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Abstract

Economic systems generate various distributions of opportunity sets for in-
dividuals to choose consumption bundles. This paper presents an axiomatic
analysis on distributions of opportunity sets. We introduce several reasonable
properties of distributions of opportunity sets, and characterize the distribu-
tions of opportunity sets in the market economy by these properties.
Keywords: distribution of opportunity sets, market economy, Walrasian dis-
tribution, axiomatic characterization.
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1 Introduction

Economic and social systems are assessed on various criteria. For example,
the market system has been evaluated on such criteria as efficiency, equity,
and freedom. On the efficiency ground, modern economic theory has estab-
lished the fundamental theorems of welfare economics (Arrow (1951) and
Debreu (1951, 1954)), which state that the market system, if perfectly oper-
ated, generates a socially efficient outcome. Though the efficiency aspect of
the market system is very appealing, many writers have also argued that a
most compelling advantage of the market system lies in its promotion of in-
dividual freedom in terms of opportunities to achieve as well as its guarantee
of individual liberty in terms of autonomy of decisions.1 Sen (1988) stresses
the importance of the opportunity aspect of freedom:

It seems reasonable to argue that if we really do attach impor-
tance to the actual opportunity that each person has, subject
to feasibility, to lead the life that he or she would choose, then
the opportunity aspect of freedom must be quite central to social
evaluation (Sen, 1988, p.527).

Following Sen (1993), we consider that the degree of freedom of choice
enjoyed by an individual in a social and economic system is reflected in the
set of opportunities available to the individual. For example, in the mar-
ket system, a consumer’s opportunities can be described by her budget set,
namely, the set of consumption bundles that are available and affordable for
her. Indeed, standard textbooks of microeconomics start with postulating
that each consumer chooses her most preferred bundle in her budget set. In
contrast, the central planning system assigns to each individual a specific
bundle, giving her no freedom of choice. Somewhere in between, distortions
and/or regulations in the market will change opportunities available to in-
dividuals. For instance, if the government subsidizes low-income individuals
to purchase necessities, their opportunities are different from those of high-
income individuals; if, on the other hand, the government sets a regulation
on the quantity of consumption of gasoline for each individual, then each
individual’s budget set is truncated by the limit. Such examples are abun-
dant and all illustrate the following: each social and economic system gives

1We refer to, for instance, Hayek (1976), Nozick (1974), Buchanan (1986), Friedman
(1962), Kornai (1988), and Lindbeck (1988) for further discussions on these and related
issues.
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various degrees of freedom for individuals; these various degrees of freedom
for individuals are reflected by their opportunity sets.

In order to better understand and compare the opportunity aspect of
individual freedom in various systems, it is essential to study properties of
distributions of opportunity sets generated by the systems. To the best of our
knowledge, however, there exist few studies on general properties of distri-
butions of opportunity sets.2 In this paper, we formulate several reasonable
properties of distributions of opportunity sets, and then, by using these prop-
erties, we characterize the distribution of opportunity sets generated by the
most prominent economic system in the modern age, the market system.

We will show that, a distribution of opportunity sets satisfies three prop-
erties, Feasibility, No Coordination Surplus, and Minimum Attainability (see
below for informal descriptions of these properties) if and only if it is a dis-
tribution of opportunity sets generated by the market system, which we call
a Walrasian distribution. In what follows, let us explain more about these
properties that characterize Walrasian distributions.

Concerning our first property, Feasibility, we note first that, for most
economic systems, opportunity sets of individuals are inter-dependent. This
point has been observed by Basu (1987) and Pattanaik (1994). In fact,
on a moment’s reflection of an Edgeworth box diagram, one will see that
whether a consumption bundle in a budget set is attainable or not for an
individual depends on the choices of the other individuals. For example,
suppose that there are two individuals, i and j, each of whom is endowed
with 5 units of bread and 3 units of meat, and that the price of each good
is unity. Then, individual i’s choice of 6 units of bread and 2 units of meat
is not compatible with individual j’s choice of 7 units of bread and 1 unit of
meat, while it is compatible with j’s choice of 4 units of bread and 4 units of
meat. Hence, to formulate a very basic notion of feasibility of a distribution
of opportunity sets, a careful consideration is necessary. Certainly, it is too
strong to require that any combination of choices of individuals from their
respective opportunity sets constitute a feasible allocation. In fact, under a
very mild assumption, the only distribution of opportunity sets satisfying this
requirement is the central planning system which assigns to each individual
a specific bundle or less.

2There is a related literature on ranking opportunity sets. But its focus is on ranking
opportunity sets by a single individual, and do not consider distributions of opportunity
sets in a social setting. See, for instance, Barbera, Bossert and Pattanaik (2004), and
Pattanaik and Xu (1990, 2000).
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To consider various types of distributions of opportunity sets, therefore,
we need a weaker notion of feasibility. Here we propose to define a feasible
distribution of opportunity sets as one in which each individual’s choice from
the boundary of her opportunity set constitutes a feasible allocation with
some choices of the other individuals from the boundaries of their respective
opportunity sets. Our axiom of Feasibility requires that a distribution of
opportunity sets be feasible in this weak sense.

