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Abstract

This paper proposes new point estimates for predictive regressions. Our estimates
are easily obtained by the least squares and the instrumental variable methods. Our
estimates, called the plug-in estimates, have nice asymptotic properties such as median
unbiasedness and the approximated normality of the associated t-statistics. In addition,
the plug-in estimates are shown to have good finite sample properties via Monte Carlo
simulations. Using the new estimates, we investigate U.S. stock returns and find that
some variables, which have not been statistically detected as useful predictors in the
literature, are able to predict stock returns. Because of their nice properties, our methods
complement the existing statistical tests for predictability to investigate the relations
between stock returns and economic variables.

JEL classification: C13; C22; C58; G17

Key words: Unit root; near unit root; bias; median unbiased; stock return

1Correspondence: Eiji Kurozumi, Department of Economics, Hitotsubashi University, 2-1 Naka, Kuni-
tachi, Tokyo 186-8601, Japan. E-mail: kurozumi@stat.hit-u.ac.jp

2This research was supported by the Global COE program, Research Unit for Statistical and Empirical
Analysis in Social Sciences, Hitotsubashi University.



1. Introduction

Predictive regressions have long been studied in the financial and econometric literature.

One of the difficulties in predicting stock returns by financial variables is that the ordinary

least squares estimate (OLSE) is severely biased, as pointed out by Mankiw and Shapiro

(1986) and Elliott and Stock (1994). Because of the upward bias, the usual t test suffers from

over-size distortions, and hence, we tend to erroneously find evidence of strong predictability.

The bias of predictive regressions comes from the fact that typical predictive variables

are strongly serially correlated and also contemporarily correlated with prediction errors.

Because such persistent variables are known to be well characterized by nearly integrated

models (Phillips, 1987), we consider the following predictive regression model in this paper:

rt = µr + βxt−1 + ut, (1)

xt = µx + ρxt−1 + et, (2)

where µx = mx(1−ρ) with mx = E[xt] and ρ = 1−θ/T with some fixed value of θ. Because

the predictive variable depends on the localizing parameter θ, the OLSE of β also depends

on it even asymptotically. As a result, the t-statistic of β depends on the nuisance parameter

θ, and thus, we cannot control the size of the test.

The problem in the above model is that we cannot consistently estimate the localizing

parameter, and consequently, many efforts have been made to overcome this problem. El-

liott and Stock (1994) considered approximating the distribution of test statistics by the

Bayesian mixture procedure, while Cavanagh, Elliott and Stock (1995) proposed to con-

struct test statistics that are free from the localizing parameter by using three intervals—

sup-bound, Bonferroni, and Scheffe-type. The latter methods have been applied to stock

returns by Torous, Valkanov and Yan (2004), who found evidence of predictability only at

short horizons. Stambaugh (1999) tackled this problem from the Bayesian point of view

and based on his theory, Lewellen (2004) developed the bias adjustment of the OLSE of

β. He found stock returns predictability using new tests by combining the t tests based

on the OLSE of β and the bias-adjusted estimate. Campbell and Yogo (2006) discussed
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the optimality of predictive regressions. Theoretically, we can construct conditional optimal

tests as developed by Jansson and Moreira (2006) but such tests require advanced compu-

tational methods. Instead, Campbell and Yogo (2006) proposed Bonferroni intervals based

on conditionally optimal tests and found stock return predictability. On the other hand,

Lanne (2002) tested predictability not by estimating (1) but by applying stationarity tests,

and found it difficult to predict stock returns.

Most of these existing articles are mainly concerned with controlling the size of tests with

strongly serially correlated predictors but do not provide the estimation methods. However,

it is often the case that we need the point estimates of β once the evidence of predictability is

observed. For example, we need the point estimates when actually forecasting future returns

by predictive regressions. Another example is the case where a change in predictability is

observed, as is often the case with the U.S. stock returns. In this case, we may want to

examine the magnitude of change in predictability, which can be measured by using the

point estimates of β in two sub-samples. Note that although the existing testing methods

may give the confidence intervals of β, they do not necessarily give the point estimates of

β. Hence, we need to develop estimation methods for further investigation of predictive

regressions.

In this paper, we propose new estimates for predictive regressions. We show via Monte

Carlo simulations that our estimates behave quite well in finite samples. The important

finite sample properties of our estimates are (i) the bias is relatively small and the estimates

are almost median unbiased, (ii) the empirical size of the one-sided t tests based on the

new estimates is close to the nominal one, (iii) the coverage rate of the confidence intervals

is close to the theoretical one, and (iv) the power of our t tests is comparable to that of

the Bonferroni Q test by Campbell and Yogo (2006) if the contemporaneous correlation

between two innovations is not so strong, although the latter test dominates the former

in other cases. Considering these favorable finite sample properties, our new estimation

methods will complement the existing testing methods to investigate the predictability of

stock returns.
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In the empirical analysis, we first apply our methods to the U.S. monthly and annual

stock returns investigated by Campbell and Yogo (2006). We find the predictability of stock

returns using the same predictor variables as observed by Campbell and Yogo (2006). In

addition, we also find strong evidence of predictability by the dividend-price ratio, which is

not considered as a statistically significant predictor. We then investigate the same stock

returns by extending the sample period. Again, we clearly observe the predictability of

stock returns by the dividend-price ratio.

The rest of the paper is organized as follows. Section 2 explains our new estimation

methods. We investigate the finite sample properties of our new estimates in Section 3.

The predictability of the U.S. stock returns is investigated in Section 4, and the concluding

remarks are given in Section 5. The technical proofs and derivations of the statistical

properties of the new estimates are relegated to the Appendix.

