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Abstract

This paper develops a new computationally attractive procedure for estimating dynamic

discrete choice models that is applicable to a wide range of dynamic programming models.

The proposed procedure can accommodate unobserved state variables that (i) are neither

additively separable nor follow generalized extreme value distribution, (ii) are serially cor-

related, and (iii) affect the choice set. Our estimation algorithm sequentially updates the

parameter estimate and the value function estimate. It builds upon the idea of the itera-

tive estimation algorithm proposed by Aguirregabiria and Mira (2002, 2007) but conducts

iteration using the value function mapping rather than the policy iteration mapping. Its im-

plementation is straightforward in terms of computer programming; unlike the Hotz-Miller

type estimators, there is no need to reformulate a fixed point mapping in the value func-

tion space as that in the space of probability distributions. It is also applicable to estimate

models with unobserved heterogeneity. We analyze the convergence property of our sequen-

tial algorithm and derive the conditions for its convergence. We develop an approximated

procedure which reduces computational cost substantially without deteriorating the conver-

gence rate. We further extend our sequential procedure for estimating dynamic programming

models with an equilibrium constraint, which include dynamic game models and dynamic

macroeconomic models.
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1 Introduction

Numerous empirical studies have demonstrated that the estimation of dynamic discrete models

enhances our understanding of individual and firm behavior and provide important policy impli-

cations.1 The literature on estimating dynamic models of discrete choice was pioneered by Gotz

and McCall (1980), Wolpin (1984), Miller (1984), Pakes (1986), and Rust (1987, 1988). Stan-

dard methods for estimating infinite horizon dynamic discrete choice models require repeatedly

solving the fixed point problem (i.e., Bellman equation) during optimization and can be very

costly when the dimensionality of state space is large.

To reduce the computational burden, Hotz and Miller (1993) developed a simpler two-step

estimator, called Conditional Choice Probability (CCP) estimator, by exploiting the inverse map-

ping from the value functions to the conditional choice probabilities.2 Aguirregabiria and Mira

(2002, 2007) developed a recursive extension of the CCP estimator called the nested pseudo

likelihood (NPL) algorithm. These Hotz and Miller-type estimators have limited applicability,

however, when unobserved state variables are not additively separable and (generalized-) ex-

treme value distributed because evaluating the inverse mapping from the value functions to the

conditional choice probabilities is computationally difficult. Recently, Arcidiacono and Miller

(2008) develop estimators that relax some of the limitations of the CCP estimator by combining

the Expectation-Maximization (EM) algorithm with the NPL algorithm in estimating models

with unobserved heterogeneity. While Arcidiacono and Miller provide important contributions

to the literature, little is known about the convergence property of their algorithm, and it is not

clear how computationally easy it is to apply their estimation method to a model that does not

exhibit finite time dependence.

This paper develops a new estimation procedure for infinite horizon dynamic discrete choice

models with unobserved state variables that (i) are neither additively separable nor follow gen-

eralized extreme value distribution, (ii) are serially correlated, and (iii) affect the choice set.

Our estimation method is based on the value function mapping (i.e., Bellman equation) and,

hence, unlike the Hotz-Miller type estimators, there is no need to reformulate a Bellman equa-

tion as a fixed point mapping in the space of probability distributions (i.e., policy iteration

operator). This is the major advantage of our method over the Hotz-Miller type estimators

because evaluating the policy iteration operator is often difficult without the assumption of

additively-separable unobservables with generalized extreme value distribution. Implementing

our procedure is straightforward in terms of computer programming once the value iteration

mapping is coded in a computer language.

1Contributions include Berkovec and Stern (1991), Keane and Wolpin (1997), Rust and Phelan (1997), Rothwell
and Rust (1997), Altug and Miller (1998), Gilleskie (1998), Eckstein and Wolpin (1999), Aguirregabiria (1999),
Kasahara and Lapham (2008), and Kasahara (2009).

2A number of recent papers in empirical industrial organization build on the idea of Hotz and Miller (1993)
to develop two-step estimators for models with multiple agents (e.g., Bajari, Benkard, and Levin, 2007; Pakes,
Ostrovsky, and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008; Bajari and Hong, 2006).
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Our estimation algorithm is analogous to the NPL algorithm [cf., Aguirregabiria and Mira

(2002, 2007) and Kasahara and Shimotsu (2008a, 2008b)] but its iteration is based on the

value function mapping rather than the policy iteration mapping. Our procedure iterates on

the following two steps. First, given an initial estimator of the value function, we estimate the

model’s parameter by solving a finite horizon q-period model in which the (q+1)-th period’s value

function is given by the initial value function estimate. Second, we update the value function

estimate by solving a q-period model with the updated parameter estimate starting from the

previous value function estimate as the continuation value in the q-th period. This sequential

algorithm is computationally easy if we choose a small value of q; if we choose q = 1, for instance,

then the computational cost of solving this finite horizon model is equivalent to solving a static

model. Iterating this procedure generates a sequence of estimators of the parameter and value

function. Upon convergence, the limit of this sequence does not depend on an initial value

function estimate. Hence, our method is applicable even when an initial consistent estimator of

value function is not available.

We analyze the convergence property of our proposed sequential algorithm. The possibility

of non-convergence of the original NPL algorithm (Aguirregabiria and Mira, 2002, 2007) is a

concern as illustrated by Pesendorfer and Schmidt-Dengler (2008) and Collard-Wexler (2006).3

Since our algorithm is very similar to the original NPL algorithm, understanding the convergence

property of our sequential algorithm is important. We show that a key determinant of the con-

vergence is the contraction property of the value function mapping. By the Blackwell’s sufficient

condition, the value function mapping is a contraction where a discount factor determines the

contraction rate, and iterating the value function mapping improves the contraction property.

As a result, our sequential algorithm achieves convergence when we choose sufficiently large

q. To reduce computational cost further, we also develop an approximation procedure called

the approximate q-NPL algorithm. This approximate algorithm has substantially less computa-

tional cost than the original sequential algorithm but has the same first-order convergence rate

as the original sequential algorithm.

We extend our estimation procedure to a class of dynamic programming models in which the

probability distribution of state variables satisfies some equilibrium constraints. This class of

models includes models of dynamic games where the players’ choice probability is a fixed point

of a best reply mapping and dynamic macroeconomic models with heterogeneous agents where

each agent solves a dynamic optimization problem given the rationally expected price process

which is consistent with the actual price process generated from the agent’s decision rule.

The rest of the paper is organized as follows. Section 2 illustrates the basic idea of our

3Pesendorfer and Schmidt-Dengler (2008) provided simulation evidence that the NPL algorithm may not
necessarily converge while Collard-Wexler (2006) used the NPL algorithm to estimate a model of entry and
exit for the ready-mix concrete industry and found that P̃j ’s “cycle around several values without converging.”
Kasahara and Shimotsu (2008b) analyze the conditions under which the NPL algorithm achieves convergence and
derive its convergence rate.
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algorithm by a simple example. Section 3 introduces a class of single-agent dynamic program-

ming models, presents our sequential estimation procedure, and derives its convergence property.

Section 4 extends our estimation procedure to dynamic programming models with equilibrium

constraint. Section 5 reports some simulation results.

2 Example: Machine Replacement Model

2.1 A Single-agent Dynamic Programming Model

To illustrate the basic idea of our estimator, consider the following version of Rust’s machine

replacement model. Let xt denote machine age and let at ∈ {0, 1} represent the machine

replacement decision. Both xt and at are observable to a researcher. There are two state variables

in the model that are not observable to a researcher: an idiosyncratic productivity shock εt and

a choice-dependent cost shock ξt(at). The profit function is given by uθ(at, xt, εt)+ ξt(at), where

uθ(at, xt, εt) = exp (θ1xt(1− at) + εt)− θ2at. Here, exp(θ1xt(1− at) + εt) represents the revenue

function with θ1 < 0, and θ2 is machine price (machine replacement cost). We assume that

ξt = (ξt(0), ξt(1))′ follows Type 1 extreme value distribution independently across alternatives

while εt is independently drawn from N(0, σ2
ε ). The transition function of machine age xt is

given by xt+1 = at + (1− at)(xt + 1).

A firm maximizes the expected discounted sum of revenues, E[
∑∞

j=0 β
j(uθ(at+j , xt+j , εt+j)+

ξt+j(at+j))|at, xt]. The Bellman equation for this dynamic optimization problem is written as

W (x, ε, ξ) = maxa∈{0,1} uθ(a, x, ε) + ξ(a) + β
∫ ∫

W (a + (1 − a)(x + 1), ε′, ξ′)gε(dε
′|x)gξ(dξ

′|x).

Define the integrated value function V (x) =
∫ ∫

W (x, ε, ξ)gε(dε
′|x)gξ(dξ

′|x). Then, using the

properties of Type 1 extreme value distribution, the integrated Bellman equation is written as:

V (x) =

∫ γ + ln

 ∑
a∈{0,1}

exp
(
uθ(a, x, ε

′) + βV (a+ (1− a)(x+ 1))
) φ(ε′/σε)

σε
dε′ ≡ [Γ(θ, V )](x),

(1)

where φ(·) is the standard normal density function and γ is Euler’s constant. The Bellman

operator Γ(θ, ·) is defined by the right hand side of this integrated Bellman equation. Denote

the fixed point of the integrated Bellman equation (1) by Vθ [= Γ(θ, Vθ)]. The value of Vθ(x)

represents the value of a firm with machine age x. Given Vθ, the conditional choice probability

of replacement (i.e., a = 1) is given by

Pθ(a = 1|x) =

∫ (
exp(uθ(1, x, ε

′) + βVθ (1))∑
a′∈{0,1} exp (uθ(a′, x, ε′) + βVθ (a′ + (1− a′)(x+ 1)))

)
φ(ε′/σε)

σε
dε′ ≡ Λ(θ, Vθ),

(2)

while Pθ(a = 0|x) = 1 − Pθ(a = 1|x). Here, the operator defined by the right hand side of (2),

denoted by Λ(θ, ·), is a mapping from the value function space into the choice probability space.
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To estimate the unknown parameter vector θ given a cross sectional data {xi, ai}ni=1, where

n is the sample size, we may use the nested fixed point (NFXP) algorithm (Rust, 1987) by

repeatedly solving the fixed point of (1) and evaluating the conditional choice probabilities (2)

for every candidate value of θ to maximize the likelihood
∑n

i=1 lnPθ(ai|xi), where the integral

with respect to ε can be evaluated by quadrature methods or simulations. The NFXP algorithm

is costly because it is computationally intensive to solve the fixed point of (1). Estimating

this replacement model using the Hotz-Miller type estimators [cf., Hotz and Miller (1993) and

Aguirregabiria and Mira (2002, 2007)] is not straightforward because evaluating the inverse

mapping from the value functions to the conditional choice probabilities is computationally

difficult due to the presence of normally distributed shocks, ε.

We propose a simple alternative estimation method applicable to models with unobserved

state variables that are neither additively separable and nor extreme-value distributed. Our

estimation algorithm is based on solving a finite horizon “q-period” model in which the con-

tinuation value for the q-th period is replaced with its estimate Ṽ0. Namely, we evaluate the

likelihood by applying the fixed point iterations only q-times starting from the initial estimate

Ṽ0 as:

max
θ∈Θ

n−1
n∑
i=1

ln Λ(θ,Γq(θ, Ṽ0))(ai|xi), where Γq(θ, Ṽ0) ≡ Γ(θ,Γ(θ, ...Γ︸ ︷︷ ︸
q times

(θ, Ṽ0))), (3)

where Γq(θ, ·) is a q-fold operator of Γ(θ, ·). Note that Γq(θ, Ṽ0)(x) in (3) represents the value of

a firm with machine age x when a firm makes an optimal dynamic decision over q-periods where

the (q + 1)-th period’s value (i.e., the continuation value in the q-th period) is Ṽ 0. Solving the

optimization problem (3) is much less computationally intensive than implementing the NFXP

algorithm.

An estimator of θ defined by (3) is generally inconsistent unless Ṽ0 is consistent. When

an initial consistent estimator for V is not available, we may apply the idea of the NPL algo-

rithm [cf., Aguirregabiria and Mira (2002, 2007) and Kasahara and Shimotsu (2008a, 2008b)]

to estimate θ consistently. Once an estimate of θ is obtained from solving the optimization

problem (3), one updates the value function estimate Ṽ0 as Ṽ1 = Γq(θ̂, Ṽ0). Next, one obtains

the updated estimator of θ, θ̃1, by solving (3) using Ṽ1 in place of Ṽ0. Iterating this procedure

generates a sequence of estimators {θ̃j , Ṽj}∞j=1. Upon convergence, the limit of this sequence is

independent of the initial estimator Ṽ0, and the limiting θ̃∞ is consistent and asymptotically

normally distributed under certain regularity conditions.

2.2 Equilibrium Constraint

We may extend our estimation procedure to models with an equilibrium constraint. Consider

the economy with a measure one continuum of ex ante identical firms, each of which max-
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imizes the expected discounted sum of revenues by making a machine replacement decision

as in the previous section. Now suppose that the price of machine, denoted by r, is endoge-

nously determined in the stationary equilibrium. Let the supply function of machines be exoge-

nously given by S(r, θ) while the demand for machine in the stationary equilibrium is equal to

D(r, θ, P ) =
∑∞

x=1 P (a|x)f∗(x; θ, P ), where f∗(x; θ, P ) is the stationary distribution of x when

each firm’s conditional choice probabilities are given by P .4 Define the equilibrium machine

price function, r(θ, P ), by the equilibrium condition S(r(θ, P ), θ) = D(r(θ, P ), θ, P ).