The second property, No Coordination Surplus, says that no “coordina-
tion” of choices by individuals over their respective opportunity sets gives
these individuals a larger total amount of commodities. More formally, it re-
quires that, for any group M of individuals, and any vector of consumption
bundles (xi)i∈M of the members of M such that each xi belongs to the bound-
ary of i’s opportunity set, there exists no vector of consumption bundles
(yi)i∈M in their respective opportunity sets such that

∑
i∈M yi >

∑
i∈M xi.

This property is essential for a decentralized decision by each individual to
be incentive compatible. If it were violated, a group of individuals would
want to increase each member’s consumption by coordinating its decisions.

The third property, Minimum Attainability, states that, for any feasible
allocation in the economy, at least one consumption bundle in the allocation
should be contained in the opportunity set of the corresponding individ-
ual. This condition excludes the case in which no individual can attain his
consumption bundle at some allocation in the given economic system even
though it is a feasible allocation. Such a case arises, for instance, in the
central planning system.

Each of our three properties is a fairly weak and natural requirement, and
yet these properties together are enough to characterize the class of distri-
butions of opportunity sets generated by the market system. We show that
a distribution of opportunity sets satisfies Feasibility, No Coordination Sur-
plus, and Minimum Attainability if and only if it is a Walrasian distribution
with positive prices.

The rest of the paper is organized as follows. In Section 2, we present
notation and basic definitions. We also formally define a Walrasian distri-
bution of opportunity sets. Section 3 introduces and discusses properties
of distributions of opportunity sets. Section 4 presents our characterization
of the Walrasian distributions of opportunity sets, and Section 5 concludes.
The proof of the main result is contained in the appendix.
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2 Basic Definitions and Notation

There are n individuals and k goods. Let N := {1, . . . , n} be the set of
individuals, and K := {1, . . . , k} the set of goods. An allocation is a vector
x = (x1, . . . , xn) ∈ Rnk

+ where for each i ∈ N , xi = (xi1, . . . , xik) ∈ Rk
+ is

a consumption bundle of individual i.3 There exists some fixed amount of
social endowments of goods, which are represented by the vector ω ∈ Rk

++.
An allocation x ∈ Rnk

+ is feasible if
∑n

i=1 xi ≤ ω.4 Let Z be the set of
all feasible allocations. For each x ∈ Rnk

+ , and each i ∈ N , we denote
x−i := (x1, . . . , xi−1, xi+1, . . . , xn).

For each i ∈ N , an opportunity set for individual i is a set in Rk
+ that

is non-empty, compact, and comprehensive. Recollect that a set S ∈ Rk
+ is

comprehensive if for all x, y ∈ Rk
+, x ∈ S and y ≤ x imply y ∈ S. Comprehen-

siveness is a reasonable assumption on opportunity sets under free disposal of
goods. Let S := {S ⊂ Rk

+ | S is non-empty, compact, and comprehensive}.
A distribution of opportunity sets is an n-tuple (S1, . . . , Sn) ∈ Sn.

Given a price vector p ∈ Rk
+ and an income mi ∈ R+, define B(p,mi) :=

{xi ∈ Rk
+ | p · xi ≤ mi} and B∗(p,mi) := {xi ∈ Rk

+ | p · xi = mi}. Let
X(ω) := {xi ∈ Rk

+ | xi ≤ ω}.

Walrasian distribution: A distribution of opportunity sets (S1, . . . , Sn) ∈
Sn is Walrasian if there exist p ∈ Rk

+ and (m1, . . . ,mn) ∈ Rn
+ such that∑

i∈N mi = p·ω and Si = B(p,mi)∩X(ω) for all i ∈ N . If, in addition, p À 0,
then we call the distribution of opportunity sets a Walrasian distribution with
positive prices.

Notice that our definition of a Walrasian distribution of opportunity sets
slightly departs from the standard definition of a distribution of budget sets
because each budget set is bounded by the resource constraint. This notion
of constrained budget sets was introduced by Hurwicz, Maskin and Postle-
waite (1982, 1995), and plays an important role in implementation theory.
In particular, Hurwicz, Maskin and Postlewaite (1982, 1995) showed that
the unconstrained Walrasian correspondence is not implementable in Nash
equilibria, but the constrained Walrasian correspondence is.

For all (S1, . . . , Sn) ∈ Sn, and all M ⊆ N , define
∑

j∈M Sj := {x ∈ Rk
+ |

3As usual, R+ is the set of all non-negative real numbers, and R++ is the set of all
positive real numbers.

4Vector inequalities are defined as follows: For all x, y ∈ Rk
+, x ≥ y ⇔ (x − y) ∈ Rk

+;
x > y ⇔ [x ≥ y and x 6= y]; and x À y ⇔ (x − y) ∈ Rk

++.
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∃(xj)j∈M ∈ Πj∈MSj such that x =
∑

j∈M xj}. For all S ⊆ Rk
+, define

∂+S := {x ∈ S |6 ∃y ∈ S such that y > x}.

That is, ∂+S is the “undominated boundary of S”. For all x ∈ Rk
+, and all

ε ∈ R++, let D(x, ε) := {y ∈ Rk
+ | ||y − x|| < ε}. For all S ⊆ Rk

+, define
intS := {x ∈ S | ∃ε ∈ R++, D(x, ε) ⊆ S}.

