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Abstract

We propose an estimator of change point in the long memory parameter d of an

ARFIMA(p, d, q) process using the sup Wald test. We derive the consistency and the rate of

convergence of the parameter. The convergence rate of our change point estimator depends

on the magnitude of a shift. Furthermore, we obtain the limiting distribution of our change

point estimator without depending on the distribution of the process. Therefore, we can

construct the confidence interval of the change point. Simulations show the validity of the

asymptotic theory of our estimator if the sample size is large enough. We apply our change

point estimator to the yearly Nile river minimum time series.
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1 Introduction

Long memory processes have been observed in many areas, such as hydrology, telecommuni-

cations, economics, and finance. The ARFIMA(p, d, q) model is one of the most widely used

to model such dependence (Granger and Joyeux (1980); Hosking (1981)). This is a natural

extension of the ARIMA (p, d, q) model and allows the parameter d to be a real number. The

d parameter governs the amount of persistence in the process and is called a stationary long

memory parameter when d ∈ (0, 1/2). Because of its properties, the long memory model is

often applied to long data series. In such long series, the chance of structural change will be

greater with a change in the physical mechanism that generates the data or with a change in

the way that observations are collected over time.

Modeling with taking changes in d into account is important, because even small changes in

d may have a strong impact on statistical inferences such as the convergence rate of confidence
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intervals for constants and long-term prediction. Beran and Terrin (1996) point out the existence

of a change in d for some time series. To model changes with unknown change points, which is

often the case in practice, we often use a two-step procedure. First, we test for the constancy of

parameters. Then we estimate a change point, if the null hypothesis is rejected. This procedure

is considered in Bai (1997) in the context of multiple regression models. Concerning the test for

the constancy of the long memory parameter, there are several studies in the ARFIMA(p, d, q)

model with an unknown change point. For example, Beran and Terrin (1996), Horvath and Shao

(1999), and Ling (2007) consider the sup Wald test, which is one of the most common tests to

deal with an unknown change point; however, they only consider the null limiting distribution.

Horvath (2001) derives the consistency of the sup Wald test.

In contract, the literature contains little research about the estimation of change point

in -changes in d-. One exception is Ray and Tsay (2002), who adopt the Bayesian approach.

However, the estimation of the change point is considered important in order to build an accurate

model and forecast properly. Furthermore, this enables us to uncover the underlying factors

that fostered the changes.

In this paper, we propose an estimator of change point in d of the ARFIMA process using

the sup Wald test. We derive the consistency and the rate of convergence of the parameter,

including our change point estimator. The convergence rate of our change point estimator

depends on the magnitude of a shift. This coincides with our intuition. Moreover, we obtain

the limiting distribution of our change point estimator without depending on the distribution of

the process. The limiting distribution is the same in previous research, and its density function

is known. Therefore, we can construct the confidence interval (CI) of the change point.

The rest of the paper is organized as follows. After introducing the model and estimation

method in Section 2, Section 3 describes the break fraction estimator and derives the asymptotic

properties of our estimator. Section 4 contains the simulation results, and an empirical example

using the same dataset as was used in Beran and Terrin (1996). The proofs of the results stated

in the text are presented in Sections 5 and 6.
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2 Model and estimation method

Consider the following ARFIMA(p, d, q) model with a change point k0:

yt =


y

(1)
t = (1− L)−d10φ−1(L)ψ(L)εt, t = 1, . . . , k0

y
(2)
t = (1− L)−d20φ−1(L)ψ(L)εt, t = k0 + 1, . . . , T

(1)

where {εt} ∼ IID(0, σ2), φ(L) = 1 −
∑p

i=1 φiL
i, and ψ(L) = 1 −

∑q
i=1 ψiL

i; L is the Lag

operator, 0 < d < 0.5, φ(z) 6= 0 and ψ(z) 6= 0 for all z such that |z| ≤ 1, φp 6= 0, ψq 6= 0,

and ψ(z) and ψ(z) have no common root. Denote η = (φ1, . . . , φp, ψ1, . . . , ψq)′, θ10 = (d10, η
′)′,

θ20 = (d20, η
′)′, and m = p + q + 1. Assume θ10 and θ20 are unknown. The parameter space

Θ is a compact subset of Rm, as in Ling (2007). We let τ0 = k0/T be the true break fraction,

which is unknown, and assume 0 < τ ≤ τ0 ≤ τ̄ < 1.

For any given k ∈ [τT, τ̄T ], the conditional-sum-of-squares (CSS) estimators of θ10 and θ20

are given by

θ̂1(k/T ) = arg min
Θ

1
T

k∑
t=1

[
(1− L)d1φ(L)ψ−1(L)(ytI{t > 0})

]2
= arg min

Θ

1
T

k∑
t=1

e2t (θ1),

θ̂2(k/T ) = arg min
Θ

1
T

T∑
t=k+1

[
(1− L)d2φ(L)ψ−1(L)(ytI{t > 0})

]2
= arg min

Θ

1
T

T∑
t=k+1

e2t (θ2),

(2)

where I{·} is an indicator function. Thus, the CSS estimation is a nonlinear least square

estimation substituting zero(=mean) into yt for t < 0.

