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1. Introduction

Since the beginning of the 90�s, the theoretical and empirical econometrics literature

witnessed a formidable output on testing unit root and stationarity in panel data with large

T (time dimension) and N (cross-section dimension). The main motive for applying unit

root and stationarity tests to panel data is to improve the power of the tests relative to their

univariate counterparts. This was supported by the ensuing applications and simulations.

The early theoretical contributions are by Breitung and Meyer (1994), Choi (2001), Hadri

(2000), Hadri and Larsson (2005), Im, Pesaran and Shin (2003), Levin, Lin and Chu (2002),

Maddala and Wu (1999), Phillips and Moon (1999), Quah (1994) and Shin and Snell (2006).

On the application side, the early contributions were the work of O�Connell (1998), Oh

(1996), Papell (1997, 2002), Wu (1996) and Wu and Wu (2001), who focused on testing the

existence of purchasing power parity. Culver and Papell (1997) applied panel unit root tests

to the in�ation rate for a subset of OECD countries. They have also been employed in testing

output convergence and more recently in the analysis of business cycle synchronization,

house price convergence, regional migration and household income dynamics (cf. Breitung

and Pesaran (2008)). All these "�rst generation" panel tests are based on the incredible

assumption that the cross-sectional units are independent or at least not cross-sectionally

correlated. Banerjee (1999), Baltagi and Kao (2000), Baltagi (2001) provide comprehensive

surveys on the �rst generation panel tests. However, in most empirical applications this

assumption is erroneous. O�Connell (1998) was the �rst to show via simulation that the panel

tests are considerably distorted when the independence assumption is violated, whether the

null hypothesis is a unit root or stationarity. Banerjee, Marcellino and Osbat (2001, 2004)

argued against the use of panel unit root tests due to this problem. Therefore, it became

imperative that in applications using panel tests to account for the possibility of cross-

sectional dependence. This led, recently, to a �urry of papers accounting for cross-sectional

dependence of di¤erent forms or second generation panel unit root tests. The most noticeable

proposals in this area are by Chang (2004), Phillips and Sul (2003), Bai and Ng (2004), Moon

and Perron (2004), Choi and Chue (2007) and Pesaran (2007) for unit root panel tests. For
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panel stationarity tests, the only contributions so far are by Bai and Ng (2005) and Harris,

Leybourne and McCabe (2005), both of which corrected for cross-sectional dependence by

using the principal component analysis proposed by Bai and Ng (2004).

Choi and Chue (2007) utilize subsampling technique to tackle cross-sectional depen-

dence. Phillips and Sul (2003), Bai and Ng (2004), Moon and Perron (2004) and Pesaran

(2007) employ factor models to allow for cross-sectional correlation (cf. de Silva, Hadri and

Tremayne (2009) for the comparison of the three last tests). Pesaran (2007) considers only

one factor and instead of estimating it, he augments the ADF regressions with the cross-

sectional averages of lagged levels and �rst-di¤erences of the individual series to account

for the cross-sectional dependence generated by this one factor. Other contributions are by

Maddala and Wu (1999) and Chang (2004) who exploited the �exibility of the bootstrap

method to deal with the pervasive problem of cross-sectional dependence of general form.

Breitung and Pesaran (2008) give an excellent survey of the �rst and second generation

panel tests.

The transfer of testing for unit root and stationarity from univariate time series to large

panel data contributed to a signi�cant increase of the power of those tests. However, this

transfer led to a number of di¢ culties besides the problem of cross-sectional dependence.

In particular, the asymptotic theory is by far more intricate due to the presence of two

indices: the time dimension and the number of cross-sections. The limit theory for this

class of panel data has been developed in a seminal paper by Phillips and Moon (1999).

In their paper they study inter alia the limit theory that allows for both sequential limits,

wherein T ! 1 followed by N ! 1; and joint limits where T;N ! 1 simultaneously.

They also mention, in the same paper, the diagonal path limit theory in which the passage

to in�nity is done along a speci�c diagonal path. The drawback of sequential limits is that

in certain cases, they can give asymptotic results which are misleading. The downside of

diagonal path limit theory is that the assumed expansion path (T (N); N) ! 1 may not

provide an appropriate approximation for a given (T;N) situation. Finally, the joint limit

theory requires, generally, a moment condition as well as a rate condition on the relative
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speed of T and N going to in�nity.

The main contribution of this paper4 is the derivation under the null and under the

local alternative of the limiting distribution of the Kwiatkowski et al. (1992) test (KPSS test

hereafter) corrected for cross-sectional dependency generated by a one factor error structure.

For each unit, our test is basically the KPSS test with the regression augmented by the cross-

sectional average of the observations. In the panel data context, this amounts to adapting

Pesaran (2007) approach accounting for cross-sectional dependence to the panel stationarity

test of Hadri (2000). The choice of the Pesaran (2007) approach is due essentially to its

conceptual simplicity. We show that the limiting null distribution of our panel augmented

KPSS test is the same as the panel stationary test proposed by Hadri (2000), which is an

Lagrange multiplier (LM) test without cross-sectional dependence. Our theoretical result

are obtained via the joint asymptotic theory where T ;N ! 1 concurrently (under the

added condition that N=T ! 0) and the limiting distributions under the null are shown to

be standard normal :We then extend our panel augmented KPSS test to the more realistic

and useful case of the serially correlated shocks. The test is shown to have a standard normal

distribution as a limiting null distribution employing the sequential asymptotic theory where

T !1 followed by N !1. We conjecture that the sequential limit is the same as the joint

limit under the additional condition that N=T ! 0: The test is very easy to implement. We

use Monte Carlo simulations to examine the �nite sample properties of the panel augmented

KPSS test allowing for serial correlation.

The paper is organized as follows. Section 2 sets up the model and assumptions, and

de�ne the augmented panel test statistic. In section 3, we show that the limiting null

distribution of the panel augmented KPSS test is the same as that of Hadri�s (2000) test.

We also examine whether our theoretical results are valid in �nite samples via simple Monte

Carlo simulations. In Section 4, we relax Assumption 1 in order to allow for serial correlation

4 In the original version of the paper, we derived a Lagrange multiplier (LM) test, which is a locally best
invariant test under the assumption of normality, allowing for cross-sectional dependence. We also compared
a panel augmented KPSS test with the extended LM test under the null of stationarity, under the local
alternative and under the �xed alternative and discussed the di¤erences between the two tests. The latter
results were derived using the joint asymptotic limits where T and N !1 jointly.
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in the error term and propose a modi�cation of the panel augmented KPSS test statistic to

correct for the presence of this serial correlation. Once again, we examine the �nite sample

properties of the proposed test statistic via Monte Carlo simulations. Section 5 concludes

the paper. All the proofs are presented in the Appendix.

A summary word on notation. We de�ne MA = IT �A(A0A)�1A0 for a full column rank

matrix A. The symbols
p (N;T )�! and

(N;T )
=) mean joint convergence in probability and joint

weak convergence respectively when both T and N go to in�nity simultaneously, while T
=)

or N
=) signi�es weak convergence when only T or N goes to in�nity.

