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Abstract

This paper studies implementation problems in the wake of a recent trend of imple-

mentation of non-consequentialist nature, which draws on the evidence taken from

experimental and behavioral economics. Specifically, following the seminal works by

Matsushima (2008) and Dutta and Sen (2009), the paper considers implementation

problems with partially-honest agents, which presume that there is at least one individ-

ual in society who concerns herself with not only outcomes but also honest behavior

at least in a limited manner. Given this setting, the paper provides a general charac-

terization of Nash implementation with partially-honest individuals. It also provides

the necessary and sufficient condition for Nash implementation with partially-honest

individuals by mechanisms with some types of strategy-space reductions. As a conse-

quence, it shows that in contrast to the case of the standard framework, the equivalence

between Nash implementation and Nash implementation with strategy space reduction

no longer holds.
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1 Introduction

The theory of (Nash) implementation aims to reach goals in situations in which the planner

does not have all the relevant necessary information, but needs to elicit it from the agents.1

To this end, she designs a mechanism or game form in which agents will act strategically

in accordance with the solution concept of Nash equilibrium. When the (Nash) equilib-

rium outcomes of the mechanism coincide with the goals set by the planner, these goals are

implementable. A seminal paper on implementation is Maskin (1999), who proves that a

social choice correspondence (SCC ) - which summarizes the planner’s goals - is (Maskin)
monotonic if it is implementable; when there are at least three agents, an SCC is imple-

mentable if it is monotonic and satisfies an auxiliary condition called no-veto power ; this

is Maskin’s Theorem.2 Moore and Repullo (1990), Dutta and Sen (1991), Danilov (1992),

Sjöström (1991), and Yamato (1992) refined Maskin’s characterization result by providing

necessary and sufficient conditions for an SCC to be implementable.3

A fundamental tenet of implementation theory is the consequentialism axiom. Its core

idea is that the ranking of outcomes of agents should be independent of the process that

generates these outcomes. An immediate implication of this axiom for implementation theory

is that agents should be indifferent between a lie and a truthful statement if they result in

the same material payoffs.4 This axiom is, however, inconsistent with the mounting evidence

from psychology and economics as well as from causal observations and introspection, that

agents may display concern for procedures; that is, they may care about how outcomes are

generated and, therefore, their ranking of outcomes may be structurally dependent on the

outcome-generating process (Camerer, 2003; Sen, 1997). Remarkably, a considerable amount

of experimental data suggests that agents may display preferences for truth-telling; that is,

an agent lies only when she prefers the outcome obtained from false-telling over the outcome

obtained from truth-telling (Gneezy, 2005; Hurkens and Kartik, 2009). Unexpectedly, these

kinds of preferences even emerge in experiments designed to test the feasibility of classical

mechanisms for implementation (Cabrales et al., 2003).5 The paper aims to narrow the gap

between these two strands. It follows the non-consequentialist approach by accommodating

concerns for truthful revelation of agents; but like mainstream theory, it keeps the idea that

even these agents respond primarily to material incentives.6 The paper refers to agents

1Henceforth, by implementation we mean Nash implementation.
2The first version appeared in 1977.
3For excellent introductions to the theory of implementation, see, for instance, Jackson (2001) and Maskin

and Sjöström (2002).
4The pioneer work in opening the theory of mechanism design to non-consequentialist considerations is

that of Glazer and Rubinstein (1998), where individuals involved in a mechanism care explicitly about the

process by which their recommendations affect the social decision, as they desire to see their recommendations

coincide with the social choice.
5Following the experiment result of Cabrales et. al (2003), the overall rate of truth-telling is 57% in a

treatment with no fine. Note that in that paper, a message by agent i is defined to be truthful if she has

reported the true state of the world, i.e., for instance, the true preference profiles. Such a definition does not

take into account the outcome announcement as a part of agent i’s truth-telling strategy.
6In its turn, the impressive body of evidence accumulated by psychologists over the past two decades

has caused scholars to study the implications of weakening other fundamental assumptions in a variety

of ways, and has already turned in a number of alternatives back to the standard implementation model

(for instance, Eliaz, 2002; Renou and Schlag, 2009; Bergemann et al., 2010; Cabrales and Serrano, 2010).

Noteworthy, the first paper on ‘behavioral implementation theory’ dates back to 1986, in which Hurwicz solves

the implementation problem without positing the completeness and the transitivity of agents’ preferences

(Hurwicz, 1986).
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having preferences for truth-telling as being partially-honest or dishonest averse.

Its general thrust goes as follows. Assume, as an example, that the message conveyed

by each agent to the planner involves the announcement of a preference profile (i.e., agents’

preferences over outcomes). A message is truthful if it involves the announcement of the

true preference profile. A partially-honest agent is an agent who strictly prefers to announce

a truthful message rather than a lie when the former (given a message announced by other

agents) produces an outcome which is at least as good as the one that would be achieved if the

agent lied (keeping constant the other agents’ messages). Suppose that agent h is a partially-

honest agent, who believes that the other agents will send the message m−h, and let mh be

the truthful message of agent h and m0
h be not truthful. Moreover, let both the message

profile (mh,m−h) and the message profile (m0
h,m−h) result in the same outcome x. Then,

unlike an agent who is concerned solely with outcomes, the partially-honest agent h strictly

prefers (mh,m−h) to (m0
h,m−h). Put differently, the agent at issue has preferences over

message profiles in which she cares about two dimensions in lexicographic order: primarily

to her outcome, secondarily to her truth-telling behavior.

Seminal works on the role of honesty in implementation theory are Matsushima (2008)

and Dutta and Sen (2009), which show that the assumption that the planner is aware of

the existence of partially-honest agents but ignores their identities drastically improves the

scope of implementation. Yet, the significant impact of the presence of partially-honest

agents upon implementation theory has not been fully appreciated - as described below. In

line with these works, this paper also investigates implementation problems with partially-

honest agents, where an SCC is partially-honest implementable if there is a mechanism whose
equilibrium outcomes are determined with each profile of preferences over message profiles

as well as potential sets of partially honest agents, and coincide with the optimal outcomes

set by this SCC .
Given this setting, the paper provides, in section 3.1, a minimal set of necessary conditions

for partially-honest implementation, though the above seminal works solely study sufficient

conditions. Due to this result in the paper, it is possible to examine which of the SCC s cannot
be partially-honestly implemented. For instance, as shown in section 4, the (strong) Pareto

SCC defined in abstract social choice environments is not partially-honestly implementable.

Furthermore, under mild and reasonable domain restrictions of preferences and mechanisms,

the paper shows that a slight strengthening of these conditions is necessary and sufficient for

partially-honest implementation in more than two person societies. The set of conditions is

much weaker than the necessary and sufficient condition given by Moore and Repullo (1990)

for the standard implementation, and in particular it contains no variant of the Maskin

monotonicity-like condition. For instance, in rationing problems when agents have single-

plateaued preferences, this characterization shows that the Pareto SCC is partially-honest

implementable, though this SCC violates the Moore and Repullo (1990) condition, and also

satisfies neither monotonicity nor no-veto power.

Note that the aforementioned theorem of this paper applies a canonical mechanism to

show the sufficiency part. This type of mechanism requests agents to announce a feasible

social outcome, an agent index, and moreover a profile of agents’ preferences on outcomes,

which is not an attractive feature, given that an important role of the mechanism is to

economize on communication. Facing this issue, the paper pays attention to informational

decentralization of mechanisms by considering mechanisms with strategy space reductions.

While sub-section 3.2 assumes s-mechanisms (Saijo, 1988) in which the message conveyed by

each agent to the planner involves the announcement of only her own and her neighbor’s pref-
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erences - in addition to an outcome and an agent index, sub-section 3.3 endorses the idea of

self-relevant mechanisms (Tatamitani, 2001) according to which each agent announces - inter

alia - only her own preference. Then, the paper identifies a minimal set of necessary condi-

tions for partially-honest implementation by s-mechanisms (resp., self-relevant mechanisms);

moreover, it shows that a slight strengthening of these conditions fully identifies the class

of partially-honest implementable SCC s by s-mechanisms (resp., self-relevant mechanisms).
Notably, these conditions respectively contain weaker variants of (Maskin) monotonicity-type

conditions, each of which respectively restricts the class of partially-honest implementable

SCC s by s-mechanisms and by self-relevant mechanisms. These findings have at least two
immediate consequences. First, there is a trade-off between what the planner can achieve

when there are partially-honest agents in the society and the strengthening of informational

decentralization in mechanisms. Second, this conflict breaks down the equivalence between

implementation and implementation by s-mechanism which holds in the standard framework

(Lombardi and Yoshihara, 2010).

Finally, the paper turns to study partially-honest implementation problems in two-agent

societies. This issue has recently been analyzed by Dutta and Sen (2009) on the assumption

that agents’ preferences are linear orders. Their contribution is that, even in the more

problematic case of two agents, the stringent condition of monotonicity is no longer required.

The paper extends their analysis to the domain of weak orders in view of its potential

applications to bargaining and negotiating. The paper identifies the class of partially-honest

implementable SCC s, not only in the case that the planner knows that exactly one agent
is partially-honest, but also in the more subtle case that she only knows that there exist

partially-honest agents.

The paper is organized as follows. Section 2 describes the formal environment. Section 3

reports the analysis for the many-person case, whereas Section 4 discusses briefly its impli-

cations. Section 5 reports the analysis for the two-agent case and its implications. Section 6

concludes briefly.

2 The implementation problem

The set of outcomes is denoted byX and the set of agents is N = {1, ..., n}. Unless otherwise
specified, we assume that the cardinality ofX is#X ≥ 2, while the cardinality of N is n ≥ 3.
Let R (X) be the set of all possible weak orders on X.7 Let R` ⊆ R (X) be the (non-empty)
set of all admissible weak orders for agent ` ∈ N .8 Let Rn ⊆ R1 × ... × Rn be the set of

all admissible profiles of weak orders (or states). A generic element of Rn is denoted by R,

where its `th component is R` ∈ R`, ` ∈ N .9 The symmetric and asymmetric factors of any
R` ∈ R` are, in turn, denoted P` and I`, respectively.

10 For any R ∈ Rn and any ` ∈ N , let
R−` be the list of elements of R for all agents except `, i.e., R−` ≡ (R1, ..., R`−1, R`+1, ..., Rn).
Given a list R−` and R` ∈ R`, we denote by (R−`, R`) the preference profile consisting of
these R` and R−`. For any preference profile R ∈ Rn and any ∅ 6= S ⊆ N , let R−S be the

7A weak order is a complete and transitive binary relation. A relation R on X is complete if, for all

x, x0 ∈ X, (x, x0) ∈ R or (x0, x) ∈ R; transitive if, for all x, x0, x00 ∈ X, if (x, x0) ∈ R and (x0, x00) ∈ R , then
(x, x00) ∈ R.

