = (1467 + 0%)03, + ol + [m <9— + 9u> — 2#2} Huag, (54a)
1
v = (61 + 0102)072] — Ta05 + {71'1 — o — o <0— + 9u>] Guag, (54b)
1
Yo = 0207 — ¢a0] — {452 <0_ + 9u> + 7T2} 0.0%, (54c¢)
V3 = —$20.,0%, (54d)

and v; = 0, for j > 4. By equating the means of the MA processes on the right hand sides in (51) and
(52), we obtain:

crv = crv + (1 — ¢1 — ¢2)cu. (54e)

As in the one-factor case, the number of state space form parameters is greater than the number of
ARMA reduced form parameters. This implies that the state space form given in (50a) and (50b) is
not identified.

Identification of state space form parameters

Here, we show that the parameters, 02, w?, w3, 02 and w? are uniquely identified from the reduced

form parameters, cgv, k1, k2, and ; for j =0 ~ 3.
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Proposition 2 Under the condition o2 > 0, Equations (54a)~(54e) can be uniquely solved for o2,

w?, wi, o2 and w? as:

2 73 5 (logk1)?[(a1Bo — apBr) — K2(aod1 + az)]

w, =——, wj= , 95a
P2 ! (1= k1)*(k1 — k) (161 — a2 B1) (552)
5 (logk2)?[(a1 By — apBr) — k1(aodr + a2 )]
Wy = . 2 . ’ (55b)
(1= K2)*(K2 — K1) (a1 + azfh)
1 2c?
2o | —BY L om(2m - 1Dw2+ H 95
7z 2m\/(1 — ¢1 — ¢2)? +2mzm = s + H, (55¢)
and
2 CRV 2
2= BV ome?, 55d
1—¢1— 2 : (55d)
where
ap =Ty + My — [T (T — ¢2) = 2m3wZ,  an =mi(l+ ¢F — o) — 273,
Qy = 2¢om + P17, (56)
Bo =mare — d2m1 + (81 + 62) (L + 85 — do)w2,  B1 = ¢3 — ¢1 — oo,
m 2
= el N Y (202015 + $1Cj — Oy j + 2msCy )i + maw? | (57)
j=1
'_Iij—lOglﬂ‘,j—l ._(1—I€j)2 '_Iﬂ‘,j(l—lij)2 d
Y E T e 9 o O TegrE 0 @
(log k) (log ;) (log )
) ) (58)
2k —logk™ — 1)
Cyj=—"2 : j=1,2.
WS ey M ITh
Proof. From ,0f = w? in (24c) and 73 = —¢»0,07 in (54d), we have w? = — 7%, which is the first
result in (55a). From (3), (4), (5), and (48), after simple calculations, it follows that:
2B w? 2Byw? 204
2 _ 1% 2%2 2 _ 2 2
o, = TR A and o5 = g +2mCy 1wy + 2mCy pw3, (59)
where
Bj = 7T1017j — 71'2027]' — ¢2037j for ] = 1,2. (60)
Substituting (59) into the autocovariance functions in (54a)~(54c), we have:
1
o = 2D1w? + 2Dy + 27L ot ¢ [m (0_ + 0u> - 271'2] wZ, (61a)
m u
1
1 = 2E1w} + 2Baw} — 2 20* — {7@ <0— + 9u> = (m = ¢’2)] w2, (61b)
m u
1
Yo = 2F1w% + 2F2w§ — 2%0’4 _ |:¢2 (0— + 0u> + 71'2:| w?, (61(3)

where D; = Bj + mmCy,j, E; = p1Bj — mmaClaj, Fj = paB;j — m@2Cy; for j = 1,2, pr = (01 +
6102)/(1 + 0% + 63) and ps = 02/(1 + 67 + 63). Hence, we have

T2 + M = (12 + p1m1) (2B1wi + 2Bawi) + [mi (M1 — ¢a) — 2m3]w2, (62a)
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and
T2 = $am1 = (pama — proh2) (2B1wi + 2Bow3) — [ha(m1 — ¢o) + w3l (62b)
Noting that p; and p2 can be expressed as in (49) (see the explanations below (49)), we have:

—mavar[IV;] + (1 + ¢2 — ¢2)cov[IV;, IV, 1] — ¢prcov[IV;, IV, 5]

o= (1+ 63 + 63)02
i [=2mC + (14 81 = ¢5)Cs 5 — 6105 5]w3 (632)
a 2B1w? + 2Byw? ’
and
—govar[IVi] — ¢y cov[IVi, IVi_1] + cov[IV;, IVi_o)
2= (1+67 + 63)02
Y1 (=20:C1 ;= 1Coj + Cs j)w? (63b)
- 2817 + 2Byw? '
Substituting B; in (60), p1 in (63a) and ps in (63b) into (62a) and (62b), we have:
T2Yo + T1y1 = 2ms ]22:1(71'1017]' - 71'202,j - ¢2C'3,1)w]2-
+m1 22: [—2m2Cj + (14 ¢F — ¢2)Caj — 6103 j]w?
+[7T1J(7Tll — ¢) — 2m3w? ()
= S M+ & = 8n)|Ca — (2eums + Gum)Ca )]
{F_[Wl(ﬂl — ¢2) — 2m3Jw2,
and
ToY2 — a1 = T2 Jil(—2¢201,j — 41055 + O3 j)w3
— 2 i:l[—%zcl,j + (1+ 7 — ¢2)Ca,5 — 103 507
_[¢’2J(;T1 — ¢) + m3w?
= il{[—%m — d2(1+ 67 — $2)]Ca,j + (m2 + ¢1¢2)Cs,5 }w? (6%)
J—_[¢2(7T1 — §2) + m3]w?
=SB 8 - 60+ iCagke
(8 + 62)(83 — 6 + 1),
We can regard (64) and (65) as the following system of two equations for w? and w3:
Qp = (04102,1 - 04203,1)0-?% + (04102,2 - 04203,2)w§ (66)

Bo = (61C2,1 + q510371)wf + (B1C22 + ¢103,2)w%7
where ag, a1, as, 8o and §; are as given in (56). Solving (66), we have

w2 — (a180 — apP1)Ca2 — (a2fo + apd1)C3 2
! (@191 + a231)C22C31 — (@191 + a231)C>,1C3 5

(log k1) [(a1 B0 — aopi) — ka(a2Bo + aodr)]
(1 = k1)2(k1 — K2)(a1 91 + a281) ’
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and

9 _ (apB1 — a1Bo)Ca,1 + (o1 + a2)C3 1
(@11 + a231)C22C31 — (@191 + a231)C3,2C2 1

(log k2)?[(a0B1 — a1 o) + k1 (aod1 + a2fo)]
(1 = k2)2(k1 — K2) (a1 91 + a281)

From (54e) and (24a), we have:

2 CRV_(1_¢1_¢2)U2‘

= 67
7 2(1_¢1 —¢2)m ( )
Substituting o2 in (67) into A in (25), we have:
203\/0’2 30’4 C%V
2A = - +2(2m—1)+ . 68
T T (R S N R o
From (41), (61c) and (68), we have:
Yo = Qw%(prl — m¢2C'471) + 2w§(pr2 — m¢20472) — 220'4%
2 4 c
—{¢2 [O_ﬁi‘é;mwg — iz +2(2m — 1)+W] +7T2}w§
= p2(2B1w% + 232(}.}%) - ¢72(2mw%0471 + 2mw§C’4,2)
2
+ot82 — g R 96,02 (2m — 1) — GoSREL— — Ty (69)

2

= Y (=2¢2C1; — ¢1Caj + Cs 5 — 2mpsCly j) w3

j=1
2¢oc o) 2
+g4% — g2 (1_$f——}3v2)m — 2¢pw?(2m — 1) — —L(1_¢jj¢2)2m — maw?.

Multiplying both sides in (69) by m/¢2 and rearranging, we have:

«___2rv o? — Chy —2w'm(2m —1) - H

1—¢1— o2 (1 =1 — ¢2)? : ’
where H is as given in (57). Solving the quadratic equation for o2, and by the same argument as used
in (46), we have:

a

5 CRY 2chy
o’ = - +2m(2m — 1)w?2 + H, 70
1—¢1— ¢ \/(1—¢’1—¢’2)2 ( ) (70)
and
1 2c2
02 =—|—EY ___ 4 om(2m — 1)w? + H. 71
: 2m¢a—@—@v (om — 1) (71)

From (70) and (71), we have (55¢) and (55d).
Lastly, we summarize direct and indirect approaches for estimating the parameters for the two
factor model.

Summary of the indirect approach

(m).

Step 1 For a given m, calculate RV,

Step 2 Estimate the unrestricted ARMA(2, 3) model in (51) by QML estimation assuming Gaussian
innovations.
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2

T

Step 3 Given the estimates of cg‘l,), K1, k2,28 6§m), 6£m), 6§m) and o2 obtained in Step 2, calculate

the first four autocovariances of the MA process, namely, yj(-m), j=0~3asin (53).