2. Model and Test Statistics

2.1. Model and assumptions

Let us consider the following model:

yit = z0t�i + rit + uit; rit = rit�1 + vit; uit = fti + "it (1)

for i = 1; � � � ; N and t = 1; � � � ; T where zt is deterministic and ri0 = 0 for all i. The

commonly used speci�cation of zt in the literature is either zt = z�t = 1 or zt = z�t = [1; t]
0:

In this paper, we consider these two cases. Accordingly, we de�ne �i = �i when z = 1

and �i = [�i; �i]
0 when z = [1; t]0. In model (1), z0t�i is the individual e¤ect while ft is one

dimensional unobserved common factor, i is the loading factor and "it is the individual-

speci�c (idiosyncratic) error.

By stacking yit with respect to t, model (1) can be expressed as26664
yi1
yi2
...
yiT

37775 =
26664
z01
z02
...
z0T

37775 �i +
26664
ri1
ri2
...
riT

37775+
26664
f1
f2
...
fT

37775 i +
26664
"i1
"i2
...
"iT

37775 ;
26664
ri1
ri2
...
riT

37775 =
26664
1 0
1 1
...
...
. . .

1 1 � � � 1

37775
26664
vi1
vi2
...
viT

37775
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or

yi = Z�i + ri + fi + "i (2)

= Z�i +Bvi + fi + "i;

where Z = [� ;d] with � = [1; 1; � � � ; 1]0, d = [1; 2; � � � ; T ]0 being T � 1 vectors and B is a

T �T matrix with ones on the main diagonal and everywhere below it. Tanaka (1996) calls

matrix B, the random walk generating matrix. Further, we have26664
y1
y2
...
yN

37775 =
26664
Z

Z
. . .

Z

37775
26664
�1
�2
...
�N

37775+
26664
B

B
. . .

B

37775
26664
v1
v2
...
vN

37775+
26664
f1
f2
...
fN

37775+
26664
"1
"2
...
"N

37775
or

y = (IN 
 Z)� + r+ ( 
 f) + " (3)

= (IN 
 Z)� + (IN 
B)v + ( 
 f) + ":

In this section, we assume the following simple assumption:

Assumption 1 (i) The stochastic processes f"itg, fftg and fvitg are independent,

"it � i:i:d:N(0; �2"); ft � i:i:d:N(0; �2f ); vit � i:i:d:N(0; �2v);

for simplicity, �2" is assumed to be known.

(ii) There exist real numbers M1, M and M such that jij < M1 < 1 for all i and

0 < M < j�j < M <1 for all N , where � = N�1PN
i=1 i.

Assumption 1(i) is too restrictive and not practical. It will be relaxed in Section 4 to a

more realistic one. The assumption of normality with homoskedasticity is adopted here

to simplify the derivation of the theoretical results. The cross-sectional independence of

"it across i is standard in one-factor models. The independence over t will be relaxed in

Section 4 to allow for serial correlation. In section 4 the common factor ft will be allowed
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to follow a general stationary process. The independence of vit across i and t is standard

in KPSS models. Instead of considering �2" known, we can also estimate it employing the

estimator b�2" =PN
i=1

PT
t=1 b"2it=NT; where b"it is the residual from the augmented regression.

It can be shown that this estimator jointly converges in probability to �2" under both the

null hypothesis and the local alternative. Then, we could replace �2" in the de�nition of STi

by its estimator b�2": Assumption 1(ii) is concerned with the weights of the common factor ft.
This assumption implies that each individual is possibly a¤ected by the common factor with

the �nite weight i and that the absolute value of the average of i is bounded away from

0 and above both in �nite samples and in asymptotics. The latter property is important

in order to eliminate the common factor e¤ect from the regression. A similar assumption

is also entertained in Pesaran (2007). The main purpose of this section is to examine the

theoretical e¤ect of �augmentation�, which is explained below, on stationarity tests.

We consider a test for the null hypothesis of (trend) stationarity against the alternative

of a unit root for model (1). Since all the innovations are homoskedastic, the testing problem

is given by

H0 : � �
�2v
�2"
= 0 v.s. H1 : � > 0 (4)

where � = �2v=�
2
" is a signal-to-noise ratio. Under H0, rit becomes equal to zero for all i

so that yit is stationary whereas all of the cross-sectional units have a unit root under the

alternative.

Remark 1 Allowing for only one factor could be considered as too restrictive. Bai and Ng

(2005) examined a more general case than here in which they allowed for more than one

factor. However, they were disappointed by their results. In the case of more than one

factor, it is not su¢ cient to augment the regression by yt in order to eliminate the e¤ect of

the cross-sectional dependence from the test statistic. In such a case, the limiting distribution

of our test statistic would depend on nuisance parameters. To correct for multifactor error

structure, we may be able to adapt the method proposed by Pesaran, Smith and Yamagata

(2009) in the unit root context to our case. Pesaran et al. (2009) method can be considered as

a generalisation of Pesaran (2007) employed here. But, the application of the new proposal
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to our test is not straightforward and is therefore left for future research. The downside

of allowing for multifactor error structure is that the number of factors has to be estimated

employing information criteria. Simulations carried out by de Silva et al. (2009) to compare

panel unit root tests allowing for multifactor error structure, show that the number of factors

estimated is often greater than the true number of factors in small samples and this may be

responsible for the upward size distorsions observed in their simulations.

2.2. A simple stationarity test

A panel stationarity test has already been proposed by Hadri (2000) and Shin and

Snell (2006) for cross-sectionally independent data. Here, we extend Hadri�s test to the

cross-sectionally dependent case. Hadri (2000) showed that if there is no cross-sectional

dependence in a model, we can construct the LM test using the regression residuals of yit on

zt in the same way as KPSS (1992) and that the limiting distribution of the standardized LM

test statistic is standard normal under the null hypothesis. However, it can be shown that

Hadri�s (2000) test depends on nuisance parameters even asymptotically if there exits cross-

sectional dependence; we then need to develop a stationarity test that takes into account

cross-sectional dependence.

In order to eliminate the e¤ect of the common factor from the test statistic, we make use

of the simple method proposed by Pesaran (2007), which develops panel unit root tests with

cross-sectional dependence. As in Pesaran (2007), we �rst take a cross-sectional average of

the model:

�yt = z0t�� + �rt + ft� + �"t; (5)

where �yt = N�1PN
i=1 yit, �� = N�1PN

i=1 �i, �rt = N�1PN
i=1 rit, � = N�1PN

i=1 i and

�"t = N�1PN
i=1 "it. Since � 6= 0 by assumption, we can solve equation (5) with respect to ft

as follows:

ft =
1

�

�
�yt � z0t�� � �rt � �"t

�
:

By inserting this solution of ft into model (1) we obtain the following augmented regression
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model:

yit = z0t~�i + ~i�yt + �it; (6)

where ~�i = �i � ~i��, ~i = i=� and �it = rit � ~i�rt + "it � ~i�"t. Based on (6) we propose to

regress yit on zt and �yt for each i and construct the test statistic in the same way as Hadri

(2000). That is,

ZA =

p
N(ST � �)

�
(7)

where ST =
1

N

NX
i=1

STi with STi =
1

�2"T
2
y0iMwB

0BMwyi

and

8<:
� = �� =

1
6 ; �2 = �2� =

1
45 when zt = z�t = 1;

� = �� =
1
15 ; �2 = �2� =

11
6300 when zt = z�t = [1; t]

0:

Note that STi can also be expressed as

STi =
1

�2"T
2

TX
t=1

(Swit )
2 where Swit =

tX
s=1

�̂is

with �̂it obtained for each i by regressing yit on wt = [z0t; �yt]
0 for t = 1; � � � ; T .