3 Properties of Distributions of Opportunity

Sets

An opportunity set of an individual prescribes the range of alternatives from
which she can choose. In social situations, however, choices made by indi-
viduals involved are often interdependent. Thus, it is too strong to require
that, for all x = (x1, . . . , xn) ∈ Rnk

+ , if xi ∈ Si for all i ∈ N , then x ∈ Z,
i.e.,

∑
i∈N xi ≤ ω. This requirement says that every individual can attain

any consumption bundle in her opportunity set regardless of the choices of
the other individuals. A distribution of opportunity sets (S1, . . . , Sn) satisfies
this condition if and only if, there exists x̄ ∈ Rnk

+ such that x̄ ∈ Z, and, for all
i ∈ N , Si ⊆ {x ∈ Rk

+ | x ≤ x̄}. Hence, we need to weaken the requirement in
order to consider and compare reasonable distributions of opportunity sets.
Our proposal is the following:

Feasibility: For every i ∈ N and every xi ∈ ∂+Si, there exists x−i ∈
Πj 6=i∂

+Sj such that (x1, . . . , xn) ∈ Z.

Feasibility states that, for each individual, any choice from the boundary
of her opportunity set is attainable for some choices of the other individuals
from the boundaries of their respective opportunity sets. It is a very weak,
reasonable requirement. Were it violated, some alternative ai of individual i
from the boundary of her opportunity set is compatible with no combination
of choices of the other individuals from the boundaries of their respective
opportunity sets. Since we consider the case where objects of individual
choice are goods (not bads), each individual would choose from the boundary
of her opportunity set, given freedom of choice. Then, individual i can never
attain the alternative ai. Our feasibility condition excludes such cases.

As we will show, Walrasian distributions of opportunity sets satisfy this
condition, and so do many other kinds of distributions. Figure 1 depicts
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Figure 1: Examples of feasible distributions of opportunity sets

several examples where each corresponding distribution of opportunity sets
satisfies Feasibility.

There are distributions of opportunity sets that do not satisfy Feasibility.
Consider the following example. Let k = 2, n = 2 and ω = (2, 2). Let
S1 = {z ∈ R2

+ | z ≤ (1, 2)} = S2. Then, (S1, S2) does not satisfy Feasibility
because ∂+S1 = {(1, 2)} and ∂+S2 = {(1, 2)}, and (1, 2)+(1, 2) = (2, 4) > ω.

Given a feasible distribution, it may still leave rooms for improving op-
portunities of all individuals. Consider the following example. Let k = 2,
n = 2 and ω = (4, 4). Let S1 = {z ∈ R2

+ | z ≤ (2, 2)} = S2. Then,
(S1, S2) satisfies Feasibility. However, we can improve both individuals’ op-
portunities. For example, consider S ′

1 = S1 ∪ {z ∈ R2
+ | z ≤ (1, 3)} and

S ′
2 = S2 ∪ {z ∈ R2

+ | z ≤ (3, 1)}. Because ∂+S ′
1 = {(2, 2), (1, 3)} and

∂+S ′
2 = {(2, 2), (3, 1)}, the distribution (S ′

1, S
′
2) is feasible, and it may be ar-

gued that S ′
1 offers more opportunities to individual 1 than S1, and S ′

2 offers
more opportunities to individual 2 than S2.

To understand our next property, let xi ∈ Si and xj ∈ Sj be the cho-
sen consumption bundles of individuals i and j in their opportunity sets,
respectively. Suppose that both xi and xj are on the boundaries of their
opportunity sets respectively, and hence each individual cannot obtain more
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goods by herself. Suppose, however, that there exist other alternatives yi ∈ Si

and yj ∈ Sj such that yi +yj > xi +xj. Then, the two individuals will coordi-
nate their actions, and do not choose xi and xj but choose yi and yj in order
to obtain a larger total amount of goods. By appropriately redistributing
the total among them, each individual can receive a greater amount of goods
than xi or xj. Thus, coordination among individuals is beneficial in this case.
Our next property says that such cases never arise, and hence coordination
of choices among any individuals generates no surplus for them.

No Coordination Surplus: For every M ⊆ N , if xi ∈ ∂+Si for all i ∈ M ,
then there exists no (yi)i∈M ∈ Πi∈MSi such that

∑
i∈M yi >

∑
i∈M xi.

We will show that Walrasian distributions of opportunity sets satisfy No
Coordination Surplus later. There are many other distributions of opportu-
nity sets that satisfy this property. For examle, let z̄ ∈ R2

+ be given, and
define Si = {z ∈ R2

+ | z ≤ z̄} for every i ∈ N . Then, the distribution
(S1, . . . , Sn) satisfies No Coordination Surplus.

There are also distributions of opportunity sets that do not satisfy this
property. Let M = {1, 2} ⊆ N , and define S1 = {z ∈ R2

+ | z2
1 +z2

2 ≤ 4} = S2.
Let x1 = (0, 2) and x2 = (2, 0). Then, xi ∈ ∂+Si for every i ∈ M , and
x1 + x2 = (2, 2). Let y1 = (1.4, 1.4) ∈ S1 and y2 = (1.4, 1.4) ∈ S2. Then,
y1 + y2 = (2.8, 2.8) À x1 + x2.

The last property requires that given any feasible allocation, among the
n consumption bundles specified in the allocation, there must be at least one
bundle belonging to the opportunity set of the corresponding individual. In
other words, any feasible allocation must be “attainable” for some individual
by his choice from his opportunity set.

Minimum Attainability: For every x ∈ Z, there exists i ∈ N such that
xi ∈ Si.