Each agent treats the equilibrium machine price as exogenously given, and the profit function

now depends on the equilibrium machine price as: uPθ (at, xt, εt) = exp(θ1xt(1 − at) + εt) −
r(θ, P )at. Then, the Bellman equation is given by

V (x) =

∫ γ + ln

 ∑
a∈{0,1}

exp
(
uPθ (a, x, ε′) + βV (a+ (1− a)(x+ 1))

) φ(ε′/σε)

σε
dε′ ≡ [Γ(θ, V, P )](x),

while the conditional choice probability is given by

P (a = 1|x) =

∫ (
exp(uPθ (1, x, ε′) + βV (1))∑

a′∈{0,1} exp
(
uPθ (a′, x, ε′) + βV (a′ + (1− a′)(x+ 1))

)) φ(ε′/σε)

σε
dε′ ≡ Λ(θ, V, P ).

Note that the mappings Γ and Λ depend on both V and P . For each value of θ, let (Vθ, Pθ)

be the fixed point of the system of equations Vθ = Γ(θ, Vθ, Pθ) and Pθ = Λ(θ, Vθ, Pθ). The

equilibrium machine price is then given by r(θ, Pθ).

Suppose that we have an initial consistent estimator of (V, P ) denoted by (Ṽ0, P̃0). We may

consistently estimate the parameter θ as θ̃1 = arg maxθ∈Θ n
−1
∑n

i=1 ln Λ(θ,Γq(θ, Ṽ0, P̃0), P̃0)(ai|xi).
Once an estimate of θ is obtained, one can update the value function estimate (Ṽ0, P̃0) as

Ṽ1 = Γq(θ̃1, Ṽ0, P̃0) and P̃1 = Λ(θ̃1, Ṽ1, P̃0), which can provide a more accurate estimator of

(V, P ) than (Ṽ0, P̃0). Iterating this procedure generates a sequence of estimators {θ̃j , Ṽj , P̃j}∞j=1.

If it converges, the limit is independent of the initial estimator (Ṽ0, P̃0). We analyze the condi-

tions under which this algorithm converges.

3 Dynamic Programming Model

3.1 The model without unobserved heterogeneity

An agent maximizes the expected discounted sum of utilities, E[
∑∞

j=0 β
jUθ(at+j , st+j)|at, st],

where st is the vector of states and at is a discrete action to be chosen from the constraint set

Gθ(st) ⊂ A ≡ {1, 2, . . . , |A|}. The transition probabilities are given by pθ(st+1|st, at). The Bell-

4The stationary distribution satisfies f∗(x, θ, P ) = P (a = 0|x − 1)f∗(x − 1, θ, P ) for x > 1 and f∗(1, θ, P ) =∑∞
x′=1 P (a = 1|x′)f∗(x′, θ, P ).
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man equation for this dynamic optimization problem is written asW (st) = maxa∈Gθ(st) Uθ(a, st)+

β
∫
W (st+1)pθ(st+1|st, a)dst+1. From the viewpoint of an econometrician, the state vector can

be partitioned as st = (xt, ξt), where xt ∈ X is observable state variable and ξt is idiosyncratic

unobservable state variable. We make the following assumptions.

Assumption 1 (Conditional Independence of ξt) The transition probability function of the

state variables can be written as pθ(st+1|st, at) = gθ(ξt+1|xt+1)fθ(xt+1|xt, at).

Assumption 2 (Finite support for x) The support of x is finite and given by X = {1, . . . , |X|}.

Accordingly, P and V are represented with L× 1 vectors, where L = |A||X|. It is assumed that

the form of Uθ, Gθ, and fθ are known up to an unknown K-dimensional vector θ ∈ Θ ⊂ RK .

We are interested in estimating the parameter vector θ from the sample data {xi, ai}ni=1, where

n is the sample size.

Define the integrated value function V (x) =
∫
W (x, ξ)gθ(ξ|x)dξ, and let BV be the space of

V ≡ {V (x) : x ∈ X}. The Bellman equation can be rewritten in terms of this integrated value

function as

V (x) =

∫
max

a∈Gθ(x,ξ)

{
Uθ(a, x, ξ) + β

∑
x′∈X

V (x′)fθ(x
′|x, a)

}
gθ(ξ

′|x)dξ′ (4)

Define the Bellman operator defined by the right-hand side of the above Bellman equation as

[Γ(θ, V )](x) ≡
∫

maxa∈Gθ(x,ξ)

{
Uθ(a, x, ξ) + β

∑
x′∈X V (x′)fθ(x

′|x, a)
}
gθ(ξ

′|x)dξ′. The Bellman

equation (4) is compactly written as V = Γ(θ, V ).

Let P (a|x) denote the conditional choice probabilities of the action a given the state x, and

let BP be the space of {P (a|x) : x ∈ X}. Given the value function V , P (a|x) is expressed as

P (a|x) =

∫
I

{
a = arg max

j∈Gθ(x,ξ)
vθ(j, x, ξ, V )

}
gθ(ξ|x)dξ (5)

where vθ(a, x, ξ, V ) = uθ(a, x, ξ) + β
∑

x′∈X V (x′)fθ(x
′|x, a) is the choice-specific value function

and I(·) is an indicator function. The right-hand side of the equation (5) can be viewed as a

mapping from one Banach (B-) space BV to another B-space BP . Define the mapping Λ(θ, V ) :

Θ×BV → BP as

[Λ(θ, V )](a|x) ≡
∫
I

{
a = arg max

j∈Gθ(x,ξ)
vθ(j, x, ξ, V )

}
gθ(ξ|x)dξ. (6)

Let θ0 and P 0 denote the true parameter value and the true conditional choice probabilities.

Let V 0 denote the true integrated value function. Then, P 0 and V 0 are related as P 0 =

Λ(θ0, V 0). Note that V0 is the fixed point of Γ(θ0, ·) and hence V 0 = Γ(θ0, V 0).
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Consider a cross-sectional data set {ai, xi}ni=1 where (ai, xi) is randomly drawn across i’s

from the population. The maximum likelihood estimator (MLE) solves the following constrained

maximization problem:

max
θ∈Θ

n−1
n∑
i=1

ln {[Λ(θ, V )](ai|xi)} subject to V = Γ(θ, V ). (7)

Computation of the MLE by the NFXP algorithm requires repeatedly solving all the fixed points

of V = Γ(θ, V ) at each parameter value to maximize the objective function with respect to θ.

If evaluating the fixed point of Γ(θ, ·) is costly, this is computationally very demanding.

We propose a sequential algorithm, the q-NPL algorithm, to estimate θ. The q-NPL algo-

rithm is similar to the algorithms by Aguirregabiria and Mira (2002, 2007) and Kasahara and

Shimotsu (2008a, 2008b), but, unlike theirs, our algorithm is based on a fixed point mapping de-

fined in the value function space rather than in the probability space. Since it is often difficult to

construct a fixed point mapping in the probability space when unobserved state variables are not

distributed according to generalized extreme value distribution and the number of choices are

larger than three, our proposed method is applicable to a wider class of dynamic programming

models than a class of models they consider.

Define a q-fold operator of Γ as

Γq(θ, V ) ≡ Γ(θ,Γ(θ, . . .Γ(θ,Γ︸ ︷︷ ︸
q times

(θ, V )) . . .)).

Starting from an initial estimate Ṽ0, the q-NPL algorithm iterates the following steps until j = k:

Step 1: Given Ṽj−1, update θ by θ̃j = arg maxθ∈Θ n
−1
∑n

i=1 ln
{[

Λ(θ,Γq(θ, Ṽj−1))
]

(ai|xi)
}

.

Step 2: Update Ṽj−1 using the obtained estimate θ̃j : Ṽj = Γq(θ̃j , Ṽj−1).

Evaluating the objective function for a value of θ involves only q evaluations of the Bellman

operator Γ(θ, ·) and one evaluation of probability operator Λ(θ, ·). The computational cost of

Step 1 is roughly equivalent to that of estimating a model with q periods.

This algorithm generates a sequence of estimators {θ̃j , Ṽj}kj=1. If this sequence converges, its

limit satisfies the following conditions:

θ̌ = arg max
θ∈Θ

n−1
n∑
i=1

ln Λ(θ,Γq(θ, V̌ ))(ai|xi) and V̌ = Γq(θ̌, V̌ ). (8)

Any pair (θ̌, V̌ ) that satisfies these two conditions in (8) is called a q-NPL fixed point. The q-

NPL estimator, denoted by (θ̂qNPL, V̂qNPL), is defined as the q-NPL fixed point with the highest

value of the pseudo likelihood among all the q-NPL fixed points.
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We state the regularity conditions for the q-NPL estimator. Let ∇(s)f denote the sth order

derivative of a function f with respect to its all parameters. Let N denote a closed neighborhood

of (θ0, V 0), and let Nθ0 denote a closed neighborhood of θ0. Let the population counterpart of

the objective function be Q0(θ, V ) ≡ E ln Ψq(θ, V )(ai|xi), and let θ̃0(V ) ≡ arg maxθ∈ΘQ0(θ, V )

and φ0(V ) ≡ Γq(θ̃0(V ), V ). The following assumption is a straightforward counterpart of the

assumptions in Aguirregabiria and Mira (2007), henceforth simply AM07.

Assumption 3 (a) The observations {ai, xi : i = 1, . . . , n} are independent and identically

distributed, and dF (x) > 0 for any x ∈ X, where F (x) is the distribution function of xi. (b)

Ψq(θ, V )(a|x) > 0 for any (a, x) ∈ A × X and any (θ, V ) ∈ Θ × BV . (c) Ψq(θ, V ) is twice

continuously differentiable. (d) Θ and BV are compact. (e) There is a unique θ0 ∈int(Θ) such

that P 0 = Ψ(θ0, V 0). (f) For any θ 6= θ0 and V that solves V = Γ(θ, V ), it is the case that

Ψ(θ, V ) 6= P 0. (g) (θ0, V 0) is an isolated population q-NPL fixed point. (h) θ̃0(V ) is a single-

valued and continuous function of V in a neighborhood of V 0. (i) the operator φ0(V )− V has a

nonsingular Jacobian matrix at V 0.

Assumptions 3(b)(c) imply that max(a,x)∈A×X sup(θ,V )∈Θ×BV ||∇
(2) ln Ψ(θ, V )(a|x)|| < ∞

and hence E sup(θ,V )∈Θ×BV ||∇
(2) ln Ψ(θ, V )(ai|xi)||r < ∞ for any positive integer r. Assump-

tion 3(h) corresponds to assumption (iv) in Proposition 2 of AM07. A sufficient condition for As-

sumption 3(h) is that Q0 is globally concave in θ in a neighborhood of V 0 and ∇θθ′Q0(θ, V 0) is a

nonsingular matrix. Define the Jacobian of Λ and Γq evaluated at (θ0, V 0) as ΛV ≡ ∇V ′Λ(θ0, V 0)

and ΓqV ≡ ∇V ′Γq(θ0, V 0), where ∇V ′ ≡ (∂/∂V ′). Define analogously Λθ ≡ ∇θ′Λ(θ0, V 0), and

Γqθ ≡ ∇θ′Γ
q(θ0, V 0).

Under Assumption 3, the proof of Proposition 2 of AM07 carries through, and the q-NPL

estimator is consistent and asymptotically normally distributed. The asymptotic variance of

θ̂qNPL is given by ΣqNPL = [Ωq
θθ + Ωq

θV (I−ΓqV )−1Γqθ]
−1Ωq

θθ{[Ω
q
θθ + Ωq

θV (I−ΓqV )−1Γqθ]
−1}′, where

Ωq
θθ ≡ E[∇θ ln Ψq(θ0, V 0)(ai|xi)∇θ′ ln Ψq(θ0, V 0)(ai|xi)] and Ωq

θV ≡ E[∇θ ln Ψq(θ0, V 0)(ai|xi)
×∇V ′ ln Ψq(θ0, V 0)(ai|xi)] and Ψq(θ, V ) ≡ Λ(θ,Γq(θ, V )). As q increases, ΣqNPL approaches to

that of the limiting variance of the MLE.5

We now analyze the conditions under which the q-NPL algorithm achieves convergence when

started from an initial consistent estimate of V 0, and derive its convergence rate. For matrix

and nonnegative scalar sequences of random variables {Xn, n ≥ 1} and {Yn, n ≥ 1}, respectively,

we write Xn = Op(Yn)(op(Yn)) if ||Xn|| ≤ CYn for some (all) C > 0 with probability arbitrarily

close to one for sufficiently large n.

Assumption 4 Assumption 3 holds. Further, Ṽ0 − V 0 = op(1), Λ(θ, V ) and Γ(θ, V ) are three

times continuously differentiable, and Ωq
θθ is nonsingular.

5The variance of the MLE is given by (Ω∞θθ)
−1. We may show that ΣqNPL → (Ω∞θθ)

−1 as q → ∞ because
ΓqV → 0 as q →∞.
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Define fx(xs) ≡ Pr(x = xs) for s = 1, . . . , |X|, and let fx be an L × 1 vector of Pr(x = xs)

whose elements are arranged conformably with Pθ0(aj |xs). Let ∆P ≡ diag(P 0)−1diag(fx). The

following lemma states the local convergence rate of the q-NPL algorithm and is one of the main

results of this paper.

Lemma 1 Suppose Assumption 4 holds. Then, for j = 1, . . . , k,

θ̃j − θ̂qNPL = Op(||Ṽj−1 − V̂qNPL||),

Ṽj − V̂qNPL = M qΓqV (Ṽj−1 − V̂qNPL) +Op(n
−1/2||Ṽj−1 − V̂qNPL||+ ||Ṽj−1 − V̂qNPL||2),

where M q ≡ I − Γqθ((ΛV Γqθ + Λθ)
′∆P (ΛV Γqθ + Λθ))

−1(ΛV Γqθ + Λθ)
′∆PΛV .

The convergence property of the q-NPL algorithm depends on the dominant eigenvalue

of M qΓqV . By Blackwell’s sufficient conditions, the Bellman operator Γ is a contraction with

modulus β, implying that the dominant eigenvalue of ΓqV is at most βq. For sufficiently large

q, therefore, the dominant eigenvalue of M qΓqV is less than one in modulus and the sequence of

estimators {θ̃j , Ṽj} converge.