Step 4 Given the estimates of cg%n‘l,), K1, ko and 7(.m)

j
2, 02, w}, w3 and o2, applying the results in (55a) — (55c¢).

, j =0~ 3, obtained in Steps 2 and 3, calculate
w

Summary of the direct approach

Step 1 For a given m, calculate R‘/;*(m).

2 (m)

Step 2 Given k1, k2, 02, w}, w3, 02 and w
according to (3), (4), (48), and (25).

2
€

calculate cyy, 61, 62, 0727, c&m), 95{”), ag(m) and 03

Step 3 With the crv, 61, 62, 07, e glm) Ug(m) and Uj(m) obtained in Step 2, calculate the Gaussian
log-likelihood of the state space form in (50a) — (50b), for RV;*.

Stpe 4 Maximize the log-likelihood obtained in Stpe 3 with respect to the seven parameters, k1, K2,
02, w?, w3, 02 and w? to obtain the QML estimates.

26These can be obtained from the estimates of ¢1 and ¢o.
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Table 1: Descriptive Statistics of Returns

r(1) r(5) r(10) r(15) r(30)
m 1440 244 144 96 48

Meanx1000  0.0059 0.0302 0.0604 0.0906 0.1812
Variancex10  0.0037 0.0143 0.0269 0.0390 0.0747
SD 0.0193 0.0377 0.0518 0.0625 0.0864
SAC(1) —0.1501 —0.0589 —0.0520 —0.0472 —0.0217
(0.0006) (0.0014) (0.0019) (0.0024)  (0.0034)

SAC(2) 0.0038 —-0.0151 —0.0100  0.0030 0.0037
(0.0006) (0.0014) (0.0020) (0.0024)  (0.0034)

SAC(3) —0.0033 —0.0095 0.0010 0.0023  —0.0033
(0.0006) (0.0014) (0.0020) (0.0024)  (0.0034)

SAC(4) —0.0034 —0.0042 0.0059 0.0019 0.0064
(0.0006) (0.0014) (0.0020) (0.0024)  (0.0034)

SAC(5) —0.0051  0.0007 0.0000  —0.0008 —0.0069
(0.0006) (0.0014) (0.0020) (0.0024)  (0.0034)

SAC(6) —0.0024  0.0007 0.0007  —0.0052 —0.0083
(0.0006) (0.0014) (0.0020) (0.0024)  (0.0034)

SAC(7) —0.0028 —0.0006  0.0018 0.0074 0.0007
(0.0006) (0.0014) (0.0020) (0.0024)  (0.0034)

SAC(8) —0.0019 0.0042 —0.0004 0.0036 —0.0006
(0.0006) (0.0014) (0.0020) (0.0024)  (0.0034)

SAC(9) —0.0042 0.0014 —0.0040 —0.0055 0.0004
(0.0006) (0.0014) (0.0020) (0.0024)  (0.0034)

SAC(10) —0.0011 —-0.0013 —0.0001 —0.0020 —0.0070
(0.0006) (0.0014) (0.0020) (0.0024)  (0.0034)

Note: the table reports the sample means (Mean), sample variances (Variance), sample standard
deviations (SD), and sample autocorrelations (SAC) of k-minute returns, which are denoted by r(k),
m is the number of intra-day returns for each return series, and SAC(k) is the value of the SAC of
order k. The asymptotic standard errors, which are estimated based on Bartlett’s (1946) formula for
MA(1) process, are in parentheses. These asymptotic standard errors are valid only if the time series
follows an MA(1) process driven by an i.i.d. innovation with finite second moment, and may actually
be very misleading otherwise (see Romano and Thombs, 1996). We just followed the custom and do
not claim anything based on these standard errors.
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Table 2: Descriptive Statistics of the NCRV

NCRV(1) NCRV(5) NCRV(10) NCRV(15) NCRV(30)

m 1440 288 144 96 48
Mean 0.5382 0.4104 0.3870 0.3745 0.3583
Variance ~ 0.0684  0.0682 0.0712 0.0696 0.0833
SD 0.2616 0.2611 0.2669 0.2638 0.2887
SAC(1)  0.4573 0.3975 0.3634 0.3402 0.2595
(0.0235)  (0.0235)  (0.0235)  (0.0235)  (0.0235)

