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Abstract

As a simple corollary to Delbaen and Schachermayer’s fundamental
theorem of asset pricing [5] [6] [7], we prove, in a general finite-dimensional
semimartingale setting, that the no unbounded profit with bounded risk
(NUPBR) condition is equivalent to the existence of a strict martingale
density for the price process. This extends the result of Choulli and
Stricker [2] to the càdlàg cases, and refines partially the second main
result of Karatzas and Kardaras [15] concerning the existence of an equiv-
alent supermartingale deflator. The proof uses the technique of numéraire
change.

1 Introduction

Harrison and Kreps [12] and Harrison and Pliska [13] first discovered, for dis-
crete time finite-state stochastic models of financial markets, that the absence
of arbitrage opportunity (no arbitrage or NA for short) is equivalent to the ex-
istence of a martingale measure for the price process. Their theorem and its
various generalizations are called (versions of) the fundamental theorem of as-
set pricing. Each version of the theorem gives precise definitions of “NA” and
“martingale measure” in various settings, and uses functional analysis to prove
the equivalence. For discrete time models, a definitive extension to the finite-
horizon infinite-state cases was proved by Dalang, Morton, and Willinger [3],
and an infinite-horizon extension was given by Schachermayer [20]. A paper by
Kabanov and Stricker [14] also gives a deep insight into mathematics concerning
discrete-time models.

Most of the continuous time versions of the theorem involve stochastic cal-
culus as well, since it is natural to model the return of a continuous trading
by an Itô integral. Here we must exclude doubling-type strategies even for
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finite-horizon settings, and several definitions of admissible strategies have been
proposed in the literature. It has also turned out that the NA condition alone
is not sufficient to be equivalent to the existence of an equivalent martingale
measure: we need a property stronger than NA. Various continuous time as-
sertions have been proved by many authors, Kreps [16], Duffie and Huang [10],
Stricker [21], Lakner [18], Delbaen [4], and Kusuoka [17] to name just a few, but
a definitive measure-free version is given by Delbaen and Schachermayer, first in
[5] for locally bounded process and then in [7] for general semimartingales (see
also their monograph [8]). In Delbaen and Schachermayer’s papers, a strategy
is called admissible if its Itô integral with respect to the price process never
goes below some predetermined level. With the definition, they proved that the
existence of an equivalent sigma-martingale measure is equivalent to the no free
lunch with vanishing risk (NFLVR) condition that is somewhat stronger than
NA. Corollary 3.8 of their paper [5] also shows how much stronger NFLVR is
compared with NA: the price process satisfies NFLVR if and only if it satisfies
NA as well as what is called today the no unbounded profit with bounded risk
(NUPBR) condition, i.e.,

NFLVR ⇐⇒ NA + NUPBR.

The precise definitions of the NA and the NUPBR conditions are presented in
Section 2 of the present paper.

NUPBR is not just an auxiliary condition. For continuous semimartingales,
Choulli and Stricker [2] proved the equivalence of the three properties: NUPBR,
the structure condition, and the existence of a strict martingale density. The
precise definition of strict martingale density is presented in Section 2 of the
present paper. Surprisingly, their proof uses only stochastic calculus. Also, the
second main result (Theorem 3.12) of the recent paper of Karatzas and Kardaras
[15] proves the equivalence of the three properties: NUPBR, the existence of a
numéraire portfolio, and the existence of an equivalent supermartingale deflator
(see Remarks 7 and 8 of the present paper) for the price process. They do not
assume path continuity but assume that each component of the price process is
strictly positive. Stricker and Yan [22] generalized the optimal decomposition
theorem of Kramkov and Schachermayer [14], originally assuming the existence
of an equivalent local martingale measure, to the case where the price process
has a strict martingale density. Goll and Kallsen [11] shows that the existence of
an equivalent supermartingale deflator is sufficient for considering log-optimal
portfolio problems.

