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Abstract

We consider the nonparametric estimation of the regression functions for de-
pendent data. Suppose that the covariates are observed with additive errors
in the data and we employ nonparametric deconvolution kernel techniques
to estimate the regression functions in this paper. We investigate how the
strength of time dependence affects the asymptotic properties of the local
constant and linear estimators. We treat both short-range dependent and
long-range dependent linear processes in a unified way and demonstrate that
the long-range dependence (LRD) of the covariates affects the asymptotic
properties of the nonparametric estimators as well as the LRD of regression
errors does.

Key words: local polynomial regression, errors-in-variables, deconvolution,
ordinary smooth case, supersmooth case, linear processes, long-range
dependence

1. Introduction

When we have dependent data, (Y;, X;), i = 1,...,n, and need to know
the regression function of the response Y; on the covariate X; with no para-
metric assumption, we usually appeal to nonparametric regression techniques
such as local polynomial regression. See Fan and Gijbels (1996) for more on
nonparametric regression. In this paper, we consider the case where the co-
variate X; is observed with an additive measurement error and we estimate
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the regression function of Y; on X; by using deconvolution kernel techniques.
This is one of errors-in-variables problems.

The errors-in-variables problems have been receiving a lot of attention for
decades. For example, see Carroll et al. (2006) for general results and appli-
cations and Meister (2009) for results on nonparametric estimation including
deconvolution kernel density estimation. When we carry out nonparametric
estimation of regression functions, one of the most familiar estimators has
been the local constant type estimator of Fan and Truong (1993). The esti-
mator is based on the idea of the deconvolution kernel density estimator and
is very recently extended to the higher order versions in Delaigle et al. (2009).
There are some other kinds of nonparametric regression estimators such as
those of Schennach (2004), Comte and Taupin (2007), and Hu and Schennach
(2008). Hereafter we concentrate on deconvolution kernel estimators of Fan
and Truong (1993) and Delaigle et al. (2009).

Most of the existing results on nonparametric estimation in the errors-in-
variables problems are focused on the cases of i.i.d. or short-range dependent
observations. There are too many papers to mention in the cases of i.i.d. ob-
servations and we just refer to Carroll et al. (2006), Meister (2009) and
the references therein. Masry (1991,1993a,1993b,2003) and Fan and Masry
(1992) deal with the cases of short-range dependent observations by assum-
ing some mixing conditions or positive association. Those papers contain the
results on deconvolution kernel density estimation and deconvolution kernel
nonparametric regression estimation. van Zanten and Zareba (2008) is a
recent paper on wavelet deconvolution density estimation for short-range de-
pendent observations. The settings of those papers are different from that
of the present paper since those papers assume mixing conditions or simi-
lar ones and the assumptions of them exclude the cases of slowly decaying
autocovariances.

It is well known that we have the same asymptotics for short-range depen-
dent observations as for i.i.d observations when we employ nonparametric ker-
nel estimation without measurement error. See Fan and Yao (2003) for more
details on this phenomenon. This is also true of the errors-in-variables prob-
lems. The asymptotic properties given in Masry (1991,1993a,1993b,2003)
and Fan and Masry (1992) are the same as in the i.i.d. situations. However,
things change when dependent data exhibit LRD stronger than a level in
density estimation and nonparametric regression. When the LRD exceeds
the level determined by the bandwidth, the effect of the LRD becomes dom-
inant and we have the asymptotics completely different from those in the



ii.d. situations. For example, see Masry and Mielniczuk (1999), Wu and
Mielniczuk (2002), and Mielniczuk and Wu (2004) for those results in the
cases of no measurement error. In nonparametric regression, only the LRD
of the regression error terms can affect the asymptotic properties when we
observe the covariates and have the same data generating process as in this
paper. It is easy to see this from the arguments in Mielniczuk and Wu (2004).

This transition of the asymptotic properties also happens when we employ
deconvolution kernel density estimators in the errors-in-variables problems.
See Kulik (2008) for this phenomenon in density estimation. Kulik (2008) has
examined how the LRD affects the asymptotic properties of deconvolution
kernel density estimators by following Wu and Mielniczuk (2002). It is shown
that the effect of the LRD appears when the strength of LRD exceeds a level
as in Wu and Mielniczuk (2002). However, no result has been obtained for
nonparametric regression under LRD in the errors-in-variables problems.

In this paper, we examine how the LRD of (V;, X;) affects asymptotic
properties of the local constant and linear estimators of Fan and Truong
(1993) and Delaigle et al. (2009). We also follow Wu and Mielniczuk (2002)
and use the results of Giraitis et al. (1996) as in Kulik (2008). However,
there are two sources of LRD in nonparametric regression, covariates and
regression error terms, and we have to deal with unbounded functions. Thus
the asymptotics and mathematical treatment are more complicated than in
density estimation.

In the setting of this paper, we have found a similar transition of the
asymptotic properties. However, the LRD of covariates can affect the asymp-
totic properties of the nonparametric estimators as the LRD of regression
error terms can. Note again that the LRD of covariates does not affect the
asymptotic properties in the cases of no measurement error under the data
generating process (DGP) of this paper.

We assume that (Y;, X;), ¢ = 1,...,n, are generated by linear processes
and we treat short-range dependent and long-range dependent linear pro-
cesses in a unified way. We call {X;} a short-range dependent process when
Yoo, Cov(Xy, X;) < oo. When > 7 Cov(Xy, X;) = oo, {X;} is a long-range
dependent process. See Beran (1994) for more details on short-range depen-
dence (SRD) and LRD. Note that SRD and weak dependence are often used
for the same meaning in the literature.

We could deal with general local polynomial estimators. However, we
deal with only the local constant and linear estimators for simplicity of pre-
sentation. We follow a series of papers on deconvolution kernel techniques



and treat the ordinary smooth case and the supersmooth case separately.
The asymptotic normality is established in the ordinary smooth case. In the
supersmooth case, we investigate the asymptotic variance of the local con-
stant estimator and show how the effect of LRD appears in the variance. The
investigation of the asymptotic distribution is a subject of future research.