It is possible to reduce the computational burden of implementing the q-NPL algorithm by

replacing Λ(θ,Γq(θ, V )) with its linear approximation around (η, V ), where η is a preliminary

estimate of θ. Define Ψq(θ, V ) ≡ Λ(θ,Γq(θ, V )) and let Ψq(θ, V, η) be a linear approximation of

Ψq(θ, V ) around (η, V ):

[Ψq(θ, V, η)](a|x) ≡ [Ψq(η, V )](a|x) + {[∇θ′Ψq(η, V )](a|x)}(θ − η). (9)

We propose the approximate q-NPL algorithm by replacing Ψq(θ, V ) with Ψq(θ, V, η) in the first

step. Starting from an initial estimate (θ̃0, Ṽ0), the approximate q-NPL algorithm iterates the

following steps until j = k:

Step 1: Given (θ̃j−1, Ṽj−1), update θ by θ̃j = arg maxθ∈Θqj
n−1

∑n
i=1 ln

{[
Ψq(θ, Ṽj−1, θ̃j−1)

]
(ai|xi)

}
,

where Θq
j ≡ {θ ∈ Θ : Ψq(θ, Ṽj−1, θ̃j−1)(a|x) ∈ [c, 1− c] for all (a, x) ∈ A×X} for an arbi-

trary small c > 0.

Step 2: Update Ṽj−1 using the obtained estimate θ̃j : Ṽj = Γq(θ̃j , Ṽj−1).

Implementing Step 1 in the approximate q-NPL algorithm is much less computationally inten-

sive than the original q-NPL algorithm because we may evaluate Ψq(θ̃j−1, Ṽj−1) and∇θ′Ψq(θ̃j−1, Ṽj−1)

outside of the optimization routine for θ in Step 1. Using one-sided numerical derivatives, eval-

uating ∇θ′Ψq(θ̃j−1, Ṽj−1) requires the (K + 1)q function evaluations of Γ(θ, V ) and the (K + 1)

function evaluations of Λ(θ, V ). Once Ψq(θ̃j−1, Ṽj−1) and ∇θ′Ψq(θ̃j−1, Ṽj−1) are computed, eval-

uating Ψq(θ, Ṽj−1, θ̃j−1) across different values of θ is computationally easy.
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The following proposition establishes that the first-order convergence property of the ap-

proximate q-NPL algorithm is the same as that of the original q-NPL algorithm.

Assumption 5 (a) Assumption 4 holds. hold. (b) For any ν ∈ RK such that ν 6= 0, ∇θ′Ψq(θ0, V 0)(ai|xi)ν 6=
0 with positive probability. (c) θ̃0 − θ0 = op(1).

Proposition 1 Suppose Assumption 5 holds. Suppose we obtain {θ̃j , Ṽj}kj=1 by the approximate

q-NPL algorithm. Then, for j = 1, . . . , k,

θ̃j − θ̂qNPL = Op(||Ṽj−1 − V̂qNPL||) +Op(n
−1/2||θ̃j−1 − θ̂qNPL||+ ||θ̃j−1 − θ̂qNPL||2),

Ṽj − V̂qNPL = M qΓqV (Ṽj−1 − V̂qNPL) +Op(n
−1/2||θ̃j−1 − θ̂qNPL||+ ||θ̃j−1 − θ̂qNPL||2)

+ Op(n
−1/2||Ṽj−1 − V̂qNPL||+ ||Ṽj−1 − V̂qNPL||2),

where M q ≡ I − Γqθ((ΛV Γqθ + Λθ)
′∆P (ΛV Γqθ + Λθ))

−1(ΛV Γqθ + Λθ)
′∆PΛV .

Assumption 5(b) is an identification condition for the probability limit of our objective

function. It is required because we use an approximation of Ψq(θ, V )(a|x) in the objective

function.

3.2 The model with permanent unobserved heterogeneity

Suppose that there are M types of agents, where type m is characterized by a type-specific

parameter θm, and the population probability of being type m is πm with
∑M

m=1 π
m = 1. These

types capture time-invariant state variables that are unobserved by the researcher. With a

slight abuse of notation, denote θ = (θ1, . . . , θM )′ ∈ ΘM and π = (π1, . . . , πM )′ ∈ Θπ. Then,

ζ = (θ′, π′)′ is the parameter to be estimated, and let Θζ = ΘM ×Θπ denote the set of possible

values of ζ. The true parameter is denoted by ζ0.

Consider a panel data set {{ait, xit, xi,t+1}Tt=1}ni=1 such that wi = {ait, xit, xi,t+1}Tt=1 ∈W ≡
(A ×X ×X)T is randomly drawn across i’s from the population. The conditional probability

distribution of ait given xit for a type m agent is given by Pθm = Λ(θm, Vθm), where Vθm

is a fixed point Vθm = Γ(θm, Vθm). To simplify our analysis, we assume that the transition

probability function of xit is independent of types and given by fx(xi,t+1|ait, xit) and is known

to the researcher. An extension to the case where the transition probability function is also

type-dependent is straightforward.

In this framework, the initial state xi1 is correlated with unobserved type (i.e., the initial

conditions problem of Heckman (1981)). We assume that xi1 for type m is randomly drawn

from the type m stationary distribution characterized by a fixed point of the following equation:

p∗(x) =
∑

x′∈X p
∗(x′)

(∑
a′∈A Pθm(a′|x′)fx(x|a′, x′)

)
≡ [T (p∗, Pθm)](x). Since solving the fixed

point of T (·, P ) for given P is often less computationally intensive than computing the fixed
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point of Ψ(·, θ), we assume the full solution of the fixed point of T (·, P ) is available given P .6

Let Pm and V m denote type m’s conditional choice probabilities and type m’s value function,

stack the Pm’s and the V m’s as P = (P 1′ , . . . , PM
′
)′ and V = (V 1′ , . . . , VM ′)′, respectively.

Let P0 and V0 denote their true values. Let Γ(θ,V) = (Γ(θ1, V 1)′, . . . ,Γ(θM , VM )′)′ and let

Λ(θ,V) = (Λ(θ1, V 1)′, . . . ,Λ(θM , VM )′)′. Then, the maximum likelihood estimator for a model

with unobserved heterogeneity is:

ζ̂MLE = arg max
ζ∈Θζ

ln ([L(π,P)](wi)) , (10)

s.t. P = Λ(θ,V), V = Γ(θ,V)

where

[L(π,P)](wi) =

M∑
m=1

πmp∗Pm(xi1)
T∏
t=1

Pm(ait|xit)fx(xi,t+1|ait, xit),

and p∗Pm = T (p∗Pm , P
m) is the type m stationary distribution of x when the conditional choice

probability is Pm. If P0 = Λ(θ0,V0) is the true conditional choice probability distribution

and π0 is the true mixing distribution, then L0 = L(π0,P0) represents the true probability

distribution of w.

We consider the following sequential algorithm for models with unobserved heterogeneity. Let

Γq(θ, V ) = (Γq(θ1, V 1)′, . . . ,Γq(θM , VM )′)′. Define Ψq(θm, V m) = Λ(θm,Γq(θm, V m)) for m =

1, ...,M and let Ψq(θ, V ) = (Ψq(θ1, V 1)′, . . . ,Ψq(θM , VM )′)′. Assume that an initial consistent

estimator Ṽ0 = (Ṽ 1
0 , . . . , Ṽ

M
0 )′ is available. For j = 1, 2, . . ., iterate

Step 1: Given Ṽj−1 = (Ṽ 1
j−1, . . . , Ṽ

M
j−1)′, update ζ = (θ′, π′)′ by

ζ̃j = arg max
ζ∈Θζ

n−1
n∑
i=1

ln
(

[L(π,Ψq(θ, Ṽj−1))](wi)
)
.

Step 2: Update V using the obtained estimate θ̃j by Ṽj = Γq(θ̃j , Ṽj−1) for m = 1, ...,M ,

until j = k. If iterations converge, its limit satisfies ζ̂ = arg maxζ∈Θζ
n−1

∑n
i=1 ln([L(π,Ψq(θ, V̂))](wi))

and V̂ = Γq(θ̂, V̂). Among the pairs that satisfy these two conditions, the one that maximizes

the pseudo likelihood is called the q-NPL estimator, which we denote by (ζ̂qNPL, V̂qNPL).

Let us introduce the assumptions for the consistency and asymptotic normality of the q-

NPL estimator. They are analogous to the assumptions used in Aguirregabiria and Mira (2007).

define Q0(ζ,V) ≡ E ln ([L(π,Ψq(θ,V))](wi)), ζ̃0(V) ≡ arg maxζ∈Θζ Q0(θ,V), and φ0(V) ≡
6It is possible to relax the stationarity assumption on the initial states by estimating the type-specific ini-

tial distributions of x, denoted by {p∗m}Mm=1, without imposing stationarity restriction in Step 1 of the q-NPL
algorithm. In this case, the q-NPL algorithm has the convergence rate similar to that of Proposition 2.
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Γq(θ̃0(V),V). Define the set of population q-NPL fixed points as Y0 ≡ {(θ,V) ∈ Θ×BM
V : ζ =

ζ̃0(V) and V = φ0(V)}.

Assumption 6 (a) wi = {(ait, xit, xi,t+1) : t = 1, . . . , T} for i = 1, . . . , n, are independently and

identically distributed, and dF (x) > 0 for any x ∈ X, where F (x) is the distribution function

of xi. (b) [L(π,P)](w) > 0 for any w and for any (π,P) ∈ Θπ × BM
P . (c) Λ(θ, V ) and Γ(θ, V )

are twice continuously differentiable. (d) Θζ and BM
P are compact. (e) There is a unique

ζ0 ∈int(Θζ) such that [L(π0,P0)](w) = [L(π0,Ψ(θ0,V0))](w). (f) For any ζ 6= ζ0 and V that

solves V = Γ(θ,V), it is the case that Pr({w : [L(π,Ψ(θ,V)](w) 6= L0(w)}) > 0. (g) (ζ0,V0) is

an isolated population q-NPL fixed point. (h) ζ̃0(V) is a single-valued and continuous function

of V in a neighborhood of V0. (i) the operator φ0(V) −V has a nonsingular Jacobian matrix

at V0. (j) For any P ∈ BP , there exists a unique fixed point for T (·, P ).

Under Assumption 6, the consistency and asymptotic normality of the q-NPL estimator can

be shown by following the proof of Proposition 2 of Aguirregabiria and Mira (2007).

We now establish the convergence property of the q-NPL algorithm for models with unob-

served heterogeneity.

Assumption 7 Assumption 6 holds. Further, Ṽ0 −V0 = op(1), Λ(θ, V ) and Γ(θ, V ) are three

times continuously differentiable, and Ωq
ζζ is nonsingular.

Assumption 7 requires an initial consistent estimator of the value functions. As Aguirregabiria

and Mira (2007) argue, if the q-NPL algorithm converges, then the limit may provide a consistent

estimate of the parameter ζ even when Ṽ0 is not consistent.

The following proposition states the convergence properties of the q-NPL algorithm for mod-

els with unobserved heterogeneity.

Proposition 2 Suppose Assumption 7 holds. Then, for j = 1, . . . , k,

ζ̃j − ζ̂qNPL = Op(||Ṽj−1 − V̂qNPL||),

Ṽj − V̂qNPL = MqΓqV (Ṽj−1 − V̂qNPL) +Op(n
−1/2||Ṽj−1 − V̂qNPL||) +Op(||Ṽj−1 − V̂qNPL||2).

where Mq ≡ I − ΓqθD(Ψq
θ)
′L′P∆

1/2
L MLπ∆

1/2
L LPΛV with D = ((Ψq

θ)
′L′P∆

1/2
L MLπ∆

1/2
L LPΨq

θ)
−1,

MLπ ≡ I −∆
1/2
L Lπ(L′π∆LLπ)−1Lπ∆

1/2
L , and Ψq

θ ≡ ∇θ′Ψ
q(θ0,V0), Γqθ ≡ ∇θ′Γ

q(θ0,V0), ΓqV ≡
∇V′Γ

q(θ0,V0), ΛV ≡ ∇V′Λ(θ0,V0), ∆L = diag((L0)−1), LP = ∇P′L(π0,P0), and Lπ =

∇π′L(π0,P0).

Since ΓqV → 0 as q →∞, the algorithm is converging for sufficiently large q.

To reduce the computational cost of implementing the q-NPL algorithm, we may apply the

approximate q-NPL algorithm to models with unobserved heterogeneity by replacing Ψq(θ, V )

with Ψq(θ, V, η) in the first step. Let η = (η1, ..., ηM )′ be a preliminary estimate of θ =
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(θ1, ..., θM )′. Let Ψq(θ, V, η) = (Ψq(θ1, V 1, η1)′, . . . ,Ψq(θM , VM , η1)′)′, where Ψq(θ, V, η) is de-

fined in (9). Assume that initial consistent estimators θ̃0 = (θ̃1
0, . . . , θ̃

M
0 )′ and Ṽ0 = (Ṽ 1

0 , . . . , Ṽ
M

0 )′

are available. The approximate q-NPL algorithm iterates the following steps until j = k:

Step 1: Given θ̃j−1 = (θ̃1
j−1, . . . , θ̃

M
j−1)′ and Ṽj−1 = (Ṽ 1

j−1, . . . , Ṽ
M
j−1)′, update ζ = (θ′, π′)′ by

ζ̃j = arg maxζ∈Θqζ,j
n−1

∑n
i=1 ln

(
[L(π,Ψq(θ, Ṽj−1, θ̃j−1))](wi)

)
, where Θq

ζ,j ≡ {(π, θ) :

0 < πm < 1, [Ψq(θm, Ṽ m
j−1, θ̃

m
j−1)](w) ∈ [c, 1 − c] for all w ∈ W for m = 1, ...,M} for an

arbitrary small c > 0.

Step 2: Given (θ̃j , Ṽj−1), update V by Ṽj = Γq(θ̃j , Ṽj−1) for m = 1, ...,M .

The following proposition establishes that the dominant term for the convergence rate of

the approximate q-NPL algorithm is the same as that of the q-NPL algorithm for models with

unobserved heterogeneity.