8The weak set inclusion is denoted by ⊆, while the strict set inclusion is denoted by (.
9(x, y) ∈ R` stands for “x is at least as good as y”.
10(x, y) ∈ P` if and only if (x, y) ∈ R` and (y, x) /∈ R` and P` stands for “strictly better than”. On the

other hand, (x, y) ∈ I` if and only if (x, y) ∈ R` and (y, x) ∈ R` and I` stands for “indifferent to”.
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list of elements of R for all agents in N\S. Given a list R−S and a list RS ∈ ×`∈SR`, we

denote by (R−S, RS) the preference profile consisting of these RS and R−S. Let Pn ⊆ Rn

be the set of all admissible profiles of linear orders.11 Let L (R`, x) denote agent i’s lower
contour set at (R`, x) ∈ R` ×X, that is, L (R`, x) ≡ {y ∈ X| (x, y) ∈ R`}. For any R` ∈ R`

and Y ⊆ X, let maxR` Y be the set of optimal outcomes in Y according to R`, that is,

maxR` Y ≡ {x ∈ Y | (x, y) ∈ R` for all y ∈ Y }. For any (R`, x) ∈ R` ×X, ∂L (R`, x) = {x}
means {x} = maxR` L (R`, x).
A social choice correspondence (SCC ) F on Rn is a correspondence F : Rn ³ X with

∅ 6= F (R) ⊆ X for all R ∈ Rn. Denote the class of such correspondences by F . An SCC
F on Rn is (Maskin) monotonic if, for all R,R0 ∈ Rn, with x ∈ F (R), x ∈ F (R0) holds
whenever L (R`, x) ⊆ L (R0`, x) for all ` ∈ N . An SCC F on Rn satisfies i) no-veto power

if, for all R ∈ Rn, x ∈ F (R) holds whenever x ∈ maxR` X for at least n − 1 agents; ii)
unanimity if, for all R ∈ Rn, x ∈ F (R) holds whenever x ∈ maxR` X for all ` ∈ N . Given
an SCC F , an outcome x is F -optimal at a preference profile R ∈ Rn if x ∈ F (R).
A mechanism or game form is a pair γ ≡ (M, g), where M ≡ M1 × ...×Mn, with each

Mi being a (non-empty) set, and g : M → X. It consists of a message space M , where M`

is the message space for agent ` ∈ N , and an outcome function g. Denote the admissible
class of mechanisms by Γ. Let m` ∈ M` denote a generic message (or strategy) for agent

`. A message profile is denoted by m ≡ (m1, ...,mn) ∈ M . For any m ∈ M and ` ∈ N ,
let m−` ≡ (m1, ...,m`−1,m`+1, ...,mn). Let M−` ≡ ×i∈N\{`}Mi. Given an m−` ∈M−` and an
m` ∈M`, denote by (m`,m−`) the message profile consisting of these m` and m−`. For any
m ∈ M and ∅ 6= S ⊆ N , let m−S ≡ (m`)`∈N\S. Let M−S ≡ ×`∈N\SM`. Given m−S ∈ M−S
and mS ∈MS, denote by (mS,m−S) the message profile consisting of these mS and m−S.
A mechanism γ induces a class of (non-cooperative) games {(γ, R) |R ∈ Rn}. Given a

game (γ, R), we say that m∗ ∈M is a (pure strategy) Nash equilibrium at R if and only if,

for all ` ∈ N , ¡m∗, ¡m`,m
∗
−`
¢¢ ∈ R` for all m` ∈ M`. Given a game (γ, R), let NE (γ, R)

denote the set of Nash equilibrium message profiles of (γ, R), whereas NA (γ, R) represents
the corresponding set of Nash equilibrium outcomes.

A mechanism γ implements F in Nash equilibria, or simply implements F , if and only

if F (R) = NA (γ, R) for all R ∈ Rn. If such a mechanism exists, then F is (Nash)-

implementable.

Given a mechanism γ, for each agent ` ∈ N a truth-telling correspondence T
γ
` on Rn×F

is a correspondence T
γ
` : Rn×F ³M` with ∅ 6= T γ

` (R,F ) ⊆M` for each (R,F ) ∈ Rn×F .
An interpretation of the set T

γ
` (R,F ) is that, given the mechanism γ and the pair (R,F ),

agent ` behaves truthfully at the message profile m ∈ M if and only if m` ∈ T γ
` (R,F ).

In other words, T
γ
` (R,F ) is the set of truthful messages of agent ` under the mechanism

γ, when the current social state is R ∈ Rn and the social goal is given by F . Note that

the type of elements of M` constituting T
γ
` (R,F ) depends on the type of mechanism γ

that one may consider. For example, if the message conveyed by each agent to the planner

involves the announcement of a preference profile, a feasible outcome and an agent index,

and sending the truthful preference profile constitutes the relevant truthful message for each

(R,F ) ∈ Rn × F , then M` may be defined by M` ≡ M1
` ×M2

` , where there is a bijection

σ` : Rn →M1
` such that T

γ
` (R,F ) = {σ` (R)} ×M2

` for each (R,F ) ∈ Rn ×F .
For any ` ∈ N and R ∈ Rn, let <R` be agent `’s weak order over M under the state R.

The asymmetric factor of <R` is denoted ÂR` , while the symmetric part is denoted ∼R` . For
11A linear order is a complete, transitive, and antisymmetric binary relation. A binary relation R on X is

antisymmetric if, for all x, x0 ∈ X, x = x0 if (x, x0) ∈ R and (x0, x) ∈ R.
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any R ∈ Rn, let <R denote the profile of weak orders over M under the state R, that is,

<R≡ ¡<R` ¢`∈N .
Definition 1. An agent h ∈ N is a partially-honest or dishonest averse agent if, for any

mechanism γ, any R ∈ Rn, and any m ≡ (mh,m−h) ,m0 ≡ (m0
h,m−h) ∈ M , the following

properties hold:

(i) if mh ∈ T γ
h (R,F ), m

0
h /∈ T γ

h (R,F ), and (g (m) , g (m
0)) ∈ Rh, then (m,m0) ∈ÂRh ;

(ii) otherwise, (m,m0) ∈<Rh if and only if (g (m) , g (m0)) ∈ Rh.
An agent ` ∈ N who is a partially-honest agent is denoted by h. If agent ` ∈ N is not a

partially-honest agent, i.e., ` 6= h, then for each game (γ, R), for allm,m0 ∈M : (m,m0) ∈<R`
if and only if (g (m) , g (m0)) ∈ R`.
Unless otherwise specified, the following informational assumption holds throughout the

paper.

Assumption 1. There are partially-honest agents in N . The planner is well aware of the

fact that there are partially-honest agents in N but she does not know their identities.

Thus, while the planner knows that there are partially-honest agents in society and how

these agents behave, the planner knows neither the identity of the partially-honest agents

nor their exact number.

Let H ⊆ {H ⊆ N | H 6= ∅} be the class of subsets of N . Note that H is considered as

the potential class of partially-honest agents’ groups. That is, if H ∈ H, this H is a potential

group of partially-honest agents in N ; in other words, H is a conceivable set of partially-

honest agents. By Assumption 1, the planner knows that H is non-empty, and perhaps, she

may know what subsets of N belong to H, but she never knows which element of H is the

true set of partially-honest agents in the society. Assumption 1 implies that #H ≥ 2.
A mechanism γ induces a class of (non-cooperative) games with partially-honest agents©¡
γ,<R

¢ |R ∈ Rn,H ∈ Hª. Given a game ¡γ,<R¢, we say that m∗ ∈ M is a (pure strat-

egy) Nash equilibrium with partially-honest agents at (R,H) if and only if, for all ` ∈ N ,¡
m∗,

¡
m`,m

∗
−`
¢¢ ∈<R` for all m` ∈ M`. Given a game

¡
γ,<R

¢
, let NE

¡
γ,<R

¢
denote the

set of Nash equilibrium message profiles of
¡
γ,<R

¢
, whereas NA

¡
γ,<R

¢
represents the

corresponding set of Nash equilibrium outcomes.

Since by Assumption 1 the planner knows that there are partially-honest agents in N

but not who these agents are, this raises the question of what is an appropriate notion of

implementation in such a setting. To enable the planner to partially-honestly implement

SCC s, the paper amends the standard definition of implementation as follows.

Definition 2. An SCC F ∈ F is partially-honest (Nash) implementable if there exists a

mechanism γ = (M,g) ∈ Γ such that F (R) = NA
¡
γ,<R

¢
for all R ∈ Rn and all H ∈ H.

In the conventional implementation theory, the objective of the planner is to design

a mechanism whose equilibrium outcomes coincide with the F -optimal outcomes for each

admissible state R. In contrast, in the presence of partially-honest agents, the planner,

to achieve the implementability of the goal F , has to design a mechanism in which the

equivalence between the set of equilibrium outcomes and the set of F -optimal outcomes

holds not only for each admissible state R, but also for each conceivable set of partially-

honest agents, i.e., for each H ∈ H. Note that the gap between the two definitions becomes
closed when no agent in N is partially-honest.

To conclude, let us introduce two mild conditions imposed on the models of this paper.

One is a condition on the domain of agents’ preferences, while the other is a condition on
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the domain of mechanisms admissible in the society. The first condition basically requires

that the class of available profiles of preferences is sufficiently rich. Examples of preference

domains satisfying such a condition would be the set of all profiles of weak orders, linear

orders, and single peaked preferences onX. Moreover, it is vacuously satisfied in the classical

economic environments. Hence, our models are applicable to those environments. The

condition can be stated as follows.

Rich Domain (RD): For any i ∈ N , any R ∈ Rn, and any x ∈ X, if R0i ∈ Ri (X) is such
that L (R0i, x) = L (Ri, x) with ∂L (R0i, x) = {x}, then (R0i, R−i) ∈ Rn holds.

Next, our informational assumption is that the planner knows that there exist partially-

honest agents but ignores their identities. The partially-honest agent is an agent who prefers

to be truthful if a lie is not beneficial to her. Given this structure, the existence of truthful

messages is presumed since otherwise, the issue reduces to the standard implementation

problem. Moreover, the admissible class of mechanisms should be constituted by those

which involve a simple scheme to punish such a partially-honest agent if she sends a false

message. Within this class, let us consider a type of mechanism in which, if an outcome x is

F -optimal at the state R and the outcome function g selects x as the resulting outcome of the

messages announced by agents, a partially-honest agent can find a truthful message which

results in the same outcome x - keeping constant the messages of all other agents. In such a

mechanism, any false statement by a partially-honest agent can be punished independently

of the detailed information about the true state of the society. The condition on the class of

admissible mechanisms Γ can be stated as follows.

Simple Punishment (SP): For any F ∈ F , for any R,R0 ∈ Rn, any x ∈ F (R), any i ∈ N ,
and any m ∈M such that g (m) = x, there is m0

i ∈ T γ
i (R

0, F ) such that g (m0
i,m−i) = g (m).

A mechanism γ is a mechanism with simple punishment if it satisfies SP. Denote the class

of mechanisms with SP by ΓSP .
Before closing this section, it may be worth noting that the simple punishment prop-

erty is satisfied by all classical mechanisms in the literature of Nash implementation (see,

for instance, Repullo, 1987; Moore and Repullo, 1990; Saijo, 1988; Dutta and Sen, 1991;

Tatamitani, 2001).

3 Characterization results for the many-person case

This section reports the analysis of partially-honest implementation problems in the many-

person case.

Sub-section 3.1 basically imposes no restriction on the types of admissible mechanisms

except for Γ = ΓSP . First, this sub-section identifies a minimal set of necessary conditions for
partially-honest implementation with no restriction on Γ. The necessary conditions include
only weaker variants of the no-veto power condition. Then, by setting Γ = ΓSP , it is shown
that a slight strengthening of this minimal set of necessary conditions fully identifies the

class of SCC s that are partially-honest implementable - by canonical mechanisms.

The section, then, turns to study partially-honest implementation by mechanisms with

strategy space reductions. While sub-section 3.2 studies partially-honest implementation

by s-mechanisms, sub-section 3.3 analyzes the same implementation problem by focussing

on self-relevant mechanisms. For each of these two types of mechanisms, their respective

sub-sections identify a minimal set of necessary conditions that an SCC F must satisfy if it
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is partially-honest implementable. The identified necessary conditions incorporate a Maskin

monotonicity-like condition. Finally, given Γ = ΓSP , it is reported that a slight strengthening
of the necessary conditions for s-mechanisms (resp., self-relevant mechanisms) fully charac-

terizes partially-honest implementation by s-mechanisms (resp., self-relevant mechanisms).

The sets of conditions that are necessary and sufficient for partially-honest implementa-

tion are more complex than those obtained by Moore and Repullo (1990), Tatamitani (2001),

and Lombardi and Yoshihara (2010), but they are remarkably weaker and do provide addi-

tional insights; we refer the reader to Section 4 for more details.

3.1 Partially-honest implementation: A general characterization

Since Maskin’s Theorem, there have been impressive advances in implementation theory.

Specifically, in societies with at least three agents, Moore and Repullo (1990) established

that an SCC F is implementable if and only if it satisfies Condition μ defined below.

Condition μ (for short, μ): There is a set Y ⊆ X and, for all R ∈ Rn and all x ∈ F (R),
there is a profile of sets (C` (R, x))`∈N such that x ∈ C` (R, x) ⊆ L (R`, x) ∩ Y for all ` ∈ N ;
finally, for all R∗ ∈ Rn, the following (i)-(iii) are satisfied:

(i) if C` (R, x) ⊆ L (R∗` , x) for all ` ∈ N , then x ∈ F (R∗);
(ii) for all i ∈ N , if y ∈ Ci (R, x) ⊆ L (R∗i , y) and y ∈ maxR∗` Y for all ` ∈ N\ {i}, then
y ∈ F (R∗);
(iii) if y ∈ maxR∗` Y for all ` ∈ N , then y ∈ F (R∗).12
Condition μ(i) is equivalent to monotonicity, while Conditions μ(ii) and μ(iii) are weaker

versions of no-veto power.