The paper is organized as follows. We define the estimators and the DGP
in section 2. A brief exposition on long-range dependent linear processes is
also given. We present the results on the ordinary smooth case and the super-
smooth case in sections 3 and 4, respectively. The proofs of the propositions
in sections 3 and 4 are postponed to section 5. The technical lemmas and
the proofs are in section 6.

In this paper C, Cj, 9, and J; are generic positive constants and their
values change from place to place. We write al for the transpose of a vector
a.

2. Estimators and data generating process

In this section we describe the DGP and define the local constant and
linear estimators.
Let the dependent data (Y;, X;), ¢ = 1,...,n, be generated by

where m(z), z € R, is an unknown function and o(X;)n; is the regression
error term. We do not observe the covariate X; and we have n observations
of (Y;,W;), where W; = X; + U; and U;, i = 1,...,n, are i.i.d. and we
assume that {U;}, {X;} and {n;} are mutually independent. We denote the
density function and the characteristic function of U; by fy(u) and ¢y (t),
respectively and we assume that ¢p(t) is known.

We estimate m(xg) for a fixed zo from (Y;,W;), i = 1,...,n with no
parametric assumption on m(z). The asymptotic properties of the estimators
crucially depend on the tail behavior of ¢y (t) and we consider the ordinary
smooth case and the supersmooth case as in the other papers in this field.

It would be almost impossible to investigate the asymptotic properties of
the estimators without any specific assumptions on the DGP of {X;}, and
{n;} when the time dependence is strong. Hence we assume that {X;} and
{n;} are linear processes defined in (2) below.

n;, = Zajei_j and Xz = ijfi—j (2)
7=0 7=0
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where {¢;} and {{;} are sequences of i.i.d. random variables with zero mean,
ap = 1, B(nj) = E(ef) 2200 = 1, E(&) = 0Z, bo = 1, and 377 b7 < oo.
Note that that {U;}, {¢;}, and {{;} are mutually independent. Notice that
existing results mentioned in section 1 do not cover the cases where the
coefficients {a;} and {b;} decay not very fast.

We define the local constant and linear estimators of m(xg), m.(zo) and
my(zo), by following Delaigle et al. (2009). First we choose a symmetric

kernel function K (v) satisfying [ K (v)dv = 1 and put

bic(t) = / explito)K(w)dv and Ki(x) = K (7)),
where 7 in exp(itv) is the imaginary unit and h is the bandwidth converging
to 0. The range of integration is the whole real line when it is omitted.
~ Some definitions are necessary to define r.(zo) and 7 (zo). We define
Tor(xo), k=0,1,and S, x(z0), k=0,1,2, by

. n W — za\ k

Tow(zg) = n! ZYJ< ’ . 0) Lin(Wj — 1), (3)
=1

. "W — ok

Sni(ze) = n7 ( ]h 0) Lin(Wj — o), (4)
=1

where

(w - $0>kLk7h<w —x0) = Kyx((w —x0)/h),

h
(k)
1
= 5 exp(—itv)¢K—(q})dt.
ik

du(—t/h)

The above definition of Ky is motivated by the equation

B (Wj - ‘Eo)kLk,h(Wj )|} = (XJ‘ - “"O)kKh(Xj — ). (5)

KU,k(U>

Then put . . .
Tn = (Tn,()(IO)v Tn,l(lﬁo))T

and let S, be a 2 x 2 matrix whose (i, j) element is Sy ;1 ;_2(z0).
The local linear estimator m;(x) is defined by

(o) = (1, 0)S1T,. (6)
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The local constant estimator m.(zo) is given by
mhe(zo) = S’glj—‘n (7)

with Tn = An’()(Io) and Sn = Sn’0($0).

Next we are more specific about {n,} and {X;} and give some important
properties of the autocovariances. In this paper, we consider the following
two cases for {n;}.

Z|aj| < 0. (8)

Y ol =00 and a; = (j + 1)7 2, (j), (9)
7=0

where 0 < 7, < 1 and [,(j) is a slowly varying function. It is easy to see {n;}
is a short-range dependent linear process in the case of (8) and that {n;} is
a long-range dependent linear process in the case of (9).

Put 0, (i — j) = E(n:n;) and then we have in the case of (8),

Var(d “m) = Y oy(i —j) = O(n). (10)
j=1 1<i,j<n
In the case of (9), we have
_ .. O(n i l(7)/7 2 ) =1,
V(3 o) = 3 i) = { gl Zam A ey
j=1 1<i,j<n ¢ ’

Especially when 0 < v, < 1,
lim (n*7 0 (n)) ™" Y oy(i = j) = D(7a)E(e]), (12)

n—oo

where

DO) = {1 =)A= /2" [t a?) O e

We also consider the following two cases for {X}.
> by < oo (13)
=0
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S bl =00 and by = (j+ 1)), (14)
=0

where 0 < 75, < 1 and [,(j) is a slowly varying function. By setting ox (i—j) =
E(X;X;) for {X,}, we have the results similar to (10)-(12). When we do not
specify (8), (9), (13), and (14) in the propositions and lemmas, we mean that
the propositions and lemmas are true in any cases.

We examine the asymptotic properties of the estimators by employing
the martingale decomposition approach as in Ho and Hsing (1996, 1997) and
the technique of Wu and Mielniczuk (2002). Finally in this section, we define
several o-fields which we use in applying the approach and technique to our
setting.

“7:j = J{&jufj—17"'}7
Hy = o{U;,§,Uj-1,&,- -},
H; = o{{U;,&,Uj—1, 8-, FU{at2_ )

where o{---} means o-field generated by the random variables inside the
braces.

3. Ordinary smooth case

In this section, we consider the ordinary smooth case where ¢ (t) is known
and satisfies Assumption CU below. The Gamma and Laplace distributions
and the convolutions of those distributions satisfy Assumption CU. First we
state assumptions and the main theorems. Then we describe the propositions
and the proofs of the main theorems. As for the bandwidth, we take h =
cin~® (0 < a < 1) in this section.

Assumption CU

(i) |pu(t)| > 0 for all ¢.