From (7) we can see that ST is the average of the KPSS test statistic across i and ZA

is normalized so that we obtain a limiting distribution. We call ZA the panel augmented

KPSS test statistic.

3. Theoretical Property of the panel Augmented KPSS test

In this section we derive the joint limit distribution, where T;N !1 simultaneously, of

the panel augmented KPSS test under the null hypothesis and under the local alternative.

Theorem 1 Assume that Assumption 1 holds. Under H0, as N and T go to in�nity simul-

taneously with N=T ! 0, the panel augmented KPSS test statistic has a limiting standard

normal distribution for both cases of zt = 1 and zt = [1; t]0,

ZA
(N;T )
=) N(0; 1):
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Proof. see Appendix.

This shows that the sequential asymptotic is equivalent to the joint asymptotic only

under the condition that N=T ! 0 as T and N go to in�nity jointly. The use of the

sequential asymptotic on its own will not uncover this condition. Note that the rejection

region of ZA is the right hand tail as in Hadri�s (2000) test. The condition that N=T ! 0

as T and N !1 jointly, means that the test is suitable for panels with T larger than N:

Theorem 1 shows that Pesaran�s (2007) method works well in order to eliminate cross-

sectional dependence for testing the null hypothesis of stationarity.

We next investigate the asymptotic property of the test statistics under the local alter-

native, which is expressed as

H`
1 : � =

c2p
NT 2

where c is some constant:

Note that for a single time series analysis, the local alternative is given by � = c2=T 2. Since

the sum of STi is normalized by
p
N as in ZA, the local alternative for panel stationarity

tests becomes � = c2=(
p
NT 2).

Theorem 2 Assume that Assumption 1 holds. Under H`
1, as N and T go to in�nity simul-

taneously with N=T ! 0, the panel augmented KPSS test statistics has a limiting distribution

given by

ZA
(N;T )
=) N(0; 1) +

c2

�
E

�Z 1

0
F vi (r)

2dr

�
where F vi (r) =

R r
0 B

v
i (s)ds �

R r
0 z(s)

0ds
�R 1
0 z(s)z(s)

0ds
��1 R 1

0 z(s)B
v
i (s)ds and Bvi (r) are

independent Brownian motions across i, z(r) = 1 and E[
R 1
0 F

v
i (r)

2dr]=� =
p
45=90 when

zt = 1 and z(r) = [1; r]0 and E[
R 1
0 F

v
i (r)

2dr]=� =
p
6300=11(11=12600) when zt = [1; t]0.

Proof see Appendix.

Theorem 2 shows that the test is more powerful when only a constant is included in

the regression than the trending case as is the univariate KPSS test, because
p
45=90 >p

6300=11(11=12600).
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We investigated via Monte Carlo simulations how accurately does the asymptotic theory

approximate the �nite sample behavior of the panel augmented KPSS. As a whole, we found

that the �nite sample behaviour of the panel augmented KPSS test is well approximated by

the asymptotic theory established in this section when N and T are of moderate size. Due

to space constraint the results are not reported here but can be requested from the authors.

4. Extension to the case of serially correlated errors

4.1. Modi�cation of the panel augmented KPSS test

So far, we have investigated the theoretical property of the panel augmented KPSS test

under restrictive assumptions. In this section we relax Assumptions 1(i) and consider a

more practical and useful situation in which we allow for serial correlation.

Since it is often the case that the observed process can be approximated by an autore-

gressive (AR) model, we do not consider the error component model (1) but an AR(p) model

instead in this section5:

yit = z0t�i + fti + "it; "it = �i1"it�1 + � � �+ �ip"it�p + �it: (8)

The lag length p may change depending on the cross-sectional units but we suppress the

dependence of p on i for notational convenience.

Assumption 2 (i) The stochastic process ft is stationary with a �nite fourth moment and

the functional central limit theorem (FCLT) holds for the partial sum process of ft. (ii) The

stochastic process �it is independent of ft and i:i:d:(0; �2�i) across i and t with a �nite fourth

moments.

This assumption allows the common factor to be stationary but still presumes that it is

independent of the idiosyncratic errors, which are �nite order AR processes with i.i.d. in-

novations. We assume Assumptions 1 (ii) and 2 in the rest of this section.

5We do not consider a general linear process instead of an AR(p) model because in the case of a general
linear process the long-run variance estimator based on Toda and Yamamoto (1995), used here, will diverge
to in�nity at a rate T 2 under the alternative when the process is AR(1): As a result, our test based on the
lag-augmented method becomes inconsistent.
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Since our interest is whether yit are (trend) stationary or unit root processes, the testing

problem is given by

H 0
0 : �i(1) 6= 0 8i v.s. H 0

1 : �i(1) = 0 for some i;

where �i(L) = 1� �i1L� � � � � �ipLp.

In this case we need to modify the original KPSS test statistic for serial correlation

as well as cross-sectional dependence. For the correction of cross-sectional dependence, we

regress yit on wt = [z0t; �yt; �yt�1; � � � ; �yt�p] because "it are AR(p) processes and construct Swit
using these regression residuals. In this case it is not di¢ cult to see that the numerator of

each STi weakly converges to

1

T 2

TX
t=1

(Swit )
2 T
=) �2i

Z 1

0

�
V "i (r) +Op

�
1p
N

��2
dr

where �2i = �2�i=(1��i1�� � ���ip)2 and V "i (r) = B"i (r)�
R r
0 z(t)

0dt
�R 1
0 z(t)z(t)

0dt
��1 R 1

0 z(t)dB
"
i (t)

with B"i (t) are independent standard Brownian motions. This suggests that we should di-

vide the numerator of each STi by a consistent estimator of the long-run variance �2i in

order to correct for serial correlation.

Several consistent estimators of the long-run variance6 for parametric model have been

proposed in the literature for univariate time series. For example, Leybourne and McCabe

(1994) propose to correct the stationarity test for serial correlation by estimating the AR

coe¢ cients based on the ML method for the ARIMA model. Their method is also applied

to panel data with no cross-sectional dependence by Shin and Snell (2006). However, our

preliminary simulation shows that this method does not work well in �nite samples and we

do not use this method in this paper.

We next consider to make use of the new truncation rule proposed by Sul, Phillips and

Choi (2005). Their method is originally developed for the prewhitening method, but it is

6We cannot use here the estimator of the long-run variance proposed in Perron and Ng (1998), despite
its good properties in �nite samples, because it is consistent under the null of a unit root but not under the
null of stationarity which we are considering in this paper.
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also applicable to parametric model. We �rst estimate the AR(p) model augmented by the

lags of �yt for each i by the least squares method

yit = z0t�̂i + �̂i1yit�1 + � � �+ �̂ipyit�p +  ̂i0�yt + � � �+  ̂ip�yt�p + �̂it;

and construct the estimator of the long-run variance by

�̂2iSPC =
�̂2�i

(1� �̂i)2
where �̂i = min

8<:1� 1p
T
;

pX
j=1

�̂ij :

9=; and �̂2�i =
1

T

TX
t=1

�̂2it:

We then propose to construct the test statistic (7) using

STSPCi =
1

�̂2iSPCT
2

TX
t=1

(Swit )
2:

We denote this test statistic as ZSPCA .