SAC(2)  0.3408 0.3021 0.2566 0.2452 0.1585
(0.0235)  (0.0235)  (0.0235)  (0.0235)  (0.0235)

SAC(3)  0.3092 0.2590 0.2274 0.2005 0.1570
(0.0235)  (0.0235)  (0.0235)  (0.0235)  (0.0235)

SAC(4)  0.3091 0.2365 0.2074 0.2047 0.1394
(0.0235)  (0.0235)  (0.0235)  (0.0235)  (0.0235)

SAC(5)  0.2886 0.2239 0.2071 0.1943 0.1568
(0.0235)  (0.0235)  (0.0235)  (0.0235)  (0.0235)

SAC(6)  0.2617  0.1795 0.1608 0.1699 0.1547
(0.0235)  (0.0235)  (0.0235)  (0.0235)  (0.0235)

SAC(7)  0.2484  0.1754 0.1571 0.1444 0.0954
(0.0235)  (0.0235)  (0.0235)  (0.0235)  (0.0235)

SAC(8)  0.2455 0.1591 0.1524 0.1466 0.0855
(0.0235)  (0.0235)  (0.0235)  (0.0235)  (0.0235)

SAC(9)  0.2228 0.1531 0.1312 0.1327 0.0753
(0.0235)  (0.0235)  (0.0235)  (0.0235)  (0.0235)

SAC(10)  0.2521 0.1713 0.1537 0.1523 0.1023

(0.0235)  (0.0235)  (0.0235)  (0.0235)  (0.0235)

Note: the table reports the sample mean (Mean), sample variance (Variance), sample standard devia-
tion (SD), and sample autocorrelation (SAC) of k-minute NCRV series, which are denoted by NCRV (k),
m is the number of intra-day returns used for calculating each NCRV series, and SAC(k) is the value
of the SAC of order k. The asymptotic standard errors, or 1/\/]V, where IV is the number of samples
(see Brockwell and Davis , 1991, p.222), are in parentheses. These asymptotic standard errors are
valid only if the time series is i.i.d with finite second moment, and may actually be very misleading
otherwise (see Romano and Thombs, 1996). We just followed the custom and do not claim anything
based on these standard errors.
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Table 3: Estimates of SV Model Parameters

(a) One-factor model
NCRV(1) NCRV(5) NCRV(10) NCRV(15)

m 1440 288 144 96
1 0.9352 0.8783 0.8859 0.9075
(0.0461)  (0.0513)  (0.0581)  (0.0624)

52 0.2905 0.3523 0.3565 0.3549
(0.0281)  (0.0180)  (0.0190)  (0.0204)

o2 0.0308  0.0292 0.0265 0.0230
(0.0121)  (0.0097)  (0.0090)  (0.0082)

52x100  0.0087  0.0102 0.0107 0.0105
(0.0010)  (0.0003)  (0.0010)  (0.0020)

@2 x 1000  0.0067  0.0339 0.0756 0.1153
(0.0010)  (0.0049)  (0.0112)  (0.0159)

L 138257  70.158 —5.555 0.203

(b) Two-factor model
NCRV(1) NCRV(5) NCRV(10) NCRV(15)

i1 0.9814 0.9786 0.9757 0.9773
(0.0181)  (0.0153)  (0.0146)  (0.0138)

7o 0.2890 0.5621 0.4418 0.4206
(0.2428)  (0.1575)  (0.2068)  (0.1945)

52 0.3323 0.3509 0.3577 0.3555
(0.0541)  (0.0328)  (0.0326)  (0.0343)

2 0.0240 0.0152 0.0148 0.0140
(0.0152)  (0.0063)  (0.0051)  (0.0051)

02 0.0308 0.0219 0.0249 0.0230
(0.0293)  (0.0091)  (0.0160)  (0.0147)

52 %100  0.0074 0.0105 0.0105 0.0101
(0.0014)  (0.0008)  (0.0022)  (0.0042)

22 x 1000 0.0044 0.0295 0.0608 0.0911
(0.0023)  (0.0057)  (0.0156)  (0.0208)

