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Abstract

We propose an estimator of change point in the long memory parameter d of an
ARFIMA(p,d, q) process using the sup Wald test. We derive the consistency and the rate of
convergence of the parameter. The convergence rate of our change point estimator depends
on the magnitude of a shift. Furthermore, we obtain the limiting distribution of our change
point estimator without depending on the distribution of the process. Therefore, we can
construct the confidence interval of the change point. Simulations show the validity of the
asymptotic theory of our estimator if the sample size is large enough. We apply our change

point estimator to the yearly Nile river minimum time series.
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1 Introduction

Long memory processes have been observed in many areas, such as hydrology, telecommuni-
cations, economics, and finance. The ARFIMA(p, d, q) model is one of the most widely used
to model such dependence (Granger and Joyeux (1980); Hosking (1981)). This is a natural
extension of the ARIMA (p,d, q) model and allows the parameter d to be a real number. The
d parameter governs the amount of persistence in the process and is called a stationary long
memory parameter when d € (0,1/2). Because of its properties, the long memory model is
often applied to long data series. In such long series, the chance of structural change will be
greater with a change in the physical mechanism that generates the data or with a change in
the way that observations are collected over time.

Modeling with taking changes in d into account is important, because even small changes in

d may have a strong impact on statistical inferences such as the convergence rate of confidence



intervals for constants and long-term prediction. Beran and Terrin (1996) point out the existence
of a change in d for some time series. To model changes with unknown change points, which is
often the case in practice, we often use a two-step procedure. First, we test for the constancy of
parameters. Then we estimate a change point, if the null hypothesis is rejected. This procedure
is considered in Bai (1997) in the context of multiple regression models. Concerning the test for
the constancy of the long memory parameter, there are several studies in the ARFIMA(p, d, q)
model with an unknown change point. For example, Beran and Terrin (1996), Horvath and Shao
(1999), and Ling (2007) consider the sup Wald test, which is one of the most common tests to
deal with an unknown change point; however, they only consider the null limiting distribution.
Horvath (2001) derives the consistency of the sup Wald test.

In contract, the literature contains little research about the estimation of change point
in -changes in d-. One exception is Ray and Tsay (2002), who adopt the Bayesian approach.
However, the estimation of the change point is considered important in order to build an accurate
model and forecast properly. Furthermore, this enables us to uncover the underlying factors
that fostered the changes.

In this paper, we propose an estimator of change point in d of the ARFIMA process using
the sup Wald test. We derive the consistency and the rate of convergence of the parameter,
including our change point estimator. The convergence rate of our change point estimator
depends on the magnitude of a shift. This coincides with our intuition. Moreover, we obtain
the limiting distribution of our change point estimator without depending on the distribution of
the process. The limiting distribution is the same in previous research, and its density function
is known. Therefore, we can construct the confidence interval (CI) of the change point.

The rest of the paper is organized as follows. After introducing the model and estimation
method in Section 2, Section 3 describes the break fraction estimator and derives the asymptotic
properties of our estimator. Section 4 contains the simulation results, and an empirical example
using the same dataset as was used in Beran and Terrin (1996). The proofs of the results stated

in the text are presented in Sections 5 and 6.



2 Model and estimation method

Consider the following ARFIMA (p, d, ) model with a change point kg:

y = (1= L) (D)(L)er, t=1,... ko

y§2) — (1 _L)—d20¢_1(L)1/)(L)gt7 t:k0+17,T

(1)

Yt

where {&;} ~ IID(0,0%), ¢(L) = 1 — P o L', and (L) = 1 — 31 ;L% L is the Lag
operator, 0 < d < 0.5, ¢(z) # 0 and ¢(z) # 0 for all z such that |z] < 1, ¢, # 0, ¥ # 0,
and 1(z) and ¢ (z) have no common root. Denote n = (¢1,...,¢p, ¥1,...,%q), 010 = (di0,7')’,
020 = (dao,n')’, and m = p+ g+ 1. Assume 619 and 69y are unknown. The parameter space
© is a compact subset of R™, as in Ling (2007). We let 79 = ko/T be the true break fraction,
which is unknown, and assume 0 < 7 < 79 < 7 < 1.