The other method we consider is the lag-augmented method proposed by Choi (1993) and

Toda and Yamamoto (1995). According to these papers, we intentionally add an additional

lag of yt and estimate an AR(p+ 1) model instead of an AR(p) model:

yit = z0t~�i + ~�i1yit�1 + � � �+ ~�ipyit�p + ~�ip+1yit�p�1 + ~ i0�yt + � � �+ ~ ip�yt�p + ~�it;

and construct the test statistic using

STLAi =
1

�̂2iLAT
2

TX
t=1

(Swit )
2 where �̂2iLA =

�̂2�i

(1� ~�i1 � � � � � ~�ip)2
:

We denote this test statistic as ZLAA .

The consistency of �̂2iSPC and �̂
2
iLA under the null hypothesis is established in the stan-

dard way and we omit here the details. On the other hand, they are shown to diverge to

in�nity at a rate of T under the alternative, so that STi can be seen as a consistent station-

arity test for univariate time series. It is also shown by using the sequential limit that the

null distributions of ZSPCA and ZLAA are asymptotically standard normal in the same way as

Theorem 1 while they diverge to in�nity under the alternative. Unfortunately, it is tedious

to derive the joint limit of ZSPCA or ZLAA under general assumptions and we do not pursue
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it. Instead, we shall conduct Monte Carlo simulations in the next section in order to see

whether or not the sequential limit theory can approximate the �nite sample behaviour of

these tests. However, we conjecture that the sequential limit is the same as the joint limit

under the additional condition that N=T ! 0:

4.2. Finite sample property under general assumptions

In this section we conduct Monte Carlo simulations to investigate the �nite sample

properties of the panel augmented KPSS test using the long-run variance estimated by the

SPC or the LA methods in order to correct for serial correlation in the innovations. The

data generating process in this subsection is given as follows:

yit = z0t�i + fti + "it; "it = �i"it�1 + �it;

where ft � i:i:d:N(0; 1), �it � i:i:d:N(0; 1), ft and �it are independent of each other, �i = �i

for the constant case while �i = [�i; �i]
0 for the trend case with �i and �i being drawn from

independent U(0; 0:02), i are drawn from �1+U(0; 4) for strong cross-sectional correlation

case (SCC) and from U(0; 0:02) for weak cross-sectional correlation case (WCC), and �i,

�i and i are �xed throughout the iterations. The �i are drawn from 0:1 + U(0; 0:8)

under the null hypothesis and they remain �xed throughout the iterations. On the other

hand, the �i are set to be equal to 1 for all i under the alternative. For the purpose of

comparison, we also calculate the test statistic proposed by Harris, Leybourne and McCabe

(2005) (HLM hereafter). According to HLM, we �rst estimate the idiosyncratic errors "it

by the principal component method proposed by Bai and Ng (2004) and next apply the

stationarity test proposed by Harris, McCabe and Leybourne (2003) to the estimated series

of "1t; "2t; � � � ; "Nt. HLM method requires to predetermine the order of the autocovariance

and the bandwidth parameter for the kernel estimate of the long-run variance; we set these

parameters as recommended in HLM (2005).

Table 1 reports the sizes of the tests. There are no entries for HLM test when T = 10

because the time dimension is too short to calculate their test statistic. When only a

14



constant is included in the model, the panel augmented KPSS test corrected by the SPC

method tends to be undersized for moderate size of T for SCC (strong cross-correlation) case

while it is oversized for small or large size of T , although the over-rejection is not so severe

when N = 100 and T = 200. For WCC (weak cross-correlation) case ZSPCA is undersized7

except for the case of T = 10. The augmented KPSS test corrected by the LA method has a

similar property as ZSPCA for SCC case while the size of the test is relatively well controlled

for WCC case. On the other hand, the size of HLM test seems to be better controlled for

moderate or large size of T , although the test becomes undersized for large size of N and

small or moderate size of T .

When both a constant and a linear trend are included in the model, the overall property

of ZSPCA and ZLAA is preserved while HLM test tends to be undersized for N larger than 20.

Table 2 shows the nominal powers of the tests. Because of the size distortion of the tests

it is not easy to compare the powers of these tests but we observe that all the tests are less

powerful for the moderate size of T due to the undersize property of the tests. In some cases

the panel augmented KPSS test apparently dominates HLM test but the reversed relation

is observed in other cases. For example, the empirical sizes of ZSPCA , ZLAA and HLM test

are 0.009, 0.022 and 0.078 when N = 10 and T = 30 for the constant case with SCC, while

the powers of these tests are 0.437, 0.262 and 0.218. On the other hand, the sizes of these

tests are 0.058, 0.076 and 0.054 when N = 10 and T = 100 for the constant case with WCC

while the powers are 0.878, 0.812 and 1.00.

Although our simulations are limited, it is di¢ cult to recommend one of these tests

because none of them dominates the others. It seems that HLM test tends to work relatively

7 It seems that the long-run variance is well estimated by the method proposed by Sul et al. (2005). But
it is well known that the numerator of the KPSS statistic has a downward bias (cf inter alia Shin and Snell
(2006) and Kurozumi and Tanaka (2009)). As a result, each test statistic STi is downward biased. These
downward biases accumulate as N increases leading to the undersize of the tests based on ZSPCA : Another
problem raised by one of the referees is that the centering and scaling constants are derived asymptotically,
T ! 1: When T is �nite these constants may be inappropriate. We did some additional simulations
employing the bias corrections proposed by Kurozumi and Tanaka (2009) and the centering and scaling
constants for �xed T suggested by Hadri and Larsson (2005). We found that the results after corrections
are very similar to those before corrections except for the case where T = 10. In the latter case, the �nite
sample corrections are e¤ective in reducing the severe over-size distorsions.
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well in the constant case because the size of the test is more or less controlled in many cases

and it has moderate power, whereas the panel augmented KPSS test with SPC correction

seems to perform best in many cases corresponding to the trend case (all the other tests

tend to be undersized in this case) and is most powerful in many cases.

5. Conclusion

In this paper we extended Hadri�s (2000) test to correct for cross-sectional dependence

à la Pesaran (2007). We showed that the limiting null distribution of this panel augmented

KPSS test is the same as the original Hadri�s test that is the LM test without cross-sectional

dependence. All the theoretical results are derived via the joint asymptotic theory and the

limiting distributions under the null are shown to be standard normal. We also propose a

more practical panel augmented KPSS under more realistic assumptions and allowing for

serial correlation in the error disturbances. The Monte Carlo simulations indicated that we

should use the panel stationarity tests with care because they are undersized in some cases

but su¤er from over rejection in other cases.
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Appendix

In this appendix, we denote some constant that is independent ofN , T and the subscripts

i and t as C, C1, C2, � � � . We prove the theorems only for the case where zt = [1; t]. The

proof for the level case with zt = 1 proceeds in exactly the same way and thus we omit

it. We also assume �2" = 1 in this appendix without loss of generality because we know �2"

under Assumption 1(i).