Walrasian distributions of opportunity sets satisfy Minimum Attainabil-
ity as we show later. There are many other distributions that satisfy this
property as well as those that violate it. In Figure 1, case (b) satisfies Mini-
mum Attainability whereas case (a) viloates it.
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4 Characterizations of the Walrasian Distri-

bution of Opportunity Sets

We have introduced three reasonable properties of distributions of opportu-
nity sets. Each of these properties is fairly weak, and there are many kinds
of distributions of opportunity sets that satisfy it. However, requiring the
three properties together singles out one particular type of distributions of
opportunity sets, namely, Walrasian distributions with positive prices.

First, we show that Walrasian distributions of opportunity sets with pos-
itive prices satisfy all these properties.

Proposition 1 Every Walrasian distribution of opportunity set with positive
prices satisfies Feasibility, No Coordination Surplus, and Minimum Attain-
ability.

Proof. Let (S1, . . . , Sn) ∈ Sn be a Walrasian distribution of opportunity
sets with positive prices. Let p ∈ Rk

++ and (m1, . . . ,mn) ∈ Rn
+ be such that

Si = {xi ∈ Rk
+ | p·xi ≤ mi and xi ≤ ω} for every i ∈ N , and

∑
i∈N mi = p·ω.

Feasibility: Let i ∈ N and xi ∈ ∂+Si be given. Then, p · xi = mi. Define
v := ω − xi. Notice that v ≥ 0. If v = 0, then Sj = {0} for all j 6= i, and
Si = X(ω). Clearly, this distribution of opportunity sets is feasible. Consider
v > 0 next. For every j ∈ N with j 6= i, let αj ∈ R+ be such that p · (αjv) =
mj, and define xj := αjv. Then, xj ∈ ∂+Sj for every j ∈ N . On the other
hand, we have p·v = p·(ω−xi) =

∑
h∈N mh−mi =

∑
j 6=i mj =

∑
j 6=i p·(αjv).

Hence, (1 −
∑

j 6=i αj)p · v = 0. Since p · v > 0, it follows that
∑

j 6=i αj = 1.
Therefore,

∑
h∈N xh = xi +

∑
j 6=i xj = xi +

∑
j 6=i αjv = xi + v = ω. Thus, we

have proven that (S1, . . . , Sn) is feasible.
No Coordination Surplus: Let M ⊆ N be given. For every y ∈

∑
j∈M Sj,

there exists (xj)j∈M ∈ Πj∈MSj such that y =
∑

j∈M xj, and hence p · y =∑
j∈M p · xj ≤

∑
j∈M mj. Let z ∈

∑
j∈M ∂+Sj. Obviously, z ∈

∑
j∈M Sj.

There exists (wj)j∈M ∈ Πj∈M∂+Sj such that z =
∑

j∈M wj, and thus p · z =∑
j∈M p ·wj =

∑
j∈M mj. Since p À 0, there cannot exist y ∈

∑
j∈M Sj with

y > z. Therefore, z ∈ ∂+(
∑

j∈M Sj). We have shown that
∑

j∈M ∂+Sj ⊆
∂+(

∑
j∈M Sj).

Minimum Attainability: Suppose, on the contrary, that there exists a
feasible allocation x ∈ Z such that for every i ∈ N , xi /∈ Si. Then, for
every i ∈ N , p · xi > mi. Hence,

∑
i∈N p · xi >

∑
i∈N mi = p · ω. However,

since
∑

i∈N xi ≤ ω and p À 0, we must have
∑

i∈N p · xi ≤ p · ω, which is a
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contradiction. Thus, for every x ∈ Z, there exists i ∈ N such that xi ∈ Si.

Our main theorem is a characterization of the class of Walrasian distri-
butions of opportunity sets with positive prices.

Theorem 1 A distribution of opportunity sets (S1, . . . , Sn) ∈ Sn satisfies
Feasibility, No Coordination Surplus, and Minimum Attainability if and only
if it is Walrasian distribution of opportunity sets with positive prices.

The proof of Theorem 1 is long, and is relegated in the appendix. It should
be noted that the properties in the above theorem are logically independent:

(i) case (a) of Figure 1 satisfies Feasibility and No Coordination Surplus,
but violates Minimum Attainability;

(ii) case (b) of Figure 1 satisfies Feasibility and Minimum Attainability, but
violates No Coordination Surplus;

(iii) the distribution of the opportunity sets defined by setting Si = X(ω) for
all i ∈ N satisfies No Coordination Surplus and Minimum Attainability,
but violates Feasibility.

5 Conclusion

In this paper, we have provided a new approach to economic systems by fo-
cusing on distributions of opportunity-freedom for individuals generated in
the systems. In particular, we have axiomatically characterized the distribu-
tions of opportunity sets in the market system with three properties: Feasi-
bility, No Coordination Surplus, and Minimum Attainability. Each property
captures some characteristic of the market system. Feasibility reflects and
captures the inter-dependence of opportunity sets of different individuals in
a social setting. No Coordination Surplus is a necessary condition for decen-
tralized decisions to be incentive compatible. Were it violated, a group of
individuals would be able to “improve” each member’s situation by coordi-
nating its decisions. Minimum Attainability requires the non-existence of a
feasible allocation that is “unreachable” for all individuals in the following
sense: for every feasible allocation, at least one individual has his consump-
tion bundle specified by the feasible allocation belonging to his opportunity
set.
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For each of these three properties, there are many other distributions
of opportunity sets that meet the other two properties. However, the only
distributions that satisfy all the three properties are the distributions of
opportunity sets generated by the market system.