(ii) ¢u(t) is twice continuously differentiable.
(iii) There is a [ larger than 1 such that

Jim [0y (t),  lim 17 (1), and - lim (876 (t)

t—too

exist and are finite. Especially lim; .1 [t|°¢y(t) # 0.

Assumption CK below is about the kernel function K (v) and just a stan-
dard one in the literature on deconvolution kernel techniques.
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Assumption CK

(1) @K (t) is four times continuously differentiable and ¢k (¢) and all the deriva-
tive functions are bounded.

(ii) For k =0, 1,2,

/ (t1710% ()] + [t Yo%V (0] + [t o5 T2 (1)) dt < oo

When Assumptions CU and CK hold, Lemma 3 of Masry (1991) and
Lemma A of Kulik (2008) imply that

WKy ()] < O (1A ! ) (15)

[v]?

Hence we can define Ay, for £ =0,1,2 by

Ap = lim A° / Kyp(v)dv = / Ly (v)dv, (16)
where Ly (v) = lim, . WKy (v). The existence of Lj(v) is guaranteed by
Assumption CU. Next we define Q41,41 for £ =0,1 and [ = 0,1 by

Qi = lim h%/KU,k(U)KU,l(U)dU = /Ek(v)zl(v)dv- (17)

The definitions of Ay and Q4141 in (16) and (17) are justified by inequality
(15) and the dominated convergence theorem.
Put Q = Qq; for m.(zo) and

Qi Qo
Q= .
( Qo1 Qoo
for my(zp). We need another assumption on the kernel function K(v) and
some notation. The assumption is necessary to evaluate the bias term of the
estimators.
Assumption MK
[ 0]} |K(v)|dv < oo. Write p; = [0/ K (v)dv, for j = 0,1,2,3. Note that
o =1, py =0, and pz = 0.
The former of Assumption MM below is about the moment of X;. Let ~,,

be positive for technical reasons even if m(x) and o(z) is bounded functions.
The latter is used to evaluate the bias term of the estimators.



Assumption MM

(i) |m(z)| < C(1 + |z])™ and |o(x)] < C(1 + |z|)™ for some positive 7y,
such that 0 < ~,, < 3.

(i) m(z) is twice continuously differentiable and

sup sup |m” (zg + 0v) fx (zo +v)| < C,
v jo<1

where fx(x) is the density of X; and it exists due to Assumption X below.
Assumption X

(i) B(J6[2) < o

(ii) Write ¢¢(t) for the characteristic function of ;. Then there is a positive
§ such that |¢¢(t)] < C(1 + [¢|)~°.

We can derive the two facts D1 and D2 below from Assumption X by
following the arguments of Lemma 2 of Giraitis et al. (1996) and Lemma 5.1
of Koul and Surgailis (2002).

Fact D1: There is an integer [y such that the density function of Z;;B bi&i—;
exist for any [ > lp. We write fi(z) and fx(z) for the density functions of
Zé';lo b;&—; and X, respectively.

Fact D2: When s =0,1,2 and [ > [y, we have

¢
(14 faf)

12

and |fl(8)($) - fz(i)l(x)l < (1+ [z[)m”

@1+ 17 (@) <
where v, is the integer part of 2v,, + 2.

Hereafter in this paper we take [j = 1 to simplify our presentation and
write fe(x) for fi(xz). We can derive the same results as Theorems 1 and

2 below by appealing to a complicated and lengthy argument in as Honda
(2009) when [, is larger than 1.

Put -
Xji=Y bk
j=l

The random variable X ; plays an important role in the proofs of Theorems
1 and 2 since [y = 1. In the case where {X;} is a long-range dependent linear
process, it is easy to see that

lim Zlgi,jgnE(Xin) 1

n—00 Zlgi,jgn E(X,‘JXjJ)

9



When {X;} is short-range dependent, {X;;} is also short-range dependent.
Therefore we do not have to discriminate between E(X;X;) and E(X;;X;,)
and we use ox (i — j) to denote E(X;1X;) in the proofs of Theorems 1 and
2, Propositions 1-6, and the proofs.

Here we state Theorems 1 and 2 and related remarks. Theorem 1 deals
with the case where both {7;} and {X;} are short-range dependent linear

processes. Let 2 and & denote convergence in distribution and probability,
respectively and (g; * g2)(x) stands for the convolution of ¢;(z) and gs(x).

Theorem 1. Suppose that Assumptions CU, CK, MK, MM, and X, (8), and
(18) hold. Besides we assume that o(S+1/2) < 1/2 for the bandwidth. Then
for j = c and [, we have

hﬁm(mj<$0) —m(zg) — Bias) <, N(0, 1 (fu * (72 fx))(20)/ [% (20)),
where 7(x) = B{(Y; — m(x0))*|X; = x} and Qu is defined in (17). As for

the bias term Bias, we have

Bias = { h3(m' (o) f (o) + m" (o) fx (w0) /2)pa/ fx (w0) + o(h?), j = ¢,
h2m" (z0)p2/2 + o(h?), i=1.

We have the same asymptotic properties for i.i.d. observations in Theorem
1 and the optimal rate of convergence is achieved when av = 1/(25 + 5).

Theorem 2 below deals with the cases where either of {n;} or {X;} has
LRD. We only deal with typical three cases (a)-(c) to simplify the presen-
tation. When we observe X; without measurement error, the effect of the
LRD of the covariate does not appear and we have only to consider two cases.
The asymptotic distribution is independent of h when we observe X; without
measurement error and the effect of the LRD appears. There are also only
two cases in density estimation.