Let denote D̃t(θ) = ∂
∂θe

2
t (θ), P̃t(θ) = − ∂2

∂θ∂θ′ e
2
t (θ), Σ1τ (θ) =

∑k
t=1 P̃t(θ), Σ2τ (θ) =∑T

t=k+1 P̃t(θ) and

Σ̂T (k) = Σ1τ (θ̂1(k/T )) + Σ2τ (θ̂2(k/T )),

Ω̂T (k) =
k∑

t=1

D̃t(θ̂1(k/T ))D̃′
t(θ̂1(k/T )) +

T∑
t=k+1

D̃t(θ̂2(k/T ))D̃′
t(θ̂2(k/T )).

Let z1(θ) = (1−L)d1φ(L)ψ−1(L)y1, which is similar to e1(θ), but without the indicator func-

tion. Let D1(θ) = ∂
∂θz

2
1(θ), P1(θ) = − ∂2

∂θ∂θ′ z
2
1(θ), Σ = E[P1(θ10)], and Ω = E[D1(θ10)D′

1(θ10)].

Since Ling (2007) considers more general models, he distinguishes Ω from Σ. In this paper,

however, we let Ω = Σ and be equivalent to the information matrix, because the CSS estimator

is an approximate Maximum Likelihood (ML) estimator (see Robinson (2006)).
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3 Estimation of the break fraction

3.1 Estimation of the break fraction

In this subsection, we propose a change point estimator based on the Wald test for constancy

of d. By treating each k ∈ [τT, τ̄T ] as a hypothetical change point, the corresponding Wald

statistics is defined as:

WT (k/T ) =
k(T − k)

T
ρ̂−1[d̂1(k/T )− d̂2(k/T )]2,

where ρ̂ is the first element in the first row of (Σ̂T (k)/T )−1. We then define the change point

k̂ as a global maximizer of Wald statistics, i.e.:

k̂ = Arg max
k

WT (k/T ),

and denote the break fraction estimator as τ̂ = k̂/T . In addition, we define θ̂1(k̂/T ) and θ̂2(k̂/T )

as the estimators of θ10 and θ20 as corresponding to k̂.

Now, more specifically, we can see that our change point estimator is related to the sup

Wald test for the null hypothesis of no structural change versus the alternative hypothesis that

a change occurs at some unknown date. Indeed, the sup Wald test statistics proposed in Beran

and Terrin (1996), and Horvath and Shao (1999) is identical to sup WT (k/T ) (= WT (k̂/T )),

except that d̂ is estimated by minimizing the Whittle likelihood. Note that it is less important

to consider the difference between the Whittle and CSS estimations here, because both are

approximate ML estimations.

The idea of estimating change point using sup Wald statistics is suggested in Bai (1997) in

the context of multiple regression models. As mentioned in Bai (1997), it is useful that a break

point estimator is obtained automatically, combining the testing and estimation in a single step.

3.2 Asymptotic properties

We introduce an assumption about the magnitude of shift. We consider a small shift because

we can detect a big change by plotting the data.

Assumption 3.1. |d10 − d20| = δνT , where νT > 0, νT → 0 and T 1/2−ανT → ∞ for some

α ∈ (0, 1/2) and δ 6= 0.
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This assumption is parallel to the “-shrinking shift-” in Bai (1997) and Bai and Perron

(1998). In the above assumption, the magnitude of the shift shrinks to zero as the sample size

increases, but the shift cannot be too small to identify the break fraction. This assumption

allows us to obtain the limiting distribution of τ̂ invariant to {εt}, as in Theorem 3.2, whereas

the limiting distribution based on the assumption of a fixed magnitude of shift depends on the

exact distribution of {εt} (e.g., Hinkley (1970)).

We obtain the consistency and the convergence rate of τ̂ under Assumption 3.1.

Theorem 3.1. Under Assumption 3.1, we have: (i) τ̂T →p τ0; and (ii) for every η > 0 there

exists a C <∞ such that for all large T , P (|Tν2
T (τ̂T − τ0)| > C) < η.

Theorem 3.1 shows the convergence rate of τ̂ depends on the shrinking rate νT . Although τ̂

is consistent, |k̂− k| diverges. This enables us to apply Functional Central Limit Theorem and

obtain a limit distribution not depending on {εt} provided in Theorem 3.2 below.

Now define Bi(r), i = 1, 2 as two independent standard Brownian motions defined on R+.

Let define B∗(r) = B1(−r) for r < 0 and B∗(r) = B2(r) for r ≥ 0.