The aim of the present paper is to prove, in a general finite-dimensional
semimartingale setting, that the NUPBR condition is equivalent to the exis-
tence of a strict martingale density for the price process. This generalizes the
above cited result of Choulli and Stricker [2] to the càdlàg cases. For the proof
we change numéraires, a technique introduced by Delbaen and Shirakawa [9]
and Delbaen and Schachermayer [6], and reduce the problem to Delbaen and
Schachermayer’s fundamental theorem of asset pricing [5] [7].
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This paper is organized as follows. In Section 2, we give some definitions
and state our results, i.e., Theorem 5 and Proposition 6. The proposition is an
intermediate result needed for the proof of the main theorem. Two remarks are
added concerning the relationship of our result with Theorem 3.12 of Karatzas
and Kardaras [15]. Proposition 6 and Theorem 5 are proved in Sections 3 and
4, respectively.

2 Definitions and the Results

Let S = {St }t∈[0,T ] be an Rd-valued (càdlàg) semimartingale on a stochastic
basis

(
Ω, F , {Ft }t∈[0,T ], P

)
with the usual assumptions, where T ∈ (0,∞)

is a fixed finite time horizon. The process S is interpreted as the discounted
price process of d risky assets. We do not assume the path continuity nor the
positivity of S.

Throughout this paper, we assume càdlàg versions for all Itô integrals. More-
over, our conventions about time 0 follow those of the book by Rogers and
Williams [19].

As in the literature, we also define the following four notions.

Definition 1. An Rd-valued predictable process H = {Ht }t∈(0,T ] is called a
1-admissible strategy for S if H is S-integrable and if∫ t

0+

H dS ≥ −1, t ∈ [0, T ], a.s.

For such an H, we define the R-valued semimartingale WH = {WH
t }t∈[0,T ] by

WH
t := 1 +

∫ t

0+

H dS

and call it the wealth process associated with the strategy H.

Definition 2. The semimartingale S is said to satisfy the no unbounded profit
with bounded risk (NUPBR) condition if the set

K1 :=
{ ∫ T

0+

H dS
∣∣∣ H is a 1-admissible strategy for S

}
is bounded in L0.

Definition 3. The semimartingale S is said to satisfy the no arbitrage (NA)
condition if 0 is a maximal element in the set K1, i.e., if there does not exist
any 1-admissible strategy H such that∫ T

0+

H dS ≥ 0 a.s. and P
( ∫ T

0+

H dS > 0
)

> 0.

Definition 4. An R-valued càdlàg local martingale Z = {Zt }t∈[0,T ] is called
a strict martingale density for S if the following three properties hold:
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• Z is strictly positive;

• E[Z0 ] < ∞;

• ZS is an Rd-valued sigma-martingale.

Our main result is the following

Theorem 5. The semimartingale S satisfies the NUPBR condition if and only
if there exists a strict martingale density for S.

As an intermediate result for the proof of Theorem 5, we also prove the following
proposition concerning the numéraire-free property of NUPBR.

Proposition 6. Suppose the semimartingale S satisfies the NUPBR condition.
Then, for each 1-admissible strategy H satisfying WH

T > 0 a.s., we have the
following two properties:

(i) WH
t > 0 and WH

t− > 0 for ∀t ∈ (0, T ], a.s.;

(ii) the Rd+1-valued semimartingale

S̃t :=
( St

WH
t

,
1

WH
t

)
also satisfies the NUPBR condition.

We give two remarks about the relationship of our result with Theorem
3.12 of Karatzas and Kardaras [15]. Remark 7 shows that our theorem refines
partially their result, and Remark 8 shows that our refinement is only partial.

Remark 7. A strict martingale density Z is an equivalent supermartingale
deflator, i.e., for each 1-admissible strategy H the process {Zt WH

t }t∈[0,T ] is
a supermartingale. Indeed, it holds by the Itô formula that

d (ZWH)t = WH
t− dZt + Zt− Ht dSt + Ht d[Z, S]t

= WH
t− dZt +

{
Ht d(ZS)t − Ht St− dZt

}
,

and thus ZWH is a sigma-martingale. Since it is nonnegative and its initial
value Z0 has a finite expectation, we see that

E
[

sup
t∈[0,T ]

(
ZtW

H
t − Z0W

H
0

)− ]
≤ E[ Z0 ] < ∞.