For any given k € [rT,7T], the conditional-sum-of-squares (CSS) estimators of 61y and 629

are given by

k

k
Or(k/T) = arg min =3[0 phemu @It > o] = arg min =3,
=1 t=1
5 1 d -1 2 1 2
02(k/T) = arg min T Z {(1 —L)2o(L)Yy (L) (yeI{t > 0})} = arg min Z e; (62),
© t=k+1 © t=k+1

(2)

where I{-} is an indicator function. Thus, the CSS estimation is a nonlinear least square
estimation substituting zero(=mean) into y; for ¢ < 0.
Let denote Dy(0) = Ze?(0), Pi(0) = —5opgre?(0), 1r(0) = Y1y Pi(0), Sor(0) =
Z?:lwrl pt(e) and
S (k) = S1r(01(k/T)) + Lor (Ba(k/T)),

T

k
ZD (01(k/T))Dy(B1(k/T)) + D Di(02(k/T))Dy(B(k/T)).

t=k+1
Let 21(0) = (1—L)" ¢(L)y~1(L)y1, which is similar to e1(6), but without the indicator func-
tion. Let D1(0) = 222(0), Pi(0) = — 55 72(0), T = E[Pi(610)], and Q = E[D;(610) D} (610)]-
Since Ling (2007) considers more general models, he distinguishes Q from . In this paper,
however, we let 2 = ¥ and be equivalent to the information matrix, because the CSS estimator

is an approximate Maximum Likelihood (ML) estimator (see Robinson (2006)).



3 Estimation of the break fraction

3.1 Estimation of the break fraction

In this subsection, we propose a change point estimator based on the Wald test for constancy
of d. By treating each k € [r7T,7T] as a hypothetical change point, the corresponding Wald
statistics is defined as:

k(T — k)

T pHdr(k/T) — da(k/T))%,

Wr(k/T) =

where § is the first element in the first row of (X7 (k)/T)~!. We then define the change point

kas a global maximizer of Wald statistics, i.e.:

k = Arg max Wr(k/T),
k

and denote the break fraction estimator as # = k/T. In addition, we define 6, (k/T) and 0y (k/T)
as the estimators of 619 and 6y as corresponding to k.

Now, more specifically, we can see that our change point estimator is related to the sup
Wald test for the null hypothesis of no structural change versus the alternative hypothesis that
a change occurs at some unknown date. Indeed, the sup Wald test statistics proposed in Beran
and Terrin (1996), and Horvath and Shao (1999) is identical to sup Wy (k/T) (= Wr(k/T)),
except that d is estimated by minimizing the Whittle likelihood. Note that it is less important
to consider the difference between the Whittle and CSS estimations here, because both are
approximate ML estimations.

The idea of estimating change point using sup Wald statistics is suggested in Bai (1997) in
the context of multiple regression models. As mentioned in Bai (1997), it is useful that a break

point estimator is obtained automatically, combining the testing and estimation in a single step.

3.2 Asymptotic properties

We introduce an assumption about the magnitude of shift. We consider a small shift because

we can detect a big change by plotting the data.

Assumption 3.1. |dig — doy| = dvp, where vp > 0, vp — 0 and T1/2=2y — o for some

a € (0,1/2) and § # 0.



This assumption is parallel to the “-shrinking shift-” in Bai (1997) and Bai and Perron
(1998). In the above assumption, the magnitude of the shift shrinks to zero as the sample size
increases, but the shift cannot be too small to identify the break fraction. This assumption
allows us to obtain the limiting distribution of 7 invariant to {e;}, as in Theorem 3.2, whereas
the limiting distribution based on the assumption of a fixed magnitude of shift depends on the
exact distribution of {e;} (e.g., Hinkley (1970)).