Our first task in this sub-section is to find necessary conditions for an SCC to be partially-

honest implementable. These conditions will not include any monotonicity-type condition,

since the injection of a minimal dishonest aversion into implementation theory frees us from

the jail of Maskin monotonicity (see Dutta and Sen, 2009). Yet, this task is particularly

complicated and subtle when indifference relations are allowed.13 To explain this aspect,

suppose that an SCC F is partially-honest implementable by a mechanism γ. Let Y be the

range of g:

Y ≡ g (M) = {x ∈ X|g (m) = x for some m ∈M}.

Consider a preference profile R∗ ∈ Rn. Suppose that some outcome y = g (m) in Y is an

optimal outcome under the state R∗ in the set Y for all agents so as to fulfill the premises of
Condition μ(iii). In the conventional theory, the message profilem constitutes an equilibrium

of the game (γ, R∗). However, it may not be the case when there are partially-honest agents.
For the sake of simplicity, assume that only agent h is partially-honest. Suppose that the

messagemh conveyed to the planner by this agent is not truthful, while a truthful statement,

say m0
h ∈ T γ

h (R
∗, F ), results in an outcome x = g (m0

h,m−h) distinct from y for which she is
indifferent to. Suppose that x is not maximal for one of the other agents. In this situation,

we can no longer conclude that the outcome y is SCC -optimal, as the message profile m

12We refer to the condition that requires only one of the conditions (i)—(iii) in Condition μ as Conditions

μ(i)—μ(iii) each. Note that Condition μ implies Conditions μ(i)—μ(iii), but the converse is not true. We use

similar conventions below.
13When the domain of preferences contains only linear orders, Condition μ without Condition μ(i) is not

only necessary but sufficient.
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supporting y is not an equilibrium of the game
¡
γ,<R∗

¢
- since agent h strictly prefers

(m0
h,m−h) tom. This indicates that even when y is maximal in Y under R

∗, not all strategies
in g−1 (y) can constitute an equilibrium of g at R∗ when there are partially-honest agents.
Among these strategies, only those in which all partially-honest agents are making truthful

reports may support y as an F -optimal outcome at R∗. This can be achieved by requiring
that for all potential partially-honest agents (since the identities of partially-honest agents

are unknown), the outcome y must be the unique optimal outcome under R∗ in the set Y .
With this additional requirement, agent h can profitably deviate frommh /∈ T γ

h (R
∗, F ) to an

m00
h ∈ T γ

h (R
∗, F ), but her deviation will not prevent us from concluding that y is F -optimal

at R∗, since the strategy profile (m00
h,m−h), when executed by g, results in the outcome y.

The complications associated with necessary conditions are not limited to Condition

μ(iii). The difficulties come mainly from two causes. First, the presence of partially-honest

agents breaks down the equivalent relationship between agents’ preferences over outcomes

and their preferences over message profiles, which is implicitly assumed in the conventional

theory. Second, conditions on F are to be formulated only in terms of preferences over

outcomes. Taking these difficulties into account, we obtain the following condition, Condition

μ∗, which basically contains only weaker versions of Conditions μ(ii) and μ(iii).

Condition μ∗ (for short, μ∗): There is a set Y ⊆ X and, for all R ∈ Rn and all x ∈ F (R),
there is a profile of sets (C` (R, x))`∈N such that x ∈ C` (R, x) ⊆ L (R`, x) ∩ Y for all ` ∈ N ;
finally, for all H ∈ H and all R∗ ∈ Rn, the following (i)-(iii) are satisfied:

(i) if C` (R, x) ⊆ L (R∗` , x) for all ` ∈ N and x /∈ F (R∗), then there exists h ∈ H such that

(x, x0) ∈ I∗h for some x0 ∈ Ch (R, x);
(ii) for all i ∈ N , if y ∈ Ci (R, x) ⊆ L (R∗i , y), y ∈ maxR∗` Y for all ` ∈ N\ {i}, and y /∈ F (R∗),
then:

(a) if H = {i}, then (y, y0) ∈ I∗i for some y0 ∈ Ci (R, x) \ {y};
(b) if i ∈ H and #H > 1, then R∗ 6= R or (y, y0) ∈ I∗i for some y0 ∈ Ci (R, x) \ {y};
(iii) if y ∈ maxR∗` Y for all ` ∈ N and y /∈ F (R∗), then there is an h ∈ H such that (y, y0) ∈ I∗h
for some y0 ∈ Y \ {y}.
Notice that Condition μ∗(i) imposes a requirement which is met by all SCC s.
The following theorem shows that Condition μ∗ is a minimal set of necessary conditions

for the partially-honest implementation.

Theorem 1. Let Assumption 1 hold. If an SCC F ∈ F is partially-honest implementable,

then it satisfies Condition μ∗.

Proof. Let Assumption 1 hold. Let γ ≡ (M,g) be a mechanism which partially-honest

implements F ∈ F . Let Y ≡ g (M). Take any H 0 ∈ H, R ∈ Rn, and x ∈ F (R). Then,
there is a strategy mH0 ∈ NE ¡γ,<R¢ such that g ¡mH0¢

= x. Then, {x} ⊆ g ¡M`,m
H0
−`
¢ ⊆

L (R`, x) ∩ Y for all ` ∈ N . Let CH0
` (R, x) ≡ g ¡M`,m

H0
−`
¢
for all ` ∈ N . Define C` (R, x) ≡

∪H0∈HCH
0

` (R, x) for all ` ∈ N , all R ∈ Rn, and all x ∈ F (R). Then, x ∈ C` (R, x) ⊆
L (R`, x)∩Y holds for all ` ∈ N , all R ∈ Rn, and all x ∈ F (R). Take any (R∗, H) ∈ Rn×H.
As it is easy to see that F satisfies Condition μ∗(i), we omit the proof here. Next, we

show that F meets conditions μ∗(ii)-μ∗(iii).
Pick any i ∈ N and suppose that y ∈ Ci (R, x) ⊆ L (R∗i , y), y ∈ maxR∗` Y for all ` ∈

N\ {i}, and y /∈ F (R∗). Then, as F is partially-honestly implemented by γ, it follows

that y /∈ NA ¡γ,<R∗¢ for all H 0 ∈ H. Since Ci (R, x) = ∪H0∈Hg
¡
Mi,m

H0
−i
¢
, there exists an

mH0 ∈ NE ¡γ,<R¢ for some H 0 ∈ H, such that g ¡mH0¢
= x and g

¡
m0
i,m

H0
−i
¢
= y for some
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m0
i ∈ Mi. Let m̂ ≡

¡
m0
i,m

H0
−i
¢
. Note that g (bm) = y /∈ NA ¡γ,<R∗¢ holds for any H 0 ∈ H.

However, since g (Mi, bm−i) ⊆ Ci (R, x) ⊆ L (R∗, y) and y ∈ maxR∗` g (M) for all ` ∈ N\ {i}
by the premise of μ∗(ii), m̂ ∈ NE (γ, R∗) holds. In contrast, the fact that y /∈ NA ¡γ,<R∗¢
for any H 0 ∈ H implies that m̂ /∈ NE ¡γ,<R∗¢ for any H 0 ∈ H. Thus, for each H 0 ∈ H,
there should be an h ∈ H 0 such that m̂h /∈ T γ

h (R
∗, F ) and (g (m∗h, m̂−h) , g (m̂)) ∈ I∗h for

some m∗h ∈ T γ
h (R

∗, F ), since m̂ ∈ NE (γ, R∗) \NE ¡γ,<R∗¢ for all H 0 ∈ H.
LetH = {i}, and assume, to the contrary, that {y} = maxR∗i Ci (R, x). Then, g (m∗i , m̂−i) =

g (m̂), where m∗i ∈ T γ
i (R

∗, F ) and m̂i /∈ T γ
i (R

∗, F ) are such that (g (m∗i , m̂−i) , g (m̂)) ∈ I∗i
for the unique partially-honest agent {i} = H. Since there cannot be any profitable deviation
from (m∗i , m̂−i), we have that y ∈ NA

¡
γ,<R∗

¢
for some H = {i}, a contradiction. Thus, F

satisfies μ∗(ii.a).
Let #H > 1 and i ∈ H. Suppose R∗ = R. Then, (x, y) ∈ I∗i with x 6= y. Note that if

R∗ = R and x = y, then x /∈ NA ¡γ,<R¢ for all H ∈ H, which is a contradiction. Thus,
if R∗ = R, then (y, y0) ∈ I∗i for some y0 ∈ Ci (R, x) \ {y}, since x ∈ Ci (R, x). Therefore, F
satisfies μ∗(ii.b).
Finally, we show that F satisfies condition μ∗(iii). Let y ∈ maxR∗` Y = maxR∗` g (M) for

all ` ∈ N , and y /∈ F (R∗). As F is partially-honestly implemented by γ, it follows that

y /∈ NA ¡γ,<R∗¢ for all H 0 ∈ H. Then, g (m̂) = y for some m̂ ∈M . Assume, to the contrary,
{y} = maxR∗` g (M) for all h ∈ H. As m̂ /∈ NE ¡γ,<R∗¢ for all H 0 ∈ H and y ∈ maxR∗` g (M)
for all ` ∈ N , the only agents that could profitably deviate from m̂ are the agents in the

set H. Let H̄ ⊆ H be the set of all partially-honest agents h such that m̂h /∈ T γ
h (R

∗, F ).
Consider the profile of profitable deviations mH̄ ≡ (m̄h)h∈H̄ such that m̄h ∈ T γ

h (R
∗, F ) for

all h ∈ H̄. As {y} = maxR∗` g (M) for all ` ∈ H, we have that g (m̄H̄ , m̂−H̄) = y. Since there
cannot be any profitable deviation from (m̄H̄ , m̂−H̄), we have that y ∈ NA

¡
γ,<R∗

¢
for the

set H, which is a contradiction. Therefore, F satisfies μ∗(iii).

Note that when {{1} , {2} , . . . , {n}} ⊆ H, then μ∗(iii) implies the following:

(iii) if y ∈ maxR∗` Y for all ` ∈ N and y /∈ F (R∗), then for any h ∈ N , there exists y0 ∈ Y \ {y}
such that (y, y0) ∈ I∗h.
This is because y /∈ F (R∗) implies y /∈ NA ¡γ,<R∗¢ in the game at (R∗, H) for all H ∈ H.
Condition μ∗ alone is not a sufficient condition for partially-honest implementation, but it

is sufficient together with some auxiliary conditions if the domain of preferences is sufficiently

rich. Such a slightly strengthened condition can be stated as follows.

Condition μ∗∗ (for short, μ∗∗): There is a set Y ⊆ X and, for all R ∈ Rn and all x ∈ F (R),
there is a profile of sets (C` (R, x))`∈N such that x ∈ C` (R, x) ⊆ L (R`, x) ∩ Y for all ` ∈ N ;
Condition μ∗ and Condition μ(iii) hold;14 finally, for all H ∈ H, and for all R∗ ∈ Rn, the

following conditions are satisfied for all i ∈ N :
(ii.c) if y ∈ Ci (R, x) ⊆ L (R∗i , y), y ∈ maxR∗` Y for all ` ∈ N\ {i}, and y /∈ F (R∗), then
[i /∈ H ⇒ R 6= R∗];
(iv) if L (R∗i , x) = L (Ri, x), x ∈ maxR∗` Y for all ` ∈ N\ {i}, R∗−i = R−i, and x /∈ F (R∗),
then H 6= {i}.
Assuming that only mechanisms with simple punishment are admissible, Condition μ∗∗

is necessary and sufficient for partially-honest implementation. Before stating our second

main result, it may be instructive to briefly discuss the devised implementing mechanism.