Theorem 2. Suppose that Assumptions CU, CK, MK, MM, and X hold and
that either of (9) or (14) holds. Then the nonparametric regression estimators
me(xo) and my(xo) have the following asymptotic properties. The bias term
is the same as in Theorem 1. Recall that A is defined in (16)

(a) When Zlgi,jgn ox(i—j)/ Z1§z‘,j§n ay(i—7) — 0, (nh)"*n=%/2|l,(n)] —
00, and 2al < 7,, we have for j = c and ,

o2 (12(n) D () B (7)) /2 (1 (o) — m(x0) — Bias)
d

= N0, A5(fu * (0 fx))*(x0)/ X (x0))-

10



(b) When Zlgi,jgn ox(i—j)/ Zlgi,jgn oy(i—j) — oo, (nh)2n= /2| (n)] —
00, and 2ab < v, we have for j = c and [,

o215 (n) D() B(ET)) ~Y/2 (1 (o) — m(wo) — Bias)
KR N0, AZ(fur * ((m —m(x0)) f5))*(x0)/ f3(20))-

(c) When nhmax{n~? D i<ij<n 0x (i = J),m - > 1<ij<n Onli — J)} — 0 and
a(B+1/2) < 1/2, we have the same result as in Theorem 1.

Letting [,(7) and [,(7) be constant functions, we give some remarks on the
results of Theorem 2. It is easy to see that
(a) © Yo <M, 1 > a+,, and 2a8 < 7,

(b) © Y < Vay, 1 > v+ 7, and 2a8 < vy,

(c)el<a+,l<a+m and a(8+1/2) <1/2.

In the case of (a), the effect of the LRD of {n;} is dominant and the optimal
rate of convergence is achieved with o = 7,/{2(2+0)}. In the case of (b), the
effect of the LRD of {X;} is dominant and the optimal rate of convergence
is achieved with oo = 7,/{2(2 + ) }.

Bandwidth selection is one of the important problems for nonparametric
estimation. It seems very difficult to use plug-in rules because of the compli-
cated forms of the asymptotic variances. Some kind of cross validation may
be possible.

Before we state the propositions, we give some useful expressions and
introduce some notation. We concentrate on ry/(xo) since 7.(zg) can be
treated in the same way. We define Tnk(xo) for k = 0,1 and T* as in
Delaigle et al. (2009) to represent () in a more tractable form.

1

. . D () .
zmm>=nmm—2m—%ﬁ&wmx (18)

J=0

Ty = (Tro(x0), Ty (w0))"
Then we have

my(xo) — mA(xo) - (19)
= (170>87:1{Tn_Sn(m(fEO)ahm,(xO)) } = (1, O)S 1T*.

To examine 1%, we rewrite T,’{’k(azo) — E(T;k(xo)) as

~

T (x0) — B(T7 4 (20)) = Vi = Vi 4 v, (20)

11



V= S S Kua(W; — )R n(X;) — m(xo))
B (W, — a0) )X~ o)1)

n

+n—121[E{KUk<<W = o) /1) (m(X;) = m(w)) [ 1}

—E{KUk((W — x9)/h)(m(X;) — m(x0))}]
= P+ vy, (21)
VY = Z mlfo) [Ku g1 (W) — 20)/h) — E{Ky g1 (W) — z0)/h) ],

V= S B (X) KW, — 20)/h)
j=1

—E{0(X;)Kvx(W; — 20)/h)|H;j_1}]
*Z%E{o— DKk (W) — 0)/B)[H; 1}

= v +V32- (22)

Note that V11 : V12 : V51 , and V},Q are defined in (21) and (22). We find
the same kind of decomposition in Wu and Mielniczuk (2002) and Kulik
(2008). Recall that we have taken [y = 1 for simplicity of presentation. The
martingale CLT is applied to Vl(lk ) and V;f ) in Proposition 2. In Propositions
3 and 4, we treat Vl(Qk ) and V3(2k ) by appealing to the theory of linear processes
as in Ho and Hsing (1996,1997) and Koul and Surgailis (2002). We show in
Proposition 5 that VQ(k) is negligible. Proposition 6 deals with S,. We deal
with SRD and LRD cases in a unified way in the propositions below. The
proofs of the propositions are postponed to section 5.

Proposition 1. Suppose that Assumptions KM, MM, and X hold. Then we
have for k= 0,1,
2

BT 4(20)) = o iam"(20) fx (x0) + (1),

12



Define V,,, by V,,, = (Vl(lo )+ Vg(lo ) Vl(ll) + \é(ll))T. Proposition 2 is about the
asymptotic distribution of V,,,.

Proposition 2. Suppose that Assumptions CU, CK, MM, and X hold. In
addition a(B + 1/2) < 1/2. Then we have

B (nh)Y2V, 5 N(0,Q(fu * (72 fx)) (x0)).

Before stating Proposition 3, we define ©2 by

n l oo ntl
On=2_Q_ 0+ (> ) (23)
=1 j=1 =0 j=1+1
where 67 = b?A(Q%”H) + B7b; and B} = PR b?. The results similar to

Proposition 3 are common in the literature of long-range dependent linear
processes.

Proposition 3. Suppose that Assumptions CU, CK, MM, and X hold. Then
we have for k= 0,1,

WV = =T Ap(fu x ((m — m(20)) fx)) (o) i Xja
10, (%) o D17

Proposition 4. Suppose that Assumptions CU, CK, MM, and X hold. Then
we have for k =0,1,

n

VA —n Ay (fu * (0 fx))(x0) D mj

J=1

+0, <%) n 0p<(21§i,j§n on(i — j)>1/2>'

n

Proposition 5. Suppose that Assumptions CU, CK, and X hold. In addi-
tion a(B+ 1/2) < 1/2. Then we have for k = 0,1,

<Z1§z’,jgn ox(i— j))1/2 ) ‘

AV® — hOp((nh)_1/2> + hop(%) + hOp( n

13



Proposition 6. Suppose that Assumptions CU, CK, KM, and X hold. In
addition a(B + 1/2) < 1/2. Then we have for k =0,1,2,

~

Sn,k(xo)
= fx(@o)pux +O(h) + %op ((nh)—m)

Lo <@n) +1o ((Zléms" ox(i _j))m).