It then follows from Proposition 3.3 of Ansel and Stricker [1] that the process
ZWH is a local martingale and hence it is a supermartingale.
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Remark 8. We give an essentially one-period example where the price process
has some strict martingale densities but none of them can be expressed as the re-
ciprocal of the wealth process associated with a 1-admissible strategy. This is a
sharp contrast to equivalent supermartingale deflators: Karatzas and Kardaras
[15] shows the equivalence between the NUPBR property and the existence of
a numéraire portfolio. Note that the reciprocal of the wealth process associated
with a numéraire portfolio is, by definition, an equivalent supermartingale de-
flator. It should also be noted that Choulli and Stricker [2] proves that, if S is
a continuous semimartingale and if it has some strict martingale densities, then
one of them can be expressed as the reciprocal of the wealth process associated
with a 1-admissible strategy.

Our example is as follows. Suppose that X is an R-valued random variable
on a probability space that satisfies:

• ||X||1 < ∞;

• ||X+||∞ = ∞;

• 0 < c := ||X−||∞ < ∞;

• P (X = −c) > 0.

Define the R-valued process S = {St }t∈[0,T ] by

St :=
{

0 if 0 ≤ t < T,
X if t = T.

The filtration is assumed to be (the usual augmentation of) the natural filtration
of S. Clearly, S has an equivalent martingale measure so it has a strict martin-
gale density. In this setting, every wealth process associated with a 1-admissible
strategy for S is of the form

Wh
t :=

{
1 if 0 ≤ t < T,

1 + hX if t = T

for some h ∈ [0, 1
c ]. We consider three cases.

Case 1: E[ X ] < 0. For this case, none of the strict martingale densities can
be expressed as the reciprocal of Wh. Indeed, it is easy to see that 1

W 0 ≡ 1 is not
a strict martingale density for S. If h = 1

c , the corresponding wealth process
becomes zero with positive probability, so we cannot consider its reciprocal.
Also, if h ∈ (0, 1

c ), it follows from Jensen’s inequality that

E
[ 1

Wh
T

]
= E

[ 1
1 + hX

]
≥ 1

1 + hE[X]
> 1 = E

[ 1
Wh

0

]
,

so the process 1
W h cannot be a local martingale. Note that 1

W 0 ≡ 1 is an
equivalent supermartingale density for this case.
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Case 2: E[ X ] = 0. For this case, S is already a martingale and 1
W 0 ≡ 1 is a

strict martingale density.

Case 3: E[ X ] > 0. For this case, there exists some h∗ ∈ (0, 1
c ) such that

1
W h∗ is a strict martingale density. Indeed, since the random variable 1

W h
T

is

bounded for each fixed h ∈ [0, 1
c ), Lebesgue’s dominated convergence theorem

gives the following two properties:

• The function [0, 1
c ) 3 h 7→ E

[
1

W h
T

]
∈ (0,∞) is C1;

• d
dh E

[
1

W h
T

] ∣∣∣
h=0+

= E[−X] < 0.

It also follows from the assumption P (X = −c) > 0 that limh↗ 1
c

E
[

1
W h

T

]
=

∞. Thus ∃h∗ ∈ (0, 1
c ) such that E

[
1

W h∗
T

]
= 1 = 1

W h∗
0

, i.e., 1
W h∗ is a martin-

gale. The process S
W h∗ is also a martingale, since

E
[ ST

Wh∗
T

]
=

1
h∗ E

[
1 − 1

Wh∗
T

]
= 0 =

S0

Wh∗
0

.