L 159.2571  83.565 8.143 13.597

Note: the table shows the estimates of the SV model parameters in (1) and (2) by the method
described in Section (3.4), NCRV (k) denotes k-minute NCRV, and L is the (quasi) log-likelihood.
The robust standard errors are in parentheses. The robust standard errors are obtained as follows.
First, by the QML, we estimate a reparameterized SV model such that u = log(c?), so that we
can apply unconstrained optimization procedures in maximizing the log-likelihood. Then, the QML
estimate of, for example, o2 is obtained as log(ji), where i is the QML estimate of p. Next, generate
samples from the normal distribution with mean and covariance matrix being set to estimates of the
reparameterized model parameters (such as i) and the robust estimate of their asymptotic covariance
matrix, respectively. For each sample, calculate the corresponding SV model parameters. Finally,
calculate the sample standard deviations of these (generated) SV model parameter, which are our
(approximate) robust standard errors. Unreported simulation experiment confirms that these standard
errors are reasonably close to the actual standard errors in finite samples.
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Table 4: Estimates of State Space Form Parameters

(a) One-factor model

NCRV(1) NCRV(5) NCRV(10) NCRV(15)
2y 0.0188 0.0429 0.0407 0.0328
b1 0.9352 0.8783 0.8859 0.9075
9, 0.2679 0.2677 0.2677 0.2678
52 0.0024 0.0041 0.0035 0.0025
m 1440 288 144 96
A 0.2450  0.0586 0.0308 0.0201
oe™  0.0002 0.0009 0.0017 0.0026
5;™  0.0391  0.0393  0.0437 0.0444
5™ 0.0002  0.0011 0.0023 0.0031
(b) Two-factor model
NCRV(1) NCRV(5) NCRV(10) NCRV(15)
2y 0.0044 0.0033 0.0049 0.0047
b1 1.2704 1.5407 1.4175 1.3979
¢ —0.2836 —0.5501  —0.4311  —0.4110
6, 06271 —0.6470  —0.6368  —0.6376
6,  —02154 —0.2394 —0.2311  —0.2300
52 0.0183 0.0101 0.0133 0.0125
m 1440 288 144 96
dm 02121 0.0604 0.0293 0.0196
oo™ 0.0002 0.0009 0.0017 0.0026
5™ 0.0255 0.0342 0.0352 0.0351
2™ 0.0002 0.0011 0.0023 0.0034
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Table 5: Estimates of Some Important Values

(a) One-factor model
NCRV(1) NCRV(5) NCRV(10) NCRV(15)

Vv 0.0301  0.0279 0.0254 0.0223
ACv(1) 0.9566  0.9180 0.9232 0.9378
ACrv(2) 0.8946  0.8062 0.8178 0.8511
ACv(3) 0.8367 0.7081 0.7245 0.7724
ACrv(4) 0.7825  0.6219 0.6419 0.7010
AC v (5) 0.7318  0.5462 0.5686 0.6361

vim 0.0301  0.0393 0.0437 0.0444

Vv /Vim, 04341 0.4089 0.3568 0.3195

Vimpim 05637 0.5755 0.6133 0.6360

(a) Two-factor model
NCRV(1) NCRV(5) NCRV(10) NCRV(15)

Vv 0.0450  0.0333 0.0340 0.0314
ACrv(1) 0.7469  0.8259 0.7666 0.7616
ACrv(2) 0.5776  0.6499 0.5650 0.5622
AC1v(3) 05220  0.5470 0.4704 0.4728
ACrv(4) 04993  0.4853 0.4232 0.4299
ACrv(5) 04863  0.4467 0.3971 0.4066

vim 0.0255  0.0342 0.0352 0.0351

Vry/Vimh, 06365 0.4851 0.4752 0.4492

VAU 0.3603 04987 0.4922 0.5022

Note: @Iv(k) is the estimate of the k-th order autocorrelation of I'V;. ‘7}‘/, IA/u(m), and IA/NCRV are
the estimates of unconditional variances of I'V;, ugm), and RVt(m), respectively. These estimates are

obtained based on the estimated values of state space form parameters.
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Table 6: Mean Absolute Differences (and Correlations) among Smoothed IV Series with Various m

(a) One-factor model

n = 288 n =144 n = 96
m = 1440 0.0822 (0.9060) 0.0896 (0.8799) 0.0913 (0.8700)
m = 288 - 0.0179 (0.9841) 0.0244 (0.9718)
m = 144 - - 0.0165 (0.9843)

(b) Two-factor model

n = 288 n =144 n = 96
m = 1440 0.0601 (0.9087) 0.0699 (0.8821) 0.0730 (0.8667)
m = 288 - 0.0205 (0.9779)  0.0257 (0.9702)
m = 144 - - 0.0189 (0.9819)

Note: the table reports the mean absolute differences, which is defined as 7! EtT:l |I/I\/ EIT;) —IV ETT)| for

m = 1440, 288,144 n = 288,144, 96, where f‘\/ilr;) is the smoothed value of IV}, Correlation coefficients
between two series are in parentheses. The numbers, 1440, 288, 144, 96 of m,n correspond to 1—, 5—,
10—, 15— minute, respectively.