T\ ) T n

We prove Theorem 1 here. Recall that we have concentrated on 7y (x¢)
in the proofs and that the expressions (19) and (20) are crucial in the proof.
Proof of Theorem 1. When (8) and (13) hold, we have

0, =0(n), Y ox(i—j)=0(m), and Y  o,(i—j)=0(n)
1<ij<n 1<ij<n
(24)
It follows from Proposition 6, (24), and the assumption on h that

S B fx(wo)diag{1, s }. (25)
Propositions 3-5 and (24) imply that
B (nh) 2 (Vi) + Vi +V3) = 0,(1).
Then from (20)-(22), we obtain

WP (nh) V(T (o) — B(T) 4 (w0))) = B (nh) 2 (Vi + Vi) + 0,(1).  (26)

n

The equations (19) and (26), Proposition 2, and (25) yield the convergence
in distribution in Theorem 1.

The bias term comes from E(T;‘;k (z0)) and the assertion on the bias term
Bias follows from Proposition 1 and (25). Hence the proof of Theorem 1 is
complete.

Finally we prove Theorem 2.
Proof of Theorem 2. Note that we can treat the bias term Bias as in the
proof of Theorem 1 and we only give the details on the stochastic term.

First notice that

O, O,
L =0O(m 2?0 and —= = 0<

n n

(Zlgz’,jgn ox(i— j))1/2>

n

14



for some positive 0 in the case of (14).
(a) Propositions 2-5 and the assumptions on ox (i), 0,(¢), and the bandwidth
imply that

WP+ V) = o)(( Y a)?/n),

1<4,5<n
k
WV = o0,(( Y a)?/n),
1<i,j<n
k
VY = o(( Y o) ?/n).
1<i,5<n

Then we have from (20) and Proposition 4 that

WD onli = )M )7 (o) = BT ()
= WD o= )7 Vay +0,(1)

L N0, A2(fu # (0 fx))2(x0))-

See also Theorem 5.2.3 of Taniguchi and Kakizawa (2000) about the last line.
Proposition 6 yield that S, 2 fx(x¢)diag{1, s} again. Thus the asser-

tion in the case of (a) follows from (19).

(b) We can proceed as in the case of (a) and we give just the difference.

Propositions 2-5 and the assumptions on ox (i), o,(i), and the bandwidth
imply that

PO+ V) = o) Y ox)?/n),

1<i,5<n
k
WV = o0,(( Y ax)Y/n),
1<i,j<n
k
VR = 0,(( Y ox)/n).
1<i,j<n

Then we have from (20) that

WY oxli= )2 /n) (T (x0) = B(T) (o))

1<i,j<n
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= BP0 ox(i— )Y /n) TV + 0,(1)
1<i,j<n
d

= N(0, AR (fu * ((m — m(20)) fx))*(x0))-

(c) Propositions 2-5 and the assumptions on ox (i), 0, (¢), and the bandwidth
imply that

WV = o,((nh)Y?), WPV = o,((nh)/?), WPV = o,((nh)Y/?).

Therefore we can prove the assertion as in the proof of Theorem 1. The
details are omitted.
Hence the proof is complete.

4. Supersmooth case

In this section, we consider the supersmooth case by following subsection
3.2 of Kulik (2008), which crucially depends on the results in Giraitis et al.
(1996). We examine the variance of the estimator more closely and show the
effect of LRD in the variance.

In the supersmooth case, ¢y (t) is known and satisfies Assumption CU’
below. The normal and Cauchy distributions and the convolutions of them
satisfy Assumption CU’.

For simplicity of presentation, we only deal with the case where both (9)
and (14) hold. However, the approximation to the joint densities in (33)
below will hold in the other cases and we can derive similar results. Note
that we examine only the bias and the variance of m.(zg) since we need to
use the results on the bounds of Ky . in (27) and (28).

Assumption CU’

(i) |¢u(t)] > 0 for all ¢.

(ii) aolt|® exp(—as|t|’') < |ou(t)| < a1|t|? exp(—ag|t|®) as |t| — oo, where
ag, a1, ag, and (i are positive constants and [ is a constant.

(iii) Let ¢y(t) = Ry(t) + ily(t), where Ry(t) and Iy (t) are the real and
imaginary part of ¢y (t), respectively. Then assume that we have

Iy(t) = o(|Ru(t)]) or Ry(t) = o(lIu(t)]).

Assumption CK’
(i) The function ¢k (t) has a finite support (—dg, ds).

16



(i) There are positive constants as, [, and ¢ such that | (t)] < az(ds — t)!

for t € (ds — 9, ds).

(iii) There are positive constants a4, I, and & such that ¢ (t) > as(dg — t)!

for t € (ds — 9, dg)

When Assumptions CU’” and CK’ hold, there are positive constants C

and Cy such that

sup [Kyo(v)] < Cih D5+ (log(1/h)) exp{as(ds/h)™ }

and uniformly in v on a bounded interval,
|Kuo(v)] = Coh P explag(ds/h)™ YH (v),

where

) = { | cos(dsv)|, when Iy(t) = o(|Ru(t)]),
|sin(dgv)|, when Ry(t) = o(|Iy(t)]).

Assumption MK’

[ ]| K (v)]dv < oc.

Assumption MM’

(i) Both |m(z)| and |o(x)| are bounded functions.

(ii) m(z) is twice continuously differentiable and

sup sup |m” (zo + 6v) fx(xo +v)| < C.
v |AI<1

Assumption X’

(i) Let the random variable &; have the moment of any order.

(27)

(28)

(ii) Write ¢¢(t) for the characteristic function of &. Then there is a positive

& such that |¢¢(t)] < C(1+ [¢])°.

We have to strengthen Assumptions MM and X to those as above to use

the argument in the proof of Lemma 3 of Giraitis et al. (1996).

Here we specify the bandwidth by taking h = cy(1/logn)/%, where

¢y > dg(2ag)"/? . Further assume that

i (20) fle(20) + S (20) fx (20) # 0,

2
i (20) o) + 5" (20) i ) # 0.
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We give three typical cases (a)-(c), which are considered in Theorem 3 below.

(a) -1+ 20L5~0lg1/021 > —min{7y,, Y}
(b) =70 > — min{l - 2a5dg’ /5", 7}
(¢) =% > —min{l — 2a5dsl/c§1, Yo}

In the case of (a), we have the same result as for i.i.d. observations. The
effect of the LRD of {n;} and {X;} is dominant in the stochastic term in the
case of (b) and (c), respectively. In all the cases in Theorem 3, the bias term
Bias dominates the stochastic term.