14Henceforth, Condition μ(iii) is referred to as Condition μ∗∗(iii). Moreover, we refer to the statement
that requires only one of the statements (i) and (ii) in Condition μ∗ as Conditions μ∗∗(i) and μ∗∗(ii).
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Let γ = (g,M) be a mechanism where for each agent i ∈ N the message space is

Mi ≡ Rn×Y ×N , with Y ⊆ X.15 Thus, each agent i announces a preference profile, Ri, an
outcome, xi, and an agent index, ki. Since a central ingredient of our implementation model

is that there is a minimal degree of honesty among agents involved in the mechanism γ, we

shall define accordingly what constitutes a honest message for γ. By endorsing the idea of

Dutta and Sen (2009), a message by agent i is truthful for the mechanism γ if it discloses to

the planner the true preferences of all agents involved in it. Formally, for each i ∈ N , the
set of truth-telling messages is

T
γ
i (R,F ) ≡ R× Y ×N (1)

for any state, R ∈ Rn, and any societal goal, F ∈ F . Finally, let us define the outcome
function g as follows. For any message profile m ∈M ,
Rule 1 : If

¡
R`, x`

¢
=
¡
R̄, x

¢
for all ` ∈ N and x ∈ F ¡R̄¢, then g (m) = x;

Rule 2 : If there exists a unique agent i ∈ N such that
¡
R̄, x

¢
=
¡
R`, x`

¢
for all ` ∈ N\ {i}

and (Ri, xi) 6= ¡R̄, x¢, and x ∈ F ¡R̄¢:
Rule 2.1 : if Ri = R̄, then g (m) = x;
Rule 2.2 : if Ri 6= R̄, then

g (m) =

½
xi if xi ∈ Ci

¡
R̄, x

¢
,

x otherwise.

Rule 3 : Otherwise, g (m) = x`
∗(m) where `∗ (m) =

P
i∈N

ki (mod n).16

In words, the mechanism prescribes the following:

Rule 1 applies if agents unanimously agree on a preference profile and an outcome. As a

consequence, the unanimously announced outcome, x, is the outcome of the mechanism.

Rule 2 applies if all agents but one (agent i) state the same outcome and preference profile,

while agent i makes a different outcome announcement or preference announcement. Then,

Rule 2.1 applies if agent i disagrees with others only on the outcome announcement. In

that case, the outcome of the mechanism is the outcome, x, announced by all other agents.

On the other hand, Rule 2.2 applies if agent i announces a preference profile which differs

from that announced by the others. In that case, the outcome of the mechanism is the xi

announced by agent i, if it is an attainable outcome and not better than the outcome x for

i when her true preference is equal to that announced by the other agents. Otherwise, the

outcome is x.

Rule 3 applies in all other cases and the outcome of the mechanism is determined by the

agent who wins the “modulo game”.

The above mechanism is a mechanism with simple punishment. Moreover, it is similar but

not identical to the canonical mechanism used to prove the classical Maskin’s Theorem. The

difference is in the definition of Rule 2. While our mechanism distinguishes whether agent

i announces a different preference profile or not, the canonical Rule 2 does not make this

distinction.17 Moreover, though both mechanisms satisfy the condition of simple punishment,

15The focus on this kind of mechanism is without loss of generality, see Maskin (1999).
16If the remainder is zero, the winner of the game is agent n. See Saijo (1988).
17In the canonical mechanism, in all cases in which all agents but one make exactly the same announcement,

the outcome of the mechanism is given in the same way as in our Rule 2.2.
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our distinction in Rule 2 allows the planner to better exploit the fact that every partially-

honest agent is making a truthful statement in equilibrium.

To explain this aspect, suppose that in equilibrium, the message profile falls into Rule

2.1, so that the message by agent i differs from the message reported by the others only

in the outcome announcement. Then, all partially-honest agents announce truthfully the

preference profile; otherwise, any of the false-telling partially-honest agents can deviate to

Rule 2.2 profitably. Then, if the outcome of the mechanism is the x announced by all

others, we can directly conclude that x is F -optimal at the announced preference profile.

This would not be possible if the mechanism permitted the selection of xi ∈ Ci
¡
R̄, x

¢
, with

xi 6= x, announced by agent i.
Next, suppose that in equilibrium, the message profile falls into Rule 2.2. In this equi-

librium, if H\ {i} 6= ∅, then every h ∈ H\ {i} should send the truthful message because
given m ∈ M falling into Rule 2.2, any false-telling agent h in H\ {i} can always find a
truth-telling m0

h such that (m
0
h,m−h) corresponds to Rule 3 with g (m

0
h,m−h) = g (m). By

a similar argument, i should send the truthful message in this equilibrium, whenever i ∈ H.
We are now ready to state our second result of this sub-section; Condition μ∗∗ is nec-

essary and sufficient for partially-honest implementation when the domain of preferences is

sufficiently rich and only mechanisms with simple punishment are admissible (the formal

proof is relegated to Appendix).

Theorem 2. Let Assumption 1 and Γ = ΓSP hold, and suppose that Rn satisfies RD. An

SCC F ∈ F is partially-honest implementable if and only if it satisfies Condition μ∗∗.

3.2 Partially-honest implementation by s-mechanisms

This sub-section focuses on partially-honest implementation by s-mechanisms.

The basic idea behind this mechanism is to cover each agent’s preference twice. For

example, agent i’s preference may be covered by her own announcement and by that of

another agent involved in the mechanism. A way to proceed is to arrange agents clockwise

facing inward, and require that each agent ` announces, inter alia, the preferences of the

agent standing immediately to her left, that is, of agent ` + 1. Formally, an s-mechanism
can be defined as follows.

Definition 3. A mechanism γ = (M,g) is an s-mechanism if, for any ` ∈ N , M` ≡
R` ×R`+1 × Y ×N , with n+ 1 = 1 and Y ⊆ X.
Thus, each agent ` announces her preference, R``, the preference of her neighbor, R

`
`+1, an

outcome, x`, and an agent index, k`. It is important to note that the results reported in this

sub-section hold as long as each agent’s preference is covered twice. It is not crucial that

each agent announces her own and her neighbor’s preferences.

Requiring forthrightness as a regularity condition, we define partially-honest implemen-

tation by s-mechanisms as follows.

Definition 4. An SCC F ∈ F is partially-honest implementable by an s-mechanism if there
exists an s-mechanism γ ≡ (M, g) such that:
(i) for all R ∈ Rn and all H ∈ H, F (R) = NA ¡γ,<R¢; and
(ii) for all R ∈ Rn and all x ∈ F (R), if m` =

¡
R`, R`+1, x, k

`
¢ ∈ M` for all ` ∈ N , with

`+ 1 = 1 if ` = n, then m ∈ NE ¡γ,<R¢ and g (m) = x.
In Definition 4, it is required not only that all F -optimal outcomes coincide with partially-

honest Nash equilibrium outcomes of the game
¡
γ,<R

¢
defined by an s-mechanism - for any
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state R ∈ Rn and any H ∈ H -, but also that such an s-mechanism satisfies forthrightness.

Forthrightness requires that if the outcome x is F -optimal at the state R and each agent

announces truthfully her preference R` and her neighbor’s preference R`+1 and announces

this x, then the message profile should be a Nash equilibrium of an s-mechanism and its

equilibrium outcome be the announced outcome x.

Forthrightness was originally introduced in economic environments by Dutta et al. (1995)

and Saijo et al. (1996), and it has desirable implications. A mechanism satisfying forthright-

ness is simple in the sense that it is easy to compute the outcome of an equilibrium message

profile. Moreover, if a mechanism fails to satisfy this condition, it is subject to information

smuggling; that is, the message space can be reduced to an arbitrary smaller dimensional

space. Thus, any partially-honest implementable SCC by s-mechanisms would be partially-

honest implementable by a ‘further strategy space reduction mechanism’ like self-relevant

mechanisms (Tatamitani, 2000), unless forthrightness is required. This indicates that there

is no legitimate reason for characterizing partially-honest implementation by s-mechanisms

without forthrightness. Hence, to make sense of partially-honest implementation by this

type of mechanism, we require the regularity condition of forthrightness in Definition 4.

Before turning to the findings of this sub-section, we discuss what constitutes a truthful

message for s-mechanisms. As our objective is to examine what societal goal F can be

implemented when there are agents who have a minimal dishonesty aversion, we define a

message of agent ` as truthful if this agent states to the planner her true preference and the

true preference of her neighbor. Formally, given an s-mechanism γ = (M, g), a preference
profile R ∈ Rn, and a societal goal F ∈ F , the range of the truth-telling correspondence of
agent ` ∈ N is

T
γ
` (R,F ) ≡ {(R`, R`+1)} × Y ×N , (2)

where n+ 1 = 1.
The issue of what constitutes the necessary and sufficient condition for implementation

by s-mechanisms in the conventional framework has been recently addressed by Lombardi

and Yoshihara (2010), who introduce a new condition - Condition Ms -, which is similar to

Condition M appearing in Sjöström (1991). This condition can be stated as follows.

Condition Ms (for short, Ms): There exists a set Y ⊆ X and, for all R ∈ Rn and all

x ∈ F (R), there exists a profile of sets (C` (R`, x))`∈N such that x ∈ C` (R`, x) ⊆ L (R`, x)∩Y
for all ` ∈ N ; finally, for all R∗ ∈ Rn, the following (i)-(iii) are satisfied:

(i) if C` (R`, x) ⊆ L (R∗` , x) for all ` ∈ N , then x ∈ F (R∗);
(ii) for all i ∈ N , if y ∈ Ci (Ri, x) ⊆ L (R∗i , y) and y ∈ maxR∗` Y for all ` ∈ N\ {i}, then
y ∈ F (R∗);
(iii) if y ∈ maxR∗` Y for all ` ∈ N , then y ∈ F (R∗).
Notice that ConditionMs differs from Condition μ only in that the set of attainable outcomes

C` (R`, x) of agent ` depends solely on her preference R` rather than on the entire profile
R ∈ Rn.

In what follows, our first task is to find necessary conditions for partially-honest imple-

mentation by s-mechanisms. For the same reasons highlighted in sub-section 3.1, Condition

Ms is too strong to constitute a necessary condition for partially-honest implementation by

the type of mechanism at issue. A weaker variant of ConditionMs, which is relevant for our

study, can be stated as follows.
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Condition M∗
s (for short, M

∗
s ): There exists a set Y ⊆ X and, for all R ∈ Rn and all

x ∈ F (R), there exists a profile of sets (C` (R`, x))`∈N such that x ∈ C` (R`, x) ⊆ L (R`, x)∩Y
for all ` ∈ N ; finally, for all H ∈ H and all R∗ ∈ Rn, the following (i)-(iii) are satisfied:

(i) if C` (R`, x) ⊆ L (R∗` , x) for all ` ∈ N and x /∈ F (R∗), then there exists H 0 ⊆ H such that

for all h ∈ H 0, (Rh, Rh+1) 6=
¡
R∗h, R

∗
h+1

¢
;

(ii) for all i ∈ N , if y ∈ Ci (Ri, x) ⊆ L (R∗i , y), y ∈ maxR∗` Y for all ` ∈ N\ {i}, and
y /∈ F (R∗), then there exists H 0 ⊆ H such that:

(a) if H 0 = {i}, then (y, y0) ∈ I∗i for some y0 ∈ Ci (Ri, x) \ {y};
(b) otherwise, (Rh, Rh+1) 6=

¡
R∗h, R

∗
h+1

¢
for all h ∈ H 0\ {i};

(iii) if y ∈ maxR∗` Y for all ` ∈ N and y /∈ F (R∗), then there is an ` ∈ H such that (y, y0) ∈ I∗`
for some y0 ∈ Y \ {y}.
Condition M∗

s stands in stark contrast to Condition μ∗∗ in including a weaker variant of the
Maskin monotonicity. This weakening requires that if an outcome x is F -optimal at state

R, and this outcome is not preferred less by any agent ` ∈ N than any other outcome in

C` (R`, x) at R
∗, then x must be F -optimal at R∗ whenever the preference of any potential

partially-honest agent and that of her neighbor are identical between R and R∗. In contrast,
Conditions M∗

s (ii) and M
∗
s (iii) are weaker versions of Conditions Ms(ii) and Ms(iii).

The next theorem shows that Condition M∗
s is necessary for partially-honest implemen-

tation by s-mechanisms.

Theorem 3. Let Assumption 1 hold. If an SCC F ∈ F is partially-honest implementable

by an s-mechanism, then it satisfies Condition M∗
s .

Proof. Let Assumption 1 hold. Let ¦ ∈ N be an arbitrary agent index. Let γ ≡ (M, g)
be an s-mechanism which partially-honest implements F ∈ F . Let Y ≡ g (M). Take any
H ∈ H, any R ∈ Rn, and any x ∈ F (R). For all ` ∈ N , let C` (R`, x) ≡ g (M`,m−` (R, x))
where m−` (R, x) is such that mi (R, x) = (Ri, Ri+1,x, ¦) ∈ Mi for all i ∈ N\ {`}, with
n+ 1 = 1. By forthrightness, m (R, x) = (m` (R, x) ,m−` (R, x)) ∈ NE

¡
γ,<R

¢
holds for all

H 0 ∈ H, and g (m (R, x)) = x. Then, C` (R`, x) = g (M`,m−` (R, x)) ⊆ L (R`, x) ∩ Y for all
` ∈ N . We show that F satisfies ConditionsM∗

s (i)-M
∗
s (iii). As it is easy to see that F meets

M∗
s (iii), we omit its proof here. Take any H ∈ H and any R∗ ∈ Rn.