3 Proof of Proposition 6

3.1 Proof of (i)

We will prove that the event

AH :=
{
∃t ∈ (0, T ] such that WH

t = 0 or WH
t− = 0

}
has probability zero. It suffices to show that the event

AH
n := AH ∩

{
WH

T >
1
n

}
has probability zero for each fixed n ∈ N, since ∪∞

n=1A
H
n = AH . For each

integer k ≥ n we define the stopping time

τH
k := inf

{
t ∈ [0, T ]

∣∣∣ WH
t ≤ 1

k

}
,

with inf ∅ := T by convention. Then we have{
τH
k < T

}
⊃ AH

n .

We consider k H 1(τH
k ,T ] : it is easy to show that this is a 1-admissible strategy

and ∫ T

0+

k H 1(τH
k ,T ] dS ≥ k

(
WH

T − 1
k

)
= k WH

T − 1

on the event AH
n . Therefore, if P (AH

n ) > 0 we could derive a contradiction to
the NUPBR condition for S. 2
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3.2 Proof of (ii)

Note first that S̃ is a semimartingale by (i) and by Itô’s formula. For each
Rd+1-valued S̃-integrable process K̃, denote its first d component by KS and
the last component by K1. Define the R-valued predictable process KW =
{KW

t }t∈(0,T ] by

KW
t :=

∫ t

0+

K̃ dS̃ − K̃t · S̃t

=
∫ t−

0+

K̃ dS̃ − K̃t · S̃t−,

where the dot · denotes the scalar product of d+1-dimensional vectors. Then the
Rd+2-valued predictable process

(
KW , KS , K1

)
is a self-financing strategy,

with zero initial wealth, for the Rd+2-valued semimartingale{(
1,

St

WH
t

,
1

WH
t

) }
t∈[0,T ]

.

We see from Itô’s formula that the self-financing property remains invariant by
discounting and∫ t

0+

K̃ dS̃ =
∫ t

0+

(KW , KS ,K1) d
(

1,
S

WH
,

1
WH

)
=

1
WH

t

∫ t

0+

(KW , KS ,K1) d
(
WH , S, 1

)
=

1
WH

t

∫ t

0+

( KW H + KS ) dS, t ∈ [0, T ], a.s. (1)

Consequently, it holds that{ ∫ T

0+

K̃ dS̃
∣∣∣ K̃ is a 1-admissible strategy for S̃

}
=

{ 1
WH

T

∫ T

0+

( KW H + KS ) dS
∣∣∣ 1

WH
t

∫ t

0+

(KW H + KS ) dS ≥ −1, t ∈ [0, T ], a.s.
}

by (1)

=
{ 1

WH
T

∫ T

0+

( KW H + KS ) dS
∣∣∣ ∫ t

0+

(KW H + KS ) dS ≥ −WH
t , t ∈ [0, T ], a.s.

}
⊂

{ 1
WH

T

∫ T

0+

J dS
∣∣∣ J is S-integrable and

∫ t

0+

J dS ≥ −WH
t , t ∈ [0, T ], a.s.

}
.

Since the L0-boundedness property remains invariant by the multiplication of
an R-valued random variable, it suffices to show that the set{ ∫ T

0+

J dS
∣∣∣ J is S-integrable and

∫ t

0+

J dS ≥ −WH
t , t ∈ [0, T ], a.s.

}
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is bounded in L0. The set equals{ ∫ T

0+

J dS
∣∣∣ J + H is a 1-admissible strategy for S

}
and further equals{ ∫ T

0+

I dS −
∫ T

0+

H dS
∣∣∣ I is a 1-admissible strategy for S

}
,

where I := J +H. Since the L0-boundedness property remains invariant by the
addition of an R-valued random variable, the proof is complete. 2

4 Proof of Theorem 5

4.1 Proof of the ‘if ’ part

Choulli and Stricker [2] and Karatzas and Kardaras [15] already gave a proof
of this part. For sake of completeness, we present a proof. Suppose that Z is a
strict martingale density for S. For each 1-admissible strategy H, we have∣∣∣ ZT