We obtain the consistency and the convergence rate of 7 under Assumption 3.1.

Theorem 3.1. Under Assumption 3.1, we have: (i) 7 —, To; and (ii) for every n > 0 there
exists a C < oo such that for all large T, P(|TvA(7r — 70)| > C) < 7.

Theorem 3.1 shows the convergence rate of 7 depends on the shrinking rate vp. Although 7
is consistent, |/% — k| diverges. This enables us to apply Functional Central Limit Theorem and
obtain a limit distribution not depending on {&;} provided in Theorem 3.2 below.

Now define B;(r), i = 1,2 as two independent standard Brownian motions defined on R.

Let define B*(r) = Bi(—r) for r < 0 and B*(r) = By(r) for r > 0.

Theorem 3.2. Under Assumption 3.1, we have
~ — 7 * 1
7T~ oo (5 = ) = ™ o = o~ ko)~ g mas (B = 3l ) . @)

Similar results are obtained for iid models (e.g. Yao (1987)), multi regression models (e.g.

Bai (1997)) and so on. The density function of the limiting distribution is given by

3/2¢l10(=3\/]2]/2) — 1/20(—/2]/2),

where ®(+) is standard normal distribution (see e.g. Bai (1997)). For example, the 95% and

97.5% quantiles are 7.7 and 11.0. Note that the distribution is symmetric about the origin.
Then, all we need to construct the CI of k are the asymptotic properties of L= ,6*1(652 —cil)Q.

The following corollary gives the consistency of the remaining parameters using 7.

Corollary 3.1. Under Assumption 3.1, 61(7) — 019 = Op(T7V2), 6o(7) — 6 =

max{O0,(T~'/2), 0,(T~%ouy)}, and %f]T(/%) is a consistent estimate of the information ma-

trix.

Corollary 3.1 implies that (L — L)(k — ko) —P 0. Therefore, we can construct the CI for the

change point.



4 Simulation and empirical example

4.1 Simulation

We investigate the finite-sample properties of the change point estimator k (and hence 7). We

consider the following data generating process:

(1-L)Yhy,=¢ t=1,..., ko,
(4)
(1-L)Y%2y=e t=ky+1,...,T,
where {e;} ~ NID(0,1). We set d; = 0.1 and dy = 0.2,0.3,0.4, ko = 10T, 70 = 0.5, and
T = 400,800. The number of replications is 1,000 throughout the simulations. We search k
among {0.157,...,0.85T'}.
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Figure 1: Histogram of 7 when 79 = 0.5 and d; = 0.1 for selected values dy, do and T: (a)
dy = 0.2,T = 400; (b) do = 0.2, T = 800; (c) dy = 0.3,T = 400; (d) ds = 0.3, = 800; (e)
dy = 0.4, T = 400; (f) do = 0.4, T = 800.



Figure 1 presents histograms of 7 in all cases. We can see that 7 is more concentrated at the
true break fraction 7y as T'. This confirms the consistency. The precisions of 7 are worse for the
DGP with d; = 0.1, dy = 0.2 than for other cases. This is because the rate of convergence is
propotional to the square of the magnitude of the shift, as in Theorem 3.2. Moreover, in most

cases, histograms seem symmetric as predicted by Theorem 3.2.

0.00 005 010 015 020 0.25

i 'Iliiﬁiiﬁﬁ-uﬁ
Qo o0 - G=—0—=0—6—0—0—0
-10 o) 10

-20 20

(@)

O O O O

0.00 005 010 0.15 020 0.25

_ oqiill! I

-20 -10 10 20

(b)

Figure 2: Distribution of p_l(CZQO — (ilo)QT(% — 79) when 79 = 0.5, T" = 400 : (a) d; = 0.1,
dy = 0.3; (b) dy = 0.1, da = 0.4. The circle plot represents the asymptotic distribution.