Assumption 8 (a) Assumptions 6-7 hold. (b) For any ν ∈ RK such that ν 6= 0, ∇θ′Ψq(θ0, V 0)(ai|xi)ν 6=
0 with positive probability. (c) θ̃0 − θ0 = op(1).

Proposition 3 Suppose Assumption 8 hold. Suppose we obtain {ζ̃j , Ṽj}kj=1 by the approximate

q-NPL algorithm. Then, for j = 1, . . . , k,

ζ̃j − ζ̂NPL = Op(||Ṽj−1 − V̂NPL||) +Op(n
−1/2||ζ̃j−1 − ζ̂||+ ||ζ̃j−1 − ζ̂||2),

Ṽj − V̂NPL = MqΓqV (Ṽj−1 − V̂NPL) +Op(n
−1/2||ζ̃j−1 − ζ̂||+ ||ζ̃j−1 − ζ̂||2)

+ Op(n
−1/2||Ṽj−1 − V̂NPL||+ ||Ṽj−1 − V̂NPL||2).

where Mq is defined in Proposition 2.

4 Dynamic Programming Model with an Equilibrium Constraint

In many dynamic game models and dynamic macroeconomic models, their equilibrium condi-

tion is characterized by the solution to the following dual fixed point problems: (i) given the

equilibrium probability distribution P ∈ BP , an agent solves the dynamic programming prob-

lem V = Γ(θ, V, P ), and (ii) given the solution to the agent’s dynamic programing problem V ,

the probability distribution P satisfies the equilibrium constraint P = Λ(θ, V, P ). For instance,

in a dynamic game model, P corresponds to the equilibrium strategy and Λ is the best reply

mapping. Each player solves the dynamic programming problem given the other players’ strat-

egy, V = Γ(θ, V, P ), while the equilibrium strategy is a fixed point of the best reply mapping,

P = Λ(θ, V, P ).

In the following, we extend our sequential estimation algorithm to dynamic programming

models with such an equilibrium constraint. We also provide examples of dynamic games and

dynamic macro models.
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4.1 The Basic Model with an Equilibrium Constraint

As before, an agent maximizes the expected discounted sum of utilities but her utility, the con-

straint set, and the transition probabilities depend on the equilibrium probability distribution.

Importantly, when the agent makes her decision, she treats the equilibrium probability distribu-

tion as exogenous: in the dynamic macro model, there are a large number of ex ante identical

agents so that each agent’s effect on the equilibrium probability distribution is infinitesimal

while, in dynamic games, each player treats the other players’ strategy as given. Denote the

dependence of the equilibrium choice probabilities P on utility function, constraint set, and

transition probabilities by the superscript P as UPθ (a, x, ξ), GPθ (x, ξ), and fPθ (x′|x, a). Then, the

Bellman equation and the conditional choice probabilities for the agent dynamic optimization

problem are written, respectively, as:

V (x) =

∫
max

a∈GPθ (x,ξ)

{
UPθ (a, x, ξ) + β

∑
X

V (x′)fPθ (x′|x, a)

}
g(ξ|x)dξ ≡ Γ(θ, V, P )](x),

and

P (a|x) =

∫
I

{
a = arg max

j∈GPθ (x,ξ)

vθ(j, x, ξ, V, P )

}
gθ(ξ|x, ε)dξ ≡ [Λ(θ, V, P )](a|x),

where vθ(a, x, ξ, V, P ) = UPθ (a, x, ξ)+β
∑

X V (x′)fPθ (x′|x, a) is the choice-specific value function

and I(·) is an indicator function.

Consider a cross-sectional data set {ai, xi}ni=1 where (ai, xi) is randomly drawn across i’s

from the population. The maximum likelihood estimator (MLE) solves the following constrained

maximization problem:

max
θ∈Θ

n−1
n∑
i=1

ln {P (ai|xi)} suject to P = Λ(θ, V, P ), V = Γ(θ, V, P ). (11)

Computation of the MLE by the NFXP algorithm requires repeatedly solving all the fixed points

of P = Λ(θ, V, P ) and V = Γ(θ, V, P ) at each parameter value to maximize the objective function

with respect to θ. If evaluating the fixed point of V = Γ(θ, V, P ) and P = Λ(θ, V, P ) is costly,

then the MLE is computationally very demanding.

Define Ψq(θ, V, P ) ≡ Λq(θ,Γq(θ, V, P ), P ), where Λq(θ, V, ·) is a q-fold operator of Λ defined

as

Λq(θ, V, P ) ≡ Λ(θ, V,Λ(θ, V, . . .Λ(θ, V,Λ︸ ︷︷ ︸
q times

(θ, V, P )) . . .)).

Let Q0(θ, V, P ) ≡ E ln Ψq(θ, V, P )(ai|xi), θ̃0(V, P ) ≡ arg maxθ∈ΘQ0(θ, V, P ), and φ0(V, P ) ≡
[Γq(θ̃0(V, P ), V, P ),Ψq(θ̃0(V, P ), V, P )].
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Assumption 9 (a) The observations {ai, xi : i = 1, . . . , n} are independent and identically

distributed, and dF (x) > 0 for any x ∈ X, where F (x) is the distribution function of xi. (b)

Ψq(θ, V, P )(a|x) > 0 for any (a, x) ∈ A×X and any (θ, V, P ) ∈ Θ× BV × BP . (c) Ψq(θ, V, P )

is twice continuously differentiable. (d) Θ, BV , and BP are compact. (e) There is a unique

θ0 ∈int(Θ) such that P 0 = Ψ(θ0, V 0, P 0). (f) For any θ 6= θ0, (V, P ) that solves V = Γ(θ, V, P )

and P = Λ(θ, V, P ), it is the case that Ψ(θ, V, P ) 6= P 0. (g) (θ0, V 0, P 0) is an isolated population

q-NPL fixed point. (h) θ̃0(V, P ) is a single-valued and continuous function of V and P in a

neighborhood of (V 0, P 0). (i) the operator φ0(V, P )− (V, P ) have a nonsingular Jacobian matrix

at (V 0, P 0).

Based on the mapping Ψq(θ, V, P ), we propose the following computationally attractive

algorithm that does not require repeatedly solving the fixed points of the Bellman operator

Γ and the equilibrium mapping Λ. Starting from an initial estimator Ṽ 0 and P̃ 0, iterate the

following steps until j = k:

Step 1: Given Ṽ j−1 and P̃ j−1, update θ by θ̃j = arg maxθ∈Θ n
−1
∑n

i=1 ln
{[

Ψq(θ, Ṽj−1, P̃j−1)
]

(ai|xi)
}

.

Step 2: Update Ṽj−1 and P̃j−1 using the obtained estimate θ̃j : P̃j = Ψq(θ̃j , Ṽj−1, P̃j−1) and

Ṽj = Γq(θ̃j , Ṽj−1, P̃j−1).

If the sequence of estimators {θ̃j , Ṽj , P̃j} converges, its limit satisfies the conditions:

θ̌ = arg max
θ∈Θ

n−1
n∑
i=1

ln
[
Ψq(θ, V̌ , P̌ )

]
(ai|xi), P̌ = Λ(θ̌, V̌ , P̌ ), and V̌ = Γ(θ̌, V̌ , P̌ ).

Any triplet (θ̌, V̌ , P̌ ) that satisfies the above three conditions is called an q-NPL fixed point. The

q-NPL estimator, denoted by (θ̂qNPL, V̂qNPL, P̂qNPL), is defined as the q-NPL fixed point with

the highest value of the pseudo likelihood among all the q-NPL fixed points.

Define Ωq
θθ ≡ E[∇θ ln Ψq(θ0, V 0, P 0)(ai|xi)∇θ′ ln Ψq(θ0, V 0, P 0)(ai|xi)], Ωq

θV ≡ E[∇θ ln Ψq(θ0, V 0, P 0)(ai|xi)
×∇V ′ ln Ψq(θ0, V 0, P 0)(ai|xi)], and Ωq

θP ≡ E[∇θ ln Ψq(θ0, V 0, P 0)(ai|xi)∇P ′ ln Ψq(θ0, V 0, P 0)(ai|xi)].
Then, the q-NPL estimator (θ̂qNPL, V̂qNPL, P̂qNPL) is consistent (See AM07 for details) and

its asymptotic distribution is given by:
√
n(θ̂qNPL − θ0) →d N(0, Σ̄qNPL), where Σ̄qNPL =

[Ωq
θθ + Sq]−1Ωq

θθ{[Ω
q
θθ + Sq]−1}′ with

Sq = (Ωq
θV Ωq

θP )

(
I − ΓqV −ΓqP
−Ψq

V I −Ψq
P

)−1(
Γqθ
Ψq
θ

)
.

As the value of q increases, the variance Σ̄qNPL approaches the variance of the MLE when the

dominant eigenvalue of ΨP is inside the unit circle. Since the computational cost increases with

q, there is a trade off in the choice of q between the computational cost and the efficiency of the

q-NPL estimator.
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The following proposition states the local convergence property of the q-NPL algorithm.

Assumption 10 Assumption 9 holds. Further, Ṽ0 − V 0 = op(1), P̃0 − P 0 = op(1), Λ(θ, V, P )

and Γ(θ, V, P ) are three times continuously differentiable, and Ωq
θθ is nonsingular.

Proposition 4 Suppose Assumption 10 holds. Then, for j = 1, ..., k,

θ̃j − θ̂qNPL = Op(||Ṽj − V̂qNPL||) +Op(||P̃j − P̂qNPL||),(
Ṽj − V̂qNPL
P̃j − P̂qNPL

)
=

(
ΓqV − Γqθ(Ω

q
θθ)
−1Ωq

θV ΓqP − Γqθ(Ω
q
θθ)
−1Ωq

θP

Ψq
V −Ψq

θ(Ω
q
θθ)
−1Ωq

θV Ψq
P −Ψq

θ(Ω
q
θθ)
−1Ωq

θP

)(
Ṽj−1 − V̂qNPL
P̃j−1 − P̂qNPL

)
+Rn,j ,

where Rn,j = Op(n
−1/2||Ṽj−1−V̂qNPL||+||Ṽj−1−V̂qNPL||2)+Op(n

−1/2||P̃j−1−P̂qNPL||+||P̃j−1−
P̂qNPL||2).

As q → ∞, both ΓqV − Γqθ(Ω
q
θθ)
−1Ωq

θV and Ψq
V − Ψq

θ(Ω
q
θθ)
−1Ωq

θV approach zero. Thus, for

sufficiently large q, the convergence property of the q-NPL algorithm is determined by the

dominant eigenvalue of Ψq
P − Ψq

θ(Ω
q
θθ)
−1Ωq

θP = M qΨq
P , where M q = I − Ψq

θ(Ω
q
θθ)
−1Ψq

θ∆P is a

projection matrix.

As before, we may reduce the computational burden of implementing the q-NPL algorithm

by replacing Ψq(θ, V, P ) with its linear approximation around (η, V, P ), where η is a preliminary

estimate of θ. Let

Ψq(θ, V, P, η)(a|x) ≡ [Ψq(η, V, P )](a|x) + {[∇θ′Ψq(η, V, P )](a|x)}(θ − η).

Starting from an initial estimate (θ̃0, Ṽ0, P̃0), the approximate q-NPL algorithm iterates the

following steps until j = k:

Step 1: Given (θ̃j−1, Ṽj−1, P̃j−1), update θ by θ̃j = arg maxθ∈Θ̃qj
n−1

∑n
i=1 ln

{[
Ψq(θ, Ṽj−1, P̃j−1, θ̃j−1)

]
(ai|xi)

}
.

where Θq
j ≡ {θ ∈ Θ : Ψq(θ, Ṽj−1, P̃j−1, θ̃j−1)(a|x) ∈ [c, 1− c] for all (a, x) ∈ A×X} for an

arbitrary small c > 0.

Step 2: Update Ṽj−1 and P̃j−1 using the obtained estimate θ̃j : P̃j = Ψq(θ̃j , Ṽj−1, P̃j−1) and

Ṽj = Γq(θ̃j , Ṽj−1, P̃j−1).

The repeated evaluations of the objective function in Step 1 across different values of θ is easy be-

cause we evaluate Ψq(θ̃j−1, Ṽj−1, P̃j−1, θ̃j−1) and ∇θ′Ψq(θ̃j−1, Ṽj−1, P̃j−1, θ̃j−1) outside of the op-

timization routine. Using one-sided numerical derivatives, evaluating∇θ′Ψq(θ̃j−1, Ṽj−1, P̃j−1, θ̃j−1)

requires the (K + 1)q function evaluations of Γ(θ, V, P ) and the (K + 1)q function evaluations

of Λ(θ, V, P ).

The following proposition shows that the first-order convergence property of the approximate

q-NPL algorithm is the same as that of the original q-NPL algorithm.
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Assumption 11 (a) Assumption 10 holds. (b) For any ν ∈ RK such that ν 6= 0, ∇θ′Ψq(θ0, V 0, P 0)(ai|xi)ν 6=
0 with positive probability. (c) θ̃0 − θ0 = op(1).

Proposition 5 Suppose Assumption 11 holds. Suppose we obtain {θ̃j , Ṽj , P̃j} by the approxi-

mate q-NPL algorithm. Then, for j = 1, ..., k, Then, for j = 1, ..., k,

θ̃j−θ̂qNPL = Op(||Ṽj−V̂qNPL||)+Op(||P̃j−P̂qNPL||)+Op(n−1/2||θ̃j−1−θ̂qNPL||+||θ̃j−1−θ̂qNPL||2),(
Ṽj − V̂qNPL
P̃j − P̂qNPL

)
=

(
ΓqV − Γqθ(Ω

q
θθ)
−1Ωq

θV ΓqP − Γqθ(Ω
q
θθ)
−1Ωq

θP

Ψq
V −Ψq

θ(Ω
q
θθ)
−1Ωq

θV Ψq
P −Ψq

θ(Ω
q
θθ)
−1Ωq

θP

)(
Ṽj−1 − V̂qNPL
P̃j−1 − P̂qNPL

)
+R̄n,j ,

where R̄n,j = Op(n
−1/2||θ̃j−1− θ̂qNPL||+ ||θ̃j−1− θ̂qNPL||2)+Op(n

−1/2||Ṽj−1− V̂qNPL||+ ||Ṽj−1−
V̂qNPL||2) +Op(n

−1/2||P̃j−1 − P̂qNPL||+ ||P̃j−1 − P̂qNPL||2).