Two final remarks are in order. First, one may think that convexity of
opportunity sets is a desirable and natural property. Convexity of opportu-
nity sets is essential for the optimal choice correspondence to be continuous
with respect to changes in opportunity sets. It is also intuitively natural if
opportunity sets are regarded as the set of available consumption bundles
during some period of time such as a week or a month: if two consumption
plans are attainable in a month, then the average of the two plans should
also be attainable. It is then interesting to note that this important and
natural property, convexity, of opportunity sets is not imposed a priori, but
is implied by the three properties in our theorem. (See Lemma 3 in the ap-
pendix.) Thanks to this result, we can fully utilize the separating hyperplane
theorem to establish our main theorem.

Second, there is no equity-type property (in any sense) imposed on a
distribution of opportunity-freedom in our characterization theorem. In fact,
the extreme distribution such that S1 = X(ω) and Si = {0} for all i 6= 1
satisfies all the three properties and it is Walrasian. This aspect reflects the
very nature of the market system. No mechanism to realize an equitable
distribution of opportunity sets is embedded in the market system itself. In
order to consider equity in distributions of opportunity-freedom, we need to
introduce a measure of equity. As a further and future study, it would be
interesting to formally define notions of equity in distributions of opportunity
sets and investigate their implications.

Our approach to analyze economic systems based on distributions of op-
portunity sets has opened a new avenue for investigating and making com-
parisons of various economic systems. The present study has axiomatically
characterized the distribution of opportunity sets generated by the market
system. It would be interesting to investigate other economic systems.
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Appendix

To prove Theorem 1, it is useful to introduce the following property:

Tightness: A distribution of opportunity sets (S1, . . . , Sn) ∈ Sn is tight if
for every i ∈ N , and every xi ∈ ∂Si, there exists x−i ∈ Πj 6=i∂Sj such that∑

h∈N xh = ω.

Notice that Tightness implies Feasibility.
The proof of Theorems 1 relies on the following sequence of lemmas.
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Lemma 1 If S := (S1, . . . , Sn) ∈ Sn satisfies Feasibility and Minimum At-
tainability, then it satisfies Tightness.

Proof. Suppose that S = (S1, . . . , Sn) ∈ Sn satisfies Feasibility and Min-
imum Attainability, but violates Tightness. Then, there exist i ∈ N and
xi ∈ ∂+Si such that for all x−i ∈ Πj 6=i∂

+Sj, xi +
∑

j 6=i xj 6= ω. By Feasibility,

however, there exists y−i ∈ Πj 6=i∂
+Sj with xi +

∑
j 6=i yj < ω. Define z ∈ Rnk

+

by zi := xi +
1
n
(ω−xi−

∑
j 6=i yj) > xi and zj := yj + 1

n
(ω−xi−

∑
j 6=i yj) > yj.

Then, z is a feasible allocation, but for all h ∈ N , zh /∈ Sh. This contradicts
the supposition that S satisfies Minimum Attainability.

For each xi ∈ Rk
+ and each ε > 0, define V (xi, ε) := {yi ∈ Rk

+ | |yi`−xi`| <
ε for every ` ∈ K}. Recollect that X(ω) = {a ∈ Rk

+ | a ≤ ω}.

Lemma 2 Suppose that S := (S1, . . . , Sn) ∈ Sn satisfies Feasibility and
Minimum Attainability. For every i ∈ N and every xi ∈ Si, if

V (xi, ε) ∩ (Rk
+ \ Si) ∩ X(ω) 6= ∅

for every ε > 0, then xi ∈ ∂+Si.

Proof. Suppose that S = (S1, . . . , Sn) ∈ Sn satisfies Feasibility and Min-
imum Attainability. Since S is feasible, Si ⊆ X(ω) for every i ∈ N . By
Lemma 1, S satisfies Tightness. Suppose, on the contrary, that there exist
i ∈ N and xi ∈ Si such that V (xi, ε)∩ (Rk

+ \Si)∩X(ω) 6= ∅, for every ε > 0,
and yet xi /∈ ∂+Si. Then, there exists zi ∈ ∂+Si with zi > xi. By Tightness,
there is z−i ∈ Πj 6=i∂

+Sj such that zi +
∑

j 6=i zj = ω.

Define the allocation t ∈ Rnk
+ by ti := xi and tj := zj + 1

n−1
(zi − xi) > zj

for every j 6= i. Then, t is a feasible allocation and tj /∈ Sj for every j 6= i.
Let K(xi) := {` ∈ K | ω` > xi`}. If K(xi) = ∅, then xi` = ω` for every

` ∈ K, and comprehensiveness of Si implies Si = X(ω). Hence, we have
(Rk

+ \ Si) ∩ X(ω) = ∅, which is a contradiction. Thus, K(xi) 6= ∅. For each
ε > 0, define the consumption bundle xi(ε) ∈ Rk

+ by

xi`(ε) =

{
xi` + ε if ` ∈ K(xi)
xi` otherwise.