2. Estimation Methods for Predictive Regressions

Let us first consider the following simple predictive regression without a constant:

rt = βxt−1 + ut, (3)

xt = ρxt−1 + et, (4)

for t = 1, · · · , T , where ρ = 1 − θ/T , ut ∼ i.i.d.(0, σ2u), et ∼ i.i.d.(0, σ2e), and ut and et are

contemporaneously correlated with covariance σue. We use this simple model in order to

explain our main logic underlying the construction of new point estimates. The extensions

to general autoregressive models of order p (AR(p)) with a constant will be discussed later

in this section and in the Appendix. Since typical predictors are highly persistent but do not

necessarily have a unit root by economic theory, we consider the local-to-unity specification

for the AR(1) parameter as given by ρ = 1− θ/T .

For model (3), it is well known that the OLSE of β,

β̂ =

∑T
t=1 xt−1rt∑T
t=1 x

2
t−1

= β +

∑T
t=1 xt−1ut∑T
t=1 x

2
t−1

, (5)
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is shifted and skewed to the right when σue is negative, and hence, β̂ is positively biased.

The main reason of the bias is the strong correlation between ut and et. In other words, the

OLSE is asymptotically unbiased if those two innovations are uncorrelated. In the case of

infeasible regressions with a known ρ, model (3) can be transformed as

rt = βxt−1 +
σue
σ2e

(xt − ρxt−1) +

(
ut −

σue
σ2e

et

)
. (6)

Then, by regressing rt on xt−1 and (xt − ρxt−1), the OLSE of β, denoted by β̂∗, becomes

β̂∗ = β +

∑T
t=1 xt−1(ut −

σue
σ2
e
et)∑T

t=1 x
2
t−1

+ op

(
1

T

)
. (7)

Since ut − (σue/σ
2
e)et is an i.i.d. sequence uncorrelated with a sequence of et, which drives

xt, we can show that β̂∗ is asymptotically unbiased. Moreover, β̂∗ is more efficient than β̂

as can be seen from the fact that the variance of the regression error in (6) is σ2u − σ2ue/σ2e ,

which is smaller than σ2u in (3). We may also construct the efficient estimate by ignoring

the op(1/T ) term in (7), which is given by

β̃∗ = β +

∑T
t=1 xt−1(ut −

σ̂ue
σ̂2
e
et)∑T

t=1 x
2
t−1

(8)

= β̂ − σ̂ue
σ̂2e

∑T
t=1 xt−1(xt − ρxt−1)∑T

t=1 x
2
t−1

, (9)

where σ̂ue and σ̂2e are consistent estimates of σue and σ2e , which can be constructed from the

regression residuals in (3) and (4). See also Campbell and Yogo (2006).

In practice, neither β̂∗ nor β̃∗ is feasible because we do not know the true value of ρ.

A natural alternative estimate may be obtained by replacing ρ in (9) with some estimate.

That is, by letting ρ̃ be an estimate of ρ, we construct a new estimate β̃ as

β̃ = β̂ − σ̂ue
σ̂2e

∑T
t=1 xt−1(xt − ρ̃xt−1)∑T

t=1 x
2
t−1

= β̂ − σ̂ue
σ̂2e

∑T
t=1 xt−1 {et − (ρ̃− ρ)xt−1}∑T

t=1 x
2
t−1

= β̂ − σ̂ue
σ̂2e

{∑T
t=1 xt−1et∑T
t=1 x

2
t−1

− (ρ̃− ρ)

}
. (10)
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Since ρ̂− ρ =
∑T

t=1 xt−1et/
∑T

t=1 x
2
t−1, where ρ̂ is the OLSE of ρ in (4), β̃ becomes

β̃ = β̂ − σ̂ue
σ̂2e
{(ρ̂− ρ)− (ρ̃− ρ)}

= β̂ − σ̂ue
σ̂2e

(ρ̂− ρ̃) . (11)

Note that there is no meaning in replacing ρ with the OLSE ρ̂ because in this case, β̃

becomes equal to β̂, from expression (11).

Instead of using the OLSE of ρ, we propose to replace ρ with the Cauchy estimate, ρ̂c,

by So and Shin (1999), which is obtained by the instrumental variable method for (4) with

sign(xt−1) as an instrument, where sign(z) = 1 if z ≥ 0 and sign(z) = 0 if z < 03. The

advantage of ρ̂c over the OLSE ρ̂ is that it is an asymptotically median unbiased estimate

of ρ even for nearly integrated models. Then, β̃ becomes

β̃c = β̂ − σ̂ue
σ̂2e

(ρ̂− ρ̂c)

= β̃∗ +
σ̂ue
σ̂2e

(ρ̂c − ρ). (12)

Thus, the proposed plug-in estimate can be seen as the sum of the efficient estimate of β

and the centered Cauchy estimate of ρ. Note that since β̃∗ and ρ̂c are T consistent for β

and ρ, the plug-in estimate is also T consistent.

The limiting properties of the plug-in estimate (mean-adjusted) are investigated in Ap-

pendix B. Although the expression of the limiting distribution of β̃c is complicated, it

is almost median unbiased. That is, the limiting probability of taking positive values,

limT→∞ P (T (β̃c − β) ≥ 0), is almost 0.5. This implies that when the true value of β equals

0, the probability of β̃c ≥ 0 is almost the same as the probability of β̃c < 0. This contrasts

sharply with the asymptotic property of the OLSE β̂. It is well known in the literature and

3It is also possible to replace ρ with other estimates. We considered the lag-augmented method by
Choi (1993) and Toda and Yamamoto (1995) and its modified version by Kurozumi and Yamamoto (2000),
combined with several detrending methods. Although the estimates of β based on these methods can be
shown to be asymptotically normal, they do not perform better than the estimate based on the Cauchy
estimation in finite samples in view of size and power. The weighted symmetric estimate by Park and Fuller
(1995) may be a possible estimate, but it assumes normality in et. Because this assumption is too strong in
empirical finance, we did not consider this estimate.
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also confirmed in Appendix B that the OLSE of β is severely biased and that the limiting

probability of T (β̂− β) ≥ 0 is close to one for the nearly integrated predictors, and as such,

we tend to find evidence of predictability even if the true value of β equals zero. Note that

the median unbiasedness has been considered as one of the nice properties of estimates in

the econometric and statistical literature (in particular, in the unit root literature).