4.2 Discrete Dynamic Game

Consider the model of dynamic discrete games studied by Aguirregabiria and Mira (2007),

section 3.5. There are I “global” firms competing in N local markets. In market h, a firm i

maximizes the expected discounted sum of profits E[
∑∞

s=t β
s−t{Π(xhs, ahs, ξhis; θ)}|aht, xht; θ],

where xht is state variable that is common knowledge for all firms, while ξhit is state variable

that is private information to firm i. The state variable xht may contain the past choice ah,t−1.

The researcher observes xht but not ξhit. There is no interaction across different markets.

Denote the strategy of firm i by σi. Given a set of strategy functions σ = {σi(x, ξi) : i =

1, . . . , I}, the expected behavior of firm i from the viewpoint of the rest of the firms is summarized

by the conditional choice probabilities P i(ai|x) =
∫

1{σi(x, ξi) = ai}g(ξi|x)dξi, where g(ξi|x) is

a density function for ξi.

Let P−i = {P j : j 6= i} and let Gi(x, ξi; θ) represent a set of feasible choices for firm i when

the state is (x, ξi). By assuming that ξi’s are iid across firms, the expected profit and the transi-

tion probability of x for firm i is given by UP
−i

i (x, ai, ξi; θ) =
∑

a−i∈A−i

(∏
j 6=i P

j(aj |x)
)

Π(x, ai, a−i, ξi; θ)

and fP
−i

i (x′|x, ai; θ) =
∑

a−i∈A−i

(∏
j 6=i P

j(aj |x)
)
f(x′|x, ai, a−i; θ), respectively. Then, given

(θ, P−i), the Bellman equation and the choice probabilities are

V i(x; θ) =

∫
max

ai∈Gi(x,ξi;θ)

{
UP

−i
i (x, ai, ξi; θ) + β

∑
x′∈X

V i(x′)fP
−i

(x′|x, ai; θ)

}
g(dξi|x) ≡ Γi(θ, V

i, P−i),

P i(ai|x; θ) =

∫
1

{
ai = arg max

a′i∈Gi(x,ξi;θ)
UP

−i
i (x, a′i, ξi; θ) + β

∑
x′∈X

V i(x′)fP
−i

(x′|x, a′i; θ)

}
g(dξi|xi) ≡ Λi(θ, V

i, P−i)

Let θ0 denote the true parameter value. Then the true conditional choice probabilities P i,0’s

and the true value function V i,0’s are obtained as the fixed point of the following system of

18



equations:

V i,0 = Γi(θ
0, V i,0, P−i,0) and P 0

i = Λi(θ
0, V i,0, P−i,0), (12)

for i = 1, ..., I.

Let {{aih, xih}Ii=1}nh=1 be a cross-sectional data set where {aih, xih}Ii=1 is randomly drawn

across h’s from the population. Suppose we have an initial estimator of the choice probabilities,

P̃0 = (P̃ 1
0 , ..., P̃

I
0 ). Then, we may obtain a two-step estimator of θ as

θ̃ = arg maxθ∈Θ n
−1
∑n

h=1

∑I
i=1 ln

{[
Λi(θ, V

i, P̃−i0 )
]

(aih|xih)
}

subject to V i = Γi(θ, V
i, P̃−i0 )

by solving the fixed point problem V i = Γi(θ, V
i, P̃−i0 ) at each parameter value to maximize

the log pseudo-likelihood with respect to θ. When the initial estimator P̃0 is consistent, this

two-step estimator θ̃ is consistent. Since each agent solves her dynamic programming problem

given an estimate of choice probabilities of other agents, P̃−i0 = {P̃ j0 : j 6= i}, the computational

cost is similar to that of implementing the NFXP algorithm I times for a single agent problem.

We may reduce the computational burden by iterating the following step until j = k starting

from an initial value of Ṽ0 = (Ṽ 1
0 , ..., Ṽ

I
0 ):

Step 1: Given Ṽj−1 = (Ṽ 1
j−1, ..., Ṽ

I
j−1), update θ by

θ̃j = arg maxθ∈Θ n
−1
∑n

h=1

∑I
i=1 ln

{[
Λi(θ,Γ

q
i (θ̃j , Ṽ

i
j−1, P̃

−i
0 ), P̃−i0 )

]
(aih|xih)

}
.

Step 2: Update Ṽj−1 using the obtained estimate θ̃j : Ṽ
i
j = Γqi (θ̃j , Ṽ

i
j−1, P̃

−i
0 ), for i = 1, ..., I.

The estimators obtained by the above algorithm may suffer from the finite sample bias when

the first-stage estimator P̃0 is imprecisely estimated.

To obtain more efficient estimators, we may apply the q-NPL algorithm discussed in the pre-

vious section as follows. Define [Ψq
i (θ, V

i, P−i)](aih|xih) ≡
[
Λqi (θ,Γ

q
i (θ, V

i, P−i), P−i)
]

(aih|xih).

Starting from an initial estimate P̃0 and an initial value of Ṽ0, the q-NPL algorithm iterates the

following step until j = k:

Step 1: Given P̃j−1 = (P̃ 1
j−1, ..., P̃

I
j−1) and Ṽj−1 = (Ṽ 1

j−1, ..., Ṽ
I
j−1), update θ̃j by

θ̃j = arg maxθ∈Θ n
−1
∑n

h=1

∑I
i=1 ln

{[
Ψq
i (θ, Ṽ

i
j−1, P̃

−i
j−1)

]
(aih|xih)

}
.

Step 2: Update P̃j−1 and Ṽj−1 using the obtained estimate θ̃j as P̃ ij = Ψq
i (θ̃j , Ṽ

i
j−1, P̃

−i
j−1) and

Ṽ i
j = Γqi (θ, Ṽ

i
j−1, P̃

−i
j−1) for i = 1, ..., I.

As Proposition 4 indicates, this q-NPL algorithm converges for sufficiently large value of q when

the dominant eigenvalue of Ψi,P is within a unit circle.

In the q-NPL algorithm, Step 1 is computationally intensive when the evaluations of Λi and

Γi is costly and the value of q is large. We may reduce the computational burden of implementing

the approximate q-NPL algorithm that replaces Ψq
i (θ, Vi, P−i) with its linear application around

(η, Vi, P−i), [Ψq
i (θ, V

i, P−i, η)](a|x) ≡ [Ψq
i (η, V

i, P−i)](a|x) + {[∇θ′Ψq
i (η, V

i, P−i)](a|x)}(θ − η).
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That is, we may update θ in Step 1 as θ̃j = arg maxθ∈Θ n
−1
∑n

h=1

∑I
i=1 ln

{[
Ψq
i (θ, Ṽ

i
j−1, P̃

−i
j−1, θ̃j−1)

]
(aih|xih)

}
.

The resulting approximate algorithm is much less computationally intensive than the q-NPL al-

gorithm while its first-order convergence property is the same as that of the q-NPL algorithm

(Proposition 5).

5 Monte Carlo Experiments

5.1 Experiment 1: Machine Replacement Model

We consider a version of machine replacement model with unobserved heterogeneity. The ob-

served state variable is machine age denoted by xt ∈ Nx, and the unobserved state variables

include production shock εt and choice-specific cost shock ξt = (ξt(0), ξt(1))′, where εt is indepen-

dently drawn from N(0, σ2
ε ) while ξt(a)’s are independently drawn from Type 1 extreme value

distribution. The replacement decision is denoted by at ∈ {0, 1} and the transition function of

xt is given by xt+1 = at + (1− at)(xt + 1). The profit function is given by uθ(xt, εt, at) + ξ(at),

where uθ(xt, εt, at) = exp (θ1xt(1− at) + εt)− θ2at.

We assume that θ = (θ1, θ2) is multinomially distributed with the number of support points

equal to M , where the m-th type is characterized by a type-specific parameter θm = (θm1 , θ
m
2 )′

and the fraction of the m-th type in the population is πm. We also assume that revenue is

observable but with measurement error as: ln yt = θm1 xt(1 − at) + ξt + ηt, where ηt is the

measurement error and is assumed to be independent of ξt and drawn from N(0, σ2
η).

The Bellman equation for this firm’s dynamic optimization problem is written as

V (x, ε) = γ + ln

(
1∑

a=0

exp
(
uθm(x, ε, a) + βEε′ [V (x′, ε′)|x, a]

))
≡ [Γ(θm, V )](x, ε)

while the mapping from the value function to the conditional choice probability is given by

[Λ(θm, V )](a|x, ε) ≡ exp (uθm(x, ε, a) + βEε′ [V (x′, ε′)|x, a])∑1
a′=0 exp (uθm(x, ε, a′) + βEε′ [V (x′, ε′)|x, a′])

,

where Eε′ [V (x′, ε′)|x, a] =
∫
V (a+ (1− a)(x+ 1), ε′)φ(ε′/σε)/σεdε

′.

In our experiment, we setM = 2 and estimate the five structural parameters θ ≡ (θ1′ , θ2′ , π1)′,

of which true value is given by θ1 = (−0.3, 4.0)′, θ2 = (−0.1, 2.0)′, and π1 = π2 = 1/2. We

assume that the other parameters in the model are known and common across unobserved types

at (β, σε, ση) = (0.96, 0.4, 0.2).

We generate a panel data set of sample size n with T periods from a parametric model. We

first draw types of firms {mi : i = 1, ..., n} from the multinomial distribution and, then, we

draw the initial states {(xi1, ξi1) : i = 1, . . . , n} from the type-specific stationary distributions

of (x, ε) given θmi ’s. For firm i, starting from the initial state (xi1, ξi1), ai1’s are drawn from the
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type-specific conditional choice probabilities Pθmi (a|xi1, ξi1) while ηi1’s are simulated to generate

yi1’s. Then, starting from the initial state (xi1, ai1), firm i’s time-series data is generated from

the model under θmi . The data set consists of {{(xit, yit, ait)}Tt=1 : i = 1, . . . , n}.7

To compute the likelihood, let wt = ξt + ηt and define σ2
w = σ2

ε + σ2
η and ρ2 = σ2

ε /σ
2
w. Then,

the density of ε conditional on w is given by g(ε|w) = φ[(ε − ρ2w)/(σε
√

1− ρ2)]/(σε
√

1− ρ2),

where φ(·) is the standard normal density function. Denoting the joint density of ε and w by

g(ε, w) = g(ε|w)φ(w/σw)/σw, firm i’s likelihood contribution is computed by integrating out the

unobserved heterogeneity, ε’s and θm’s, as

L(θ|{(xit, yit, ait)}Tt=1) =
m∑
m=1

πmp∗Pθm (xi1)
T∏
t=1

∫
Pθm(ait|xit, ε′)g(ε′, w̃it(θ

m))dε′,

where w̃it(θ
m) = ln yit − θm1 xit(1 − ait) and p∗Pθm (x) is the stationary distribution of x implied

by the conditional choice probability Pθm , where Pθm = Λ(θ, Vθm) given the fixed point Vθm =

Γ(Vθm , θ
m).8 The maximum likelihood estimator is obtained by maximizing

∑n
i=1 lnL(θ|{(xit, yit, ait)}Tt=1).

The q-NPL algorithm is implemented by iterating the following Steps 1 and 2. In Step 1,

given Ṽ m
j−1 for m = 1, 2, we update (θ1, θ2) by

(θ̃1
j , θ̃

2
j ) = arg max

(θ1,θ2)∈Θ2

n−1
n∑
i=1

ln

{
2∑

m=1

πmp∗
Ψq(θm,Ṽmj−1)

(xi1)
T∏
t=1

∫
[Ψq(θm, Ṽ m

j−1)](ait|xit, ε′)g(ε′, w̃it(θ
m))dε′

}
.

Here, p∗
Ψq(θm,Ṽmj−1)

(x) is the stationary distribution of x when a firm follows the decision rule

specified by the choice probabilities Ψq(θm, Ṽ m
j−1). In Step 2, Ṽ m

j−1’s are updated using θ̃mj ’s as

Ṽ m
j = Γq(θ̃mj , Ṽ

m
j−1) for m = 1, 2. The approximate q-NPL algorithm is similarly implemented

by replacing Ψq(θm, Ṽ m
j−1) with its linear approximation around θm = θ̃mj−1 in Step 1.

We first examine the finite sample performance of our proposed estimators based on the q-

NPL and approximate q-NPL algorithm for q = 2, 4, 6, and 8. We simulate 200 samples, each of

which consists of (n, T ) = (400, 5) observations. To use the q-NPL algorithm, we set the initial

value of the expected value function to zeros. Since applying the approximate q-NPL algorithm

also requires the initial estimate of θ, we use the q-NPL algorithm at the initial iteration (k = 1)

to obtain an initial estimate of (θ, V ), and then we examine the performance of the approximate

q-NPL algorithm starting from the second iteration (k = 2).

Table 1 reports the bias and the square roots of the mean squared errors. The bias and the

7To simulate the data from the model with a continuous state space, we first solve an approximated model
with a discrete state space using a finite number of grids and then use the “self-approximating” property of the
Bellman operator [cf., Rust (1996)] to evaluate conditional choice probabilities at points outside of the grids. This
allows us to generate a sample with continuously distributed ε from the approximated model and to evaluate a
likelihood function at points outside of the grids. We approximate the state space of ε by 10 grid points using the
method of Tauchen (1986) while the state space of x is given by {1, . . . , 20}.