We state Theorem 3 and the propositions. The proof of Theorem 3 follows
the propositions. The proof of Proposition 7 is given in section 5. The proofs
of the other propositions are omitted since they can be established in almost
the same way as Propositions 1 and 7.

Theorem 3. Suppose that Assumptions CU’, CK’, MK’, MM’, and X’ hold
and that both of (9) and (14) hold. Then we have

e(zo) — m(zo) = (fx(20)) ™ Zn + Bias + o,((Var(Z,))"?),

where

Bias = Wpa(m(w0) fe (o) + 5" (o) (o)) Fx (o) + (4.

(a) When —1+2a5dg1/621 > —min{v,, Y}, there exist positive constants C4
and Cy such that

h2{(l+1),@1+30—1/2} exp{QaS(ds/h>’61 }
n

. R2ADBI+Bo=1} (1o (1 /1)) 2 2ac(de /B
< Var(Z,) < G (log( /n>) exp{2as(ds/h)"}

(b) When —v, > —min{1 — 2asdd" /c5", 1}, we have

1

Var(Z,) = {20 Lx (@) > oy(i— )1+ o(1)).

n2
1<i,j<n
(¢c) When —v, > —min{1 — 2agd2' /3", 7va}, we have

(' (o) fx (o) + m" (w0) fx (w0)/2)*5h"

Var(Z,) S ox(i—j)(1+o(1).

1<ij<n
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Since
Me(z0) — m(zo) = S, (T — B{T;}) + S, 'B{T;;}, (31)

we should examine T — E{T*} and S, to prove Theorem 3. We can treat
E{T*} in the same way as in section 3 and the details are omitted. To
examine 7,y — E{T*}, we decompose the exprssion into V;, V5, and Vj as

Tr — B{T;} (32)

= n! [l(m(Xj) — m(x0))Kuo((Wj — 20)/h)

j=1

~B{ 2 (m(X,) — mro)) Kuo(W; — 20)/) }

+n 7t i njE{U<2(j)KU,0((Wj - xo)/h)}

+n an [U(fj>KU,O((Wj — 0)/h)
B T ko (0, — ) /)]
= i+ W+ Vs

We evaluate Vi, V5, V3, and S, in Propositions 7, 8, 9, and 10, respectively.
The argument in Lemma 3 of Giraitis et al. (1996) is based on the approx-

imation of the joint density of (X;, X;), which is denoted by fx,_;(z;, ;).

The approximation below is given in Lemma 2 of Giraitis et al. (1996).

fxi-j(@i, x;) (33)
= fx(@)fx(x;) +ox(i— ) fx (@) fx(x;) + lox (@ — I pxioj(@i, x;)

for some positive 6, where px;_;(z;,z;) is is uniformly bounded in z;, x;,
and 1 — j.

Proposition 7. Suppose all the assumptions of Theorem 3 hold. Then we
have for some positive 41,

Var(V1) (34)
= Var{ 2 (m(X2) — m(zo)) Koo((W) — o) /1) }
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+2(m’ (o) f (z0) + %m/,($0)f§(($o))2/tzh4

niz ox(i — )(1+ o(1))
+O(n2lh2 Z ’UX(i—j)‘H&)-

1<i<j<n
Besides, for some positive constants Cy and Cs,
Cy A 4501/2E oy [0 (d /) }
< Var{ 3 (m(X2) — m(z) Kuo((Ws — 0)/h)
< GV log(1/h)) exp{2as(ds/h)™ }.

Proposition 8. Suppose all the assumptions of Theorem 3 hold. Then we
have

Var(vg) = T @)® 5~ G o),

n? —
1<i,j<n

Proposition 9. Suppose all the assumptions of Theorem 3 hold. Then we
have for some positive 61,

Var(V3) (35)
= %E(U%)Var{ 0(2(1) Kyo(Wy — xO)/h)}

10(og Y oxli—fogli =) +0( 3 loxli— ™).

1<i,5<n 1<i,j<n
Besides, for some positive constants Cy and Cs,
ORI exp 0 (ds /)
< Var{ OT(X1>KU,0((W1 - 370)/h)}
< Coh2 DB+ (1og(1/h))H exp{2as(ds/h)*}.

Proposition 10. Suppose all the assumptions of Theorem 3 hold. Then we
have for some positive 1,

Var(Sn.0(20))
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. <lh2{(l+1)ﬁl+ﬁﬂ—1} (log(1/h))? exp{2as(ds/h)> })
n

10(g 3 oxli= )+ (g 3 lowli—i)).

1<i,j<n 1<i,j<n

Besides, we have

E(Sno(w0)) = fx(x0) + O(h?).

We prove Theorem 3 by exploiting Propositions 7-10 and (31).
Proof of Theorem 3. The definition of the bandwidth h in this section
and Proposition 10 imply that
1 ~ ~ ~ ~ ~
(T* — E(T")) + S; 'E(T*) + o,((Var(T%))"/?).
fx (o)

Take Z, = T* — B(T*) = V4 + Vo + V3 and note that exp{2as(ds/h)?}/n =

81, B
n—1+2asdsl /ot

me(zo) — m(xg) =

. Then the assertion on Var(T*) follows from Propositions 7-9.
Actually, in the case of (a), the first terms of the right-hand side of (34) and
(35) are dominant. It is easy to see that Var(V;) and the second term of the
right-hand side of (34) is dominant in the csaes of (b) and (c), respectively.

We can treat the bias term Bias in the same way as in Theorems 1 and
2. Hence the proof of Theorem 3 is complete.

5. Proofs of propositions

Proof of Proposition 1. We have from (5) and Assumption MM that
E{Tx(w0) — m(xo)Sux(xo)}
= /UkK(v)(m(xo + vh) — m(xg)) fx(zo + vh)dv

= /ka(v) (m’(xo)vh +m”(z0) (U;L)Q)fx(xo + vh)dv
T / @K(v)(m”(:co + 0vh) —m" (z0)) fx (o + vh)dv

))m"(fﬁo)hZMkaX(xO) +o(h?)