Theorem 3.2. Under Assumption 3.1, we have

ρ−1T (d20 − d10)2(τ̂ − τ0) = ρ−1(d20 − d10)2(k̂ − k0) →d Arg max
(
B∗(r)− 1

2
|r|
)
. (3)

Similar results are obtained for iid models (e.g. Yao (1987)), multi regression models (e.g.

Bai (1997)) and so on. The density function of the limiting distribution is given by

3/2e|x|Φ(−3
√
|x|/2)− 1/2Φ(−

√
|x|/2),

where Φ(·) is standard normal distribution (see e.g. Bai (1997)). For example, the 95% and

97.5% quantiles are 7.7 and 11.0. Note that the distribution is symmetric about the origin.

Then, all we need to construct the CI of k̂ are the asymptotic properties of L̂ = ρ̂−1(d̂2−d̂1)2.

The following corollary gives the consistency of the remaining parameters using τ̂ .

Corollary 3.1. Under Assumption 3.1, θ̂1(τ̂) − θ10 = Op(T−1/2), θ̂2(τ̂) − θ20 =

max{Op(T−1/2), Op(T−d10νT )}, and 1
T Σ̂T (k̂) is a consistent estimate of the information ma-

trix.

Corollary 3.1 implies that (L̂−L)(k̂− k0) →p 0. Therefore, we can construct the CI for the

change point.
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4 Simulation and empirical example

4.1 Simulation

We investigate the finite-sample properties of the change point estimator k̂ (and hence τ̂). We

consider the following data generating process:

(1− L)d1yt = εt t = 1, . . . , k0,

(1− L)d2yt = εt t = k0 + 1, . . . , T,
(4)

where {εt} ∼ NID(0, 1). We set d1 = 0.1 and d2 = 0.2, 0.3, 0.4, k0 = τ0T , τ0 = 0.5, and

T = 400, 800. The number of replications is 1, 000 throughout the simulations. We search k̂

among {0.15T, . . . , 0.85T}.
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Figure 1: Histogram of τ̂ when τ0 = 0.5 and d1 = 0.1 for selected values d1, d2 and T : (a)
d2 = 0.2, T = 400; (b) d2 = 0.2, T = 800; (c) d2 = 0.3, T = 400; (d) d2 = 0.3, T = 800; (e)
d2 = 0.4, T = 400; (f) d2 = 0.4, T = 800.
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Figure 1 presents histograms of τ̂ in all cases. We can see that τ̂ is more concentrated at the

true break fraction τ0 as T . This confirms the consistency. The precisions of τ̂ are worse for the

DGP with d1 = 0.1, d2 = 0.2 than for other cases. This is because the rate of convergence is

propotional to the square of the magnitude of the shift, as in Theorem 3.2. Moreover, in most

cases, histograms seem symmetric as predicted by Theorem 3.2.
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Figure 2: Distribution of ρ−1(d̂20 − d̂10)2T (τ̂ − τ0) when τ0 = 0.5, T = 400 : (a) d1 = 0.1,
d2 = 0.3; (b) d1 = 0.1, d2 = 0.4. The circle plot represents the asymptotic distribution.

Figure 2 shows histograms of the normalized break fraction estimator ρ̂−1T (d̂2 − d̂1)2(τ̂ − τ0)

for d2 = 0.3, 0.4 with a sample size of T = 400. In addition, Figure 2 plots the corresponding

limiting distribution given by Theorem 3.2. It seems that the sample size T = 400 is sufficient

to apply the asymptotic theory, as long as the magnitude of the shift is not too small.

4.2 Empirical example

We apply the proposed change point estimator to the yearly Nile river minimum time series,

which is known to follow a long memory process (e.g., Beran (1994)). This Nile river data

spans from 622 AD to 1284 AD, implying 663 observations. Beran and Terrin (1996) find a

change in d in this data using their sup Wald test. In addition, they compute Wald statistics

at intervals of 20 years, and find a change around 722 AD. Ray and Tsay (2002) find a change

7



in d at year 722 AD using a Bayesian method. They also point out that this change may be

caused by the introduction of a new type of device for measurements around the year 715 AD.

Using our method, we can construct a CI to consider inference about a change point from a

classical viewpoint. We adopt the ARFIMA(0, d, 0) model, the same as in Beran and Terrin

(1996). We calculate Wald statistics WT (k/T ) for every k, not at intervals of 20 as in Beran

and Terrin (1996). The maximum of WT (k/T ) is attained at 732 AD. The estimates d̂(τ̂)

before and after this change point are 0.0088 and 0.4631. Then, the estimated scale factor

L̂ = π2/6(0.4631−0.0088)2 = 0.3395. Thus, the upper boundary of the 90% confidence interval

will be 732AD + [11.0/0.3395] +1 = 755AD. Based on symmetry, the confidence interval is

[709AD, 755AD]. It contains 715AD. This CI contains the year of the introduction of a new

measurement device, corroborating the conjecture of Ray and Tsay (2002).