Another nice property of the plug-in estimate is that the limiting distribution of the

t-statistic based on the plug-in estimate is well approximated by a standard normal distri-

bution not only for the covariance stationary predictors but also for the nearly integrated

variables. As a result, we do not have to tabulate critical values depending on θ; we only

need to refer to a table of standard normal distribution and can also easily construct the

confidence interval for any significance level. These two nice properties, the median unbi-

asedness of the plug-in estimate and the asymptotic normality of the t-statistic, are very

useful in investigating the predictability of stock returns.

In practice, we usually have a constant term in the regressions, and thus, β̂ and ρ̂

should be obtained from regressions (1) and (2). On the other hand, we do not use the

conventional demeaning method for the Cauchy estimation but implement the recursive

OLS mean adjustment as suggested by So and Shin (1999). For AR(1) model (2), the

recursive OLS mean adjusted process is given by

xt − x̄t−1 = ρ(xt−1 − x̄t−1) + εt,

where x̄t−1 =
∑t−1

s=1 xs/(t− 1) and εt = et + (mx− x̄t−1)(1− ρ). Then, the Cauchy estimate

is obtained by the instrumental variable method with sign(xt−1 − x̄t−1) as an instrument:

ρ̂c,rols =

∑T
t=1 sign(xt−1 − x̄t−1)(xt − x̄t−1)∑T

t=1 |xt−1 − x̄t−1|
. (13)

Using ρ̂c,rols, we have the following plug-in estimate:

β̃c,rols = β̂ − σ̂ue
σ̂2e

(ρ̂− ρ̂c,rols) ,

where σ̂ue and σ̂2e are the consistent estimates of σue and σ2e constructed from the regression

residuals of (1) and (2). This plug-in estimate with the OLS mean adjustment is valid for

both stationary and nearly integrated predictors.
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The above recursive OLS mean adjustment is based on the OLS demeaning up to the

time t − 1. However, if we make use of the information that ρ is characterized as a local-

to-unity system, we may be able to efficiently estimate ρ. For this purpose, we combine

the recursive mean adjustment and the GLS detrending method by Elliott, Rothenberg and

Stock (1996). Let xqdt and 1qdt be the quasi-differenced series of xt and 1, that is, xqdt = x1

and 1qdt = 1 for t = 1 and xqdt = xt − (1 − 7/T )xt−1 and 1qdt = 7/T for t ≥ 2. Then, by

regressing xqds on 1qds for s = 1, · · · , t, we obtain the recursive estimates of mx at time t,

denoted by m̂x,gls,t, for t = 2, · · · , T . Using a sequence of these estimates, we construct the

Cauchy estimate of ρ with the recursive GLS mean adjustment and then obtain

β̃c,rgls = β̂ − σ̂ue
σ̂2e

(ρ̂− ρ̂c,rgls) ,

where ρ̂c,rgls is defined in the same way as ρc,rols in (13) with x̄t−1 being replaced by

m̂x,rgls,t−1. Since ρ is estimated more efficiently, we can expect β̃c,rgls to be more efficient

than β̃c,rols, which, in fact, is confirmed in the next section and in Appendix B. Note that

ρ̂c,rgls is a valid estimate only for nearly integrated predictors because the GLS detrending

is meaningful only for the local-to-unity system.

To summarize the asymptotic properties of the two plug-in estimates, both β̃c,rols and

β̃c,rgls are almost median unbiased and the distributions of the t-statistics based on these

estimates can be approximated by a standard normal distribution. While β̃c,rgls is more

efficient than β̃c,rols for nearly integrated predictors, β̃c,rols is valid for both covariance

stationary and nearly integrated variables. Because of this trade-off between robustness and

efficiency, we recommend using β̃c,rgls if we are confident that ρ is close to unity. Otherwise,

we may rely on β̃c,rols to investigate the predictability.

3. Finite Sample Properties

In this section, we investigate the finite sample properties of the estimates developed in the

previous section by Monte Carlo simulations. The data generating process is the same as

(3) and (4) with ut ∼ i.i.d.N(0, 1), et ∼ i.i.d.N(0, 1), Cov(ut, et) = σue, and x0 = 0. We
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set β = 0, ρ = 0.7, 0.8, 0.9, 0.95, and 0.99; σue = −0.95 and −0.55; and T = 50, 100, 250,

and 500. Although the true values of µr and µx equal zero, the models are estimated with

a constant term. The number of replications is 10,000 and all computations are conducted

by using the GAUSS matrix language.

Table 1 summarizes the simulation results when σue = −0.95. In Panel (a), we report

the bias of β̃c,rols, β̃c,rgls, and β̂, and the mean squared error (MSE) multiplied by 100

of the corresponding estimates in parentheses. From the table, we can see that the bias

is successfully reduced by the new methods. In particular, the plug-in estimate with the

recursive OLS mean adjustment is less biased in a wide range of ρ and for T ≥ 100, while

the plug-in estimate with the recursive GLS mean adjustment has a small bias only when

ρ is close to unity. This tendency is consistent with the asymptotic theory developed in

the previous section. On the other hand, the MSE of the OLSE is smaller than our plug-in

estimates when ρ moderately deviates from unity. However, as ρ approaches unity, our

plug-in estimates have smaller MSE than the OLSE. Since β̃c,rgls has the smallest MSE

when ρ ≥ 0.95, we can see that β̃c,rgls is more efficient than the other two estimates.