Suppose thatC` (R`, x) ⊆ L (R∗` , x) for all ` ∈ N and x /∈ F (R∗). Then, sinceC` (R`, x) =
g (M`,m−` (R, x)) for all ` ∈ N , it follows that for each H ∈ H, there exists an H 0 ⊆ H such

that for all h ∈ H 0, mh (R, x) /∈ T γ
h (R

∗, F ) and (g (m0
h,m−h (R, x)) , g (m (R, x))) ∈ I∗h for

some m0
h ∈ T γ

h (R
∗, F ). Thus,

¡
R∗h, R

∗
h+1

¢ 6= (Rh, Rh+1) for all h ∈ H 0. Hence, F satisfies

Condition M∗
s (i).

Pick any i ∈ N . Suppose that y ∈ Ci (Ri, x) ⊆ L (R∗i , y), y ∈ maxR∗` Y for all ` ∈ N\ {i},
and y /∈ F (R∗). Then, since Ci (Ri, x) = g (Mi,m−i (R, x)), g (mi,m−i (R, x)) = y for some
mi ∈ Mi. Let bm ≡ (mi,m−i (R, x)). Moreover, as y /∈ F (R∗) = NA

¡
γ,<R∗

¢
for all

H ∈ H, it follows that for each H ∈ H, there exists an H 0 ⊆ H such that for all h ∈ H 0,bmh /∈ T γ
h (R

∗, F ) and (g (m∗h, bm−h) , g (bm)) ∈ I∗h for somem∗h ∈ T γ
h (R

∗, F ). LetH 0 = {i} ⊆ H
for the given H ∈ H, and {y} = maxR∗i Ci (Ri, x). It follows that g (m

∗
i ,m−i) = y which

leads to (m∗i ,m−i) ∈ NE
¡
γ,<R∗

¢
for this H, a contradiction. Thus, F satisfies M∗

s (ii.a).

Finally, let H 0 6= {i} for H 0 ⊆ H. It can readily be obtained by the definition of H 0 that F
satisfies M∗

s (ii.b).

A slight strengthening of Condition M∗
s is required for the sufficiency result. The two

auxiliary conditions which are required are the standard Condition μ(iii) - or equivalently,

Condition Ms(iii) - and Condition μ∗∗(iv). This condition can be stated as follows.
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ConditionM∗∗
s (for short,M∗∗

s ): There exists a set Y ⊆ X and, for all H ∈ H, all R ∈ Rn,

and all x ∈ F (R), there exists a profile of sets (C` (R`, x))`∈N such that x ∈ C` (R`, x) ⊆
L (R`, x)∩ Y for all ` ∈ N ; Condition M∗

s and Condition Ms(iii) hold; finally, for all H ∈ H
and all R∗ ∈ Rn, Condition μ∗∗(iv) holds.18

The above condition is not only sufficient when the domain of preferences is rich enough,

but also necessary when only s-mechanisms with simple punishments are admissible. Before

stating this result (whose proof is relegated to Appendix), it may be worthwhile describing

the mechanism constructed to obtain the sufficiency part.

The implementing mechanism uses the idea of cyclic announcement of messages proposed

in Saijo (1988), and is identical to the s-mechanism used to prove that Condition Ms is

necessary and sufficient for implementation by s-mechanisms in the conventional framework

(Lombardi and Yoshihara, 2010). In line with Lombardi and Yoshihara (2010), for an s-

mechanism γ = (M,g), we say that the message profile m ∈M is:

(i) consistent with R and x if, for all j ∈ N , Rjj = Rj−1j = Rj and x
j = x;

(ii) m−i quasi-consistent with R and x, where i ∈ N , if for all j ∈ N , xj = x, and for all
j ∈ N\{i, i+ 1}, Rjj = Rj−1j = Rj, R

i−1
i = Ri, R

i+1
i+1 = Ri+1, and [R

i
i 6= Ri or Rii+1 6= Ri+1];

(iii) m−i consistent with R and x, where i ∈ N , if for all j ∈ N\{i}, xj = x 6= xi, and for all
j ∈ N\{i, i+ 1}, Rjj = Rj−1j = Rj, R

i−1
i = Ri, R

i+1
i+1 = Ri+1;

where 1− 1 = n.
In words, a message profile is consistent with an outcome x and a preference profile R

if there is no break in the cyclic announcement of preferences and all agents announce the

outcome x. On the other hand, it is quasi-consistent with x and R if there are at most

two consecutive breaks in the cyclic announcement of preferences, and x is unanimously

announced. Finally, a message profile m is m−i consistent with x and R if agent i announces
an outcome different from the outcome x announced by the others, if there are no more

than two consecutive breaks in the cyclic announcement of preferences, and, finally, if these

breaks (if any) happen only in the announcement of the preference made by agent i.

Define the outcome function g as follows. For any message profile m ∈M ,
Rule 1 : If m is consistent with

¡
R̄, x

¢ ∈ Rn × Y and x ∈ F ¡R̄¢, then g (m) = x.
Rule 2 : If for some i ∈ N , m ism−i is quasi-consistent with

¡
R̄, x

¢ ∈ Rn×Y and x ∈ F ¡R̄¢,
then g (m) = x.
Rule 3 : If for some i ∈ N , m is m−i consistent with

¡
R̄, x

¢ ∈ Rn × Y , x ∈ F ¡R̄¢, and
Ci
¡
R̄i, x

¢ 6= Y , then
g (m) =

½
xi if xi ∈ Ci

¡
R̄i, x

¢
x otherwise.

Rule 4 : Otherwise, g (m) = x`
∗(m) where `∗ (m) ≡ P

i∈N
ki (mod n).

The above mechanism is one with simple punishment.

Before closing this sub-section, it may be worthwhile to provide the reason for why

ConditionM∗
s (i) is required to guarantee partially-honest implementation by s-mechanisms.

To this end, let R be the true state of the world and m be an Nash equilibrium message

18Henceforth, ConditionMs(iii) and Condition μ
∗∗(iv) are referred to as ConditionM∗∗s (iii) and Condition

M∗∗s (iv), respectively. Moreover, we refer to the statement that requires only one of the statements (i) and
(ii) in Condition M∗s as Conditions M∗∗s (i) and M∗∗s (ii).
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profile of the game
¡
γ,<R

¢
which falls into Rule 1. When a canonical mechanism is employed

and an equilibrium message profile falls into Rule 1 - of the mechanism described in the

previous sub-section -, the preference profile Ri is announced truthfully; that is, Ri = R,

and this permitted us to conclude in Theorem 2 that the unanimously announced outcome

was F -optimal at R. This conclusion, however, is no longer possible when we are dealing

with s-mechanisms. The reason is that even though all partially-honest agents are reporting

truthfully, it is in general not possible to reconstruct the true state R from their reports.

Therefore, Condition M∗∗
s (i) is required to guarantee that x is F -optimal at R.

To conclude, the following theorem shows that ConditionM∗∗
s is necessary and sufficient

for partially-honest implementation by s-mechanisms under the same mild requirements

stated in Theorem 2.

Theorem 4. Let Assumption 1 and Γ = ΓSP hold, and let Rn satisfy RD. An SCC F ∈ F
is partially-honest implementable by an s-mechanism if and only if F satisfies Condition

M∗∗
s .

3.3 Partially-honest implementation by self-relevant mechanisms

From the viewpoint of informational decentralization in mechanisms, it is desirable that an

agent discloses information related only to her own characteristics (Hurwicz, 1960, 1972).

This entails analyzing partially-honest implementation by self-relevant mechanisms, which

is the subject of this sub-section.

The type of self-relevant mechanism considered herein is that introduced in Tatamitani

(2001). In this mechanism, each participanting agent ` is required to state an outcome, x`,

an agent index, k`, and only her preference, R``. Formally, it can be defined as follows.

Definition 5. A mechanism γ ≡ (M,g) is a self-relevant mechanism if, for any ` ∈ N ,
M` ≡ R` × Y ×N .
Similar to the definition of truthfulness of the previous sub-sections, a message from each

agent in a self-relevant mechanism is truthful if it conveys to the planner her true preference.

Formally, given a self-relevant mechanism γ = (M,g), a preference profile R ∈ Rn, and a

societal goal F ∈ F , the range of the truth-telling correspondence of agent ` ∈ N is

T
γ
` (R,F ) ≡ {R`} × Y ×N . (3)

Given this definition of truth-telling correspondences, partially-honest implementation

by self-relevant mechanisms is defined as follows:

Definition 6. An SCC F ∈ F is partially-honest implementable by a self-relevant mecha-

nism if there exists a self-relevant mechanism γ ≡ (M, g) such that:
(i) for all R ∈ Rn and all H ∈ H, F (R) = NA ¡γ,<R¢; and
(ii) for all R ∈ Rn and all x ∈ F (R), if m` =

¡
R`, x, k

`
¢ ∈ M` for all ` ∈ N , then

m ∈ NE ¡γ,<R¢ and g (m) = x.
Like Tatamitani (2001), the above definition requires the regularity condition of forthright-

ness to avoid the problem of information smuggling. Moreover, Definition 6 requires that

the planner has to design a self-relevant mechanism where only the F -optimal outcomes are

realized as equilibrium outcomes of the devised game form, regardless of the current state R

and who is partially honest.
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Let us begin with stating the necessary and sufficient conditions for implementation

by self-relevant mechanisms in the conventional framework. To this end, additional no-

tation is needed. For any ` ∈ N , any R−` ∈ Rn−1, and x ∈ X, let F−1` (R−`, x) ≡
{R0` ∈ R`|x ∈ F (R0`, R−`)} and ΛF` (R−`, x) ≡ ∩R`∈F−1` (R−`,x)L (R`, x). Given (R, x) ∈ Rn ×
X, define D (R, x) ≡ ©` ∈ N |F−1` (R−`, x) 6= ∅

ª
.

The necessary and sufficient condition devised by Tatamitani (2001) can be stated as

follows.

Condition λ (for short, λ): There exists a set Y ⊆ X and, for all (R, x) ∈ Rn × X
with D (R, x) 6= ∅, there exists a profile of sets (C` (R−`, x))`∈N such that x ∈ C` (R−`, x) ⊆
ΛF` (R−`, x)∩Y for all ` ∈ D (R, x); finally, for all R∗ ∈ Rn, the following (i)-(iv) are satisfied:

(i) if x ∈ F (R) and C` (R−`, x) ⊆ L (R∗` , x) for all ` ∈ N , then x ∈ F (R∗);
(ii) for all i ∈ D (R, x), if y ∈ Ci (R−i, x) ⊆ L (R∗i , y) and y ∈ maxR∗` Y for all ` ∈ N\{i},
then y ∈ F (R∗);
(iii) if y ∈ maxR∗` Y for all ` ∈ N , then y ∈ F (R∗);
(iv) there exists an outcome p (R, x) ∈ X such that:

(a) p (R, x) ∈ C` (R−`, x) for all ` ∈ D (R, x);
(b) if Ci (R−i, x) ⊆ L (R∗i , p (R, x)) for all i ∈ D (R, x) and p (R, x) ∈ maxR∗` Y for all

` ∈ N\D (R, x), then p (R, x) ∈ F (R∗).
Condition λ is markedly stronger than Condition μ. Notable parts of Condition λ are Condi-

tion λ(i) and Condition λ(iv). Condition λ(i) is much stronger than Maskin monotonicity.19

For the same reasons highlighted in sub-section 3.1, the participation of dishonest averse

agents in a self-relevant mechanism makes Condition λ no longer a necessary condition for

implementation. A weakening of Condition λ which is relevant for the present study can be

stated as follows.