We �rst express �yt in matrix form. Since

�yt = z0t�� + �rt + ft� + �"t;

we have 26664
�y1
�y2
...
�yT

37775 =
26664
z01
z02
...
z0T

37775 �� +
26664
�r1
�r2
...
�rT

37775+
26664
f1
f2
...
fT

37775 � +
26664
�"1
�"2
...
�"T

37775
or

�y = Z�� + �r+ f� + �": (9)

Since � 6= 0, we have f = (�y�Z��� �r� �")=�. By inserting this into (2), the model becomes

yi = Z(�i � ~i��) + ~i�y + (ri � ~i�r) + ("i � ~i�") (10)

where ~i = i=�.

Let W = [� ;d; �y] = [Z; �y] and W � =WQ = [Z; �y�] where �y� = �y � Z�� = �r+ f� + �",

Q =

�
I2 ���
0 1

�
; D =

�
D� 0

0
p
T

�
and D� =

� p
T 0

0 T
p
T

�
:

Because Mw = Mw� , STi in the augmented KPSS test statistic can be expressed in matrix

form as

STi =
1

T 2
y0iMw�B

0BM�yi:

Before proceeding with the proof of theorems, we state two lemmas, which will be used

in the proof repeatedly. The �rst lemma states various moments related to rit. Since these

can be obtained by direct calculation, we omit the proof.
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Lemma 1 Let vit � i:i:d:N(0; �2v) for i = 1; � � � ; N and t = 1; � � � ; T , rit =
Pt
s=1 vis and

�rt = N�1PN
i=1 rit. Then,

E [risrit] = �2vmin(s; t) (11)

E

24 tX
s=1

ris

!235 =
�2v
6
t(t+ 1)(2t+ 1) (12)

E

24 tX
s=1

sris

!235 =
�2v
30
t(t+ 1)(2t+ 1)(2t2 + 2t+ 1) (13)

E [�rs�rt] =
�2v
N
min(s; t) (14)

E

24 tX
s=1

�rs

!235 =
�2v
6N

t(t+ 1)(2t+ 1) (15)

E

24 tX
s=1

s�rs

!235 =
�2v
30N

t(t+ 1)(2t+ 1)(2t2 + 2t+ 1); (16)

E

" 
tX
s=1

ris

! 
TX
t=1

rit

!#
=

�2v
6
t(t+ 1)(3T � t+ 1) (17)

E

" 
tX
s=1

ris

! 
TX
t=1

trit

!#
=

�2v
24
t(t+ 1)(6T 2 + 6T � t2 � t+ 2) (18)

E

" 
TX
t=1

rit

! 
TX
t=1

trit

!#
=

�2v
24
T (T + 1)(5T 2 + 5T + 2); (19)

E [risritriuriv] = �4v(2st+ su) for s � t � u � v: (20)

The next lemma gives the su¢ cient condition on the equivalence of the sequential limit

to the joint limit. Notice that when the statistic SiT weakly converges to Si1 as T ! 1,

we can construct the probability space on which both SiT and Si1 exist, as discussed in

Phillips and Moon (1999).

Lemma 2 Let SiT and Si1 are i.i.d. sequences across i (i = 1; � � � ; N) on the same prob-

ability space. Assume that Si1 does not depend on N , SiT is independent of Sj1 for i 6= j
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and SiT
T
=) Si1 as T ! 1. If (a) E[SiT ] ! �1 � E[Si1] < 1 as both N and T go to

in�nity, and (b) supN;T E[S
2
iT ] <1, then,

1

N

NX
i=1

SiT
p (N;T )�! �1:

Proof of Lemma 2: Since SiT is an i.i.d. sequence, we have, for any arbitrary " > 0,

P

 ����� 1N
NX
i=1

SiT � E[SiT ]
����� > "

!
� 1

"2N
E[(SiT � E[SiT ])2] �

1

"2N
sup
N;T

E[S2iT ]! 0

by condition (b) as both N and T go to in�nity. Because E[SiT ]! �1 by condition (a), we

can see that N�1PN
i=1 SiT

p (N;T )�! �1.2

Proof of Theorem 1

Because ri and �r disappear under the null hypothesis, STi can be expressed in matrix

form under H0 as

STi =
1

T 2
y0iMw�B

0BMw�yi

=
1

T 2
("i � ~i�")0Mw�B

0BMw�("i � ~i�")

=
1

T 2
"0iMw�B

0BMw�"i �
2~i
T 2
�"0Mw�B

0BMw�"i +
~2i
T 2
�"0Mw�B

0BMw��"

= ST1i � 2~iST2i + ~2iST3i; say:

Let ST 01i = T�2"0iMzB
0BMz"i. Since Shin and Snell (2006) showed that

1p
N

PN
i=1(ST

0
1i � �)

�

(N;T )
=) N(0; 1);

it is su¢ cient to prove that

1p
N

NX
i=1

(ST1i � ST 01i)
p (N;T )�! 0; (21)

1p
N

NX
i=1

ST2i
p (N;T )�! 0; (22)

1p
N

NX
i=1

ST3i
p (N;T )�! 0: (23)
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Let J0i = T�1B"i, [J1; J2] = T�1BW �D�1 = [T�1BZD�1
� ; T�3=2B�y�], [L01i; L

0
2i] =

D�1W �0"i = [(D�1
� Z 0"i)0; (T�1=2�y�0"i)0]0, K = [[Kij ]] = D�1W �0W �D�1 and K�1 = [[Kij ]]

for i; j = 1; 2. Then, we have

1

T
BMw�"i =

1

T
B"i �

1

T
BW �D�1 �D�1W �0W �D�1��1D�1W �0"i

= (J0i � J1K11L1i)� fJ2K21L1i + (J1K
12 + J2K

22)L2ig: (24)

Similarly, by letting �J0 = N�1PN
i=1 J0i, �L1 = N�1PN

i=1 L1i and �L2 = N�1PN
i=1 L2i, we

can see that

1

T
BMw��"i = �J0 � (J1K11 + J2K

21)�L1 � (J1K12 + J2K
22)�L2: (25)

We �rst prove (21). Using expression (24), ST1i can be decomposed into

ST1i = (J0i � J1K11L1i)
0(J0i � J1K11L1i)

�2(J0i � J1K11L1i)
0fJ2K21L1i + (J1K

12 + J2K
22)L2ig

+fJ2K21L1i + (J1K
12 + J2K

22)L2ig0fJ2K21L1i + (J1K
12 + J2K

22)L2ig

= ST a1i + ST
b
1i + ST

c
1i; say: (26)

In order to evaluate each term, we use the following lemma.

Lemma 3 Under the null hypothesis, as both N and T go to in�nity simultaneously, (i)

EkJ0ik2 � C, 1p
N

PN
i=1 kJ0ik2 = Op(

p
N) and k �J0k = Op(

1p
N
), (ii) kJ1k = O(1), (iii)

EkJ2k2 � C
T and kJ2k = Op(

1p
T
), (iv) K11 = O(1), K12 = K 0

21 = Op(
1p
T
), K22 =

Op(1), K11 = K�1
11 + Op(

1
T ), K21 = K 0

21 = Op(
1p
T
) and K22 = Op(1), (v) EkL1ik2 � C,

1p
N

PN
i=1 kL1ik2 = Op(

p
N) and k�L1k = Op(

1p
N
), (vi) EkL2ik2 � C, 1p

N

PN
i=1 kL2ik2 =

Op(
p
N) and �L2 = Op(

p
T
N ), (vii) 1p

N

PN
i=1 kJ0ikkL`ik = Op(

p
N) for `;m = 1; 2 and

1p
N

PN
i=1 kL1ikkL2ik = Op(

p
N).