5 Appendix 1: Proofs

5.1 Proof of Theorem 3.1 (i)

We shall show plim τ̂T = τ0 using the contradiction argument such as in Bai and Perron (1998)

and Chong (2001). Suppose τ̂T is not consistent. Then, with some positive probability, there

exists ε > 0, such that τ̂T 6∈ Vε, Vε = {τ ; |τ − τ0| ≤ ε}.

Let Υ1ε = {τ ; τ ≤ τ < τ0 − ε} and Υ2ε = {τ ; τ0 + ε < τ ≤ τ̄}. Observe that

P (|τ̂T − τ0| > ε) = P

(
sup

τ∈Υ1ε∪Υ2ε

WT (τ) > sup
τ∈Vε

WT (τ)
)

≤
2∑

i=1

P

(
sup

τ∈Υiε

[WT (τ)−WT (τ0)] > 0
)

=
2∑

i=1

P

(
sup

τ∈Υiε

[
WT (τ)−WT (τ0)
T (d20 − d10)2

]
> 0
) (5)

where the inequality follows from τ0 ∈ Vε and the last equation follows from (d20 − d10)2 > 0.

If we show that
WT (τ0)

T (d20 − d10)2
− τ0(1− τ0)ρ−1 = op(1), (6)

sup
τ∈Υ1ε

∣∣∣∣ WT (τ)
T (d20 − d10)2

− τ
(1− τ0)2

(1− τ)
ρ−1

∣∣∣∣ = op(1), (7)
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and

sup
τ∈Υ2ε

∣∣∣∣ WT (τ)
T (d20 − d10)2

− τ2
0

τ
(1− τ)ρ−1

∣∣∣∣ = op(1), (8)

then the right-hand side of (5) tends to 0 as T →∞, because

P

(
sup

τ∈Υ1ε

[
WT (τ)−WT (τ0)
T (d20 − d10)2

]
> 0
)

= P

(
sup

τ∈Υ1ε

(1− τ0)
(1− τ)

(τ − τ0)ρ−1 + op(1) > 0
)
→ 0,

and

P

(
sup

τ∈Υ2ε

[
WT (τ)−WT (τ0)
T (d20 − d10)2

]
> 0
)

= P

(
sup

τ∈Υ2ε

τ0
τ

(τ0 − τ)ρ−1 + op(1) > 0
)
→ 0.

Therefore, τ̂T is consistent.

We proceed to show (6)–(8). We will show the uniform convergence of WT (τ) using the

limiting theorems for near-epoch-dependent (NED) sequences, as in Ling (2007).

Define Z(τ) = T 1/2τ(1 − τ){d̂1(τ) − d̂2(τ)} = T 1/2τ(1 − τ)ι′{θ̂1(τ) − θ̂2(τ)}, where ι is an

m × 1 vector whose first element is one and all other elements are zero. We can then rewrite

WT (τ) as

WT (τ) = ρ̂−1[(τ(1− τ))−1/2Z(τ)′]2.

Thus, we need to examine the asymptotics of Σ̂T (k), Z(τ0), and supτ∈Υiε
Z(τ) for i = 1, 2. Note

that 0 < τ(1− τ) <∞, because we assume that 0 < τ ≤ τ ≤ τ̄ < 1.

First, we consider supτ∈Υ1ε
Z(τ). Rewrite Z(τ) as

Z(τ) = T 1/2τ(1− τ)ι′
{(
θ̂1(τ)− θ10

)
−
(
θ̂2(τ)− θ20

)
− (θ20 − θ10)

}
.

For θ̂1, it is identical to λ̂ in Ling (2007). Thus θ̂1(τ) converges to θ10 uniformly in τ ∈ Υ1ε

and we can then expand it as following equation:

θ̂1(τ)− θ10 =
(
Σ−1 + op(1)

) 1
k

{
k∑

t=1

∂et(θ10)
∂θ

et(θ10)

}
. (9)

For θ̂2(τ), Lemma 6.3 provides that θ̂2(τ) converges to θ20 uniformly in τ . Thus,

θ̂2(τ)−θ20 =
(

1
T − k

Σ̂2τ (θ̃)
)−1 1

T − k


k0∑

t=k+1

∂et(θ20)
∂θ

et(θ20) +
T∑

t=k0+1

∂et(θ20)
∂θ

et(θ20)

 , (10)
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where |θ̃ − θ20| ≤ |θ̂2(τ)− θ20|. From Lemma 6.6, we can rewrite

θ̂2(τ)− θ20 =
τ0 − τ

1− τ
((θ20 − θ10) + op(νT ))

+
(

1
T − k

Σ̂2τ (θ̃)
)

1
T − k


k0∑

t=k+1

∂et(θ10)
∂θ

et(θ10) +
T∑

t=k0+1

∂et(θ20)
∂d

et(θ20)

 .