Condition λ∗ (for short, λ∗): There exists a set Y ⊆ X and, for all (R, x) ∈ Rn × X
with D (R, x) 6= ∅, there exists a profile of sets (C` (R−`, x))`∈N such that x ∈ C` (R−`, x) ⊆
ΛF` (R−`, x) ∩ Y for all ` ∈ D (R, x); finally, for all H ∈ H and all R∗ ∈ Rn, the following

(i)-(iv) are satisfied:

(i) if x ∈ F (R), C` (R−`, x) ⊆ L (R∗` , x) for all ` ∈ N , and x /∈ F (R∗), then there exists
H 0 ⊆ H such that for all h ∈ H 0, Rh 6= R∗h;
(ii) for all i ∈ D (R, x), if y ∈ Ci (R−i, x) ⊆ L (R∗i , y), y ∈ maxR∗` Y for all ` ∈ N\{i}, and
y /∈ F (R∗), then there exists H 0 ⊆ H such that:

(a) if H 0 = {i}, then (y, y0) ∈ I∗i for some y0 ∈ Ci (R−i, x) \ {y};
(b) otherwise, Rh 6= R∗h for all h ∈ H 0\ {i};
(iii) if y ∈ maxR∗` Y for all ` ∈ N and y /∈ F (R∗), then there exists an ` ∈ H such that

(y, y0) ∈ I∗` for some y0 ∈ Y \ {y};
(iv) there exists an outcome p (R, x) ∈ X such that:

(a) p (R, x) ∈ C` (R−`, x) for all ` ∈ D (R, x);
(b) if Ci (R−i, x) ⊆ L (R∗i , p (R, x)) for all i ∈ D (R, x) 6= ∅, p (R, x) ∈ maxR∗` Y for all

` ∈ N\D (R, x), and p (R, x) /∈ F (R∗), then Rh 6= R∗h for some h ∈ H.
It is important to note that Condition λ∗ incorporates not only a monotonicity-type condition
but also a punishment-type condition, Condition λ∗(iv).

19See Tatamitani (2002) for a detailed analysis on how restrictive Condition λ(i) is.
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Though Condition λ∗ is weaker than Condition λ, these two conditions are very similar.

Nonetheless, the next theorem shows that the proposed amendment of Condition λ is a

necessary condition for partially-honest implementation by self-relevant mechanisms.

Theorem 5. Let Assumption 1 hold. If an SCC F ∈ F is partially-honest implementable

by a self-relevant mechanism, then it satisfies Condition λ∗.

Proof. Let Assumption 1 hold and ¦ ∈ N be an arbitrary agent index. Let γ ≡ (M, g)
be a self-relevant mechanism which partially-honest implements F ∈ F . Let Y ≡ g (M).
Take any H ∈ H and any (R, x) ∈ Rn × X with D (R, x) 6= ∅. For any i ∈ D (R, x), let
Ci (R−i, x) ≡ g (Mi,m−i), where m−i is such that m` = (R`, x, ¦) ∈ M` for all ` ∈ N\ {i}.
Therefore, Ci (R−i, x) ⊆ Y . Next, to show x ∈ Ci (R−i, x) ⊆ ΛFi (R−i, x), take any R

0
i ∈

F−1i (R−i, x) and let m0
i = (R

0
i, x, ¦) ∈Mi. By forthrightness, (m

0
i,m−i) ∈ NE

³
γ,<(R0i,R−i)

´
for any H ∈ H, and g (m0

i,m−i) = x. So, x ∈ g (Mi,m−i) ⊆ L (R0i, x). Since it holds for any
R0i ∈ F−1i (R−i, x), we have that x ∈ Ci (R−i, x) ⊆ ΛFi (R−i, x). Note that the proofs that F
meets Conditions λ∗(i)-λ∗(iii) can be obtained by following a reasoning similar to that used
in Theorem 3, so we omit them here. Finally, we show that F satisfies Condition λ∗(iv).
Take any (R, x) ∈ Rn×X with D (R, x) 6= ∅. Let m ∈M be such that m` = (R`, x, ¦) ∈

M` for all ` ∈ N . Let g (m) ≡ p (R, x). Then, p (R, x) ∈ g (M`,m−`) ⊆ Y for all ` ∈
D (R, x). Furthermore, suppose that Ci (R−i, x) ⊆ L (R∗i , p (R, x)) for all i ∈ D (R, x),
p (R, x) ∈ maxR∗` Y for all ` ∈ N\D (R, x), and p (R, x) /∈ F (R∗). Then, by partially-honest
implementability of F by γ, it follows that m /∈ NE ¡γ,<R∗¢ for any H ∈ H. Then, given
H ∈ H, mh /∈ T γ

h (R
∗, F ) for some h ∈ H. Thus, F satisfies Condition λ∗(iv).

Condition λ∗ alone does not guarantee the sufficiency of partially-honest implementa-
tion by self-relevant mechanisms. As a necessary and sufficient condition, it needs a slight

strengthening of Condition λ∗ by adding the two auxiliary conditions, Condition μ(iii) and

Condition μ∗∗(iv). Thus, the new condition as a whole is stated below.

Condition λ∗∗ (for short, λ∗∗): There exists a set Y ⊆ X and, for all (R, x) ∈ Rn × X
with D (R, x) 6= ∅, there exists a profile of sets (C` (R−`, x))`∈N such that x ∈ C` (R−`, x) ⊆
ΛF` (R−`, x) ∩ Y for all ` ∈ D (R, x); Condition λ∗ and Condition μ(iii) hold; finally, for all

H ∈ H and all R∗ ∈ Rn, Condition μ∗∗(iv) holds.20

Theorem 6. Let Assumption 1 and Γ = ΓSP hold, and let Rn satisfy RD. An SCC F ∈ F
is partially-honest implementable by a self-relevant mechanism if and only if it satisfies

Condition λ∗∗.

4 Implications

This section briefly discusses the implications of the results reported in section 3.

Before going into the details, let us note that we cannot specify in advance the strucutre

of the set H in which the analysis takes place. By our assumption, H could be anything

whenever H ⊆ 2N\∅ and #H = 2 hold. However, when we examine the performance
of each SCC in terms of its partially-honest implementability, it seems most plausible to

proceed with this examination by assuming H = 2N\∅. This is because such an assumption
20Henceforth, Condition μ(iii) and Condition μ∗∗(iv) are referred to as Condition λ∗∗(iii) and Condition

λ∗∗(iv), respectively. Moreover, we refer to the statement that requires only one of the statements (i)-(ii) in
Condition λ∗ as Conditions λ∗∗(i)-λ∗∗(ii).
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implies the severest situation for the planner in the sense that she cannot know even the

class of potential sets of partially-honest agents, and so she cannot help but simply presume

H = 2N\∅, and then design a mechanism which can implement her goal, F , even in this

situation. Indeed, by covering the case that H = 2N\∅, the planner is ensured of the
implementability of F for any other specialization that the set H may take. For this reason,

we turn to analyze some implications of the aforementioned theorems under the specification

that the structure of H is H = 2N\∅.
The first proposition is an impossibility, showing that Condition μ∗ imposes non-trivial

restrictions on the class of partially-honest implementable SCC s. To show this result, let us

define the Pareto SCC. For each R ∈ Rn, the Pareto set, PO (R), is:21

PO (R) ≡ {x ∈ X|@y ∈ X: (y, x) ∈ Ri for all i ∈ N and (y, x) ∈ Pi for some i ∈ N} .
An SCC F on Rn is the Pareto SCC, denote FPO, if F (R) = PO (R) for all R ∈ Rn. Our

next result shows that this SCC violates Condition μ∗.

Proposition 1. Let Assumption 1 hold. FPO on Rn is not partially-honest implementable

if H = 2N\∅.
Proof. Assume, to the contrary, that FPO satisfies Condition μ∗∗. Let N = {1, 2, 3} with
#N = 3, X = {x, y, z} with #X = 3, and R3 = {R,R∗}, where agents’ preferences are as
follows:

R R∗

1 2 3 1 2 3

x y z x x, y x, y

y z x y z z

z x y z

where, as usual, xy means that the agent in question strictly prefers x to y, while x, y means

that the agent at issue is indifferent between x and y.

As y ∈ PO (R), there exists a profile (C` (R, y))`∈N such that y ∈ C` (R, y) ⊆ L (R`, y)∩Y
for all ` ∈ N . Since PO (R) = X, it follows that Y = X. Notice that Condition μ∗(ii.a)
is vacuously satisfied if H = {i} ⊆ {2, 3}. Then, let H = {1}. Observe y ∈ maxR∗` X for

all ` ∈ {2, 3} and y ∈ C1 (R, y) ⊆ L (R1, y) = L (R∗1, y). Condition μ∗(ii.a) implies that
y ∈ FPO (R∗) 6= PO (R∗) = {x}, a contradiction.
The next proposition is a possibility result, showing that while the Pareto SCC, FPO,

defined on the domain of single-plateaued preferences violates both Condition μ(i) and Con-

dition μ(ii), it is partially-honest implementable by virtue of Theorem 2. Before proving this

result, let us define the environment in which the result is formulated.

Let M ∈ R++ be an amount of some infinitely divisible commodity which has to be
allocated among a set of agents N , with n ≥ 3. An allocation is a list x ∈ Rn+ such

that
P
x` = M .

22 Let X ≡ ©x ∈ Rn+|Px` =M
ª
be the set of feasible allocations. Each

agent ` ∈ N is equipped with a continuous and single-plateaued preference relation R`
defined on X as follows: there exists a continuous and quasi-concave real-valued function

uR` : [0,M ] → R such that, for any x, x0 ∈ X, uR` (x`) ≥ uR` (x0`) ⇔ (x, x0) ∈ R`. For each
` ∈ N , the preference relation R` defined on X is called single-plateaued when there exist

21Henceforth, the symbol @ denotes the negation of the the existence quantifier, ∃.
22When its bounds are not explicitly indicated, a summation should be understood to cover all agents.
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two numbers x̄`, x` ∈ [0,M ] such that x` ≤ x̄` and for all x`, y` ∈ [0,M ]: (i) if x` < y` ≤ x`
or x` > y` ≥ x̄`, then (y

0, x0) ∈ P` for any x0, y0 ∈ X, with x0` = x` and y
0
` = y`; (ii)

if x`, y` ∈ [x`, x̄`], then (x0, y0) ∈ I` for any x0, y0 ∈ X, with x0` = x` and y
0
` = y`. The

interval p (R`) ≡ [x`, x̄`] is the plateau of R`, where x is the left end-point of the plateau
of R`, and x̄ is the right end-point. Let R̄` be the class of all such preference relations for

each agent ` ∈ N . Note that by definition of R` ∈ R̄`, it follows that R` is single-peaked

if x` = x̄`. Given x` ∈ [0,M ], let r` (x`) be the consumption bundle on the other side of
agent `’s plateau amounts that she finds indifferent to x` if such consumption exists, and

the end-point of [0,M ] on the other side of her plateau amounts otherwise. Given a profile
of preferences R ∈ R̄n, p (R) ≡ (p (R1) , ..., p (Rn)) denotes its associated profile of plateau
amounts.

We are now in a position to establish our possibility result.

Proposition 2. Let FPO on R̄n be the Pareto SCC. Then, (i) FPO satisfies neither of

Conditions μ(i) and μ(ii); (ii) given Assumption 1, FPO satisfies Condition μ∗∗.

Proof. Let FPO on R̄n be the Pareto SCC.

We illustrate part (i) by considering the following the three-agent example.23

Let M = 1, N ≡ {1, 2, 3}, with #N = 3, and R,R∗ ∈ R̄n be such that R1 = R
∗
1, p (R) =¡

1
4
, 1, [0, 1]

¢
, and p (R∗) =

¡
1
4
,
£
1
2
, 1
¤
, [0, 1]

¢
. Let x =

¡
1
6
, 5
6
, 0
¢
and y =

¡
1
5
, 4
5
, 0
¢
. First note

that x, y ∈ X, x ∈ PO (R), and L (R1, x) = L (R∗1, x) =
©
z ∈ X | 0 ≤ z1 ≤ 1

6
or r1 (x1) ≤ z1 ≤ 1

ª
,

L (R2, x) =
©
z ∈ X | 0 ≤ z2 ≤ 5

6

ª
and L (R3, x) = L (R∗3, x) = L (R∗2, x) = X. Moreover,

note that y /∈ L (R1, x) while y ∈ L (R2, x). Suppose that FPO satisfies Conditions μ(i) and
μ(ii). Note that x, y ∈ maxR∗2 X ∩ maxR∗3 X. Furthermore, for any C1 (R, x) ⊆ L (R1, x),
it follows that C1 (R, x) ⊆ L (R∗1, x). Condition μ(ii) implies that x ∈ FPO (R∗). However,
x /∈ PO (R∗) since y Pareto dominates it, a contradiction. Also, since x ∈ FPO (R) and
L (R`, x) ⊆ L (R∗` , x) for all ` ∈ N , Condition μ(i) implies that x ∈ FPO (R∗), a contradic-
tion.