Proof of Lemma 3: (i) Since "it is i.i.d.N(0; 1), we have

EkJ0ik2 = E

24 1
T 2

TX
t=1

 
tX
s=1

"is

!235 = 1

T 2

TX
t=1

t � C:

25



Since C does not depend on i and J0i is independent of J0j for i 6= j, we can see that

E[ 1p
N

PN
i=1 kJ0ik2] � C

p
N and E[k �J0k2] � C=N , which imply (i).

(ii) It is easy to see that

J 01J1 =

"
1
T 3
PT
t=1 t

2 1
T 4
PT
t=1 t

Pt
s=1 s

1
T 4
PT
t=1 t

Pt
s=1 s

1
T 5
PT
t=1(

Pt
s=1 s)

2

#
=

�
1
3

1
8

1
8

1
20

�
+O

�
1

T

�
:

(iii) Since �y�t = �ft + �"t under H0, ft and �"t are independent and �"t is i:i:d:N(0; 1=N),

EkJ2k2 =
1

T 3
E

24 TX
t=1

(
tX
s=1

(�fs + �"s)

)235
=

1

T 3

TX
t=1

8<:�2E
24 tX

s=1

fs

!235+ E
24 tX

s=1

�"s

!2359=;
=

1

T 3

TX
t=1

�
�2�2f t+

t

N

�
� C

T
(27)

and thus we obtain (iii).

(iv) The result of K11 is obvious, while K12 and K22 are expressed as

K12 =
1p
T
D�1
� Z 0�y� =

"
1
T

PT
t=1(�ft + �"t)

1
T 2
PT
t=1 t(�ft + �"t)

#
and K22 =

1

T

TX
t=1

(�ft + �"t)
2:

We can see that each component of K12 has mean zero and variance bounded above by

C=T while the expectation of K22 is bounded above by C. On the other hand, the orders of

Kij for i; j = 1; 2 are obtained by using the inversion formula of a partitioned matrix. For

example,

K11 = K�1
11 +K

�1
11 K12(K22 �K21K

�1
11 K12)

�1K21K
�1
11 = K�1

11 +Op

�
1

T

�
:

The orders of K12 = K210 and K22 are obtained similarly.

The �rst and second assertions of (v) and (vi) are obtained by noting that

EkL1ik2 = E

24 1p
T

TX
t=1

"it

!235+ E
24 1

T
p
T

TX
t=1

t"it

!235 � C;
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and

EkL2ik2 = E

24( 1p
T

TX
t=1

(�ft + �"t) "it

)235
� CE

24 1p
T

TX
t=1

ft"it

!2
+

 
1p
T

TX
t=1

�"t"it

!235 � C:

The third assertion of (v) is established from

Ek�L1k2 =
1

T
E

24 TX
t=1

�"t

!235+ 1

T 3
E

24 TX
t=1

t�"t

!235 � C

N
:

For �L2, note that

�L2 =
�p
T

TX
t=1

ft�"t +
1p
T

TX
t=1

�"2t :

The �rst term is easily shown to be Op(1=
p
N) because ft is independent of �"t, whereas the

expectation of the second term equals
p
T=N . Since

p
T=N dominates 1=

p
N , which follows

from condition N=T ! 0, we have k�L2k = Op(
p
T=N).

(vii) Since EkJ0ikkL`ik � (EkJ0ik2EkL`ik2)1=2 and EkL1ikkL2ik � (EkL1ik2EkL2ik2)1=2

by Cauchy-Schwarz inequality, we obtain the result by using (i), (v) and (vi).2

Since ST 01i = (J0i � J1K�1
11 L1i)

0(J0i � J1K�1
11 L1i), we have

ST a1i � ST 01i = fJ1(K11 �K�1
11 )L1ig0fJ1(K11 �K�1

11 )L1ig

�2(J0i � J1K�1
11 L1i)

0fJ1(K11 �K�1
11 )L1ig: (28)

Using Lemma 3 (ii), (iv) and (v), we can see that

1p
N

NX
i=1

kfJ1(K11 �K�1
11 )L1ig0fJ1(K11 �K�1

11 )L1igk

� kJ1k2kK11 �K�1
11 k2

1p
N

NX
i=1

kL1ik2 = Op

 p
N

T 2

!
:

Similarly, the second term on the right hand side of (28) becomes Op(
p
N=T ). Hence, the

right hand side of (28) converges to 0 in probability when both N and T go to in�nity and

N=T ! 0.
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In exactly the same manner, we have

1p
N

NX
i=1

kST b1ik � Cp
N

NX
i=1

(kJ0ik+ kJ1kkK11kkL1ik)

�(kJ2kkK21kkL1ik+ kJ1kkK12kkL2ik+ kJ2kkK22kkL2ik)

= Op

 p
Np
T

!
;

1p
N

NX
i=1

kST c1ik � 1p
N

NX
i=1

fkJ2kkK21kkL1ik+ (kJ1kkK12k+ kJ2kkK22k)kL2ikg2

= Op

 p
N

T

!
:

Therefore, we obtained (21).

In order to prove (22) and (23), notice that����� 1pN
NX
i=1

ST2i

����� � C

����� 1T 2 �"0Mw�B
0BMw�

1p
N

NX
i=1

"i

�����
� C

p
N

T 2
�"0Mw�B

0BMw��";����� 1pN
NX
i=1

ST3i

����� � C

p
N

T 2
�"0Mw�B

0BMw��":

Then, it is su¢ cient to show that
p
N

T 2
�"0Mw�B

0BMw��"
p (N;T )�! 0;

which can be proved by noting that 1T BMw��"

 = Op

�
1p
N

�
from expression (25) and Lemma 3. We thus obtain the result for the augmented KPSS test

statistic.

Proof of Theorem 2
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We �rst show that Lemma 3 still holds under the local alternative H`
1. Since �y

�
t = �rt +

�ft+�"t under H`
1, it is su¢ cient to show that Lemma 3 (iii), (iv), (vi) and (vii) hold because

only J2, K12, K22 and L2i are related to �y�t . Using Lemma 1 with �
2
v = ��2" = c2=(

p
NT 2),

(iii) is prove by noting that

EkJ2k2 =

TX
t=1

E

24 1

T
p
T

tX
s=1

�y�s

!235
� 2

TX
t=1

E

24 1

T
p
T

tX
s=1

�rs

!2
+

(
1

T
p
T

tX
s=1

(�fs + �"s)

)235
� C1

TX
t=1

�
t3

N
p
NT 5

�
+
C2
T
� C

T
:

To show (iv), note that

K12 =

"
1
T

PT
t=1(�rt + �ft + �"t)

1
T 2
PT
t=1 t(�rt + �ft + �"t)

#
and K22 =

1

T

TX
t=1

(�rt + �ft + �"t)
2:

As shown in the proof of Lemma 3 (iv) the variances of the second and third terms in

each row of K12 are bounded by C=T , whereas E[(T�1
PT
t=1 �rt)

2] � C=(N
p
NT ) and

E[(T�2
PT
t=1 t�rt)

2] � C=(N
p
NT ) from (15) and (16). This shows that K12 = Op(1=

p
T ).