(11)

From Lemma 6.5 and Lemma 6.2 in Ling (2007), Σ̂2τ/(T − k) converges to Σ uniformly in

probability in τ ∈ Υ1ε. From Lemma 6.6, (11) holds uniformly in τ .

Therefore, the following equation holds uniformly in τ ∈ Υ1ε:

Z(τ) =T 1/2τ(1− τ)ι′
{(
θ̂1(τ)− θ10

)
−
(
θ̂2(τ)− θ20

)
− (θ20 − θ10)

}
=− T 1/2τ(1− τ0) (d20 − d10) + T−1/2ι′Σ−1{A1(τ) + τA0}+ op(T 1/2νT ),

(12)

where

A0 =


k0∑

t=1

∂et(θ10)
∂θ

et(θ10) +
T∑

t=k0+1

∂et(θ20)
∂θ

et(θ20)

 ,

and

A1(τ) =
k∑

t=1

∂et(θ10)
∂θ

et(θ10).

From Lemma 6.7, A1(τ) is Op(T 1/2) uniformly in τ . Because A0 does not depend on τ , we can

prove A0 is max {Op(T 1/2), Op(T 1−d20(log T )νT )} more easily from Lemma 6.4. Therefore, we

establish (7).

Next, we consider (6). From Robinson (2006), |d̂1(τ0)−d10| = Op(k
−1/2
0 ) and from Robinson

(2006) and Lemma 6.4 and 6.6, |d̂2(τ0)− d20| is max{Op((T − k0)−1/2), Op(T−d10νT )}. Hence,

Z(τ0) = T 1/2τ0(1− τ0)
{(
d̂1(τ0)− d10

)
−
(
d̂2(τ0)− d20

)
− (d20 − d10)

}
= Op(1) +Op(T 1/2−d10νT ) + T 1/2τ0(1− τ0) (d20 − d10)

= T 1/2τ0(1− τ0) (d20 − d10) + op(T 1/2νT ).

Thus, from Assumption 3.1, we have (6). �
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5.2 Proof of Theorem 3.1 (ii)

We shall show |τ̂T − τ0| = Op( 1
Tν2

T
) using the contradiction argument, such as in Appendix C

of Chong (2001). Remember that τ̂T →p τ0. Suppose τ̂ is not Tν2
T -consistent, then there exists

a sequence MT > 0 such that MT →∞ and MT /(Tν2
T ) → 0 as T →∞, and

lim inf
T→∞

P

(
|τ̂T − τ0| >

MT

Tν2
T

)
= α, (13)

where α is a positive constant in α ∈ (0, 1]. Note that

P

(
|τ̂T − τ0| >

MT

Tν2
T

)
= P

(
sup

τ∈Υ1MT
∪Υ2MT

WT (τ) > sup
τ∈Υ3MT

WT (τ)

)
, (14)

where Υ1MT
= {τ ; τ ≤ τ < τ0 − MT /(Tν2

T )}, Υ2MT
= {τ ; τ0 + MT /(Tν2

T ) < τ ≤ τ̄}, and

Υ3MT
= {τ ; |τ − τ0| < MT /(Tν2

T )}. Since τ0 ∈ Υ3MT
, the right-hand side of (14) is bounded by

P

(
sup

τ∈Υ1MT
∪Υ2MT

WT (τ) > WT (τ0)

)
≤

2∑
i=1

P

(
sup

τ∈ΥiMT

[WT (τ)−WT (τ0)] > 0

)
. (15)

Recall that

W (τ) = Tτ(1− τ)
[
ι′
{(
θ̂1(τ)− θ10

)
−
(
θ̂2(τ)− θ20

)}
− (d20 − d10)

]2
, (16)

and

W (τ0) = Tτ0(1− τ0)
[
ι′
{(
θ̂1(τ0)− θ10

)
−
(
θ̂2(τ0)− θ20

)}
− (d20 − d10)

]2
. (17)

The right-hand side of (16) is

Tτ
(1− τ0)2

1− τ
(d20 − d10)

2 − 2
1− τ0
1− τ

ι′{A1(τ) + τA0} (d20 − d10)

+ T−1 1
τ(1− τ)

(
ι′{A1(τ) + τA0}

)2 + op

(
τ0 − τ

1− τ
Tν2

T

)
,

and the right-hand side of (17) is

Tτ0(1− τ0) (d20 − d10)
2− 2ι′{A1(τ0) + τ0A0} (d20 − d10) + T−1 1

τ0(1− τ0)
(
ι′{A1(τ0) + τ0A0}

)2
.
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Hence,

WT (τ)−WT (τ0) =T (d20 − d10)
2 (τ − τ0)

(
1 +

τ − τ0
1− τ

)
− 2ι′

[{(
1 +

τ − τ0
1− τ

)
A1(τ)−A1(τ0)

}
+ (τ − τ0)A0

]
(d20 − d10)

+ T−1

[
1

τ(1− τ)
(
ι′{A1(τ) + τA0}

)2 − 1
τ0(1− τ0)

(
ι′{A1(τ0) + τ0A0}

)2]+ op(MT )

=G1(τ)− 2G2(τ) +G3(τ).