Figure 2 shows histograms of the normalized break fraction estimator p—1T(dy — d1)%(# — 7o)
for do = 0.3,0.4 with a sample size of T' = 400. In addition, Figure 2 plots the corresponding
limiting distribution given by Theorem 3.2. It seems that the sample size T' = 400 is sufficient

to apply the asymptotic theory, as long as the magnitude of the shift is not too small.

4.2 Empirical example

We apply the proposed change point estimator to the yearly Nile river minimum time series,
which is known to follow a long memory process (e.g., Beran (1994)). This Nile river data
spans from 622 AD to 1284 AD, implying 663 observations. Beran and Terrin (1996) find a
change in d in this data using their sup Wald test. In addition, they compute Wald statistics

at intervals of 20 years, and find a change around 722 AD. Ray and Tsay (2002) find a change



in d at year 722 AD using a Bayesian method. They also point out that this change may be
caused by the introduction of a new type of device for measurements around the year 715 AD.
Using our method, we can construct a CI to consider inference about a change point from a
classical viewpoint. We adopt the ARFIMA(0,d,0) model, the same as in Beran and Terrin
(1996). We calculate Wald statistics W (k/T) for every k, not at intervals of 20 as in Beran
and Terrin (1996). The maximum of Wy (k/T) is attained at 732 AD. The estimates d(7)
before and after this change point are 0.0088 and 0.4631. Then, the estimated scale factor
L = 72/6(0.4631 — 0.0088)2 = 0.3395. Thus, the upper boundary of the 90% confidence interval
will be 732AD + [11.0/0.3395] +1 = 755AD. Based on symmetry, the confidence interval is
[T09AD, 755AD]. It contains 715AD. This CI contains the year of the introduction of a new

measurement device, corroborating the conjecture of Ray and Tsay (2002).

5 Appendix 1: Proofs

5.1 Proof of Theorem 3.1 (i)

We shall show plim 77 = 7y using the contradiction argument such as in Bai and Perron (1998)
and Chong (2001). Suppose 77 is not consistent. Then, with some positive probability, there
exists € > 0, such that 70 &€ V., Vo = {7; |7 — 10| < €}.

Let Y1 ={m;7 <7 < 79— €} and Yo = {7579 + € < 7 < 7}. Observe that

P(|7p — 19| >€) =P < sup Wy (1) > sup Wp (T))
T€T1€UT26 TE‘/E

2
<3P (s W ()~ W) >0) ®)

i=1 ’TGTiE
2
Wr (1) — WT(TO)} >
= Pl su >0
; (TeTpie { T (d2o — dip)?

where the inequality follows from 79 € V. and the last equation follows from (dog — d19)? > 0.

If we show that

s~ (1 = me ! = oy(1), 0
Wr(T) (1 —79)?

sup 1| = 0p(1), (7)

-7
reTy. | T(d2o — dio)? (1-1)



and

W (7) Tg 1

—([1=7)p

Tl ol — ot ©

sup
7Y o

then the right-hand side of (5) tends to 0 as 7' — oo, because

P P 7o) = (Bt aw=0) ~o

and

Wr (1) — WT(TO)] > < 70 . )
Pl su >0) =P sup —(r9g—17 +o0,(1)>0)] —0.
(reTIZE [ T'(dao — di0)? Terge T( 0= )P p(1)

Therefore, 77 is consistent.
We proceed to show (6)—(8). We will show the uniform convergence of Wy (7) using the
limiting theorems for near-epoch-dependent (NED) sequences, as in Ling (2007).
Define Z(7) = TY27(1 — 7){d\(7) — da(7)} = TY27(1 — 7)/{0,(7) — 03(7)}, where ¢ is an
m X 1 vector whose first element is one and all other elements are zero. We can then rewrite
Wr(T) as
Wr(r) = 57 (r(1 = 7))~ V22(r) 12

Thus, we need to examine the asymptotics of X7 (k), Z(7p), and sup ¢y, Z(7) fori =1,2. Note
that 0 < 7(1 — 7) < oo, because we assume that 0 <7 <7 <7 < 1.