Panel (b) shows the probabilities of taking positive values: P (β̃c,rols ≥ 0), P (β̃c,rgls ≥ 0),

and P (β̂ ≥ 0). We can see that the OLSE of β takes positive values with probabilities greater

than 0.8 when ρ is close to one, whereas both P (β̃c,rols ≥ 0) and P (β̃c,rgls ≥ 0) are close to

0.5, and hence, we confirm that our plug-in estimates are almost median unbiased even in

finite samples.

Panel (c) reports the sizes of the one-sided t tests based on β̃c,rols and β̃c,rgls and the

Bonferroni Q (BF-Q) test proposed by Campbell and Yogo (2006). As in the table, the size

of tc,rols can be well controlled for any ρ and T , while the t test based on β̃c,rgls tends to

be slightly oversized when ρ moderately deviates from unity. On the other hand, we can

control the size of the BF-Q test only when ρ is close to unity; it is oversized for smaller

sample sizes but undersized for larger sample sizes when ρ is not close to one. Again, these

properties are consistent with the asymptotic theory; β̃c,rols is robust to the values of ρ while

β̃c,rgls and the BF-Q test are valid only for the nearly integrated models.
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In Panel (d), we report the coverage rates of the 90% confidence intervals based on β̃c,rols,

β̃c,rgls, and the BF-Q test. We can see that the coverage rates based on our estimates are

close to 0.9 for any ρ and T , while those based on the BF-Q test tend to be greater than

0.9 for large sample sizes, even if ρ is close to one.

The above estimates are less biased in the case of σue = −0.55 as compared to in the

case of σue = −0.95. However, the sizes and the coverage rates of the tests in the case of

σue = −0.55 are similar to those in the case of σue = −0.95. Since the relative performances

of the estimates and the tests are preserved in this case, we do not report the details to save

space.

Finally, we compare the powers of tc,rols, tc,rgls, and the BF-Q test. From Figure 1, we

can see that the BF-Q test is more powerful than our tests when ρ = −0.95, whereas the

difference between the powers of the BF-Q test and tc,rgls is only slight when the innovations

are moderately negatively correlated. This is because the BF-Q test takes into account the

possible range of θ (or ρ) based on the ADF-GLS test by Elliott, Rothenberg and Stock

(1996), whereas our plug-in estimate with the recursive GLS mean adjustment uses only the

fact that ρ is characterized as the local-to-unity system and does not restrict the possible

range of θ. It might be possible to construct a new estimate using the information about θ

based on the ADF-GLS test as suggested by Cavanaugh, Elliott and Stock (1995), but such

an estimate may have a complicated distribution and may not be median unbiased. Because

our main purpose is not to develop a powerful test but to construct reliable estimates, we

do not pursue such an estimate in this paper.

To summarize the simulation results, our plug-in estimates perform quite well in finite

samples and the t tests based on them are comparable with the existing test in some cases.

Because of the good finite sample properties, our plug-in estimates complement the existing

testing procedures in empirical analysis.

4. Predictability of U.S. Stock Returns

In this section, we implement our estimation method on U.S. equity data, taking the previous
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findings of Campbell and Yogo (2006) as the benchmark of the comparison.

4.1. Description of data

We use five different series of the U.S. stock returns. The first three series are the returns on

the annual S&P 500 index, the monthly and annual Center for Research in Security Prices

(CRSP) data. These return data, along with the financial ratio variables—the dividend-

price ratio and the earnings-price ratio—are used as the predictor variables. The series

and the same sample period are the same as in Campbell and Yogo (2006)4. These data

are taken from Motohiro Yogo’s website5. The estimation results using these data series

are presented in Panels A, B, and C of Table 2, respectively. In addition, we also use the

updated annual return on the S&P 500 index and the monthly data. These data and the

financial ratio variables are taken from Robert Shiller’s website6. The estimation results

using these data series are presented in Panels D and E of Table 2, respectively.

To compute the excess returns of stocks over risk-free return, we use the one-month T-

bill rate for monthly series and roll over the one-month T-bill rate for the annual series. In

our analysis, we use two additional predictor variables, the three month T-bill rate and the

long-short yield spread, following Campbell and Yogo (2006). As in Fama and French (1989)

and other previous researches, the long yield used to compute the yield spread is Moody’s

seasoned Aaa corporate bond yield. The short rate is the one-month T-bill rate. The T-

bill rates and the Moody’s seasoned Aaa corporate bond yield are from Yogo’s and FRB’s

websites7. Following the usual convention, the excess returns and the predictor variables

are in logs.

4.2. Persistence of the predictor variables

4We use the 1880-2002 and 1880-1994 samples for the annual S&P 500 index; the 1926M12-2002M12,
1926M12-1994M12, and 1952M1-2002M12 samples for the monthly CRSP data; and the 1926-2002, 1926-
1994, and 1952-2002 samples for the annual CRSP data.

5http://www.nber.org/˜myogo/
6http://www.econ.yale.edu/˜shiller/data.htm
7http://www.federalreserve.gov/releases/h15/data.htm
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In the fifth and sixth columns of Table 2, we report the estimated coefficients and standard

errors for the autoregressive root ρ for the log dividend-price ratio (d-p), the log earnings-

price ratio (e-p), the three-month T-bill rate (3my), and the long-short yield spread (ys)

using two different methods. As discussed in Section 2, we call them the plug-in estimate

with the recursive OLS mean adjustment (ρ̂c,rols) and the plug-in estimate with the recursive

GLS mean adjustment (ρ̂c,rgls). The difference in these two methods is described in Section

2 and the Appendix. The autoregressive lag length p ∈ [1, p̄] for the predictor variable is

determined by the Bayes information criterion (BIC). We set the maximum lag length p̄ as

four for annual data and eight for monthly data. The estimated lag lengths are reported in

the fourth column of Table 2.