= m/(z0) (hptks1fx (o) + P s fi (o 5

Similarly,

m/(ﬁo)hE(gn,kH(iBo)) = m/(ifo)(h#kﬂfx(l“o) + hQuk+2f§((9«“0)) + O(hQ)-
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Hence the assertion of the proposition follows from (18).

Proof of Proposition 2. We only give the details on V3(1k ) because the rest
of the proof follows from the similar argument, the Cramér-Wold device, and
the independence among {¢;}, {;}, and {U;}. We apply the martingale CLT

since ‘/})(1) 18 wirtten as

VD = S o) K (W, — )/

—E{o(X;) Ky, (W) — 20)/h)[H;1}].

and it is the sum of the martingale differences w.r.t. {H,}.

All we have to do is to establish the Lindeberg condition and the conver-
gence in probability of the conditional variance w.r.t. {H;}. The conditional
variance is written as

%i”?/hmf(ék(v){/fﬂwo—f+vh)f5(t—Xj,1)02<t)dt}dv+0p(1)
- %Zn [ B@{ [ foleo =t ohsle - Xt @t o + 0,0

- %Zn?/iz(mdv/fU(xO_t)f£<t_Xj,1)02(t)dt—|—0p(1)

= QuE®)(fu * (0° fx))(20)-

Here we used the properties of L (v), the boundedness of (62fx)(t), and the
ergodic theorem. We can show in the same way that the conditional variance
of Vl(lk) converges in probability to Qi (fu * ((m — m(x0))%fx))(xo).

Finally we establish the Lindeberg condition. We write Z; for the j-th

term of h%(nh)/ 2\/})(1]6 ), Assumptions MM and X imply that there is a positive
constant § s.t. (0270 fx)(t) is bounded. Then we have

nE(|Z4[2*)
< C(nh)™"? / | Ky (o) [0

«{ /fU(xo — b+ oh) (0 f)(0)di } o
< C(nh)™? =0.
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Therefore for any positive e,

> EB{ZP1(1Z5] > €)|H;1} 0.

Jj=1

The convergence of the conditional variance and the Lindeberg condition
yield that
W2 (nh) 2Vt — N0, Qu(fir * (0 fx)) (o))

Hence the proof of the proposition is complete.
Proof of Proposition 3. By applying Lemma 1 and Lemma 2 with M (z) =
m(x) —m(xg) and d; = 1, respectively, we get

{
% (m(t) }dejl—l—O(n)

= —n A (fu * ((m — m(x0)) fi)) (o) Z Xja

j=1

() 0,5

Hence the proof of the proposition is complete.
Proof of Proposition 4. By applying Lemma 1 and Lemma 2 with M (z) =
o(z) and d; = n;, respectively, we get

hﬁz {75 a0, — ) i )

an /KUk /fU zo —t+vh)(fe(t — Xj1) — fx(t)
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+fx (t)XjJ)U(t)dt}dv

3ot [ Koa){ [ folan—t+ ompxotofa

_im P, / Kuu() | / o — £+ vh) fe (D)o (1) }do

(nggn ot — j))1/2>'

n

= Ap(fu * (0fx))(x0) inf T Op(%) + 0p<

Hence the proof of the proposition is complete.
Proof of Proposition 5. Since

hﬂv2(k)
ROHIm/ (z0)
= % > [Kukia (W) = w0)/h) = B{Ku k1 (W) — o) /h)[H; 1}
j=1
HE{Kv k1 (W) — @0) /) [Hj-1} = E{Ku 1 (W — z0)/h) } }],
the assertion of the proposition follows from the arguments in the proofs of

Propositions 2 and 3.
Proof of Proposition 6. Write

Spi(z0) — E(Sy k(o))

= h P! Z{KU,k((Wj —x0)/h) = E{Kyr(W; — x0)/h)[H;-1}}

+hPnt Z{E{KUk((W/j —0)/h)|Hj—1} — E{Kyr((W; — x0)/h)}}]

— iO ((nh)‘m)—l—iO <<Z1§i,j§ngx(i—j))l/2)+ 1 Op(%>

he P h8 P n he n

The last line follows from the arguments in the proofs of Propositions 2 and
3. We can evaluate E(S,, (o)) in the same way as in the proof of Proposition
1. The details are omitted. Hence the proof of the proposition is complete.

Proof of Proposition 7. Write
Zj = 5 (m(X;) = m(wo)) Kug (W) — z0)/h).
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Then
2
Var(V;) = Z\/ar + > Cov(Zi, Zy). (36)
1<i<j<n

First we consider the second term of (36) by using (33) and establish the
second assertion of the proposition at the end of the proof.

Notice that the integration w.r.t. fx(z;)fx(x;)fu(u;)fu(u;) vanishes in
Cov(Z;, Z;) when we replace fx,;_;j(x;, x;) with the right-hand side of (33).
Thus we have only to evaluate in Cov(Z;, Z;) the integration w.r.t. ox(i —
) I (@) £ () for () fo(wy) and Jox (i = 5)[**0pximj (2, ;) for (u) fo (u;).

The sum of the integration w.r.t. ox(i — j) i (z:) fix (z;) fu(us) fu(u;) is
written as

2 oxli-d)

1<i<j<n

<[ [ [ {omten) = mizo)) Kual(es + v~ o))~ B2}

x{gm@»—m@»Km«@+w—w>mw4m%ﬁ
fo(xz)f () fu(w) fu( u] )dx; dm]du du;
ox(i

i // — () K (v — w0)/h) — E(Z) }

X{E(m(%’) —m(z0)) K ((x; — x0)/h) — E(Zj)}fﬁf(ivi)f&(l"j)dﬂ?id%
m/,<x0)f§((x0)>2ﬂgh4

= (0 (0) fi o) + =5 (37)
x% Z ox(i —j)(1+o(1)).