First, we consider sup, ¢y, Z(7). Rewrite Z(7) as

Z(r) = TY2r(1 — 1)/ { (él(f) _ 910) — (92(7) — 920) ~ (fa0 — 910)} .

For 1, it is identical to A in Ling (2007). Thus 6, (7) converges to 619 uniformly in 7 € Yy,

and we can then expand it as following equation:

k
01() — 610 = (X7 +0,(1)) % { aegzm)et(em)} : 9)

t=1

For fy(7), Lemma 6.3 provides that f(7) converges to o uniformly in 7. Thus,

R 1« -\ ' 1 il Jey(620) L\ dei(6)
92(7)—920 = (T — kEQT(Q)) m tzk;l Tet(em) +t ;1 90 et(920) ) (10)
= =Ko



where |0 — 0| < |02(7) — f0|. From Lemma 6.6, we can rewrite

0(7) = b20 =" (620 — 610) + 0, (v1))
ko T
1 - ~ 1 8625(910) 86t(920)
(@) g g D e+ 3 2o
t=k+1 t=ko+1

(11)

From Lemma 6.5 and Lemma 6.2 in Ling (2007), X, /(T — k) converges to X uniformly in
probability in 7 € T1.. From Lemma 6.6, (11) holds uniformly in 7.

Therefore, the following equation holds uniformly in 7 € T1.:

Z(r) =T"?r(1— 1)/ { (él(T) - 910) - (92(7) - 920) — (020 — 910)}

= — TY27(1 = 79) (dao — dio) + T~V2/'S"HA (1) 4+ 7 Ao} + 0,(TY?vr),

(12)

where

ko T
Oe (0 Oey (0
A() _ eta(elo) 6,5((910) + z : 6t8(020) e (020) ,
t=1 t=ko+1

and

k
A=Y 8“;210)@(910).
t=1

From Lemma 6.7, A1(7) is O,(T"/?) uniformly in 7. Because Ag does not depend on 7, we can
prove Ag is max {O,(T"/?),0,(T'~%0(log T)vr)} more easily from Lemma 6.4. Therefore, we
establish (7).

Next, we consider (6). From Robinson (2006), |d; (10) — d1o| = Op(k‘g_l/z) and from Robinson
(2006) and Lemma 6.4 and 6.6, |dy(79) — dao| is max{O,((T — ko)~"/2), 0,(T~%ouz)}. Hence,

Z(70) = TY?*15(1 — 70) {(dl(ﬁ]) - dw) - (622(7'0) - d20) — (dao — dw)}
= 0p(1) + Op (T2~ H0up) + TV 75(1 — 70) (d20 — dio)

= T1/27'0(1 — 7’0) (d20 — le) + Op(T1/2I/T).

Thus, from Assumption 3.1, we have (6). O

10



5.2 Proof of Theorem 3.1 (ii)

We shall show |77 — 70| = Op (7=

ﬁ) using the contradiction argument, such as in Appendix C
T

of Chong (2001). Remember that 77—, 79. Suppose 7 is not 7' V%—consistent, then there exists

a sequence My > 0 such that My — oo and Mr/(Tv2) — 0 as T — oo, and

Mr
liminf P { |77 — — | = 1
jpint P (fr =l > 72) = "

where « is a positive constant in « € (0,1]. Note that

P <\7°T — 70| > M) =P ( sup Wrp(r) > sup Wrp (7')) , (14)

2
Tvy T€Y1Mmp U 20 T€Y3M

where Yy, = {17 < 7 < 19 — MT/(TV%)}, Yonr, = {7370 + MT/(TI/%) < 7 < T}, and

Ysr, = {7;|7 — 10| < Mr/(Tv2)}. Since 79 € T3y, the right-hand side of (14) is bounded by