As discussed in the literature, the high persistence of these typical predictor variables

suggests that the first-order asymptotics, that is, the t-statistic based on the OLSE being

approximately normal in large samples, can possibly lead to misleading results. It should

also be noted that whether or not the conventional inference based on the t-test is reliable

depends on the correlation (δ) between the innovations to the excess returns and to the

predictor variable, in addition to the true value of ρ. We report the point estimates of δ in

the seventh column of Table 2. The correlations of the innovations to stock returns with

the financial ratios are negative and large, but those with the interest rate variables (3my

and ys) are much smaller. The former result indicates that the movements in stock returns

and in financial ratios mostly come from the movements in the stock price. The latter

finding suggests that for the interest rate variables, the conventional t-test perhaps provides

approximately valid inference. These findings are essentially the same as those obtained by

Campbell and Yogo (2006).

4.3. Estimating and testing the predictability of the U.S. stock returns

Following the methodology discussed in Section 2, we calculate our plug-in estimates (β̃c,rols,

β̃c,rgls) to test the predictability on the U.S. stock returns. In the eighth and ninth columns

of Table 2, we report our plug-in estimates and the corresponding p-values. As mentioned in
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Section 3, β̃c,rgls is more efficient for persistent series, and hence, we discuss our estimation

results based on β̃c,rgls. We see from Panel A that the log dividend-price ratio (d-p) has

return predictability at the 5% significant level and the log earnings-price ratio (e-p) at

the 1% significant level for the U.S. annual S&P 500 index data with the Campbell and

Yogo (2006) sample. Drawing a comparison between our findings and those of Campbell

and Yogo (2006), we also report the confidence intervals of each of our plug-in estimates

in the tenth and eleventh columns of Table 2. In the last column of Table 2, we report

the result of the BF-Q test proposed by Campbell and Yogo (2006)8. Compared to these

confidence intervals, our test based on β̃c,rgls rejects the null of no predictability for the log

dividend-price ratio (d-p) and the log earnings-price ratio (e-p), whereas the BF-Q test does

not reject the null hypothesis for the log dividend-price ratio (d-p) for the annual S&P 500

index data series in both samples.

For the monthly CRSP series with the Campbell and Yogo (2006) sample, reported in

Panel B, the p-values of our test for the log earnings-price ratio (e-p) are almost 5% except

for in the 1952M1-2002M12 sample, whereas both tests reject the null for the log dividend-

price ratio (d-p). These findings are almost the same as those observed by Campbell and

Yogo (2006). For the three-month T-bill rate (3my) and the long-short yield spread (ys),

we reject the null hypothesis. Given that the correlation estimate δ̂ reported in the seventh

column is negative but very small, the conventional inference based on the t-test leads to

an approximately valid inference, as discussed in the previous subsection9.

In panel C, we report the result for the annual CRSP series with the Campbell and

Yogo (2006) sample. We see that the log dividend-price ratio (d-p) has return predictability

at the 5% significant level and the log earnings-price ratio (e-p) at the 1% significant level

for the 1926-2002 and the 1926-1994 samples, but both predictors are insignificant for the

1952-2002 sample. Compared to these confidence intervals, our test based on β̃c,rgls and the

BF-Q test reject the null of no predictability for the log dividend-price ratio (d-p) and the

log earnings-price ratio (e-p) for the 1926-2002 and the 1926-1994 samples, but not for the

8The figure is somewhat different in Campbell and Yogo (2006), but the conclusion is the same.
9This point is also discussed in Campbell and Yogo (2006).
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1952-2002 sample.

For the longer and more recent monthly sample, reported in Panel D, we reject the null

hypothesis at the 1% level for the log dividend-price ratio (d-p), the log earnings-price ratio

(e-p), and the long-short yield spread (ys) based on the β̃c,rgls point estimate. According

to the 5% confidence intervals by the plug-in estimates and the BF-Q test, we also reject

the null for these three series. Note that there is no difference between the confidence

intervals based on β̃c,rgls and the BF-Q test. Judging from these findings, we observe that

the log dividend-price ratio (d-p) and the log earnings-price ratio (e-p) are more likely to

has predictability on this monthly sample. However, as to the long-short yield spread (ys),

there is room for reconsidering the interpretation, as stated above.

For the updated longer annual sample reported in Panel E, we reject the null at the

5% level for the log dividend-price ratio (d-p), but not for the log earnings-price ratio (e-p)

based on the β̃c,rgls point estimate. According to the confidence interval based on β̃c,rgls,

the log dividend-price ratio has predictability, whereas the BF-Q test fails to reject the null.

In summary, with regard to the empirical results using the U.S. equity data series, we get

that our plug-in estimates are as well as or better than the BF-Q test by Campbell and Yogo

(2006) in finding predictability. Since our estimation method gives asymptotically median

unbiased point estimates, our estimates and tests are useful to investigate the predictability

of stock returns and complement the existing statistical methods such as the BF-Q test.

5. Conclusion

In this paper, we proposed new point estimates for predictive regressions. They are easily

obtained by the least squares and the instrumental variable methods. Our estimates have

nice asymptotic properties such as the (almost) median unbiasedness and the approximated

normality of the associated t-statistics. In addition, the proposed estimates are shown to

have good finite sample properties via Monte Carlo simulations. Using the new estimates,

we investigated the U.S. stock returns and found that some variables, which have not been

statistically detected as useful predictors in the literature, are able to predict stock returns.
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Because of their nice properties, our methods complement the existing statistical tests for

predictability to investigate the relations between stock returns and economic variables.