Table 7: Results of the Jarque - Bera Normality Test for Normalized Returns
(a) Daily return without normalization

m Mean S.D. Skewness Kurtosis JB test
1 0.0087 0.5802 —0.1437 4.3475 143.0909**

(b) Daily return normalized by the square root of the NCRV
m Mean S.D.  Skewness Kurtosis JB test
1440 0.0254 0.7586  0.0576 3.0101 1.0090
288 0.0335 0.8625  0.0695 2.7444 6.3786*
144  0.0348 0.8890  0.0603 2.6722 9.1963*
96 0.0349 0.9065  0.0368 2.6617 9.0329*

(c) Daily return normalized by the square root of the smoothed IV
One-factor model
m Mean S.D. Skewness Kurtosis  JB test
1440 0.0282 1.1065 —0.0460 3.5032  19.7229**
288  0.0255 0.9537 —0.0290 3.2349 4.4120
144  0.0235 0.9445 —0.0398 3.2347 4.6294
96  0.0221 0.9475 —0.0575 3.3104 8.2567*
Two-factor model
m Mean S.D. Skewness Kurtosis  JB test
1440 0.0326 1.0086 0.0289 3.1168 1.2808
288 0.0275 0.9595 —0.0079 3.1002 0.7762
144  0.0259 0.9309 —0.0107 3.0218 0.0701
96  0.0250 0.9330 —0.0235 3.0472 0.3347

Note: that table shows the sample mean (Mean), sample standard deviation (S.D.), sample skewness
(Skewness), sample kurtosis (Kurtosis), and the results of the Jarque-Bera normality test for normalized
daily returns, where m is the number of intra-daily returns used in calculating the NCRV and the
smoothed IV. The superscripts, “x” and “sx”, indicate that the null of normality is rejected at the

nominal level of 5% and 1%, respectively.
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Table 8: Forecast Evaluation (In-sample Case)

(a) Results of Mincer - Zarnowitz style regression

One-factor model Two-factor model
m aop ai R? ao ai R?
1440 0.1678 0.6581 - 0.0966 0.1442 0.6515 - 0.1022
(0.0190) (0.0698) - (0.0219) (0.0705) -
288 0.0636 0.8362 - 0.1179 0.0633 0.8396 - 0.1261
(0.0280) (0.0826) - (0.0274) (0.0807) -
144 0.0457 0.8763 - 0.1134 0.0458 0.8713 - 0.1204
(0.0261) (0.0763) - (0.0262) (0.0759) -
96 0.0368 0.9055 - 0.1091 0.0369 0.9020 - 0.1169
(0.0261) (0.0762) - (0.0265) (0.0769) -
m b() bl R2 b() b1 R2
1440 —0.0382 - 0.7365  0.0750 0.0056 0.6525 0.1015
(0.0625) - (0.1191) - (0.0366) (0.0708) -
288 —0.0170 - 0.9138  0.0845 0.0087 0.8499  0.1255
(0.0567) - (0.1414) - (0.0325) (0.0819) -
144 0.0909 - 0.6817  0.1094 0.0179 0.8777  0.1204
(0.0206) - (0.0541) - (0.0283) (0.0759) -
96 0.0914 - 0.7020  0.1043 0.0177 0.9067 0.1162
(0.0206) - (0.0551) - (0.0281) (0.0772) -
m Co c1 Co R? Co c1 Co R?
1440 0.0551 0.4931 0.3025 0.1032 0.1823 0.8280 —0.1778 0.1022
(0.0671) (0.0778) (0.1494) - (0.1972) (0.9185) (0.9190) -
288 0.0077 0.6856 0.2653  0.1212 0.0400 0.5123 0.3361  0.1265
(0.0596) (0.0981) (0.1970) - (0.0447) (0.5307) (0.5355) -
144 0.0531 0.5640 0.2652  0.1156 0.0311 0.4570 0.4209  0.1209
(0.0274) (0.1606) (0.2232) - (0.0326) (0.6195) (0.6206) -

96 0.0463 0.6234 0.2383  0.1105 0.0304 0.6421  0.02639 0.1171
(0.0284)  (0.1687)  (0.2319) - (0.0308)  (0.6835)  (0.6866)  —