2
P ( sup Wrp (1) > WT(TO)> < ZP ( sup [Wr (1) — Wrp(19)] > 0) : (15)
i=1

Teley]TUY2A{T TeTiMT

Recall that

W) = 771 =) [/ { (01(7) — 010) — (Ba(r)  00) } — (o — dho)] ‘ (16)
and
W(r0) = Tro(1 — 70) [ { (1) — 010 ) — (Baro) — 00 ) } — (o — o)) oan
The right-hand side of (16) is

(1 —70)* S el
dao — dio)” — 2
1—-7 (d20 10) 1—-71

Tr U{AL(T) + TAo} (doo — d1o)

TO— T

+ T_lT(ll—T) ({A (1) + TAO})2 + 0, ( T TV%) ,

and the right-hand side of (17) is

TTo(l — ’7'0) (d20 — d10)2 — 2L,{A1(7'0) + Tvo} (d20 — le) + T_1 (L,{Al(To) + T()A(]})2 .

70(1 — 70)

11



Hence,

W (7) = Wr(m0) =T (dao — dao)” (7 = 70) (1 + TO)

1—171

—2/ H <1 + 2_ ?) Ai(T) — Al(To)} + (7 — TO)A0:| (d2o — d1o)

1
7(1—17)

1
To(l — 7'0)

+71 [ (V{AL(T) + TA0})® — (¢'{A1(70) + TOAO})2 +0p(Mr)

:G1<T) — QGQ(T) + Gg(T).

(18)

Ga(1) = Op(v/Mr) and G3(7) = Op(1) uniformly in 7 respectively, because
Ai(r) = Op(Tl/Q), Ai(1) — Ai(10) = Op ({T(T - 7'0)}1/2) uniformly in 7, (19)

and

Ag = max{O,(T*?), 0, (T~ (log T)vr)}. (20)

Since G1(1) ~ Mr, SUD ey, Wr(r) — Wr(19) is dominated by G1(7). Then Gi(17) — —o0,

because —1 < 7 — 19 < 0 and My — oo. Thus,

P sup [WT (7’) — WT(T())] >0] —0. (21)
TE€EY 1 My
Similarly, we can derive
P sup [Wp(r)—Wp(r)]>0] —0. (22)
TGTQMT

From (21) and (22), we have (15) — 0, but this contradicts « > 0. Therefore, |77 — 19| =

Op(7Lr). O

5.3 Proof of Theorem 3.2

Without loss of generality, we assume dog — d19 > 0. Because Theorem 3.1 (ii) holds,

WT(T) — WT(T()) = Gl(T) — 2G2(T) + G3(T> + Op(l). (23)

12



We will evaluate G;(7), @ = 1,2, 3 respectively in this case. From (19) and (20),
G1(1) = =T(d2o — d10)*(10 — 7)(1 + 0p(1)) = —|s]6* + 0,(1),

Ga(1) = =2/[((1 + 0p(1)) A1(7) — A1 (70)) + 0p(1) Ao](d2o — d0)

0 Dey(610)
= upi RSP, 0+ op(1
T t;ﬂ 50 ¢(610) (1)

— 2B(-s),

and

Gs(1) =T H7(1 = 7)70(1 — 70)) "' (A1(7)* — A1(0)?)
+ 2T_1((1 —7)(1— To))_le((l —10)A1(1) — (1 = 7)A1(70)) (24
+ T (1= 7)1 = 70) (7 — 70)Af

—0,(Tu5") = 0,(1).
(23) is dominated by G and Gj. Thus, the result of Theorem 3.2 follows. O

5.4 Proof of Corollary 3.1

Without loss of generality, we assume 7 < 79. Then we already show that %ET(k) converges to
¥ uniformly in & in the proof of Theorem 3.1 (i). From the proof of Theorem 3.1 (i), we know
that 61 (10) — 010 = Op(T~/2), Ba(10) — B20 = max{O,(T~1/2), 0,(T~M0vr)}. Thus it suffices to
show that 0 (7) — 01(70) = 0,(1/V/T), O2(10) — 620 = Op(T~/2). From the definition of A, (),