Claim: xi(ε) /∈ Si for every ε > 0.
Suppose, on the contrary, that xi(ε) ∈ Si for some ε > 0. Let yi ∈

V (xi, ε). If yi` > ω` for some ` ∈ K, then yi /∈ X(ω). Otherwise, yi` ≤ ω` for
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all ` ∈ K. Then, yi ≤ xi(ε) ∈ Si. It follows from comprehensiveness of Si

that yi ∈ Si and hence yi /∈ (Rk
+ \ Si). Therefore, we have V (xi, ε) ∩ (Rk

+ \
Si)∩X(ω) = ∅, which is a contradiction. Thus, the claim has been proven.

For each ` ∈ K(xi), define J(`) := {j ∈ N \ {i} | tj` > 0}. Since
` ∈ K(xi), we have ti` = xi` < ω`. Together with

∑
h∈N th` = ω`, it follows

that J(`) 6= ∅. Let ε` > 0 be such that tj` − ε` ≥ 0 for every j ∈ J(`).
For every j ∈ N \ {i}, since Sj is closed and tj /∈ Sj, it follows that there

exists εj > 0 such that V (tj, εj) ∩ Sj = ∅.
Let

ε∗ := min{ min
`∈K(xi)

ε`, min
j∈N\{i}

εj}.

Define the allocation v ∈ Rnk
+ by

vi` =

{
xi` + |J(`)| ε∗

2
if ` ∈ K(xi)

xi` otherwise.

and for every j 6= i,

vj` =

{
tj` − ε∗

2
if ` ∈ K(xi) and j ∈ J(`)

tj` otherwise.

Then, v is a feasible allocation. By the above claim, we have vi /∈ Si. For
every j ∈ N \ {i}, because ε∗

2
< ε∗ ≤ εj and V (tj, εj) ∩ Sj = ∅, it follows

that vj /∈ Sj. This contradicts the supposition that S satisfies Minimum
Attainability.

Lemma 3 If S := (S1, . . . , Sn) ∈ Sn satisfies Feasibility, No Coordination
Surplus and Minimum Attainability, then Si is convex for all i ∈ N .

Proof. Suppose that S = (S1, . . . , Sn) ∈ Sn satisfies Feasibility, No Co-
ordination Surplus and Minimum Attainability. By Lemma 1, S satisfies
Tightness. Suppose, on the contrary, that Si is not convex for some i ∈ N .
Then, there exist xi, yi ∈ ∂+Si such that zi := 1

2
(xi+yi) /∈ Si. Since xi, yi ∈ Si

and S is feasible, it follows that xi, yi ∈ X(ω) and hence zi ∈ X(ω) as well.
Let α := max{α′ ∈ R | α′zi ∈ Si}. Because Si is compact and comprehen-
sive, such α exists and 0 ≤ α < 1. Let vi := αzi. It is clear that for every
ε > 0, V (vi, ε) ∩ (Rk

+ \ Si) ∩ X(ω) 6= ∅. By Lemma 2, vi ∈ ∂+Si. It follows
from Tightness that there exist x−i, y−i, v−i ∈ Πj 6=i∂

+Sj such that

xi +
∑
j 6=i

xj = ω

14



yi +
∑
j 6=i

yj = ω

vi +
∑
j 6=i

vj = ω.

Since vi < 1
2
(xi + yi), we have

∑
j 6=i vj = ω − vi > ω − 1

2
(xi + yi). Then, we

have

vi +
∑
j 6=i

xj <
1

2
(xi + yi) +

∑
j 6=i

xj

= xi +
∑
j 6=i

xj −
1

2
xi +

1

2
yi

= ω − 1

2
xi +

1

2
yi

yi +
∑
j 6=i

vj > yi + ω − 1

2
(xi + yi)

= ω − 1

2
xi +

1

2
yi

Hence,

yi +
∑
j 6=i

vj > vi +
∑
j 6=i

xj.

Therefore, (vi, x−i) /∈ ∂+(
∑

h∈N Sh). But this means that S does not satisfy
No Coordination Surplus, which is a contradiction.

Lemma 4 If S := (S1, . . . , Sn) ∈ Sn satisfies Feasibility, No Coordination
Surplus and Minimum Attainability, then for all i ∈ N , there exist pi ∈
Rk

+, pi 6= 0 and mi ∈ R+ such that ∂+Si ⊆ B∗(pi,mi) ∩ X(ω).

Proof. Assume that S = (S1, . . . , Sn) ∈ Sn satisfies Feasibility, No Co-
ordination Surplus and Minimum Attainability. By Lemma 1, S satisfies
Tightness. It follows from Lemma 3 that Si is convex for every i ∈ N .
Let i ∈ N . By Feasibility, ∂+Si ⊂ X(ω). Define Ti :=

∑
j∈N\{i} Sj and

Vi := {ω} − Ti := {xi ∈ Rk | ∃zi ∈ Ti, xi = ω − zi}. Since Sj is convex for all
j ∈ N \ {i}, Ti is convex, and so is (−Ti). Hence, Vi is convex.

By No Coordination Surplus,∑
j∈N\{i}

∂+Sj ⊆ ∂+Ti. (1)
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It follows from Tightness and (1) that

(A) for all yi ∈ ∂+Si, there exists zi ∈ ∂+Ti such that yi +zi = ω.