(b) Mean absolute error (MAE) and difference (MAD)

One-factor model Two-factor model
m MAENR)  MAEBSM)  \AD(BSM.NR) MAENR)  \MAEBSM)  \AD(BSM.NR)
1440 0.1593 0.2623 0.2594 (0.6929) 0.1586 0.2604 0.2502 (0.9978)
288 0.1547 0.1831 0.0841 (0.7327) 0.1536 0.1754 0.0606 (0.9884)
144 0.1553 0.1686 0.0461 (0.9299) 0.1552 0.1651 0.0304 (0.9918)
96 0.1545 0.1641 0.0395 (0.9383) 0.1541 0.1601 0.0210 (0.9929)

Note: the table (a) shows the results of the Mincer—Zarnowitz style regressions, and the table (b)
reports the mean absolute error (MAE) of one-day-ahead in-sample forecasts, and the mean absolute
difference (MAD) between the forecasts of our and BSM methods, which are defined as

N pyeas X(m =T NEm .
g 12:t=1 |RVt+(1 )_I‘/;+§\t)|’ and T 1Zt=1 |IVt+1\E )_IVt+1\t( )|7

respectively, where 7" = 1809. The correlation coefficient between the two forecasts for a given m is in
the parenthesis next to the MAD.
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Table 9: Forecast Evaluation (Out-of-sample Case)

(a) Results of Mincer - Zarnowitz style regression

One-factor model Two-factor model
m aop ai R? ao ai R?
1440 0.1003 0.8469 - 0.0707 0.1091 0.8301 - 0.0752
(0.0286) (0.1292) - - (0.0268) (0.1284) - -
288 —0.0059 1.0272 - 0.1032 —0.0001 0.9998 - 0.1050
(0.0362) (0.1239) - - (0.0350) (0.1195) - -
144  —0.00002 0.9571 - 0.1012 0.0038 0.9297 - 0.0990
(0.0401) (0.1323) - - (0.0402) (0.1308) - -
96 —0.0176 1.0143 - 0.1032 —0.0103 0.9990 - 0.1052
(0.0383) (0.1238) - - (0.0367) (0.1212) - -
m b() bl R2 b() bl R2
1440 —0.1506 - 0.8879  0.0390 —0.1190 - 0.8754  0.0701
(0.1333) - (0.2721) - (0.0601) - (0.1311) -
288 0.0666 - 0.6813  0.0956 —0.0900 - 1.0759  0.1042
(0.0299) - (0.0868) - (0.0453) - (0.1269) -
144 0.0668 - 0.7185  0.0973 —0.0522 - 1.0290 0.0992
(0.0298) - (0.0903) - (0.0427) - (0.1273) -
96 0.0619 - 0.7540  0.0972 —0.0586 - 1.0802 0.1005
(0.0322) - (0.0976) - (0.0440) - (0.1318) -
m Co c1 Co R? Co c1 Co R?
1440 0.0137 0.7501 0.2153  0.0721 0.1446 0.9457 —0.1297 0.0753
(0.1436) (0.1723) (0.3417) - (0.1624) (0.5897) (0.6039) -
288 —0.0075 1.0565 —0.0209 0.1032 —0.0343 0.6468 0.3866  0.1054
(0.0431) (0.4799) (0.3276) - (0.0754) (0.7075) (0.7554) -
144 0.0153 0.6240 0.2742  0.1031 —0.0316 0.4663 0.5348 0.1012
(0.0428) (0.3870) (0.2839) - (0.0456) (0.4711) (0.4911) -
96 —0.0041 0.7758 0.1938  0.1039 —0.0149 0.9303 0.0781  0.1053
(0.0417) (0.4281) (0.3371) - (0.0599) (0.7111) (0.7868) -
(b) Mean absolute error (MAE) and difference (MAD)
One-factor model Two-factor model
m MAENR)  \AE(BSM) MAD(BSM,NR) MAENR) N AE(BSM) MATD(BSM,NR)
1440 0.1250 0.2578 0.2717 (0.6349) 0.1264 0.2317 0.2485 (0.9730)
288 0.1253 0.1408 0.0468 (0.9643) 0.1257 0.1501 0.0623 (0.9864)
144 0.1299 0.1327 0.0288 (0.9301) 0.1319 0.1406 0.0278 (0.9583)
96 0.1294 0.1295 0.0263 (0.9428) 0.1287 0.1361 0.0244 (0.9734)