Appendix

A. Construction of the estimates and their variances

A.1. AR(1) case

We first explain the construction of the plug-in estimates for an AR(1) model and then

consider a more general AR(p) model. Note that if we consider only the nearly integrated

predictors, we do not have to construct the plug-in estimates as given in A.2 but it is

sufficient to follow A.1 even when xt is an AR(p) process. See also Appendix B.2. A.2. is

required for β̂c,rols to be valid even when xt is covariance stationary.

1. Estimate (1) and (2) by OLS and obtain β̂ and ρ̂. Based on the regression residuals

ût and êt, construct σ̂ue =
∑T

t=1 ûtêt/T , σ̂2e =
∑T

t=1 ê
2
t /T , and σ̂2u =

∑T
t=1 û

2
t /T .

2. Estimate (2) by the instrumental variable method. The estimate with the recursive

OLS mean adjustment is defined as

ρ̂c,rols =

∑T
t=2 sign(xt−1 − x̄t−1)(xt − x̄t−1)∑T

t=2 |xt−1 − x̄t−1|
,

where x̄t−1 =
∑t−1

s=1 xs/(t− 1). For the estimate with the recursive GLS mean adjust-

ment, construct xqdt and 1qdt as follows:

xqdt =

{
x1 : t = 1
xt − 7

T xt−1 : t ≥ 2,
1qdt =

{
1 : t = 1
7
T : t ≥ 2.

Obtain m̂x,gls,t by regressing xqds on 1qds for s = 1, · · · , t:

m̂x,gls,t =

∑t
s=1 1qds x

qd
s∑t

s=1(1
qd
s )2

.

The Cauchy estimate of ρ with the recursive GLS mean adjustment is defined as

ρ̂c,rgls =

∑T
t=2 sign(xt−1 − m̂x,gls,t−1)(xt − m̂x,gls,t−1)∑T

t=2 |xt−1 − m̂x,gls,t−1|
.
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3. The plug-in estimates of β are obtained as

β̃c,rols = β̂ − σ̂ue
σ̂2e

(ρ̂− ρ̃c,rols) and β̃c,rgls = β̂ − σ̂ue
σ̂2e

(ρ̂− ρ̃c,rols) .

4. The variance estimates of β̃c,rols and β̃c,rgls are defined as the sum of the variances of

the efficient estimates β̂∗ and the Cauchy estimates of ρ. That is,

V ar(β̃c,rols) = V ar(β̂∗) +

(
σ̂ue
σ̂2e

)2

V ar(ρ̂c,r,ols), (14)

where V ar(β̂∗) =
σ̂2e σ̂

2
u − σ̂2ue

σ̂2e
∑T

t−1 x̃
2
t−1

and V ar(ρ̂c,rols) =

∑T
t=2 ê

2
c,rols,t(∑T

t=2 |xt−1 − x̄t−1|
)2 ,

where x̃t = xt− x̄, and êc,rols,t = (xt− x̄t−1)− ρ̂c,rols(xt−1− x̄t−1) is the residual from

the instrumental variable estimation. Similarly, the variance of the plug-in estimate

with the recursive GLS mean adjustment is obtained by replacing V ar(ρ̂c,r,ols) with

V ar(ρ̂c,rgls) =

∑T
t=2 ê

2
c,rgls,t(∑T

t=2 |xt−1 − m̂x,gls,t−1|
)2 ,

where êc,rgls,t = (xt − m̂x,gls,t−1) − ρ̂c,rgls(xt−1 − m̂x,gls,t−1) is the residual from the

Cauchy estimation. We can construct tc,rols and tc,rgls by using β̃c,rols, V ar(β̃c,rols),

β̃c,rgls, and V ar(β̃c,rgls).

A.2. AR(p) case

We now consider the case where xt is an AR(p) process given by

xt = µx + ρxt−1 + ψ1∆xt−1 + · · ·+ ψp−1∆xt−p+1 + et, (15)

where µx = mx(1− ρ), ∆ is a differencing operator, and ρ = 1− θ/T .

1. As in the AR(1) case, estimate (1) and (15) by OLS and obtain β̂, σ̂ue, σ̂
2
e , and σ̂2u.

2. In order to estimate (15) by the instrumental variable method, express (15) in the

recursive OLS mean adjustment form as follows:

xt − x̄t−1 = ρ(xt−1 − x̄t−1) + +ψ1∆xt−1 + · · ·+ ψp−1∆xt−p+1 + εt. (16)
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Obtain the instrumental variable estimates ρ̂c,rols, ψ̂1,c,rols, · · · , ψ̂p−1,c,rols with sign(xt−

x̄t−1) and ∆xt−1, · · · ,∆xt−p+1 as instruments. Denote the estimate of the p× p vari-

ance covariance matrix by the instrumental variable estimation as Σ̂c,rols. Similarly,

ρ̂c,rgls and Σ̂c,rgls are obtained by replacing x̄t−1 in (16) with m̂x,gls,t−1, as in the

AR(1) case.

3. Let ẽc,rols,t = x̃t − ρ̂c,rolsx̃t−1 − ψ̂1,c,rols∆xt−1 − · · · − ψ̂p−1,c,rols∆xt−p+1, where x̃t and

x̃t−1 are obtained by regressions xt and xt−1 on a constant. Similarly, define ẽc,rgls,t by

replacing ρ̂c,rols, ψ̂1,c,rols, · · · , ψ̂p−1,c,rols in ẽc,rols,t with ρ̂c,rgls, ψ̂1,c,rgls, · · · , ψ̂p−1,c,rgls.