1
01(70) — 010 = —A1(70),

Tty
and
A 1 (1 1 1 .
01(7) — 610 = T%Al(T) = <T7‘0 + Tz TTO> Ay (7).
Then,
TTo Tt
A Aoray 1 8et(010) T0 — T 8615(910)
01(0) — 61(7) = Tro TZT 5q Ct(010) Try7 2+ 00 et(010)
= Op(T™2)0p (T 2ur) + Op(TV2)0p(T ™' 1F) = 0y (T~17?).
We can obtain 6y(79) — a9 similarly. Therefore, we obtain the result. O

13



6 Appendix 2: Auxiliary results

Lemma 6.1. Let wy(dyo) = (1 —L)~40¢~Y(L)(L)es, and wi(dag) = (1 — L)~420¢~ (L)ah(L)ey.

Under Assumption 3.1, we have
wi(dio) = we(dao) + Op(vr).

Proof Define & = ¢~ (L)y(L)e; = > o Tigt—j, and (1 — L) = > 520 K (d)L7. Note that

1 0?

wi(d10) = wy(dao) + (dro — dao) Y 7w 7 Wi—k(d2o) + (dio — d20)2@wt(d§)7 (25)
k=0

where |d5 — dag| < |dig — d2o|- Define the part of the third term in (25) as Ly = agégt =

PR P 1% wy_;_p. We can then rewrite

j—1

zzzl

hl]lpl

Kh—j&t—h-
— =i

Define ny,—; = kp—;(d) Y pe; Tk, then 1, ~ m~17% L, = Op(1), because

h j—1 2
BLP=omY Ay L
h=1 | j= lp—l -p
2

0o h .
—om) Sy By,

h=1 | j=1 J

o0
(1)) (log® n)n*% 2
h=1

< 00.

Therefore, the third term in (25) is o,(v7), giving the stated result. O

Lemma 6.2. Define (1 — L)%¢(L)y~ (L) = Z;io,uj(ﬁ)[/j. For t > ko, define v () =
Zz-;%) wi () {(1 — L)=920&_;}. Then, under Assumption 3.1, the following results hold:

(a) |6t(9) —v(0)] = Op((t — ko) ~vr),

(b) 8et avt ‘_

2
(c) ‘88550’ - aagég? ) = Op((t — ko) ~1og?(t — ko)vr).

t — k‘o —d log(t — k‘o)l/T),
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Proof For (a), because DGP is (1), for t > ko,

t—ko—1 t—1
er(d) = wi@y®+ Y )y,
j=0 J=t—ko
t—ko—1 t—1
= pi(@{(1 = L) & 3+ D ({1 —L)"M0g )
=0 j=t—ko

From the fact that p;(d) ~ j7'~¢ and Lemma 6.1,

t—1

lee(d) —ve(d)lla < > |uj(d)][lwe(dio) — we(dao)ll2
Jj=t—Fko (26)

= Op((t = ko)~ "vr).

Next, consider (b) and (c¢). From the proof of Theorem 4.1 in Ling (2007), for m = 1,2,

vy (d)
adm

=1log™(1 — L)(1 — L)%w;(dao)I{t > 0},

where log™(1—L)(1—L)% = 32| an; L with a,(d) = O(i~1=%1log™ 7). Since d < d, proceeding
in the same manner as in (a), we obtain the results. O

Lemma 6.3. Under Assumption 3.1, 92(7') converges to 0oy in probability uniformly in 7 € Y.