Similarly, we can see that K22 = Op(1) using Lemma 3 and noting that E[T�1
PT
t=1 �r

2
t ] �

C=(N
p
NT ) from (14).

(vi) is obtained by noting that

L2i =
1p
T

TX
t=1

�rt"it +
1p
T

TX
t=1

(�ft + �"t)"it;

and E[(T�1=2
PT
t=1 �rt"it)

2] � C=(N
p
NT ),which is proved using (14) and the independence

between �rt and "it.

Next, we give a lemma similar to Lemma 3. Let Jr0i = T�1Bri, [Lr01i; L
r0
2i]
0 = D�1W �0ri =

[(D�1
� Z 0ri)0; (T�1=2�y�0ri)0]0, �Jr0 = N�1PN

i=1 J
r
0i, �L

r
1 = N�1PN

i=1 L
r
1i and �L

r
2 = N�1PN

i=1 L
r
2i.

Lemma 4 Under the local alternative H`
1, as both N and T go to in�nity simultaneously,

(i) EkJr0ik2 � Cp
N
, 1p

N

PN
i=1 kJr0ik2 = Op(1) and k �Jr0k = Op(

1
N3=4 ), (ii) EkLr1ik2 � Cp

N
,
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1p
N

PN
i=1 kLr1ik2 = Op(1) and k�L1k = Op(

1
N3=4 ), (iii) EkLr2ik2 � Cp

NT
, 1p

N

PN
i=1 kLr2ik2 =

Op(
1
T ) and k�L2k = Op(

1
N3=4

p
T
), (iv) 1p

N

PN
i=1 kJr0ikkLr1ik = Op(1), 1p

N

PN
i=1 kJr0ikkLr2ik =

Op(
1p
T
) and 1p

N

PN
i=1 kLr1ikkLr2ik = Op(

1p
T
).

Proof of Lemma 4: (i) Since kJr0ik2 =
PT
t=1(T

�1Pt
s=1 ris)

2, we have EkJr0ik2 � C=
p
N

using (12). We can also see that

Ek �Jr0k2 =
1

T 2

TX
t=1

E

24 tX
s=1

�rs

!235 � C

N
p
N

using (15) and �2v = c2=(
p
NT 2). This implies k �Jr0k = Op(1=N

3=4).

(ii) is obtained using (12), (13), (15) and (16) by noting that

EkLr1ik2 = E
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T
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rit
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!235
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1

T
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T

TX
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!235 :
(iii) From the de�nition of Lr2i, we can see that

kLr2ik2 � C

8<:
 

1

N
p
T

TX
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r2it

!2
+

0@ 1

N
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1p
T

TX
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�"trit

!29=; : (29)

Since E[r2isr
2
it] � 3�4vT 2 from (20) and �4v = c2=(NT 4), it is observed that

E

24 1

N
p
T

TX
t=1

r2it

!235 � 1

N2T

TX
s=1

TX
t=1

E[r2isr
2
it]

� �4v
N2T

TX
s=1

TX
t=1

3T 2 � C

N3T
: (30)

Similarly, since E[risritrjsrkt] = 0 for j; k 6= i and j 6= k and E[risrit] � �2vs from (11) we
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have

E

240@ 1

N
p
T

TX
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X
j 6=i

ritrjt

1A235 =
1

N2T

TX
s=1

TX
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X
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: (31)

E
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TX
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E
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�
E
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NT
: (32)

E

24 1p
T

TX
t=1

�"trit

!235 = 1
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�
� C

N
p
NT

: (33)

From (29)�(33) the �rst and second assertions of (iii) hold.

Regarding to �Lr2, we can see using (14) that

�Lr2 =
1p
T

TX
t=1

�r2t +
�p
T

TX
t=1

ft�rt +
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t=1

�"t�rt

= Op

�
1

N
p
NT

�
+Op

�
1

N3=4
p
T

�
+Op

�
1

N5=4
p
T

�
= Op

�
1

N3=4
p
T

�
:

(iv) is proved in exactly the same manner as Lemma 3 (vii).2

Using Lemmas 3 and 4, we can distinguish between the main term that weakly converges

and the negligible term in the test statistic. Under the local alternative,

1

T
BMw�yi =

1

T
BMw�"i �

~i
T
BMw��"+

1

T
BMw�ri �

�i
T
BMw��r:

Using Lemmas 3 and 4, it is shown that 1T BMw��"

 = Op

�
1p
N

�
;

 1T BMw��r

 = Op

�
1

N3=4

�
;

and thus, since j~ij � C, we can see that 1p
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NX
i=1

~i"
0
iMw�B

0BLMw��r
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p
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 1T BMw��"

 1T BMw��r
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:
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Therefore, the cross products between the terms related with "i and �r, ri and �", and �" and

�r converge to zero in probability as both N and T go to in�nity.

In addition, using expression (24) and Lemmas 3 and 4, it is observed that

1

T
BMw�"i � (J0i � J1K�1

11 L1i)

� kJ1kkK11 �K�1
11 kkL1ik+ kJ2K21L1i + (J1K
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�
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�
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11 L
r
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11 kkLr1ik+ kJ2K21Lr1i + (J1K
12 + J2K

22)Lr2ik = Op

�
1

N1=4T

�
;

which imply we have only to consider (J0i � J1K�1
11 L1i) and (J

r
0i � J1K�1

11 L
r
1i) in the limit.

Moreover, the cross product between these two terms is shown to be negligible by noting

that
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;

where we used the fact that the deterministic term kJ1K�1
11 k is bounded above by a constant

and "it is independent of rit.

Using these results, the augmented KPSS test statistic becomes
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The �rst term weakly converges to a standard normal distribution as proved in Theorem 1,

whereas the second term can be expressed as

1

�N

NX
i=1

p
N
�
Jr0i � J1K�1

11 L
r
1i
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�
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T 2
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:

The joint probability limit of (34) is obtained by Lemma 2. Using Lemma 1 it can be shown

that

E
hp

N
�
Jr0i � J1K�1

11 L
r
1i

�0 �
Jr0i � J1K�1

11 L
r
1i

�i
= �2v

p
N

�
11

12600
T 2 +O(1)

�
=

11

12600
c2 +O

�
1

T 2

�
; (35)

while the second moment is bounded above uniformly over N and T using (20). For example,

since t(4T � 3t� 3)=T 2 � 4 for all t and T ,
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On the other hand, since N1=4
p
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T
=) cBvi (r), we can see using expression (34) that
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whose moment is 11c2=12600 by direct calculation. By applying Lemma 2, we have
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�
:

When zt = 1, the above probability limit can be shown to be c2=(90�) in exactly the

same manner.
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Table 1. Size of the tests: serially correlated case

constant case trend case
SCC WCC SCC WCC

N T ZSPCA ZLAA HLM ZSPCA ZLAA HLM ZSPCA ZLAA HLM ZSPCA ZLAA HLM
10 0.075 0.338 - 0.062 0.262 - 0.289 0.650 - 0.535 0.800 -
20 0.004 0.068 0.033 0.004 0.069 0.038 0.001 0.029 0.027 0.003 0.039 0.034
30 0.009 0.022 0.078 0.009 0.036 0.086 0.006 0.021 0.059 0.011 0.029 0.068