Then, the plug-in estimates are defined as

β̃c,rols = β̂ − σ̂ue
σ̂2e

∑T
t=2 x̃t−1ẽc,rols,t∑T

t=2 x̃
2
t−1

and β̃c,rgls = β̂ − σ̂ue
σ̂2e

∑T
t=2 x̃t−1ẽc,rgls,t∑T

t=2 x̃
2
t−1

.

4. The variance estimate of β̃c,rols is given by (14) with the same V ar(β̂∗) but with

V ar(ρ̂c,rols) being replaced by

V ar(ρ̂c,rols) = J ′Σ̂c,rolsJ where J =

[
1,

∑T
t=1 x̃t−1∆xt−1∑T

t=1 x̃
2
t−1

, · · · ,
∑T

t=1 x̃t−1∆xt−p+1∑T
t=1 x̃

2
t−1

]
.

Similarly, V ar(ρ̂c,rgls) is obtained by replacing Σ̂c,rols with Σ̂c,rgls.

B. Asymptotic distributions of the plug-in estimates

B.1. Case where ρ < 1 is fixed

For the AR(1) case, as given in (12), β̃c,rols is expressed as

(β̃c,rols − β) = (β̃∗ − β) +
σ̂ue
σ̂2e

(ρ̂c,rols − ρ). (17)

From (8), the weak law of large numbers (WLLN), and the central limit theorem (CLT), we

can see that

√
T (β̃∗ − β) =

1√
T

∑T
t=1(xt−1 −mx)(ut − σ̂ue

σ̂2
e
et)

1
T

∑T
t=1(xt−1 −mx)2

+ op(1)
d−→ N

(
0,
σ2u·e
γx

)
, (18)
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where σ2u·e = σ2u − σ2ue/σ2e and γx = V ar(xt), while

√
T (ρ̂c,rols − ρ) =

1√
T

∑T
t=2 sign(xt−1 −mx)et

1
T

∑T
t=2 |xt−1 −mx|

+ op(1)
d−→ N

(
0,

σ2e
(E|xt −mx|)2

)
. (19)

Moreover, since a sequence of [(xt−1 − mx){ut − (σue/σe)et}, sign(xt−1 − mx)et] for t =

2, · · · , T forms a martingale difference sequence with zero covariance, we can see that the

limiting distributions (18) and (19) are independent. As a result, we have

√
T (β̃c,rols − β)

d−→ N

(
0,
σ2u·e
γx

+
σ2ue
σ2e

1

(E|xt −mx|)2

)
,

and then, we can see that the associated t-statistic is asymptotically distributed as N(0, 1).

For the AR(p) case, β̃c,rols is expressed as

(β̃c,rols − β) = (β̃∗ − β) +
σ̂ue
σ̂2e

∑T
t=2 x̃t−1η̃

′
t−1(φ̂c,rols − φ)∑T
t=2 x̃

2
t−1

+ op

(
1√
T

)
, (20)

where η̃t−1 = [x̃t−1,∆xt−1, · · · ,∆xt−p+1], φ = [ρ, ψ1, · · · , ψp−1], and φ̂c,rols = [ρ̂c,rols, ψ̂1,c,rols, · · · , ψ̂p−1,c,rols].

Then, we can see that (18) still holds whereas the second term on the right-hand side mul-

tiplied by
√
T becomes

√
T

∑T
t=2 x̃t−1η̃

′
t−1(φ̂c,rols − φ)∑T
t=2 x̃

2
t−1

= J ′
√
T (φ̂c,rols − φ)

d−→ N
(
0, E[J ′]Σc,rolsE[J ]

)
, (21)

because J
p−→ E[J ] by the WLLN, while letting ηt−1 = [xt−1 − x̄t−1,∆xt−1, · · · ,∆xt−p+1]

and ηc,t−1 = [sign(xt−1 − x̄t−1),∆xt−1, · · · ,∆xt−p+1], we have

√
T (φ̂c,rols−φ) =

(
1

T

T∑
t=2

ηc,t−1η
′
t−1

)−1(
1√
T

T∑
t=2

ηc,t−1et

)
+op(1)

d−→ N (0,Σc,rols) , (22)

by the WLLN and the CLT, where Σc,rols = σ2e(E[ηc,tη
′
t])
−1E[ηc,tη

′
c,t](E[ηtη

′
c,t])
−1. Then,

from (18) and (22), we conclude that

√
T (β̃c,rols − β)

d−→ N

(
0,
σ2u·e
γx

+
σ2ue
σ4e

E[J ′]Σc,rolsE[J ]

)
,

and that the associated t-statistic weakly converges to a standard normal distribution.
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B.2. Case where ρ = 1− θ/T

For the AR(1) case, we have, by the functional central limit theorem,

1√
T

[Ts]∑
t=1

(ut−
σue
σ2e

et)
d−→Wu·e(s),

1√
T

[Ts]∑
t=1

et
d−→We(s), and

1√
T

(x[Ts]−mx)
d−→Wθ(s)

(23)

jointly for 0 ≤ s ≤ 1, where Wu·e(s) and We(s) are Brownian motions with variances

σ2u·e and σ2e , respectively, Wθ(s) is the Ornstein-Uhlenbeck process defined by Wθ(s) =∫ s
0 e

θ(s−t)dWe(t) and Wu·e(s) is independent of We(s) and Wθ(s). Using (23), we can see

that

T (β̃∗ − β)
d−→
∫ 1
0 W̃θ(s)dWu·e(s)∫ 1

0 W̃
2
θ (s)ds

, (24)

where W̃θ(s) = Wθ(s)−
∫ 1
0 Wθ(t)dt. On the other hand, as in So and Shin (1999), we have

T (ρ̂c,rols − ρ) =

1√
T

∑T
t=2 sign(xt−1 − x̄t−1)et

1
T
√
T

∑T
t=2 |xt−1 − x̄t−1|

+ op(1)
d−→
∫ 1
0 sign(W̃θ,c(s))dWe(s)∫ 1

0 |W̃θ,c(s)|ds
(25)

from (23) and the continuous mapping theorem, where W̃θ,c(s) = Wθ(s)− (1/s)
∫ s
0 Wθ(t)dt.