The sum of the integration w.r.t. |ox(i — 7)|"px.i_j(zi, z;) fo(w) fo(u;) is
evaluated as

2 .
52 lox(i= I

1<i<j<n

//// () Kol(z: + i — 0)/h) ~ B(Z)}

X { h(m(%) m(xo))Kuo((x; +u; — x0)/h) — E(Zj)}
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X pxi—j (%5, ;) fu(wi) fo (uj)dz;djdu;du;
2 ) .
= 5 Z lox (i — 5)'

/ [ {Gimta) = mla)) K (i = ) /)~ B2}
{h<m<xj> m(@))K ((w; = 20)/h) = B(Z;) } -y i, ) e

= 0(gy 3 loxli— )1 (38)

1<i<j<n

for some positive d;. The argument in the proof of Lemma 3 of Giraitis et al.

(1996) is applied to derive the last equality. See Giraitis et al. (1996) for the

details. Thus the first assertion of the proposition follows from (36)-(38).
Finally we consider Var(Z;), which is represented as

Var(Z)
= [ [ @) = o Kol b u ) (39)
X fx( )f (u)dxdu
_ 1 m —m(x))*fx) * zo + vh)Kf o (v)dv (40)
b [ = mlan) 2 5 o + o) g

We apply the upper bound (27) and the lower bound (28) to (39) and (40),
respectively and the second assertion of the proposition is established.
Hence the proof of the proposition is complete.

6. Technical lemmas

In this section, Lemmas 1-3 and the proofs are given. Lemma 3 is similar
to Lemma 5.2 of Koul and Surgailis (2002) and the proof is omitted. We find
lemmas similar to Lemmas 1 and 2 in the literature of long-range dependent
linear processes, for example, in Koul and Surgailis (2002). However, I have
not found any lemmas which can cover the result of Lemma 1. Lemma 2 is
just given for reference.

Lemma 1. Suppose that Assumptions CU, CK, and X hold. Let M(t) be a
function satisfying |M(t)] < C(1 4 [t])™ (0 < ypr < Yim). Set

H; = / furo — t -+ oh)(felt — X;0) — Fx(D) + Fle(6)X;) M()dt
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for 7 > 2. Then we have for k =0,1,2,
2
WE[{ [ Kua)EUH©IF) - EH @R} ]
<o, (1 [ IKuaolae) |

where C' is independent of 7.

PROOF. Since (15) implies that h? [ | Ky (v)|dv < oo, we have only to verify
that
sup E{|E{H;(v)|F1} — E{H;(v)|Fo}*} < CO;_;. (41)

Rewrite E{H;(v)|F1} — E{H;(v)|Fo} and define U; 1, U, 2, and U; 3 by
E{H;(v)|F1} — E{H;(v)|Fo}
= /fU(ﬁo —t+oh){f;(t — X;;-1) — f;(t = Xj)
+bj 1 & fi(t — X;5) Y M (t)dt
+ / fo(xo =t +vh)(fi—a(t — Xj-1) — f3(t — Xj-1) M (t)dt
i€y [ foleo =t R (e = X5y) — File) MO
= Uj,1 + Uj,Q + Uj,3.

By representing U;; as

—b;j—1&1
U = [ { [ olaa -t o (gt - X5+ 2)
0
St = XYM (1)t fdz
and applying Lemma 3 below, we get

Ujil? < C{lbj &) I(|bj1&] < 1)
b1 & [P & | > D H(L 4 | X)) %™

Taking the expectation of the above expression, we obtain

E{|Uj1[?} < Clbjoq |\ +D),
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Next we consider U; 2. By noting that that [M (t+v)| < C(1+|t])™ (14|v|)™
and exploiting Fact D2, we have

|Ujal* < Chj_y (14 [ X5 ])*™,
Taking the expectation of the above expression, we obtain
E{|Uj.|*} < OV},
Finally we deal with U;3. We represent Uj 3 as
U]73
= ity [ fuoleo— e+ oh)BLA(E - X,) — (e~ XM (e
= by [ Solao =t U - Xo) — FOM(d
+E[bj,151 / folwo —t+oh)(f1(t— X, ;) — f;(t))M(t)dt] (42)

where X ;; 1s an independent copy of X ; and E{-} is the expectation w.r.t.
X.

Ji.J

Let T} be the first term of (42). Then we apply Lemma 3 and get
T * < Clojr & PAXGPI(1X] < 1) + X, P I(1 X, > 1)}
The expectation is bounded from above by
E(|Ty*) < Cb?le?.

We can treat the second term of (42) in the same way and the details are
omitted.
Hence the proof of the lemma is complete.

Lemma 2. Let {d;} be a sequence of random variables independent of {£;}.
In addition E(|d;|?) < oo and g(z) is a function such that

E{|E{9(Xj,1)|]:1} - E{Q(Xj,1)|7:0}|2} < 09912‘—1

for a positive constant C,. Then we have

1<j<n

B{( S di6.0) '} <0, s Bafe;
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PROOF. Represent 7 | d;g(Xj,) as

Zdjg(Xj,l) = i > GEGXGOIRY - E{g(XG)IF-)]) (43)

=1 j=I+1

+ 33 dELG(G)IF -} — BLg(XG0)IF 1)),

=0 j=1

By exploiting the properties of sums of martingale differences of (43) and
applying the triangle inequality, we can derive the assertion of the lemma.

Note that f;(z), fj(z), j = 1,2,..., satisfy the assumption on ¢(x) in
Lemma 3 with v = «; and C, independent of j.

Lemma 3. Let M(t) be a function satisfying |M(t)] < C(1 + [t))™ (0 <
Y < Ym). Besides, There is another function ¢(x) which satisfies the fol-
lowing conditions.

Cyhy(@)|lz —yl, Jr—yl <1
Cyhy (),

IA A

where hy(z) = (1 + |z|)7(y > ym + 1). Then we have
[ 16t +) = stollarea
< C{jolL(Jv] < 1) + o™ I(Jv] > 1)},
/0 { / 6(t +w — 2) — 6(t — )| M(D)dt bdw

< C{PlPI(jv] < 1)+ ™ (o] > DHL+ [2])™
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