∫ T

0+

H dS
∣∣∣ = ZT

∣∣∣ ∫ T

0+

H dS
∣∣∣

≤ ZT

(
2 +

∫ T

0+

H dS
)
,

and thus

E

[ ∣∣∣ ZT

∫ T

0+

H dS
∣∣∣ ]

≤ E

[
ZT

(
2 +

∫ T

0+

H dS
) ]

. (2)

The same argument as in the above Remark 4 yields that the process{
Zt

(
2 +

∫ t

0+

H dS
) }

t∈[0,T ]

is a supermartingale with initial value 2Z0, and thus the right-hand side of (2)
does not exceed E[ 2Z0 ]. It then follows that the set{

ZT

∫ T

0+

H dS
∣∣∣ H is a 1-admissible strategy for S

}
is bounded in L1 and consequently bounded in the L0 sense as well. Since the
L0-boundedness property remains invariant by the multiplication of an R-valued
random variable, the process S satisfies the NUPBR condition. 2
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4.2 Proof of the ‘only if’ part

Assume the NUPBR condition for S. Define the set

D :=
{

X
∣∣∣ X ≥ 0 a.s. and ∃

{
H(n)

}
n

: a sequence of 1-admissible

strategies for S such that
∫ T

0+

H(n) dS → X a.s.
}

,

which is non-empty since 0 ∈ D. Then the same argument as in §4 of Delbaen
and Schachermayer [5] shows that D has a maximal element X∗ and furthermore
that there exists a 1-admissible strategy H∗ such that X∗ =

∫ T

0+
H∗ dS. Their

argument proceeds with the assumption of the NFLVR condition for the price
process, but it should be noted that the proof of this property in their paper
uses only the NUPBR condition.

Since WH∗

T ≥ 1 a.s. by the definition of D, it follows from Proposition 6
that the Rd+1-valued process

S̃t :=
( St

WH∗
t

,
1

WH∗
t

)
is a semimartingale and satisfies the NUPBR condition. For the rest of the
proof, we will prove that S̃ satisfies the NFLVR condition as well: Delbaen and
Schachermayer [7] then shows the existence of a probability measure Q ∼ P
under which S̃ is a sigma-martingale, and thus our proof will be complete with
the strict martingale density

Zt :=
1

WH∗
t

dQ

dP

∣∣∣
Ft

.

Since Corollary 3.8 of Delbaen and Schachermayer [5] shows the equivalence
NFLVR ⇐⇒ NA + NUPBR, it remains to prove that S̃ satisfies the NA
condition.

We assume that NA did not hold, i.e., ∃K̃ such that

(a)
∫ t

0+

K̃ dS̃ ≥ −1, t ∈ [0, T ], a.s.

(b)
∫ T

0+

K̃ dS̃ ≥ 0 a.s.

(c) P
( ∫ T

0+

K̃ dS̃ > 0
)

> 0,

and we will derive a contradiction. Assuming the same notations as in the proof
of Proposition 5, we use Equation (1) to rewrite the above three conditions as

(a′)
∫ t

0+

(KW H∗ + KS ) dS ≥ −WH∗

t , t ∈ [0, T ], a.s.,
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(b′)
∫ T

0+

(KW H∗ + KS ) dS ≥ 0 a.s.,

(c′) P
( ∫ T

0+

( KW H∗ + KS ) dS > 0
)

> 0,

respectively. We define the Rd-valued predictable process J = {Jt }t∈(0,T ] by

Jt :=
(
KW

t H∗
t + KS

t

)
+ H∗

t

and rewrite the three conditions further as

(a′′)
∫ t

0+

J dS ≥ −1, t ∈ [0, T ], a.s.,

(b′′)
∫ T

0+

J dS ≥
∫ T

0+

H∗ dS a.s.,

(c′′) P
( ∫ T

0+

J dS >

∫ T

0+

H∗ dS
)

> 0,

respectively. This contradicts the maximality of the random variable
∫ T

0+
H∗ dS

in the set D. 2
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