8To compute the integral with respect to ε given wi, we approximate the distribution of ε conditional on the
realized value of wi for i = 1, ..., n using Tauchen’s method.
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mean squared errors of the estimators from the q-NPL algorithm improve with the number of

iterations, k, given the value of q = 2, 4, 6, and 8, while they improve with q given the value

of k. When k is small, the bias and the mean squared errors of the estimates from the q-NPL

algorithm tend to be larger than those of the MLE. The performance of the q-NPL estimators

is very similar to that of the q-NPL algorithm across different values of k and q, indicating that

our proposed approximation method works in this experiment.

Table 2 reports the average absolute percentage difference between our proposed estima-

tor and the MLE. For both q-NPL estimator and approximate q-NPL estimator, the distance

between our proposed estimator and the MLE becomes smaller as k and q increase.

Table 3 shows how the q-NPL estimators after k = 10 iterations improve with the sample

size across different values of q.

5.2 Experiment 2: Dynamic Game

We apply our proposed method to a dynamic model of entry and exit studied by Aguirregabiria

and Mira (2007) and compare its performance with the performance of the original NPL algo-

rithm. The profit of firm i operating in market m in period t is equal to

θRS lnSmt − θRN ln(1 +
∑
j 6=i

ajmt)− θFC,i − θEC(1− aim,t−1) + ξimt(1),

whereas its profit is ξimt(0) if the firm is not operating. We assume that {ξimt(0), ξimt(1)}
follow i.i.d. type I extreme value distribution with zero mean and unit variance, and Smt is

the market demand that follows an exogenous first-order Markov process fS(Sm,t+1|Smt). We

set the number of firms I = 3. The state space for the market size Smt is {2, 6, 10}.9 The

discount factor is set to β = 0.96 while we set (θRS , θRN , θEC) = (1, 1, 1). Fixed operating costs

are θFC,1 = 1.0, θFC,2 = 0.9, and θFC,3 = 0.8. We compare the performance of the estimators

generated by the NPL algorithm of AM07 with those of the estimators generated by the q-NPL

and the approximate q-NPL algorithms.

We set q = 1 and q = 2 in the q-NPL and the approximate q-NPL algorithm. We use a

frequency estimator as our initial estimator for P while we set an initial value of V to zero. The

sample size is set to n = 500. Table 4 presents the bias and the square root of mean squared

errors for the AM’s NPL estimators together with those for the q-NPL and the approximate

q-NPL estimators across different iteration values of q = 1, 2, and 3.

Even for q = 1, the overall performance of the q-NPL estimator becomes similar to that of

9The transition probability matrix of Smt is given by 0.8 0.2 0.0
0.2 0.6 0.2
0.0 0.2 0.8

 .

22



the NPL estimator after j = 5 iterations across different values of q. By looking at the bias

and the RMSE across different value of iterations, the q-NPL algorithm appears to be largely

converged after j = 10 iterations. The RMSE at j = 20 of the q-NPL estimator improves as the

value of q increases from one to four, suggesting that an increase in the value of q leads to an

efficiency gain.

The approximate q-NPL algorithm has a convergence problem when q = 1. However, The

convergence property of the approximate q-NPL algorithm improves as the value of q increases.

This is consistent with our analysis on the convergence rate—for small value of q, the (approx-

imate) q-NPL algorithm may not converge unless the dominant eigenvalue of ΨP is sufficiently

close to zero. For q = 2, the performance of the approximate q-NPL algorithm at j = 20 it-

erations is the same as that of the q-NPL algorithm while, for q = 4, the approximate q-NPL

algorithm converges at j = 10 iterations.

6 Proofs

6.1 Proof of Lemma 1

Define ψ̄q(θ, V ) ≡ n−1
∑n

i=1 ln Ψq(θ, V )(ai|xi). With these notations, we may write Ωq
θθ =

(Ψq
θ)
′
∆PΨq

θ and Ωq
θV = (Ψq

θ)
′
∆PΨq

V , where Ψq
θ = ΛV Γqθ + Λθ and Ψq

V = ΛV ΓqV .

First, θ̃j satisfies the first order condition ∇θψ(θ̃j , Ṽj−1) = 0. Expanding this around (θ̂, V̂ )

and using ∇θψ(θ̂, V̂ ) = 0 gives

0 = ∇θθ′ψ
q
(θ̄, V̄ )(θ̃j − θ̂) +∇θV ′ψ

q
(θ̄, V̄ )(Ṽj−1 − V̂ ), (13)

where (θ̄, V̄ ) lie between (θ̃j , Ṽj−1) and (θ̂, V̂ ). It follows from the information matrix equality

and the consistency of (θ̄, V̄ ) that ∇θθ′ψ(θ̄, V̄ ) = −Ωq
θθ+op(1) and ∇θV ′ψ(θ̄, V̄ ) = −Ωq

θV +op(1).

Since Ωq
θθ is positive definite, we obtain θ̃j − θ̂ = Op(||Ṽj−1 − V̂ ||), giving the first result.

For the updating equation of V , note that the second derivatives of Γq(θ, V ) are uniformly

bounded in (θ, V ) ∈ Θ × BV from Assumption. Hence, expanding the right hand side of Ṽj =

Γq(θ̃j , Ṽj−1) twice around (θ̂, V̂ ) and using Γq(θ̂, V̂ ) = V̂ , root-n consistency of (θ̂, V̂ ), and

θ̃j − θ̂ = Op(||Ṽj−1 − V̂ ||), we obtain

Ṽj − V̂ = Γqθ(θ̃j − θ̂) + ΓqV (Ṽj−1 − V̂ ) +Op(n
−1/2||Ṽj−1 − V̂ ||+ ||Ṽj−1 − V̂ ||2). (14)

Refine (13) as θ̃j − θ̂ = −Ω−1
θθ ΩθV (Ṽj−1 − V̂ ) + Op(n

−1/2||Ṽj−1 − V̂ || + ||Ṽj−1 − V̂ ||2) by using

∇θV ′ψ
q
(θ̄, V̄ ) = −Ωq

θV + Op(||Ṽj−1 − V̂ ||) + Op(n
−1/2) and ∇θθ′ψ

q
(θ̄, P̄ ) = −Ωq

θθ + Op(||Ṽj−1 −
V̂ ||) + Op(n

−1/2). Substituting this into (14) in conjunction with (Ωq
θθ)
−1Ωq

θV = ((ΛV Γqθ +

Λθ)
′∆P (ΛV Γqθ + Λθ))

−1(ΛV Γqθ + Λθ)
′∆PΛV ΓqV gives the stated result. �
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6.2 Proof of Proposition 1

We suppress the subscript qNPL from θ̂qNPL and V̂qNPL. Write the objective function as

ψ̄q(θ, V, η) ≡ n−1
∑n

i=1 ln Ψq(θ, V, η)(ai|xi), and define ψq(θ, V, η) ≡ E ln Ψq(θ, V, η)(ai|xi). We

use induction. Assume (θ̃j−1, Ṽj−1)→p (θ0, V 0).

First, we prove the consistency, i.e., (θ̃j , Ṽj)→p (θ0, V 0) if (θ̃j−1, Ṽj−1)→p (θ0, V 0). To show

the consistency of θ̃j , we show that Θq
j is compact and

sup
(θ,V,η)∈Θqj×N

|ψ̄q(θ, V, η)− ψq(θ, V, η)| = op(1), (15)

ψq(θ, V 0, θ0) is continuous in θ, and ψq(θ, V 0, θ0) is uniquely maximized at θ0. (16)

Then the consistency of θ̃j follows from Theorem 2.1 of Newey and McFadden (1994) because

(15) in conjunction with the consistency of (θ̃j−1, Ṽj−1) and the triangle inequality implies

supθ∈Θqj
|ψ̄q(θ, Ṽj−1, θ̃j−1)− ψq(θ, V 0, θ0)| = op(1).

Θq
j is compact because Θq

j is an intersection of the compact set Θ and |A||X| closed sets.

Take N sufficiently small, then it follows from the consistency of (θ̃j−1, Ṽj−1) and the continuity

of Ψq(θ, V, η) that Ψq(θ, V, η)(a|x) ∈ [ε/2, 1− ε/2] for all (a, x) ∈ A×X and (θ, V, η) ∈ Θq
j ×N

with probability approaching one (henceforth wpa1). Observe that (i) Θq
j ×N is compact, (ii)

ln Ψq(θ, V, η) is continuous in (θ, V, η) ∈ Θq
j×N , and (iii) E sup(θ,V,η)∈Θqj×N | ln Ψq(θ, V, η)(ai|xi)| ≤

(| ln(ε/2)| + | ln(1 − ε/2)|) < ∞ because of the way we choose N . Therefore, (15) follows from

Lemma 2.4 of Newey and McFadden (1994). Lemma 2.4 of Newey and McFadden (1994) also

implies that ψq(θ, V, η) is continuous, giving the first part of (16). Finally, we show that θ0

uniquely maximizes ψq(θ, V 0, θ0). Note that

ψq(θ, V 0, θ0)− ψq(θ0, V 0, θ0) = E ln(∇θ′Ψq(θ0, V 0)(θ − θ0) + P 0)(ai|xi)− E lnP 0(ai|xi)

= E ln

(
∇θ′Ψq(θ0, V 0)(ai|xi)(θ − θ0)

P 0(ai|xi)
+ 1

)
.

Recall that ln(y + 1) ≤ y for all y > −1 where the inequality is strict if y 6= 0, and that

Assumption 5(b) implies ∇θ′Ψq(θ0, V 0)(ai|xi)(θ − θ0)/P 0(ai|xi) 6= 0 with positive probability

for all θ 6= θ0. Therefore, the right hand side of (17) is strictly smaller than

E

[
∇θ′Ψq(θ0, V 0)(ai|xi)(θ − θ0)

P 0(ai|xi)

]
for all θ 6= θ0.

Because E[∇θ′Ψq(θ0, V 0)(ai|xi)/P 0(ai|xi)] = 0, we have ψq(θ, V 0, θ0) − ψq(θ0, V 0, θ0) < 0 for

all θ 6= θ0, and θ0 uniquely maximizes ψq(θ, V 0, θ0). Therefore, θ̃j →p θ
0. Finally, Ṽj →p V

0

follows from Γq(θ̃j , Ṽj−1)→p Γq(θ0, V 0) = V 0, and we establish the consistency of (θ̃j , Ṽj).

We proceed to derive the stated representation of θ̃j − θ̂ and Ṽj − V̂ . Expanding the first
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order condition 0 = ∇θψq(θ̃j , Ṽj−1, θ̃j−1) twice around (θ̂, Ṽj−1, θ̃j−1) gives

0 = ∇θψ̄q(θ̂, Ṽj−1, θ̃j−1) +∇θθ′ψ̄q(θ̂, Ṽj−1, θ̃j−1)(θ̃j − θ̂) +Op(||θ̃j − θ̂||2), (17)

Note that the q-NPL estimator satisfies ∇θψ̄q(θ̂, V̂ , θ̂) = 0, and that Ψq(θ0, V 0, θ0) = Ψq(θ0, V 0),

∇θ′Ψq(θ0, V 0, θ0) = ∇θ′Ψq(θ0, V 0),∇V ′Ψq(θ0, V 0, θ0) = ∇V ′Ψq(θ0, V 0), and∇η′Ψq(θ0, V 0, θ0) =

0. Therefore, expanding ∇θψ̄q(θ̂, Ṽj−1, θ̃j−1) twice around (θ̂, V̂ , θ̂) and using the root-n consis-

tency of (θ̂, V̂ ) and the information matrix equality, we obtain ∇θψ̄q(θ̂, Ṽj−1, θ̃j−1) = −Ωq
θV (Ṽj−

V̂ )+rnj , where rnj denotes a reminder term of Op(n
−1/2||θ̃j−1− θ̂||+ ||θ̃j−1− θ̂||2 +n−1/2||Ṽj−1−

V̂ || + ||Ṽj−1 − V̂ ||2). Then the stated bound of θ̃j − θ̂ follows from (17) by noting that

∇θθ′ψq(θ̂, Ṽj−1, θ̃j−1) = −Ωq
θθ + op(1).

For the updating equation of V , expanding ∇θθ′ψ̄q(θ̂, Ṽj−1, θ̃j−1) around (θ̂, V̂ , θ̂) in (17) and

using the bound of θ̃j− θ̂ obtained above gives θ̃j− θ̂ = −(Ωq
θθ)
−1Ωq

θV (Ṽj− V̂ )+rnj . Substituting

this into the right hand side of Ṽj−V̂ = Γqθ(θ̃j−θ̂)+ΓqV (Ṽj−1−V̂ )+rnj and noting (Ωq
θθ)
−1Ωq

θV =

((Ψq
θ)
′∆PΨq

θ)
−1(Ψq

θ)
′∆PΨq

V = ((ΛV Γqθ + Λθ)
′∆P (ΛV Γqθ + Λθ))

−1(ΛV Γqθ + Λθ)
′∆PΛV ΓqV gives the

stated result. �

6.3 Proof of Proposition 2

We suppress the subscript qNPL from ζ̂qNPL and V̂qNPL. The proof follows the proof of

Lemma 1. Let lq(ζ,V)(w) ≡ ln(L(π,Ψq(θ,V))(w)). Define l
q
ζ(ζ,V) = n−1

∑n
i=1∇ζ lq(ζ,V)(wi),

l
q
ζζ(ζ,V) = n−1

∑n
i=1∇ζζ′ lq(ζ,V)(wi), and l

q
ζV(ζ,V) = n−1

∑n
i=1∇ζV′ lq(ζ,V)(wi). Expanding

the first order condition l̄qζ(ζ̃j , Ṽj−1) = l̄qζ(ζ̂, V̂) = 0 gives

ζ̃j − ζ̂ = −lqζζ(ζ̄, V̄)−1l
q
ζV (ζ̄, V̄)(Ṽj−1 − V̂) = Op(||Ṽj−1 − V̂||), (18)

where (ζ̄, V̄) is between (ζ̃j , Ṽj−1) and (ζ̂, V̂). This gives the bound for ζ̃j − ζ̂. Rewriting this

further using Assumption 7 gives

ζ̃j − ζ̂ = −(Ωq
ζζ)
−1Ωq

ζV (Ṽj−1 − V̂) +Op(n
−1/2||Ṽj−1 − V̂||) +Op(||Ṽj−1 − V̂||2), (19)

where Ωq
ζζ = E[∇ζ lq(ζ0,V0)(wi)∇ζ′ lq(ζ0,V0)(wi)] and Ωq

ζV = E
[
∇ζ lq(ζ0,V0)(wi)∇V′ l

q(ζ0,V0)(wi)
]
.