Proof Ling (2007) derives the uniform consistency of the CSS estimator, the objective function

of which is & 30, 4 uf(do) with w(da) = (1 — L)% (wy(dao)I{t > 0}). So it suffices to show

that
1 « 1 o
2
sgpsgzp T E e?(dg)—f g ug (da)| = op(1). (27)
t=k+1 t=k+1

Note that u; = v; for t > kg from the definition. Now

1 I 1 I 1 Ko 2 ) 2 ,
7 t;k; ei(d2) = 7 t:%;lu?(dg) <7 ; [(1 — L)® (wy(dwo) I{t > 0})} - [(1 — L)% (wy(doo) I{t > o})} ‘

+— Y |ef(da) — vi(da)].

t=ko+1
(28)

15



For the first term,

ko
;tzl (1= L) (wi(dro) It > 0})] (1= 1) (wi (o) 1{1 > 0})]2‘
ko
<z ; (1= L) (wi(dro) — wi(dao)) I{t > 0} |(1 = L) (wi(dro) + wi(dao)) I{t > 0}|.
(29)
From Lemma 6.1 and proceeding similarly to (26), we obtain

supy, (1 — L)% (wy(d1g) — wy(dag))I{t > 0}| = Op(vr). Therefore, (29) is 0p(1) uniformly in 7.
Similarly, we can prove the second term of (28) is 0,(1) uniformly in d; neither does it depend

on 7. Therefore, we show (27). O

Lemma 6.4. Define v,(6) = Z;;lo pi(){(1 — L)=90&_;}, as in Lemma 6.2. Then,

T T
1 86t(920) 1 aUt(920)
T 2 o6, ct(00) =7 > 26, Vt(020) + 0p(vr).

t=ko+1 t=ko+1

Proof. From Lemma 6.2,

aet(G) 81),5(«9) 8€t 8’Ut
- <
a0, t(0) — 5. ~u0)| < 392 It
86,5(0) 8’[),5 8’1)75
+ |ve(0)] 90, 00, ‘ ' lex(

= Op((t — ko)~ “log(t — ko)vr).

Therefore,
1 < |Der(60) Oy (020)
- L7207 e4(620) 20 0e(820) | = Op(T~%0 (log T)wr),
T 00 005
t=ko+1
giving the stated result. g
Lemma 6.5. Under Assumption 3.1,
T
1 . 1 0?
So-(60) — 2(0)| = o,(1).
supsup | 7 X2 (6) Tk 2= aoag 0 = orl)

16



Proof. From triangular inequality,

T

1 1 2 1 * 0%
- < _
7o T—k:H(‘)@aH’ut(e) =T kt;I a0 ) ad2“t(9)‘
T
1 0% 0%
T ;1‘5969/6t<9)_aeae/“t((’)"
R0

For the second term, similarly to Lemma 6.4, from Lemma 6.2 and d < d, we obtain

T
1 0, 2 %v:(0)
T—k ‘aaaefet ©) = Fo00 " <9)’ 3939, {0 = o0 vt(e)‘
t=ko+1
:Op(de(log T)QVT).
Similarly, we can show that the first term is O, (vr). O

Lemma 6.6. For k < kg, uniformly in k,

1 ko 66 l
¢
ko — & 2 z 0) (920 — 910) + Op(VT). (30)
t=k-+1
Proof We can expand as follows;
i Get (920 9 ) 1 i 6€t 910) (9 ) 1 ko 826t(010)(d —d )
l-cg—k 2 Tk — k 90 O e — k 000 0 0
t=k+1 t=k+1 t=k-+1

+ Op (I/T(k() — k)_l/Q) + Op (I/%) .

(31)

From Ling (2007), g 55;%1,0)18 NED and k " Zt ftl 855789,0) converges to X in probability uni-

formly in k. Therefore (30) follows. O
Lemma 6.7. Define Ai(7) = Zt 1 aet(em et(010). Then A1(7) is Op(T?) uniformly in 7.

Proof Ling (2007) shows that A;(7) can be approximated uniformly by martingale, the defer-

ence of which is NED. Furthermore, he shows that for some § > 0
1 1 &
max k° |—A1(1) — —=) Gu| = 0,(1), (32)

where {G1; : t = 1,2,...} is the sequence of i.i.d. m x 1 normal vectors with mean zero and

covariance matrix 2. See Theorem 2.2 and Lemma 6.1 in Ling (2007) for details. O
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