Note: the table (a) shows the results of the Mincer—Zarnowitz style regressions, and the table (b) reports
the mean absolute error (MAE) of one-day-ahead out-of-sample forecasts, and the mean absolute
difference (MAD) between the forecasts of our and BSM methods, which are defined as

N pyeas X(m =Tl NEm .
g 12:t=1 |RVt+(1 )_I‘/;+§\t)|’ and T 1Zt=1 |IVt+1\E )_IVt+1\t( )|7

respectively, where 7" = 1809. The correlation coefficient between the two forecasts for a given m is in
the parenthesis next to the MAD.
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NCRV and Smoothed IV

MN Component

Figure 3: NCRV, Smoothed IV, and MN component Series (One-factor Model)

(a-1) 1-min NCRV and Smoothed IV Series
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Figure 3: (continued) NCRV, Smoothed IV, and MN component Series (One-factor Model)

(b-1) 5-min NCRV and Smoothed IV Series
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Figure 3: (continued) NCRV, Smoothed IV, and MN component Series (One-factor Model)

(c=1) 10-min NCRV and Smoothed IV Series
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Figure 3: (continued) NCRV, Smoothed IV, and MN component Series (One-factor Model)

(d-1) 15-min NCRV and Smoothed IV Series
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MN Component

NCRV and Smoothed IV

Figure 4: NCRV, Smoothed IV, and MN component Series (Two-factor

(a-1) 1-min NCRV and Smoothed IV Series
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Figure 4: (continued) NCRV, Smoothed IV, and MN component Series (Two-factor Model)

(b-1) 5-min NCRV and Smoothed IV Series
4 T T T

5-min NCRV Series
—5-min Smoothed IV Series

NCRV and Smoothed IV
[N}
T
|

0.
O 1 1 1 1 1 1 1
2000.7 2001.7 2002.7 2003.7 2004.7 2005.7 2006.7
YEAR
(b-2) 5-min MN Component Series
3 T T T T T
2.5 *
2 - -

MN Component
-
T
|

\ \ \ \ \ \
2000.7 2001.7 2002.7 2003.7 2004.7 2005.7 2006.7
YEAR

48



Figure 4: (continued) NCRV, Smoothed IV, and MN component Series (Two-factor Model)

(c=1) 10-min NCRV and Smoothed IV Series
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Figure 4: (continued) NCRV, Smoothed IV, and MN component Series (Two-factor Model)

(d-1) 15-min NCRV and Smoothed IV Series
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30-min NCRV and Prediction

30-min NCRV and Prediction
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Figure 5: In Sample Forecasts (One-factor Model)

(a) 30-min NCRV Series and 1-min Predicted IV Series
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(b) 30-min NCRV Series and 5-min Predicted IV Series
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30-min NCRV and Prediction

30-min NCRV and Prediction

Figure 5: (continued) In Sample Forecasts (One-factor Model)

(¢) 30-min NCRV Series and 10-min Predicted IV Series
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30-min NCRV and Prediction

30-min NCRV and Prediction

Figure 6: In Sample Forecasts (Two-factor Model)

(a) 30-min NCRV Series and 1-min Predicted IV Series
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30-min NCRV and Prediction

30-min NCRV and Prediction

Figure 6: (continued) In Sample Forecasts (Two-factor Model)

(¢) 30-min NCRV Series and 10-min Predicted IV Series
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(d) 30-min NCRV Series and 15-min Predicted IV Series
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30-min NCRV and Prediction

30-min NCRV and Prediction
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Figure 7: Out of Sample Forecasts (One-factor Model)

(a) 30-min NCRV Series and 1-min Predicted IV Series
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(b) 30-min NCRV Series and 5-min Predicted IV Series
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30-min NCRV and Prediction

30-min NCRV and Prediction

Figure 7: (continued) Out of Sample Forecasts (One-factor Model)

(¢) 30-min NCRV Series and 10-min Predicted IV Series
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(d) 30-min NCRV Series and 15-min Predicted IV Series
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30-min NCRV and Prediction

30-min NCRV and Prediction
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Figure 8: Out of Sample Forecasts (Two-factor Model)

(a) 30-min NCRV Series and 1-min Predicted IV Series
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(b) 30-min NCRV Series and 5-min Predicted IV Series
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30-min NCRV and Prediction

30-min NCRV and Prediction

Figure 8: (continued) Out of Sample Forecasts (Two-factor Model)

(¢) 30-min NCRV Series

and 10-min Predicted IV Series
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(d) 30-min NCRV Series and 15-min Predicted IV Series
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