(18)

G2(τ) = Op(
√
MT ) and G3(τ) = Op(1) uniformly in τ respectively, because

A1(τ) = Op(T 1/2), A1(τ)−A1(τ0) = Op

(
{T (τ − τ0)}1/2

)
uniformly in τ, (19)

and

A0 = max{Op(T 1/2), Op(T 1−d20(log T )νT )}. (20)

Since G1(τ) ∼ MT , supτ∈Υ1MT
WT (τ) −WT (τ0) is dominated by G1(τ). Then G1(τ) → −∞,

because −1 < τ − τ0 < 0 and MT →∞. Thus,

P

(
sup

τ∈Υ1MT

[WT (τ)−WT (τ0)] > 0

)
→ 0. (21)

Similarly, we can derive

P

(
sup

τ∈Υ2MT

[WT (τ)−WT (τ0)] > 0

)
→ 0. (22)

From (21) and (22), we have (15) → 0, but this contradicts α > 0. Therefore, |τ̂T − τ0| =

Op( 1
Tν2

T
). �

5.3 Proof of Theorem 3.2

Without loss of generality, we assume d20 − d10 > 0. Because Theorem 3.1 (ii) holds,

WT (τ)−WT (τ0) = G1(τ)− 2G2(τ) +G3(τ) + op(1). (23)
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We will evaluate Gi(τ), i = 1, 2, 3 respectively in this case. From (19) and (20),

G1(τ) = −T (d20 − d10)2(τ0 − τ)(1 + op(1)) = −|s|δ2 + op(1),

G2(τ) = −2ι′[((1 + op(1))A1(τ)−A1(τ0)) + op(1)A0](d20 − d10)

= 2νT ι
′

k0∑
t=k+1

∂et(θ10)
∂θ

et(θ10) δ + op(1)

=⇒ 2B(−s),

and

G3(τ) =T−1(τ(1− τ)τ0(1− τ0))−1(A1(τ)2 −A1(τ0)2)

+ 2T−1((1− τ)(1− τ0))−1A0((1− τ0)A1(τ)− (1− τ)A1(τ0))

+ T−1((1− τ)(1− τ0))−1(τ − τ0)A2
0

=Op(T−1/2ν−1
T ) = op(1).

(24)

(23) is dominated by G1 and G2. Thus, the result of Theorem 3.2 follows. �

5.4 Proof of Corollary 3.1

Without loss of generality, we assume τ̂ < τ0. Then we already show that 1
T Σ̂T (k) converges to

Σ uniformly in k in the proof of Theorem 3.1 (i). From the proof of Theorem 3.1 (i), we know

that θ̂1(τ0)−θ10 = Op(T−1/2), θ̂2(τ0)−θ20 = max{Op(T−1/2), Op(T−d10νT )}. Thus it suffices to

show that θ̂1(τ̂)− θ̂1(τ0) = op(1/
√
T ), θ̂2(τ0)− θ20 = Op(T−1/2). From the definition of A1(τ),

θ̂1(τ0)− θ10 =
1
Tτ0

A1(τ0),

and

θ̂1(τ̂)− θ10 =
1
T τ̂

A1(τ̂) =
(

1
Tτ0

+
1
T τ̂

− 1
Tτ0

)
A1(τ̂).

Then,

θ̂1(τ0)− θ̂1(τ̂) =
1
Tτ0

Tτ0∑
Tτ

∂et(θ10)
∂d

et(θ10)−
τ0 − τ

Tτ0τ̂

Tτ∑
1

∂et(θ10)
∂θ

et(θ10)

= Op(T−1/2)Op(T−1/2νT ) +Op(T−1/2)Op(T−1ν2
T ) = op(T−1/2).

We can obtain θ̂2(τ0)− θ20 similarly. Therefore, we obtain the result. �
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6 Appendix 2: Auxiliary results

Lemma 6.1. Let wt(d10) = (1−L)−d10φ−1(L)ψ(L)εt, and wt(d20) = (1−L)−d20φ−1(L)ψ(L)εt.

Under Assumption 3.1, we have

wt(d10) = wt(d20) +Op(νT ).