10 50 0.040 0.062 0.086 0.018 0.046 0.079 0.030 0.050 0.056 0.014 0.034 0.056
100 0.061 0.101 0.064 0.024 0.070 0.064 0.045 0.085 0.033 0.014 0.060 0.033
200 0.109 0.124 0.058 0.058 0.076 0.054 0.120 0.135 0.051 0.053 0.073 0.053
10 0.081 0.425 - 0.080 0.338 - 0.437 0.859 - 0.759 0.922 -
20 0.002 0.059 0.011 0.002 0.067 0.015 0.001 0.021 0.010 0.001 0.036 0.013
30 0.002 0.008 0.043 0.004 0.033 0.058 0.001 0.008 0.023 0.006 0.022 0.031

20 50 0.025 0.048 0.088 0.009 0.042 0.075 0.013 0.026 0.037 0.006 0.025 0.031
100 0.041 0.087 0.074 0.013 0.072 0.072 0.026 0.059 0.024 0.006 0.044 0.022
200 0.122 0.150 0.055 0.040 0.071 0.055 0.121 0.154 0.036 0.029 0.063 0.038
10 0.088 0.499 - 0.085 0.386 - 0.488 0.930 - 0.832 0.948 -
20 0.001 0.068 0.003 0.001 0.063 0.006 0.001 0.020 0.003 0.002 0.039 0.007
30 0.001 0.005 0.026 0.003 0.029 0.040 0.001 0.006 0.009 0.004 0.016 0.016

30 50 0.020 0.045 0.076 0.007 0.041 0.064 0.010 0.027 0.019 0.006 0.023 0.014
100 0.034 0.078 0.062 0.013 0.063 0.063 0.017 0.050 0.014 0.004 0.036 0.014
200 0.131 0.176 0.058 0.027 0.071 0.059 0.145 0.187 0.028 0.020 0.059 0.031
10 0.089 0.635 - 0.103 0.444 - 0.603 0.984 - 0.917 0.980 -
20 0.001 0.045 0.000 0.002 0.057 0.002 0.000 0.017 0.001 0.004 0.042 0.003
30 0.000 0.001 0.013 0.001 0.029 0.020 0.000 0.002 0.003 0.002 0.012 0.005

50 50 0.009 0.032 0.050 0.002 0.041 0.042 0.002 0.013 0.005 0.002 0.016 0.004
100 0.030 0.076 0.059 0.006 0.049 0.060 0.017 0.040 0.010 0.004 0.029 0.009
200 0.089 0.122 0.056 0.023 0.061 0.058 0.082 0.118 0.025 0.016 0.045 0.026
10 0.097 0.752 - 0.163 0.529 - 0.877 1.000 - 0.986 0.996 -
20 0.000 0.040 0.000 0.001 0.054 0.000 0.000 0.014 0.000 0.007 0.059 0.000
30 0.000 0.001 0.001 0.001 0.035 0.002 0.000 0.001 0.000 0.001 0.008 0.000

100 50 0.003 0.018 0.018 0.001 0.032 0.013 0.001 0.003 0.000 0.001 0.007 0.000
100 0.028 0.067 0.045 0.005 0.050 0.049 0.015 0.030 0.002 0.001 0.019 0.002
200 0.084 0.124 0.049 0.016 0.049 0.056 0.078 0.114 0.013 0.009 0.032 0.014
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Table 2. Power of the tests: serially correlated case

constant case trend case
SCC WCC SCC WCC

N T ZSPCA ZLAA HLM ZSPCA ZLAA HLM ZSPCA ZLAA HLM ZSPCA ZLAA HLM
10 0.229 0.564 - 0.092 0.315 - 0.186 0.537 - 0.373 0.726 -
20 0.323 0.282 0.033 0.162 0.269 0.040 0.000 0.044 0.004 0.000 0.070 0.006
30 0.437 0.262 0.218 0.267 0.324 0.231 0.003 0.041 0.001 0.002 0.079 0.001

10 50 0.695 0.373 0.740 0.454 0.461 0.739 0.039 0.086 0.000 0.023 0.155 0.001
100 0.843 0.521 0.985 0.669 0.631 0.984 0.374 0.207 0.113 0.260 0.357 0.113
200 0.944 0.672 1.000 0.878 0.812 1.000 0.831 0.413 0.890 0.700 0.636 0.894
10 0.312 0.748 - 0.123 0.392 - 0.222 0.705 - 0.508 0.857 -
20 0.511 0.445 0.004 0.205 0.336 0.008 0.000 0.035 0.000 0.000 0.068 0.001
30 0.609 0.407 0.194 0.336 0.413 0.200 0.000 0.036 0.000 0.001 0.085 0.000

20 50 0.862 0.587 0.894 0.503 0.541 0.890 0.042 0.100 0.000 0.021 0.187 0.000
100 0.944 0.748 1.000 0.714 0.722 1.000 0.606 0.297 0.083 0.344 0.464 0.084
200 0.993 0.861 1.000 0.930 0.903 1.000 0.965 0.606 0.987 0.790 0.777 0.986
10 0.367 0.814 - 0.146 0.420 - 0.251 0.817 - 0.586 0.899 -
20 0.608 0.574 0.001 0.231 0.376 0.002 0.000 0.030 0.000 0.000 0.064 0.000
30 0.659 0.512 0.151 0.369 0.450 0.160 0.000 0.029 0.000 0.000 0.080 0.000

30 50 0.898 0.716 0.949 0.525 0.578 0.950 0.046 0.114 0.000 0.019 0.195 0.000
100 0.962 0.844 1.000 0.728 0.762 1.000 0.710 0.390 0.063 0.394 0.518 0.060
200 0.996 0.921 1.000 0.947 0.930 1.000 0.981 0.765 0.998 0.831 0.844 0.999
10 0.449 0.928 - 0.167 0.452 - 0.288 0.919 - 0.703 0.945 -
20 0.807 0.739 0.000 0.267 0.410 0.000 0.000 0.020 0.000 0.000 0.072 0.000
30 0.762 0.612 0.114 0.399 0.490 0.126 0.000 0.018 0.000 0.000 0.088 0.000

50 50 0.977 0.872 0.989 0.546 0.610 0.989 0.051 0.107 0.000 0.019 0.222 0.000
100 0.995 0.943 1.000 0.752 0.788 1.000 0.895 0.469 0.028 0.456 0.582 0.028
200 1.000 0.980 1.000 0.967 0.962 1.000 0.999 0.874 1.000 0.858 0.893 1.000
10 0.556 0.980 - 0.197 0.490 - 0.393 0.987 - 0.837 0.978 -
20 0.872 0.870 0.000 0.294 0.440 0.000 0.000 0.010 0.000 0.000 0.074 0.000
30 0.816 0.739 0.055 0.423 0.526 0.065 0.000 0.012 0.000 0.000 0.092 0.000

100 50 0.986 0.947 1.000 0.575 0.646 1.000 0.050 0.118 0.000 0.019 0.254 0.000
100 0.999 0.977 1.000 0.775 0.825 1.000 0.953 0.659 0.008 0.514 0.650 0.007
200 1.000 0.993 1.000 0.981 0.979 1.000 1.000 0.973 1.000 0.887 0.938 1.000
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