To show part (ii), let (R, x, `) ∈ R̄n × X × N with x ∈ FPO (R), and let C` (R, x) ≡
L (R`, x). Also,X = Y as FPO satisfies unanimity. We will show that FPO satisfies Condition
μ∗∗ under these specifications. Pick any arbitrary (R,R∗, x) ∈ R̄n × R̄n × X, with x ∈
FPO (R). Condition μ∗∗(i) is always vacuously satisfied. Moreover, FPO meets Condition
μ∗∗(iii). Next, we show that FPO satisfies μ∗∗(ii) and μ∗∗(iv).
Take any (H, i) ∈ H × N . Suppose that y ∈ Ci (R, x) = L (Ri, x) ⊆ L (R∗i , y) and

y ∈ maxR∗` X for all ` ∈ N\ {i}.
Let H = {i} and y /∈ FPO (R∗). We show that {y} 6= maxR∗i Ci (R, x). As y /∈ FPO (R∗),

it follows that there exists an allocation z ∈ X such that (z, y) ∈ R∗j for all j ∈ N and

(z, y) ∈ P ∗j for some j ∈ N . As y ∈ maxR∗` X for all ` ∈ N\ {i}, it follows that (z, y) ∈ P ∗i
and (z, y) ∈ I∗` for all ` ∈ N\ {i}; moreover, z /∈ L (R∗i , y) ⊇ L (Ri, x) as (z, x) ∈ P ∗i . Then,
y is not a plateau amount for agent i, and so L (R∗i , y) 6= X. Let y0 ≡ (yi, w−i) 6= y where
w−i ∈ Rn−1+ such that

P
`∈N\{i}w` =

P
`∈N\{i} y`. The allocation y

0 exists and belongs to the
set L (Ri, x) as (x, y) ∈ Ri and (y, y0) ∈ Ii. As y0 ∈ L (Ri, x) \ {y} and (y, y0) ∈ I∗i , we have
that {y} 6= maxR∗i Ci (R, x). Hence, FPO satisfies Condition μ∗∗(ii.a).
Let i ∈ H and #H > 1. Assume that R∗ = R and {y} = maxR∗i Ci (R, x). Thus, x = y.

and so y ∈ FPO (R∗). Therefore, FPO satisfies Condition μ∗∗(ii.b).

23The Pareto SCC is monotonic and satisfies no-veto power when R̄n consists only of single-peaked

preference profiles.
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Let i /∈ H and R∗ = R. It follows that (y, x) ∈ Ii and (y, x) ∈ I` for all ` ∈ N\ {i}.
Suppose that y /∈ FPO (R). Then, there exists a z ∈ X such that (z, y) ∈ Rk for all k ∈ N
and (z, y) ∈ Pj for some j ∈ N . By transitivity of Rj for all j ∈ N , it follows that z Pareto
dominates x under the state R. Then, x /∈ FPO (R), a contradiction. Therefore, FPO satisfies
Condition μ∗∗(ii.c).
Let H = {i}, x = y, R−i = R∗−i, and L (Ri, x) = L (R∗i , x). We show that x ∈ FPO (R∗).

Assume, to the contrary, that x /∈ FPO (R∗). Then, there exists an allocation z ∈ X such

that (z, x) ∈ R∗k for all k ∈ N and (z, x) ∈ P ∗j for some j ∈ N . As x ∈ maxR∗` X for all

` ∈ N\ {i}, it follows that (z, x) ∈ P ∗i and (z, x) ∈ I∗` for all ` ∈ N\ {i}; and (z, x) ∈ I` for
all ` ∈ N\ {i} as R−i = R∗−i. Thus, z /∈ L (R∗i , x) = L (Ri, x) as (z, x) ∈ P ∗i . It follows that
x /∈ FPO (R), a contradiction. Hence, FPO satisfies μ∗∗(iv).
In their seminal paper, Dutta and Sen (2009) showed that the only requirement of no-veto

power is sufficient for partially-honest implementation. The above finding shows that the

scope of implementation is further enlarged to include many SCC s which are non-monotonic

and violate the auxiliary condition of no-veto power.

The last objective of this section is to investigate how the monotonicity-type condition in-

corporated in Condition M∗∗
s affects partially-honest implementability. The analysis reveals

that this condition is restrictive, though it is weaker than Maskin monotonicity. Remark-

ably, it shows that the equivalent relationship between implementation and implementation

by s-mechanisms holding in the classical implementation framework no longer holds when

there exist agents who are dishonest averse.

To this end, let us turn to define the environment in which the analysis is carried out.

Let X be a finite set of outcomes. For any x, y ∈ X, with x 6= y, and R ∈ Pn, let
NR (x, y) ≡ {i ∈ N | (x, y) ∈ Ri}.24 Let us denote (x, y) ∈ TR if and only if #NR (x, y) ≥
#NR (y, x), which implies that x is majority preferred to y at the profile R. For the sake
of simplicity, suppose that n is an odd number so that the majority relation TR on X is a

tournament for any R ∈ Pn.25 The set of all top-cycle outcomes at state R ∈ Pn can be
defined as follows:

x ∈ TC (R)⇔ ∀y ∈ X\ {x} , there exist x0, x1, . . . , xm ∈ X, with m ∈ Z++, such that¡
xk, xk+1

¢ ∈ TR for k = 0, . . . ,m− 1, with x0 = x & xm = y.
An SCC F TC on Pn is the top-cycle SCC if for all R ∈ Pn, F TC (R) = TC (R).
The next proposition shows that F TC is partially-honest implementable, while it cannot

be partially-honest implemented by any s-mechanism.

Proposition 3. Let Assumption 1 hold and H = 2N\∅. (i) F TC is partially-honest

implementable; (ii) F TC is not partially-honest implementable by any s-mechanism.

Proof. Observe that Condition μ∗∗(i) is vacuously satisfied by any SCC. Then, to see that
F TC is partially-honest implementable, it suffices to observe that F TC satisfies the require-

ment of no-veto power which, in turn, implies Conditions μ∗∗(ii)-μ∗∗(iv). This completes
part (i) of the statement.

To show part (ii), assume, to the contrary, that F TC is partially-honest implementable

by an s-mechanism. Then, F TC satisfies ConditionM∗
s , and, in particular, ConditionM

∗
s (i).

24Pn ⊆ Rn is the set of all available profiles of linear orders.
25A relation T on X is a tournament if it is complete and asymmetric.
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Let N = {1, 2, 3} with #N = 3, X = {x, y, z}, with #X = 3, and R3 = {R,R∗}, where
agents’ preferences are as follows:

R R∗

1 2 3 1 2 3

x y z x y x

y z x y z z

z x y z x y

With abuse of notation, we write xTRy for (x, y) ∈ TR. In terms of the tournament relation,
we have that xTRyTRzTRx, while xTR∗a for all a ∈ {y, z} and yTR∗z. Since y ∈ TC (R) = X,
there exists a profile of sets (C` (R`, y))`∈N such that y ∈ C` (R`, y) ⊆ L (R`, y) ∩X for all

` ∈ N . Since (R`, R`+1) 6=
¡
R∗` , R

∗
`+1

¢
for ` ∈ {2, 3}, it follows that Condition M∗

s (i) is

vacuously satisfied if H ∩ {2, 3} 6= ∅. The only case that we are left to verify is H = {1}.
Since (R1, R2) = (R

∗
1, R

∗
2) and L (R`, y) = L (R

∗
` , y) for all ` ∈ N , Condition M∗

s (i) implies

that y ∈ F TC (R∗) 6= TC (R∗) = {x}, a contradiction.
Before closing this section, it is important to note that theWalrasian correspondence and

the egalitarian-equivalent solution (Pazner and Schmeidler, 1978), defined in the classical

exchange economies, are other well-known examples of non-monotonic SCC s. These SCC s

are not partially-honest implementable by any s-mechanism either, though they are partially-

honest implementable by virtue of Theorem 2.

5 Two-agent implementation problems

Seminal papers on two-agent implementation are those of Moore and Repullo (1990) and

Dutta and Sen (1991), who independently refined Maskin’s characterization result (Maskin,

1999) by providing necessary and sufficient conditions for an SCC to be implementable.26

Since Dutta and Sen’s Condition β and Moore and Repullo’s Condition μ2 coincide in sub-
stance, we state only Condition μ2.

Condition μ2 (for short, μ2): There exists a set Y ⊆ X and, for all R ∈ Rn and all

x ∈ F (R), there exists a profile of sets (C` (R, x))`∈N such that x ∈ C` (R, x) ⊆ L (R`, x)∩Y
for all ` ∈ N ; furthermore, Condition μ holds; finally, for all R∗ ∈ Rn, the following (iv) is

satisfied:

(iv) for each (x0, R0) ∈ X ×R2 with x0 ∈ F (R0),
(a) there exists an e ≡ e (x0, R0, x, R) ∈ C1 (R0, x0) ∩ C2 (R, x), with e (x,R, x,R) = x;
(b) if C1 (R

0, x0) ⊆ L (R∗1, e) and C2 (R, x) ⊆ L (R∗2, e), then e ∈ F (R∗).
Condition μ2 is markedly stronger than Condition μ, as it includes a punishment condition -

Condition μ2(iv). While the first part of Condition μ2(iv) guarantees the existence of a pun-
ishment outcome, the second part requires that if the punishment outcome is an equilibrium

outcome, it should be F -optimal.

In the next two sub-sections, we identify the class of partially-honest implementable

SCC s, not only in the case where the planner knows that exactly one agent is partially-

honest, but also in the case where the exact number of partially-honest agents is unknown

to her - Assumption 1. We present two new conditions which are not only necessary and suf-

ficient conditions for SCC s to be partially-honest implementable, but also markedly weaker

26See also Busetto and Codognato (2009).
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than Condition μ2. Significantly - and in line with earlier results and Theorem 2 -, our

characterizations confirm that when agents hold preferences for truth-telling, the scope of

implementation is enlarged. Yet, limits still remain. Particularly, what still limits im-

plementability are the weaker variants of Condition μ2(v) embedded in our conditions on
implementation. Sub-section 5.3 reports briefly the implications of our results.

5.1 Exactly one partially-honest agent

In this sub-section, we make the informational assumption that there exists exactly one

partially-honest agent in society. The planner knows that there exists a dishonest averse

agent but not who she is.

For the same reason highlighted in sub-section 3.1, Condition μ2 is not a necessary
condition for partially-honest implementation. We amend this condition in the following

way.

Condition μ2∗ (for short, μ2∗): Conditions μ∗ holds; moreover, for all H ∈ H, and for all
R∗ ∈ R2, the following condition (iv) is satisfied:

(iv) for each (x0, R0) ∈ X ×R2 with x0 ∈ F (R0),
(a) there exists an e ≡ e (x0, R0, x, R) ∈ C1 (R0, x0) ∩ C2 (R, x), with e (x,R, x,R) = x;
(b) if x0 6= x, R0 6= R, C1 (R0, x0) ⊆ L (R∗1, e), C2 (R, x) ⊆ L (R∗2, e), and
(b.1) if H = {1} and {e} = maxR∗1 C1 (R0, x0), then e ∈ F (R∗);
(b.2) if H = {2} and {e} = maxR∗2 C2 (R, x), then e ∈ F (R∗).
In the next theorem, we show that the above Condition μ2∗ is necessary for implemen-

tation when exactly one agent holds preferences for truth-telling.

Theorem 7. Let Assumption 1 hold and H = {{1} , {2}}. If an SCC F ∈ F defined on R2

is partially-honest implementable, then it satisfies Condition μ2∗.

Proof. Let Assumption 1 hold and let H = {{1} , {2}}. Let γ ≡ (M,g) be a mechanism
which partially-honest implements F ∈ F , which is defined on R2. The proof that F

satisfies Condition μ∗ follows from Theorem 1. Finally, we show that F meets Condition

μ2∗(iv). Take any H ∈ H. Take any (x0, R0, x, R) ∈ X × R2 × X × R2 with x ∈ F (R)
and x0 ∈ F (R0). Then, there exists an equilibrium strategy m ≡ (m1,m2) ∈ NE

¡
γ,<R

¢
such that g (m) = x. Similarly, m0 ≡ (m0

1,m
0
2) ∈ NE

¡
γ,<R0

¢
and g (m0) = x0. Let

e ≡ e (x0, R0, x, R) = g (m1,m
0
2). Then, defining C1 (R

0, x0) ≡ g (M1,m
0
2) and C2 (R, x) ≡

g (m1,M2), e ∈ C1 (R0, x0)∩C2 (R, x) holds, as sought. Finally, it is also clear that F satisfies
Condition μ2∗(iv.b) as, for instance, in the case of μ2∗(iv.b.1), if e /∈ F (R∗), then the only
deviator is the partially-honest agent 1, but her deviation to an m∗1 ∈ T γ

1 (R
∗, F ) results

in the same outcome e because {e} = maxR∗1 C1 (R0, x0), which is a contradiction. Thus, F
satisfies μ2∗(iv).