From (24) and (25), the plug-in estimate with the recursive OLS mean adjustment weakly

converges to

T (β̃c,rols − β)
d−→
∫ 1
0 W̃θ(s)dWu·e(s)∫ 1

0 W̃
2
θ (s)ds

+
σue
σ2e

∫ 1
0 sign(W̃θ,c(s))dWe(s)∫ 1

0 |W̃θ,c(s)|ds
. (26)

For the AR(p) case, we can see that as in (20),

T (β̃c,rols − β) = T (β̃∗ − β) +
σ̂ue
σ̂2e

1
T

∑T
t=2 x̃t−1η̃

′
t−1(φ̂c,rols − φ)

1
T 2

∑T
t=2 x̃

2
t−1

+ op(1). (27)

In this case, since the weak convergences in (23) hold with Wθ(s) being redefined by Wθ(s) =∫ s
0 e

θ(s−t)dWx(t), where Wx(t) is a Brownian motion with the long-run variance induced from

(15), we can see that (24) still holds. On the other hand, as in So and Shin (1999), we can

see that

T (ρ̂c,rols − ρ) =

1√
T

∑T
t=2 sign(xt−1 − x̄t−1)et

1
T
√
T

∑T
t=2 |xt−1 − x̄t−1|

+ op(1)
d−→
∫ 1
0 sign(W̃θ,c(s))dWe(s)∫ 1

0 |W̃θ,c(s)|ds
, (28)
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whereas ψ̂j,c,rols − ψj = Op(1/
√
T ) for j = 1, · · · , p − 1. Then, since

∑T
t=2 x̃

2
t−1 = Op(T

2)

while
∑T

t=2 x̃t−1∆xt−j = Op(T ) for j = 1, · · · , p − 1, we can show that the second term on

the right-hand side of (27) becomes

1
T

∑T
t=2 x̃t−1η̃

′
t−1(φ̂c,rols − φ)

1
T 2

∑T
t=2 x̃

2
t−1

= T (ρ̂c,rols − ρ) + op(1). (29)

Then, from (27), (28), and (29), we have the same convergence as given by (26) with

Wθ(s) =
∫ s
0 e

θ(s−t)dWx(t).

For the plug-in estimate with the recursive GLS mean adjustment, we can show that

1√
T

(x[Ts] − m̂x,gls,t−1)
d−→Wθ(s) (30)

for both the AR(1) and AR(p) cases. As a result, we can see that

T (β̃c,rgls − β)
d−→
∫ 1
0 W̃θ(s)dWu·e(s)∫ 1

0 W̃
2
θ (s)ds

+
σ2ue
σ2e

∫ 1
0 sign(Wθ(s))dWe(s)∫ 1

0 |Wθ(s)|ds
. (31)

In order to see the asymptotic properties of the plug-in estimates, we draw the probability

density functions of the limiting distributions given by (26) and (31) for various values of

θ with σ2u = σ2e = 1 and σue = −0.95 and −0.55 in Figure 210. As is well known in the

literature, the OLS estimate is severely biased when d = −0.95 and θ is small. However,

our plug-in estimates are located to the left, and hence, the biases of the plug-in estimates

are smaller than that of the OLS estimate. Moreover, the plug-in estimates are almost

median unbiased as we have limP (T (β̃c,rols − β) ≥ 0) ' 0.5 and limP (T (β̃c,rgls − β) ≥

0) ' 0.5 in Table 3. Note that the median unbiasedness has been considered as one of the

desirable properties of estimates in the econometric and statistical literature; in fact, the

median unbiased estimates of the AR(1) coefficient have been developed by, for example,

Andrews (1993) and So and Shin (1999). We can also see from Figure 2 that β̃c,rgls is more

efficient than β̃c,rols because the probability density function of a normalized β̃c,rgls is more

concentrated around the 0 axis than β̃c,rols.

10Brownian motions are approximated by the scaled partial sums from 2,000 i.i.d. standard normal random
variables. The densities are drawn for the range 1-99% points by the kernel method with a Gaussian kernel.
The smoothing parameter, h, is decided by equation (3.31) in Silverman (1986): h = 0.9AT−1/5, where
A = min(standard deviation, interquartile range/1.34).
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We now investigate the deviation of the t-statistics based on the plug-in estimates from

the standard normal distribution. Figure 3 draws the q-q plots of the limiting distributions

of the t-statistics against a standard normal distribution. From the figure, we can see that

the q-q plots of the t-statistics are almost linear, which implies that the limiting distributions

of the t-statistics are well approximated by N(0, 1). In particular, the q-q plots based on the

plug-in estimate with the recursive GLS mean adjustment are almost on the diagonal line.

On the other hand, the limiting distribution of the t-statistic based on the plug-in estimate

with the recursive OLS mean adjustment are located slightly to the left as compared to the

standard normal distribution when θ is large. This implies that the one-sided test based on

this t-statistic would be slightly conservative if the critical values of N(0, 1) are used.
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Figure 1: Finite Sample Power of the Tests (T = 250)
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Figure 2: The limiting pdfs of the estimates
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Figure 3: The q-q plots