Proof Define ξt = φ−1(L)ψ(L)εt =
∑∞

j=0 πjεt−j , and (1− L)d =
∑∞

j=0 κj(d)Lj . Note that

wt(d10) = wt(d20) + (d10 − d20)
∞∑

k=0

1
k
wt−k(d20) + (d10 − d20)2

∂2

∂d2
wt(d∗2), (25)

where |d∗2 − d20| ≤ |d10 − d20|. Define the part of the third term in (25) as Lt = ∂2wt
∂d2 =∑∞

h=1

∑∞
l=1

1
h

1
lwt−l−h. We can then rewrite

Lt =
∞∑

h=1

h∑
j=1

j−1∑
p=1

1
p

1
j − p

κh−jξt−h.

Define ηh−j = κh−j(d)
∑∞

k=1 πk, then ηm ∼ m−1−d. Lt = Op(1), because

E|Lt|2 = O(1)
∞∑

h=1


h∑

j=1

j−1∑
p=1

1
p

1
j − p

ηh−j


2

= O(1)
∞∑

h=1


h∑

j=1

log j
j

ηh−j


2

= O(1)
∞∑

h=1

(log3 h)h2d∗2−2

<∞.

Therefore, the third term in (25) is op(νT ), giving the stated result. �

Lemma 6.2. Define (1 − L)dφ(L)ψ−1(L) =
∑∞

j=0 µj(θ)Lj. For t > k0, define vt(θ) =∑t−1
j=0 µj(θ){(1− L)−d20ξt−j}. Then, under Assumption 3.1, the following results hold:

(a) |et(θ)− vt(θ)| = Op((t− k0)−dνT ),

(b)
∣∣∣∂et(θ)

∂θ − ∂vt(θ)
∂θ

∣∣∣ = Op((t− k0)−d log(t− k0)νT ),

(c)
∣∣∣∂2et(θ)

∂θ∂θ′ −
∂2vt(θ)
∂θ∂θ′

∣∣∣ = Op((t− k0)−d log2(t− k0)νT ).
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Proof For (a), because DGP is (1), for t > k0,

et(d) =
t−k0−1∑

j=0

µj(d)y
(2)
t−j +

t−1∑
j=t−k0

µj(d)y
(1)
t−j

=
t−k0−1∑

j=0

µj(d){(1− L)−d20ξt−j}+
t−1∑

j=t−k0

µj(d){(1− L)−d10ξt−j}.

From the fact that µj(d) ∼ j−1−d and Lemma 6.1,

‖et(d)− vt(d)‖2 ≤
t−1∑

j=t−k0

|µj(d)|‖wt(d10)− wt(d20)‖2

= Op((t− k0)−dνT ).

(26)

Next, consider (b) and (c). From the proof of Theorem 4.1 in Ling (2007), for m = 1, 2,

∂mvt(d)
∂dm

= logm(1− L)(1− L)dwt(d20)I{t > 0},

where logm(1−L)(1−L)d =
∑∞

i=1 amiL
i with ami(d) = O(i−1−d logm i). Since d < d, proceeding

in the same manner as in (a), we obtain the results. �

Lemma 6.3. Under Assumption 3.1, θ̂2(τ) converges to θ20 in probability uniformly in τ ∈ Υ1ε.

Proof Ling (2007) derives the uniform consistency of the CSS estimator, the objective function

of which is 1
T

∑T
t=k+1 u

2
t (d2) with ut(d2) = (1 − L)d2(wt(d20)I{t > 0}). So it suffices to show

that

sup
τ

sup
d2

∣∣∣∣∣ 1T
T∑

t=k+1

e2t (d2)−
1
T

T∑
t=k+1

u2
t (d2)

∣∣∣∣∣ = op(1). (27)

Note that ut ≡ vt for t > k0 from the definition. Now

∣∣∣∣∣ 1T
T∑

t=k+1

e2t (d2)−
1
T

T∑
t=k+1

u2
t (d2)

∣∣∣∣∣ ≤ 1
T

k0∑
t=1

∣∣∣∣[(1− L)d2(wt(d10)I{t > 0})
]2
−
[
(1− L)d2(wt(d20)I{t > 0})

]2∣∣∣∣
+

1
T

T∑
t=k0+1

∣∣e2t (d2)− v2
t (d2)

∣∣ .
(28)
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For the first term,

1
T

k0∑
t=1

∣∣∣∣[(1− L)d2(wt(d10)I{t > 0})
]2
−
[
(1− L)d2(wt(d20)I{t > 0})

]2∣∣∣∣
≤ 1
T

k0∑
t=1

∣∣∣(1− L)d2(wt(d10)− wt(d20))I{t > 0}
∣∣∣ ∣∣∣(1− L)d2(wt(d10) + wt(d20))I{t > 0}

∣∣∣ .
(29)

From Lemma 6.1 and proceeding similarly to (26), we obtain

supd2

∣∣(1− L)d2(wt(d10)− wt(d20))I{t > 0}
∣∣ = Op(νT ). Therefore, (29) is op(1) uniformly in τ .