In order to show that
Vi ∩ intSi = ∅, (2)

suppose, to the contrary, that there exists xi ∈ Vi ∩ intSi. Since xi ∈ intSi,
there exists x′

i ∈ ∂+Si with x′
i > xi. From (A), there exists zi ∈ ∂+Ti such

that x′
i + zi = ω. On the other hand, since xi ∈ Vi, there exists z′i ∈ Ti with

xi = ω − z′i. Together we have z′i = ω − xi > ω − x′
i = zi, which contradicts

zi ∈ ∂+Ti. Thus, (2) must hold true.
By the separating hyperplane theorem, there exist pi ∈ Rk, pi 6= 0 and

mi ∈ R such that Si ⊆ {xi ∈ Rk
+ | pi · xi ≤ mi} and Vi ⊆ {xi ∈ Rk

+ | pi · xi ≥
mi}. Since Si is comprehensive, it follows that pi > 0. To complete the proof,
we need to show that

∂+Si ⊆ {xi ∈ Rk
+ | pi · xi = mi} (3)

Suppose, to the contrary, that there exists si ∈ ∂+Si such that pi · si < mi.
From (A) above, there exists ti ∈ ∂+Ti with si + ti = ω. Then, p · (ω − ti) =
p · si < mi. But since ω − ti ∈ Vi, we have p · (ω − ti) ≥ mi. This is a
contradiction. Thus, the relation (3) must hold true.

Lemma 5 If S := (S1, . . . , Sn) ∈ Sn satisfies Feasibility, No Coordination
Surplus and Minimum Attainability, then, for all i ∈ N , there exist pi ∈ Rk

++

and mi ∈ R+ such that Si = B(pi,mi) ∩ X(ω).

Proof. Suppose that S = (S1, . . . , Sn) ∈ Sn satisfies Feasibility, No Co-
ordination Surplus and Minimum Attainability. By Lemma 1, S satisfies
Tightness. Let N0 := {i ∈ N | Si = {0}} and N∗ := N \ N0. By Tightness,
N∗ 6= ∅. If i ∈ N0, then it is obvious that Si = B(pi, 0) ∩ X(ω) for any
pi ∈ Rk

++. If N∗ = {i}, then Tightness implies that Si = X(ω). Then, it is
clear that for any pi ∈ Rk

++, Si = B(pi,mi) ∩ X(ω) with mi = pi · ω.
In the rest of the proof, we assume that |N∗| ≥ 2. Let i ∈ N∗. By Lemma

4, there exists pi ∈ Rk
+ and mi ∈ R+ such that ∂+Si ⊆ B∗(pi,mi) ∩ X(ω).

Step 1: mi > 0.
Suppose, to the contrary, that mi = 0. Let M := N∗ \ {i} 6= ∅. We

will show that
∑

j∈M Sj ⊇ X(ω). Suppose, to the contrary, that there exists
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y0 ∈ Rk
+ such that y0 ≤ ω, but y0 /∈

∑
j∈M Sj. Since

∑
j∈M Sj is closed, there

exists z0 ∈ Rk
+ with z0 ¿ ω and z0 /∈

∑
j∈M Sj. For each j ∈ M , define

λj ∈ R+ by
λj := max{λ ∈ R+ | λz0 ∈ Sj}.

By definition,
∑

j∈M λjz0 = (
∑

j∈M λj)z0 ∈
∑

j∈M Sj. Since z0 /∈
∑

j∈M Sj,
we must have

∑
j∈M λj < 1. Define

ε :=
1 −

∑
j∈M λj

|N∗| − 1
> 0.

Define an allocation z ∈ Rnk
+ by zj := (λj + ε)z0 for each j ∈ M , and

zi := ω − z0 À 0. Then,
∑

j∈N zj = ω. However, from the definition of λj,

we have zj /∈ Sj for all j ∈ M . Because Si ⊆ B(p, 0) and pi > 0, it follows
that zi /∈ Si. This is a contradiction with Minimum Attainability of S.
Thus, we have shown that

∑
j∈M Sj ⊇ X(ω). By No Coordination Surplus,

∂+
∑

j∈M Sj ⊇
∑

j∈M ∂+Sj. Therefore, there exists no (yj)j∈M ∈ Πj∈M∂+Sj

such that
∑

j∈M yj < ω. On the other hand, since i /∈ N0, there exists
xi ∈ ∂+Si with xi > 0. By Tightness, there exists (yj)j∈M ∈ Πj∈M∂+Sj

such that xi +
∑

j∈M yj = ω, and hence
∑

j∈M yj = ω − xi < ω. This is a
contradiction.

Step 2: Si = B(pi,mi) ∩ X(ω).
In view of Lemma 4, it is enough to show that Si ⊇ B(pi,mi) ∩ {xi ∈

Rk
+ | xi ≤ ω}. Suppose, to the contrary, that there exists xi ∈ Rk

+ such
that xi ∈ B(pi,mi) ∩ X(ω) but xi /∈ Si. Since Si is comprehensive, for all
x′

i ∈ Rk
+ with x′

i ≥ xi, x′
i /∈ Si. From Step 1, mi > 0. Hence one can find

x′
i ∈ B(pi, mi) ∩ X(ω) such that x′

i /∈ Si and pi · x′
i > 0. Because Si is closed

in Rk
+, there exists x∗

i ∈ Rk
+ such that x∗

i /∈ Si and

pi · x∗
i < pi · x′

i ≤ mi. (4)