On the other hand, expanding the second step equation Ṽj = Γq(ζ̃j , Ṽj−1) twice around (ζ̂, V̂),

using the root-n consistency of (ζ̂, V̂) and (18) give

Ṽj − V̂ = ΓqV (Ṽj−1 − V̂) + Γqζ(ζ̃j − ζ̂) +Op(n
−1/2||Ṽj−1 − V̂||) +Op(||Ṽj−1 − V̂||2), (20)

where Γqζ ≡ ∇ζ′Γ
q(θ0,V0) = [Γqθ,0]. Substituting (19) into (20) gives

Ṽj − V̂ = [ΓqV − Γqζ(Ω
q
ζζ)
−1Ωq

ζV ](Ṽj−1 − V̂) +Op(n
−1/2||Ṽj−1 − V̂||) +Op(||Ṽj−1 − V̂||2).
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Note that Ωq
ζζ and Ωq

ζV are written as

Ωq
ζζ =

[
Ωq
θθ Ωq

θπ

Ωq
πθ Ωq

ππ

]
=

[
(Ψq

θ)
′L′P∆LLPΨq

θ (Ψq
θ)
′L′P∆LLπ

L′π∆LLPΨθ L′π∆LLπ

]
,

Ωq
ζV =

[
Ωq
θV

Ωq
πV

]
=

[
(Ψq

θ)
′L′P∆LLPΨq

V

L′π∆LLPΨq
V

]
,

and

(Ωq
ζζ)
−1 =

[
D −DΩq

θπ(Ωq
ππ)−1

−(Ωq
ππ)−1Ωq

πθD (Ωq
ππ)−1 + (Ωq

ππ)−1Ωq
πθDΩq

θπ(Ωq
ππ)−1

]
,

where D = ((Ψq
θ)
′L′P∆

1/2
L MLπ∆

1/2
L LPΨq

θ)
−1 with MLπ = I − ∆

1/2
L Lπ(L′π∆LLπ)−1Lπ∆

1/2
L .

Then, using Γqζ = [Γqθ,0] and Ψq
V = ΛV ΓqV gives Γqζ(Ω

q
ζζ)
−1Ωq

ζP = ΓqθD(Ψq
θ)
′L′P∆

1/2
L MLπ∆

1/2
L LPΛV ΓqV ,

and the stated result follows. �

6.4 Proof of Proposition 3

We suppress the subscript qNPL from ζ̂qNPL and V̂qNPL. Let lq(ζ,V, η)(w) ≡ ln(L(π,Ψq(θ,V, η))(w)).

Define l
q
ζ(ζ,V, η) = n−1

∑n
i=1∇ζ lq(ζ,V, η)(wi), l

q
ζζ(ζ,V, η) = n−1

∑n
i=1∇ζζ′ lq(ζ,V, η)(wi),

and l
q
ζV(ζ,V, η) = n−1

∑n
i=1∇ζV′ lq(ζ,V, η)(wi). Note that the q-NPL estimator satisfies

∇θl
q
ζ(ζ̂, V̂, θ̂) = 0 and that Ψq(ζ0,V0, θ0) = Ψq(ζ0,V0), ∇ζ′Ψq(ζ0,V0, θ0) = ∇ζ′Ψq(ζ0,V0),

∇V′Ψ
q(ζ0,V0, θ0) = ∇V′Ψ

q(ζ0,V0), and ∇η′Ψq(ζ0,V0, θ0) = 0.

The consistency of (ζ̃j , Ṽj) for j = 1, ..., k can be shown by following the proof of Proposition

1 and, thus, its proof is omitted.

Expanding the first order condition 0 = l
q
ζ(ζ̃j , Ṽj−1, θ̃j−1) twice around (ζ̂, Ṽj−1, θ̃j−1) gives

0 = ∇ζ′ l
q
ζ(ζ̂, Ṽj−1, θ̃j−1) +∇ζζ′ l

q
ζ(ζ̂, Ṽj−1, θ̃j−1)(ζ̃j − ζ̂) +Op(||ζ̃j − ζ̂||2)

= ∇ζ′ l
q
ζ(ζ̂, Ṽj−1, θ̃j−1) +

[
−Ωq

ζζ +Op(n
−1/2 + ||ζ̃j−1 − ζ̂||+ ||Ṽj−1 − V̂||)

]
(ζ̃j − ζ̂) +Op(||ζ̃j − ζ̂||2),

(21)

where the second equality follows from expanding ∇ζζ′ l
q
ζ(ζ̂, Ṽj−1, θ̃j−1) around (ζ̂, V̂, θ̂) and us-

ing the root-n consistency of (ζ̂, V̂) and the information matrix equality. Furthermore, expand-

ing ∇ζ′ l
q
ζ(ζ̂, Ṽj−1, θ̃j−1) twice around (ζ̂, V̂, θ̂) and using the root-n consistency of (ζ̂, V̂) and the

information matrix equality, we obtain ∇ζ′ l
q
ζ(ζ̂, Ṽj−1, θ̃j−1) = −Ωq

ζV(Ṽj−1−V̂)+rnj , where rnj

denotes a reminder term of Op(n
−1/2||ζ̃j−1− ζ̂||+||ζ̃j−1−θ̂||2+n−1/2||Ṽj−1−V̂||+||Ṽj−1−V̂||2).

Then, the bound for ζ̃j − ζ̂ follows from writing the second and third terms on the right of (21)

as (−Ωq
ζζ + op(1))(ζ̃j − ζ̂) and using the positive definiteness of Ωq

ζζ .

For the bound of Ṽj−V̂, expanding Ṽj = Γq(ζ̃j , Ṽj−1) twice around (ζ̂, V̂), using the root-n
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consistency of (ζ̂, V̂) and the bound for ζ̃j − ζ̂ give

Ṽj − V̂ = ΓqV (Ṽj−1 − V̂) + Γqζ(ζ̃j − ζ̂) +Op(n
−1/2||Ṽj−1 − V̂||+ ||Ṽj−1 − V̂||2). (22)

On the other hand, it follows from ζ̃j−ζ̂ = Op(||Ṽj−1−V̂||) and (21) that ζ̃j−ζ̂ = −(Ωq
ζζ)
−1Ωq

ζV(Ṽj−1−
V̂)+rnj . Substituting this into (22) and repeating the argument of Proposition 2 give the stated

bound of Ṽj − V̂. �

6.5 Proof of Proposition 4

Define ψ̄q(θ, V, P ) ≡ n−1
∑n

i=1 ln Ψq(θ, V, P )(ai|xi). First, θ̃j satisfies the first order condition

∇θψ̄q(θ̃j , Ṽj−1, P̃j−1) = 0. Expanding this around (θ̂, V̂ , P̂ ) and using ∇θψ̄q(θ̂, V̂ , P̂ ) = 0 gives

0 = ∇θθ′ψ
q
(θ̄, V̄ , P̄ )(θ̃j − θ̂) +∇θV ′ψ

q
(θ̄, V̄ , P̄ )(Ṽj−1 − V̂ ) +∇θP ′ψ

q
(θ̄, V̄ , P̄ )(P̃j−1 − P̂ ), (23)

where (θ̄, V̄ , P̄ ) lie between (θ̃j , Ṽj−1, P̃j−1) and (θ̂, V̂ , P̂ ). It follows from the information matrix

equality and the consistency of (θ̄, V̄ , P̄ ) that ∇θθ′ψ(θ̄, V̄ , P̄ ) = −Ωq
θθ + op(1), ∇θV ′ψ(θ̄, V̄ , P̄ ) =

−Ωq
θV + op(1), and ∇θP ′ψ(θ̄, V̄ , P̄ ) = −Ωq

θP + op(1). Since Ωq
θθ is positive definite, we obtain

θ̃j − θ̂ = Op(||Ṽj−1 − V̂ ||+ ||P̃j−1 − P̂ ||), giving the first result.

For the updating equation of V and P , note that the second derivatives of Γq(θ, V, P ) and

Ψq(θ, V, P ) are uniformly bounded in (θ, V, P ) ∈ Θ × BV × BP from Assumption. Hence,

expanding the right hand sides of Ṽj = Γq(θ̃j , Ṽj−1, P̃j−1) and P̃j = Ψq(θ̃j , Ṽj−1, P̃j−1) twice

around (θ̂, V̂ , P̂ ) and using Γq(θ̂, V̂ , P̂ ) = V̂ , Ψq(θ̂, V̂ , P̂ ) = P̂ , root-n consistency of (θ̂, V̂ , P̂ ),

and θ̃j − θ̂ = Op(||Ṽj−1 − V̂ ||+ ||P̃j−1 − P̂ ||), we obtain

Ṽj − V̂ = Γqθ(θ̃j − θ̂) + ΓqV (Ṽj−1 − V̂ ) + ΓqP (P̃j−1 − P̂ ) +Rn,j (24)

P̃j − P̂ = Ψq
θ(θ̃j − θ̂) + Ψq

V (Ṽj−1 − V̂ ) + Ψq
P (P̃j−1 − P̂ ) +Rn,j (25)

where Rn,j is a generic reminder term of Op(n
−1/2||Ṽj−1 − V̂ || + n−1/2||P̃j−1 − P̂ || + ||Ṽj−1 −

V̂ ||2 + ||P̃j−1 − P̂ ||2). Refine (23) as θ̃j − θ̂ = −Ω−1
θθ ΩθV (Ṽj−1 − V̂ )−Ω−1

θθ ΩθP (P̃j−1 − P̂ ) +Rn,j .

Substituting this into (24)-(25) gives the stated result. �

6.6 Proof of Proposition 5

Define ψ̄q(θ, V, P, η) ≡ n−1
∑n

i=1 ln Ψ̃q(θ, V, P, η)(ai|xi) and ψq(θ, V, P, η) ≡ E ln Ψ̃q(θ, V, P, η)(ai|xi).
We first show the consistency of (θ̃j , Ṽj , P̃j) for all j = 1, 2, ..., k. We use induction. Assume

(θ̃j−1, Ṽj−1, P̃j−1)→p (θ0, V 0, P 0). In order to show θ̃j →p θ
0, it suffices to show that (15)–(16)

in the proof of Proposition 1 hold if we replace ψ̄q(θ, V, η) and ψ(θ, V, η) with ψ̄q(θ, V, P, η) and

ψq(θ, V, P, η). Let N0 be a closed neighborhood of (V 0, P 0, θ0) and take N0 sufficiently small,

then (i) Θq
j ×N0 is compact, (ii) ln Ψ̃q(θ, V, P, η) is continuous in (θ, V, P, η) ∈ Θq

j ×N0, and (iii)

27



E sup(θ,V,P,η)∈Θqj×N0
| ln Ψq(θ, V, P, η)(ai|xi)| < ∞. Therefore, (15) and the first result of (16)

hold for ψ̄q(θ, V, P, η) and ψq(θ, V, P, η).

To show that θ0 uniquely maximizes ψq(θ, V 0, P 0, θ0), note that

ψq(θ, V 0, P 0, θ0)− ψq(θ0, V 0, P 0, θ0) = E ln

(
∇θ′Ψq(θ0, V 0, P 0)(ai|xi)(θ − θ0)

P 0(ai|xi)
+ 1

)
< E

[
∇θ′Ψq(θ0, V 0, P 0)(ai|xi)(θ − θ0)

P 0(ai|xi)

]
for all θ 6= θ0, where the last inequality follows from Assumption 11(b) and the inequality

ln(y+1) > y for all y > −1 when y 6= 0. It follows from E[∇θ′Ψq(θ0, V 0, P 0)(ai|xi)/P 0(ai|xi)] =

0 that we have ψq(θ, V 0, P 0, θ0) − ψq(θ0, V 0, P 0, θ0) < 0 for all θ 6= θ0, and the second result

of (16) hold for ψ̄q(θ, V, P, η) and ψq(θ, V, P, η). Therefore, θ̃j →p θ
0. Finally, Ṽj →p V

0 and

P̃j →p P
0 follows from Γq(θ̃j , Ṽj−1, P̃j−1) →p Γq(θ0, V 0, P 0) = V 0 and Ψq(θ̃j , Ṽj−1, P̃j−1) →p

Ψq(θ0, V 0, P 0) = V 0, and we establish the consistency of (θ̃j , Ṽj , P̃j).

We proceed to show the updating equation of θ, V and P . Expanding the first order condition

0 = ∇θψq(θ̃j , Ṽj−1, P̃j−1, θ̃j−1) twice around (θ̂, Ṽj−1, P̃j−1, θ̃j−1) gives

0 = ∇θψ̄q(θ̂, Ṽj−1, P̃j−1, θ̃j−1) +∇θθ′ψ̄q(θ̂, Ṽj−1, P̃j−1, θ̃j−1)(θ̃j − θ̂) +Op(||θ̃j − θ̂||2). (26)

Second, note that the approximate q-NPL estimator satisfies ∇θψ̄q(θ̂, V̂ , P̂ , θ̂) = 0, and that

Ψq(θ0, V 0, P 0, θ0) = Ψq(θ0, V 0, P 0),∇θ′Ψq(θ0, V 0, P 0, θ0) = ∇θ′Ψq(θ0, V 0, P 0),∇V ′Ψq(θ0, V 0, P 0, θ0) =

∇V ′Ψq(θ0, V 0, P 0), ∇P ′Ψq(θ0, V 0, P 0, θ0) = ∇P ′Ψq(θ0, V 0, P 0), and ∇η′Ψq(θ0, V 0, P 0, θ0) = 0.