Similarly, we can prove the second term of (28) is op(1) uniformly in d; neither does it depend

on τ . Therefore, we show (27). �

Lemma 6.4. Define vt(θ) =
∑t−1

j=0 µj(θ){(1− L)−d20ξt−j}, as in Lemma 6.2. Then,

1
T

T∑
t=k0+1

∂et(θ20)
∂θ2

et(θ20) =
1
T

T∑
t=k0+1

∂vt(θ20)
∂θ2

vt(θ20) + op(νT ).

Proof. From Lemma 6.2,

∣∣∣∣∂et(θ)∂θ2
et(θ)−

∂vt(θ)
∂θ2

vt(θ)
∣∣∣∣ ≤ ∣∣∣∣∂et(θ)∂θ2

− ∂vt(θ)
∂θ2

∣∣∣∣ |et(θ)− vt(θ)|

+ |vt(θ)|
∣∣∣∣∂et(θ)∂θ2

− ∂vt(θ)
∂θ2

∣∣∣∣+ ∣∣∣∣∂vt(θ)
∂θ2

∣∣∣∣ |et(θ)− vt(θ)|

= Op((t− k0)−d log(t− k0)νT ).

Therefore,

1
T

T∑
t=k0+1

∣∣∣∣∂et(θ20)
∂θ2

et(θ20)−
∂vt(θ20)
∂θ2

vt(θ20)
∣∣∣∣ = Op(T−d20(log T )νT ),

giving the stated result. �

Lemma 6.5. Under Assumption 3.1,

sup
τ

sup
θ

∣∣∣∣∣ 1
T − k

Σ̂2τ (θ)−
1

T − k

T∑
t=k+1

∂2

∂θ∂θ′
u2

t (θ)

∣∣∣∣∣ = op(1).
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Proof. From triangular inequality,

∣∣∣∣∣ 1
T − k

Σ̂2τ (θ)−
1

T − k

T∑
t=k+1

∂2

∂θ∂θ′
u2

t (θ)

∣∣∣∣∣ ≤ 1
T − k

k0∑
t=k+1

∣∣∣∣ ∂2

∂θ∂θ′
e2t (θ)−

∂2

∂d2
u2

t (θ)
∣∣∣∣

+
1

T − k

T∑
t=k0+1

∣∣∣∣ ∂2

∂θ∂θ′
e2t (θ)−

∂2

∂θ∂θ′
v2
t (θ)

∣∣∣∣ .
For the second term, similarly to Lemma 6.4, from Lemma 6.2 and d < d, we obtain

1
T − k

T∑
t=k0+1

∣∣∣∣ ∂2

∂θ∂θ′
e2t (θ)−

∂2

∂θ∂θ′
v2
t (θ)

∣∣∣∣ ≤ 1
T − k

T∑
t=k0+1

∣∣∣∣∂2et(θ)
∂θ∂θ′

et(θ)−
∂2vt(θ)
∂θ∂θ′

vt(θ)
∣∣∣∣

=Op(T−d(log T )2νT ).

Similarly, we can show that the first term is Op(νT ). �

Lemma 6.6. For k < k0, uniformly in k,

1
k0 − k

k0∑
t=k+1

∂et(θ20)
∂θ

et(θ20) =
1

k0 − k

k0∑
t=k+1

∂et(θ10)
∂θ

et(θ10)− Σ(θ20 − θ10) + op(νT ). (30)

Proof We can expand as follows;

1
k0 − k

k0∑
t=k+1

∂et(θ20)
∂θ2

et(θ20) =
1

k0 − k

k0∑
t=k+1

∂et(θ10)
∂θ

et(θ10) +
1

k0 − k

k0∑
t=k+1

∂2et(θ10)
∂θ∂θ′

(d20 − d10)

+Op

(
νT (k0 − k)−1/2

)
+Op

(
ν2

T

)
.

(31)

From Ling (2007), ∂2et(θ10)
∂θ∂θ′ is NED and 1

k0−k

∑k0
t=k+1

∂2et(θ10)
∂θ∂θ′ converges to Σ in probability uni-

formly in k. Therefore (30) follows. �

Lemma 6.7. Define A1(τ) =
∑k

t=1
∂et(θ10)

∂θ et(θ10). Then A1(τ) is Op(T 1/2) uniformly in τ .

Proof Ling (2007) shows that A1(τ) can be approximated uniformly by martingale, the defer-

ence of which is NED. Furthermore, he shows that for some δ > 0

max
k

kδ

∣∣∣∣∣ 1√
k
A1(τ)−

1√
k

k∑
t=1

G1t

∣∣∣∣∣ = op(1), (32)

where {G1t : t = 1, 2, . . .} is the sequence of i.i.d. m × 1 normal vectors with mean zero and

covariance matrix Ω. See Theorem 2.2 and Lemma 6.1 in Ling (2007) for details. �
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