Next we will show that (ω − x∗
i ) /∈

∑
j∈M Sj. Suppose, to the contrary, that

(ω−x∗
i ) ∈

∑
j∈M Sj. Since {ω}−

∑
j∈M Sj ⊆ {x0 ∈ Rk

+ | pi·x0 ≥ mi} from the

proof of Lemma 4, we have pi · [ω−(ω−x∗
i )] ≥ mi. Hence, pi ·x∗

i ≥ mi, which
is in contradiction with (4). Thus, it must be true that (ω − x∗

i ) /∈
∑

j∈M Sj.
Then, by a similar argument to the proof of Step 1, we can find a feasible
allocation z ∈ Rnk

+ such that zh /∈ Sh for all h ∈ N . This is a contradiction
with Minimum Attainability of S.
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Step 3: pi À 0.
Suppose that for some good ` ∈ {1, . . . , k}, pi

` = 0. Then, for all xi ∈
∂+Si, xi` = ω`. By Tightness,

(B) for all j ∈ N∗ with j 6= i, and all xj ∈ ∂+Sj, xj` = 0.

On the other hand, by applying Steps 1 and 2 to each j ∈ N∗ with j 6= i,
we obtain that for all j ∈ N∗ with j 6= i, there exist pj ∈ Rk

+ and mj > 0
such that Sj = B(pj,mj) ∩ X(ω). Since mj > 0, there exists xj À 0 such
that pj · xj ≤ mj, and hence xj ∈ Sj. But then, there exists x′

j ∈ ∂+Sj with
x′

j ≥ xj À 0. This contradicts (B). Thus, it must be true that pi À 0. This
completes the proof.

Lemma 6 If S := (S1, . . . , Sn) ∈ Sn satisfies Feasibility, No Coordina-
tion Surplus and Minimum Attainability, then there exist p ∈ Rk

++ and
(m1, . . . ,mn) ∈ Rn

+ such that Si = B(p,mi) ∩ X(ω) for all i ∈ N , and∑
i∈N mi = p · ω.

Proof. Assume that S = (S1, . . . , Sn) ∈ Sn satisfies Feasibility, No Co-
ordination Surplus and Minimum Attainability. By Lemma 1, S satisfies
Tightness. Let N0 := {i ∈ N | Si = {0}} and N∗ := N \ N0. By Tightness,
N∗ 6= ∅. It follows from Lemma 5 that for each i ∈ N∗, there exist pi ∈ Rk

++

and mi ∈ R++ such that Si = B(pi, mi) ∩ X(ω).

Claim: for all i, j ∈ N∗, and all s, t ∈ K,

pi
s

pi
t

=
pj

s

pj
t

.

Suppose, on the contrary, that pi
s

pi
t
6= pj

s

pj
t

for some i, j ∈ N∗ and some s, t ∈

K. Without loss of generality, let pi
s

pi
t

> pj
s

pj
t

. Since pi, pj À 0, mi,mj > 0,

and pi · ω > mi, there exist ε > 0, ai ∈ ∂+Si and bj ∈ ∂+Sj such that

a′
i := (ai1, . . . , ais − ε, . . . , ait + pi

s

pi
t
ε, . . . , ain) ∈ ∂+Si and b′j := (bj1, . . . , bjs +

ε, . . . , bjt − pj
s

pj
t

ε, . . . , bjn) ∈ ∂+Sj. Since S satisfies No Coordination Surplus,

it follows that ai + bj ∈ ∂+(Si + Sj). On the other hand, because a′
i ∈ Si

and b′j ∈ Sj, we have a′
i + b′j ∈ (Si + Sj). Observe that a′

ir + b′jr = air + bjr

for all r 6= t, and a′
it + b′jt = ait + bjt + [pi

s

pi
t
− pj

s

pj
t

)]ε > ait + bjt. Therefore,
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ai + bj 6∈ ∂+(Si + Sj), which contradicts ai + bj ∈ ∂+(Si + Sj). Thus, it must

be true that pi
s

pi
t

= pj
s

pj
t

for all i, j ∈ N∗, and all s, t ∈ K.

Choose i ∈ N∗, and define p := (1,
pi
2

pi
1
, . . . , pi

n

pi
1
) ∈ Rk

++. Then, it follows

from the above claim that pj = pj
1p for all j ∈ N∗. For each j ∈ N∗, define

m′
i := mi/p

j
1. Then, we have Sj = B(p,m′

i) ∩ X(ω) for all j ∈ N∗. For
all j ∈ N0, let m′

j = 0. Then, it is clear that for all j ∈ N0, Sj = {0} =
B(p,m′

j) ∩ X(ω).
Let i ∈ N∗, and let xi ∈ ∂+Sj. By Lemma 1, there exist (xj)j∈N\{i} ∈

Πj∈N\{i}∂Sj such that
∑

h∈N xh = ω. For all h ∈ N , because ∂+Sh =
B∗(p,m′

h) ∩ X(ω), it follows that p · xh = m′
h. Then,∑

h∈N

m′
h =

∑
h∈N

p · xh

= p ·
∑
h∈N

xh

= p · ω.

This completes the proof.

Proof of Theorem 1:
By Proposition 1, every Walrasian distribution of opportunity sets with pos-
itive prices satisfies Feasibility, No Coordination Surplus and Minimum At-
tainability. It follows from Lemma 6 that if a distribution of opportunity sets
(S1, . . . , Sn) ∈ Sn satisfies Feasibility, No Coordination Surplus and Mini-
mum Attainability, then it is Walrasian with positive prices.
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