Therefore, expanding ∇θψ̄q(θ̂, Ṽj−1, P̃j−1, θ̃j−1) twice around (θ̂, V̂ , P̂ , θ̂) and using the root-n

consistency of (θ̂, V̂ , P̂ ) and the information matrix equality, we obtain∇θψ̄q(θ̂, Ṽj−1, P̃j−1, θ̃j−1) =

−Ωq
θV (Ṽj− V̂ )−Ωq

θP (P̃j− P̂ ) + rnj , where rnj denotes a reminder term of Op(n
−1/2||θ̃j−1− θ̂||+

||θ̃j−1− θ̂||2+n−1/2||Ṽj−1−V̂ ||+||Ṽj−1−V̂ ||2+n−1/2||P̃j−1−P̂ ||+||P̃j−1−P̂ ||2). Then the stated

bound of θ̃j − θ̂ follows from (26) by noting that ∇θθ′ψq(θ̂, Ṽj−1, P̃j−1, θ̃j−1) = −Ωq
θθ + op(1).

For the updating equation of V and P , expanding∇θθ′ψ̄q(θ̂, Ṽj−1, P̃j−1, θ̃j−1) around (θ̂, V̂ , P̂ , θ̂)

in (26) and using the bound of θ̃j − θ̂ obtained above gives θ̃j − θ̂ = −(Ωq
θθ)
−1Ωq

θV (Ṽj − V̂ ) −
(Ωq

θθ)
−1Ωq

θP (P̃j − P̂ ) + rnj . Substituting this into the right hand side of Ṽj − V̂ = Γqθ(θ̃j − θ̂) +

ΓqV (Ṽj−1− V̂ )+ΓqP (P̃j−1−P̂ )+rnj and P̃j−P̂ = Ψq
θ(θ̃j− θ̂)+Ψq

V (Ṽj−1− V̂ )+Ψq
P (P̃j−1−P̂ )+rnj

gives the stated result. �
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Table 1: Performance of q-NPL and approximate q-NPL estimator

q-NPL approximate q-NPL
MLE q=2 q=4 q=6 q=8 q=2 q=4 q=6 q=8

k=1 0.0059 0.0061 0.0060 0.0059 0.0059 0.0061 0.0060 0.0059 0.0059
Bias k=3 0.0059 0.0056 0.0058 0.0059 0.0059 0.0056 0.0058 0.0059 0.0059

k=5 0.0059 0.0056 0.0058 0.0059 0.0059 0.0056 0.0058 0.0059 0.0059
θ11 k=10 0.0059 0.0056 0.0058 0.0059 0.0059 0.0056 0.0058 0.0059 0.0059

k=1 0.0076 0.0077 0.0077 0.0076 0.0076 0.0077 0.0077 0.0076 0.0076√
MSE k=3 0.0076 0.0074 0.0075 0.0076 0.0076 0.0074 0.0075 0.0076 0.0076

k=5 0.0076 0.0074 0.0075 0.0076 0.0076 0.0074 0.0075 0.0076 0.0076
k=10 0.0076 0.0074 0.0075 0.0076 0.0076 0.0074 0.0075 0.0076 0.0076

k=1 -0.6887 -1.3293 -0.8081 -0.6748 -0.6774 -1.3293 -0.8081 -0.6748 -0.6774
Bias k=3 -0.6887 -0.7294 -0.6866 -0.6875 -0.6886 -0.7262 -0.6870 -0.6874 -0.6886

k=5 -0.6887 -0.7002 -0.6867 -0.6875 -0.6886 -0.6998 -0.6868 -0.6874 -0.6886
θ12 k=10 -0.6887 -0.7014 -0.6868 -0.6875 -0.6886 -0.7014 -0.6868 -0.6874 -0.6886

k=1 0.6949 1.3307 0.8118 0.6809 0.6839 1.3307 0.8118 0.6809 0.6839√
MSE k=3 0.6949 0.7343 0.6927 0.6937 0.6947 0.7313 0.6931 0.6936 0.6947

k=5 0.6949 0.7058 0.6929 0.6937 0.6947 0.7054 0.6930 0.6936 0.6947
k=10 0.6949 0.7070 0.6929 0.6937 0.6947 0.7070 0.6930 0.6936 0.6947

k=1 0.0034 0.0028 0.0033 0.0035 0.0035 0.0028 0.0033 0.0035 0.0035
Bias k=3 0.0034 0.0032 0.0034 0.0034 0.0034 0.0032 0.0034 0.0034 0.0034

k=5 0.0034 0.0032 0.0034 0.0034 0.0034 0.0032 0.0034 0.0034 0.0034
θ21 k=10 0.0034 0.0032 0.0034 0.0034 0.0034 0.0032 0.0034 0.0034 0.0034

k=1 0.0067 0.0064 0.0066 0.0067 0.0067 0.0064 0.0066 0.0067 0.0067√
MSE k=3 0.0067 0.0066 0.0066 0.0067 0.0067 0.0066 0.0066 0.0067 0.0067

k=5 0.0067 0.0066 0.0066 0.0067 0.0067 0.0066 0.0066 0.0067 0.0067
k=10 0.0067 0.0066 0.0066 0.0067 0.0067 0.0066 0.0066 0.0067 0.0067

k=1 -0.1568 -0.4253 -0.2114 -0.1552 -0.1530 -0.4253 -0.2114 -0.1552 -0.1530
Bias k=3 -0.1568 -0.1615 -0.1554 -0.1569 -0.1569 -0.1649 -0.1554 -0.1569 -0.1569

k=5 -0.1568 -0.1505 -0.1554 -0.1569 -0.1569 -0.1507 -0.1554 -0.1569 -0.1569
θ22 k=10 -0.1568 -0.1515 -0.1554 -0.1569 -0.1569 -0.1515 -0.1554 -0.1569 -0.1569

k=1 0.1878 0.4318 0.2319 0.1868 0.1852 0.4318 0.2319 0.1868 0.1852√
MSE k=3 0.1878 0.1903 0.1867 0.1879 0.1879 0.1929 0.1867 0.1879 0.1879

k=5 0.1878 0.1823 0.1868 0.1879 0.1879 0.1825 0.1867 0.1879 0.1879
k=10 0.1878 0.1830 0.1868 0.1879 0.1879 0.1830 0.1867 0.1879 0.1879

k=1 0.0314 0.0374 0.0324 0.0312 0.0313 0.0374 0.0324 0.0312 0.0313
Bias k=3 0.0314 0.0315 0.0312 0.0314 0.0314 0.0310 0.0312 0.0314 0.0314

k=5 0.0314 0.0313 0.0312 0.0314 0.0314 0.0313 0.0312 0.0314 0.0314
π1 k=10 0.0314 0.0313 0.0312 0.0314 0.0314 0.0313 0.0312 0.0314 0.0314

k=1 0.0478 0.0521 0.0484 0.0476 0.0477 0.0521 0.0484 0.0476 0.0477√
MSE k=3 0.0478 0.0478 0.0476 0.0477 0.0478 0.0475 0.0476 0.0477 0.0478

k=5 0.0478 0.0477 0.0476 0.0477 0.0478 0.0477 0.0476 0.0477 0.0478
k=10 0.0478 0.0477 0.0476 0.0477 0.0478 0.0477 0.0476 0.0477 0.0478

Notes: Based on 200 simulated samples, each of which consists of (n, T ) = (400, 5) observations.
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Table 2: Convergence of q-NPL and approximate q-NPL estimator to MLE

q-NPL approximate q-NPL
q=2 q=4 q=6 q=8 q=2 q=4 q=6 q=8

k=1 0.0005 0.0002 0.0001 0.0000 0.0005 0.0002 0.0001 0.0000
θ11 k=3 0.0010 0.0003 0.0000 0.0000 0.0010 0.0003 0.0000 0.0000

k=5 0.0010 0.0003 0.0000 0.0000 0.0010 0.0003 0.0000 0.0000
k=10 0.0010 0.0003 0.0000 0.0000 0.0010 0.0003 0.0000 0.0000

k=1 0.1602 0.0299 0.0035 0.0028 0.1602 0.0299 0.0035 0.0028
θ12 k=3 0.0102 0.0005 0.0003 0.0000 0.0094 0.0004 0.0003 0.0000

k=5 0.0029 0.0005 0.0003 0.0000 0.0028 0.0005 0.0003 0.0000
k=10 0.0032 0.0005 0.0003 0.0000 0.0032 0.0005 0.0003 0.0000

k=1 0.0067 0.0009 0.0005 0.0002 0.0067 0.0009 0.0005 0.0002
θ21 k=3 0.0025 0.0006 0.0001 0.0000 0.0025 0.0006 0.0001 0.0000

k=5 0.0025 0.0006 0.0001 0.0000 0.0025 0.0006 0.0001 0.0000
k=10 0.0025 0.0006 0.0001 0.0000 0.0025 0.0006 0.0001 0.0000

k=1 0.1342 0.0273 0.0009 0.0019 0.1342 0.0273 0.0009 0.0019
θ22 k=3 0.0031 0.0007 0.0001 0.0001 0.0042 0.0007 0.0001 0.0001

k=5 0.0034 0.0007 0.0001 0.0001 0.0033 0.0007 0.0001 0.0001
k=10 0.0030 0.0007 0.0001 0.0001 0.0030 0.0007 0.0001 0.0001

k=1 0.0120 0.0019 0.0005 0.0003 0.0120 0.0019 0.0005 0.0003
π1 k=3 0.0004 0.0005 0.0001 0.0000 0.0009 0.0004 0.0001 0.0000

k=5 0.0004 0.0005 0.0001 0.0000 0.0004 0.0004 0.0001 0.0000
k=10 0.0004 0.0005 0.0001 0.0000 0.0004 0.0004 0.0001 0.0000

Notes: The reported values, for instance, are the average of |(θ̂1,k
1,q-NPL

− θ̂1
1,MLE

)/θ11 | across 200 replications.

Table 3: Performance of q-NPL estimator at k = 10 for (n, T ) = (200, 5), (400, 5), and (800, 5)

q-NPL
θ11 MLE q=2 q=4 q=6 q=8

(n, T ) = (200, 5) 0.0089 0.0088 0.0089 0.0089 0.0089
(n, T ) = (400, 5) 0.0076 0.0074 0.0075 0.0076 0.0076
(n, T ) = (800, 5) 0.0067 0.0065 0.0066 0.0067 0.0067

θ12 MLE q=2 q=4 q=6 q=8

(n, T ) = (200, 5) 0.6887 0.7005 0.6868 0.6875 0.6886
(n, T ) = (400, 5) 0.6949 0.7070 0.6929 0.6937 0.6947
(n, T ) = (800, 5) 0.6853 0.6975 0.6833 0.6841 0.6851

θ21 MLE q=2 q=4 q=6 q=8

(n, T ) = (200, 5) 0.0090 0.0090 0.0090 0.0090 0.0090
(n, T ) = (400, 5) 0.0067 0.0066 0.0066 0.0067 0.0067
(n, T ) = (800, 5) 0.0052 0.0050 0.0051 0.0052 0.0052

θ22 MLE q=2 q=4 q=6 q=8

(n, T ) = (200, 5) 0.2111 0.2070 0.2105 0.2113 0.2111
(n, T ) = (400, 5) 0.1878 0.1830 0.1868 0.1879 0.1879
(n, T ) = (800, 5) 0.1827 0.1774 0.1815 0.1828 0.1828

π1 MLE q=2 q=4 q=6 q=8

(n, T ) = (200, 5) 0.0607 0.0605 0.0606 0.0607 0.0607
(n, T ) = (400, 5) 0.0478 0.0477 0.0476 0.0477 0.0478
(n, T ) = (800, 5) 0.0389 0.0389 0.0388 0.0389 0.0389
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Table 4: Bias and RMSE for j = 1, 3, 5, 10, and 20.

Estimation of θRS
AM-NPL q-NPL approximate q-NPL

q=1 q=2 q=4 q=1 q=2 q=4
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

j=1 -0.1437 0.2307 -0.0870 0.2034 0.8542 0.8955 0.1226 0.4139 -0.0870 0.2034 0.8542 0.8955 0.1226 0.4139
j=3 -0.0127 0.1979 -0.0113 0.1997 0.0566 0.2669 -0.0093 0.2051 -0.0498 0.1837 0.1529 0.3114 0.0089 0.2325
j=5 -0.0096 0.2062 -0.0095 0.2067 -0.0082 0.2067 -0.0118 0.2018 -0.0419 0.1750 0.0043 0.2113 -0.0110 0.2021
j=10 -0.0115 0.2036 -0.0111 0.2044 -0.0112 0.2025 -0.0119 0.2018 0.0045 0.2378 -0.0116 0.2029 -0.0118 0.2018
j=20 -0.0114 0.2038 -0.0110 0.2045 -0.0112 0.2025 -0.0119 0.2018 0.0003 0.2390 -0.0112 0.2025 -0.0119 0.2018

Estimation of θRN
AM-NPL q-NPL approximate q-NPL

q=1 q=2 q=4 q=1 q=2 q=4
Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

j=1 -0.3655 0.6001 -0.3749 0.6120 2.4167 2.5143 0.3453 1.1264 -0.3749 0.6120 2.4167 2.5143 0.3453 1.1264
j=3 -0.0210 0.5281 -0.0235 0.5324 0.1834 0.7295 -0.0154 0.5474 -0.1546 0.4894 0.6133 1.1089 0.0447 0.6378
j=5 -0.0181 0.5489 -0.0181 0.5500 -0.0128 0.5509 -0.0251 0.5347 -0.1116 0.4558 0.1029 0.7653 -0.0201 0.5378
j=10 -0.0238 0.5407 -0.0228 0.5430 -0.0236 0.5364 -0.0252 0.5346 0.0214 0.6373 -0.0179 0.5506 -0.0251 0.5346
j=20 -0.0236 0.5411 -0.0226 0.5433 -0.0236 0.5363 -0.0252 0.5346 0.0141 0.6496 -0.0236 0.5363 -0.0252 0.5346

The result is based on 500 simulated samples.
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