Though Condition μ2∗ is a necessary condition for partially-honest implementation, it is
too weak to guarantee the sufficiency result. To this end, other requirements exist. These

requirements are that the domain of preferences must be large enough, and that F satisfies

Condition μ∗∗ and an extra auxiliary condition. The condition as a whole can be stated as
follows.

Condition μ2∗∗ (for short, μ2∗∗): Condition μ∗∗ holds;27 moreover, for all H ∈ H, and for
27We refer to the condition that requires only one of the statements (i)—(iv) in Condition μ∗∗ as Conditions

μ2∗∗(i)—μ2∗∗(iv) each.
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all R∗ ∈ R2, the following condition (v) is satisfied:

(v) for each (x0, R0) ∈ X ×R2 with x0 ∈ F (R0),
(a) there exists an e ≡ e (x0, R0, x, R) ∈ C1 (R0, x0) ∩ C2 (R, x), with e (x,R, x,R) = x;
(b) if x0 6= x, R0 6= R, C1 (R0, x0) ⊆ L (R∗1, e), C2 (R, x) ⊆ L (R∗2, e), and e /∈ F (R∗), then;
(b.1) if R = R∗, then H = {2};
(b.2) if R0 = R∗, then H = {1};
(c) if R = R0 = R∗, x0 6= x, (e, x0) ∈ I∗1 , and (e, x) ∈ I∗2 , then e ∈ F (R∗).
The next theorem shows that this condition is not only sufficient, but also necessary

for partially-honest implementation, when only game forms with simple punishment are

admissible (the formal proof is relegated to Appendix).

Theorem 8. Let Assumption 1, Γ = ΓSP , and RD hold, and let H = {{1} , {2}}. An SCC
F ∈ F defined on R2 is partially-honest implementable if and only if it satisfies Condition

μ2∗∗.

5.2 There are partially-honest agents

This sub-section makes the informational assumption that the planner knows that there are

partially-honest agents, but she knows neither their identities nor their exact number. Its

objective is to fully identify the class of partially-honest implementable SCC s under this

informational assumption.

To this end, as done in the previous sub-section, let us lay down the condition that every

SCC F must meet if it is partially-honest implementable. The condition can be stated as

follows.

Condition μ2◦ (for short, μ2◦): Condition μ2∗ holds; moreover, for all R∗ ∈ R2, the

following condition (v) is satisfied:

(v) for all i ∈ N and all H ∈ H, if H = N , R = R∗, y ∈ Ci (R, x) ⊆ L (R∗i , y), and
y ∈ maxR∗` Y for all ` ∈ N\ {i}, then y ∈ F (R∗) whenever x = y.
It is easy to confirm that Condition μ2◦(v) is necessary. By virtue of Theorem 7, the next

theorem states that Condition μ2◦ is necessary for partially-honest implementation, while
omitting the proof of it.

Theorem 9. Let Assumption 1. If an SCC F ∈ F defined on R2 is partially-honest

implementable, then it satisfies Condition μ2◦.

Condition μ2◦ alone does not suffice to guarantee partial-honest implementation. Let us
strengthen it as follows.

Condition μ2◦◦ (for short, μ2◦◦): Condition μ2∗∗ holds;28 moreover, for all R,R∗ ∈ R2, the

following condition (vi) is satisfied:

(vi) for all H ∈ H, all x ∈ F (R), and all i ∈ N , if H = N , R = R∗, y ∈ Ci (R, x) ⊆ L (R∗i , y),
and y ∈ maxR∗` Y for all ` ∈ N\ {i}, then y ∈ F (R∗).
This condition guarantees the sufficiency result when the domain of preferences is suffi-

ciently rich. However, to close the gap between what constitutes a necessary and a sufficient

condition, we focus on game forms which satisfy the following stronger variant of punishment

condition.

28We refer to the condition that requires only one of the statements (i)—(v) in Condition μ2∗∗ as Conditions
μ2◦◦(i)—μ2◦◦(v) each.
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Strong Punishment (StP): For any R,R0 ∈ R2, any i ∈ N , and any m ≡ (mi,m`) ∈ M
such that g (m) = x, there exists an m0

i ∈ T γ
i (R

0, F ) such that g (m0
i,m`) = g (m).

A mechanism γ is a mechanism with strong punishment if it satisfies StP. Denote the class

of mechanisms satisfying StP by ΓStP .
The above condition has a similar flavor to SP. However, with condition StP, the planner

is required to design a game form in which if x is an attainable outcome at state R - in the

sense that there is a message profile m leading to it under this state -, then an agent i

should be able to reach this x by replacing the untruthful message mi with a truthful one m
0
i

(while keeping constant the messages of all others). Therefore, differently from SP, every

attainable outcome can be supported by a truthful message profile, regardless of whether

it is an F -optimal outcome. In this sense, the above condition can be considered a strong

punishment requirement. Similar to SP, the requirement of StP is satisfied by all classical

mechanisms in the literature of Nash implementation (see, for instance, Repullo, 1987; Moore

and Repullo, 1990; Saijo, 1988; Dutta and Sen, 1991; Tatamitani, 2001).

The following theorem shows that Condition μ2◦◦ is necessary and sufficient for partially-
honest implementation, when the domain of preferences is sufficiently rich and the focus is

on mechanisms with strong punishment (the formal proof is relegated to Appendix).

Theorem 10. Let Assumption 1, Γ = ΓStP , and RD hold. An SCC F ∈ F defined on R2

is partially-honest implementable if and only if it satisfies Condition μ2◦◦.

Before closing this sub-section, it may be worth mentioning briefly that if the planner

knows that both agents are partially-honest, the class of partially-honest implementable

SCC s becomes larger, since neither Condition μ2∗∗(ii), Condition μ2∗∗(iv), nor Condition
μ2∗∗(v.b) is required. This result is readily obtained by Theorem 10.

Corollary 3. Let Assumption 1 and H = {N}. An SCC F ∈ F defined on R2 is partially-

honest implementable by a mechanism in ΓStP if and only if it satisfies Condition μ2◦◦

without Condition μ2∗∗(ii), Condition μ2∗∗(iv), or Condition μ2∗∗(v.b)

Notice that the above result does not postulate any requirement on the domain of pref-

erences.

5.3 Implications

Condition μ2◦◦ - and so Condition μ2∗∗ - imposes non-trivial restrictions on F . For example,
the Pareto SCC is not partially-honest implementable by virtue of Proposition 1. Despite

this, the results of the above sub-sections are quite permissive.29 In the following, we jus-

tify this assertion by considering economically meaningful assumptions on the domain of

preferences and on the set of outcomes.

There are economic environments in which the following assumption is satisfied.

Assumption 2 (Moore and Repullo, 1990, p. 1093). There exists a bad outcome b ∈ X
such that for all R ∈ R2 and i ∈ N , (x, b) ∈ Pi for all x ∈ F (R2) ≡ {y ∈ X|y ∈ F (R0) for
some R0 ∈ R2}.
29For a non-dictatorial and weakly Pareto efficient partially-honestly implementable SCC defined on the

domain of linear orders which rebuts the negative conclusion of Hurwicz and Schmeidler (1978), we refer the

reader to Dutta and Sen (2009).
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For example, consider an exchange economy in which agents have strongly monotonic pref-

erences and the SCC assigns only positive consumption bundles. Under free disposal, one

can define the null consumption bundle as the bad outcome.

If there is a bad outcome, we can set e (x,R, x0, R0) = b for each (x,R, x0, R0) ∈ X ×
R2 ×X ×R2 to satisfy Condition μ2◦◦(v) vacuously. Moreover, though Condition μ2◦◦ can
be checked by using the algorithm provided by Sjöström (1991), a condition which can be

promptly checked is stated below.

Restricted veto power (Moore and Repullo, 1990, p. 1093): For all i ∈ N , all R ∈ R2,

all x ∈ X, and all x0 ∈ F (R2) ≡ {y ∈ X|y ∈ F (R) for some R ∈ R2}, if x ∈ maxR` X for

all ` ∈ N\ {i} and (x, x0) ∈ Ri, then x ∈ F (R) holds.
The next result shows that the condition of restricted veto power suffices to guarantee

partially-honest implementation when Assumptions 1 and 2 hold.

Corollary 4. Let Assumption 1 and Assumption 2 hold. An SCC F on R2 is partially-

honest implementable if it satisfies restricted veto power.

Proof. Let Assumption 1 and Assumption 2 hold. Suppose that F onR2 satisfies restricted

veto power. It suffices to show that Assumption 2 and restricted veto power imply Condition

μ2◦◦. Let Y = X, and for all R ∈ R2 and all x ∈ F (R), let Ci (R, x) = L (Ri, x) for all i ∈ N .
Since Assumption 2 holds, for each (x,R, x0, R0) ∈ X ×R2 ×X ×R2 with x ∈ F (R) and
x0 ∈ F (R0), let e (x0, R0, x, R) = b if (x,R) 6= (x0, R0); otherwise, e (x,R, x0, R0) = x. Then,
Condition μ2◦◦(v) is satisfied. Since restricted veto power implies Conditions μ(ii)-μ(iii)

which, in turn, imply Conditions μ2◦◦(ii)-μ2◦◦(iv) and Condition μ2◦◦(vi), the statement
follows.

By Corollary 3, an SCC is partially-honest implementable by Condition μ2◦◦ without
Conditions μ2◦◦(ii), μ2◦◦(iv), or μ2◦◦(v.b) if the planner knows that both agents are partially-
honest. Under this informational assumption, unanimity and a weakening of restricted veto

power, when combined with Assumption 2, suffice to guarantee partially-honest implemen-

tation.30 The weakening of restricted veto power can be stated as follows.

Weak restricted veto power: For all i ∈ N , all R ∈ R2, all x ∈ X, and all x0 ∈ F (R),
if x ∈ maxR` X for all ` ∈ N\ {i} and (x, x0) ∈ Ri, then x ∈ F (R) holds.
We can now state the following result.

Corollary 5. Let Assumption 1 and Assumption 2 hold, and let H = {N}. An SCC F on

R2 is partially-honest implementable if it satisfies weak restricted veto power and unanimity.

Proof. It is obvious, so omitted.

Suppose that two agents bargain over the division of one unit of a perfectly divisible

good. If they do not reach an agreement, they both receive nothing. In this framework, non-

monotonic strongly individual-rational bargaining solutions31 defined on the class of utility

possibility sets - such as the Nash bargaining solution - are special examples of SCC s applied

to Corollary 4 and Corollary 5, setting the disagreement point d = (0, 0) as a bad outcome.32

30For the definition of unanimous SCCs, see section 2.
31A bargaining solution is strongly individual-rational if it provides agents with agreements which give

them utilities higher than those they derive from the disagreement point d.
32For the Nash bargaining solution defined on the class of utility possibility sets, see Vartiainen (2007).
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Finally, let us consider an interesting domain restriction. Before defining it, let SL (Ri, x)
denote agent i’s strict lower contour set at (Ri, x) ∈ Ri × X; that is, SL (Ri, x) ≡ {y ∈
X| (x, y) ∈ Pi}. The assumption on the domain of preferences can be defined as follows.
Assumption 3 (Busetto and Codognato, 2009). R2 is such that for all R∗ ∈ R2, we have:

(i) maxR∗i SL (Ri, x) ∩maxR∗j SL (Ri, x) = ∅ for all i, j ∈ N , with i 6= j, all R ∈ R2, and all

x ∈ X;
(ii) maxR∗1 SL (R

0
1, x

0) ∩ maxR∗2 SL (R2, x) = ∅ for each (x,R, x0, R0) ∈ X × R2 × X × R2,

with (x,R) 6= (x0, R0).
This domain restriction is very mild and much weaker than Assumption E imposed by Moore

and Repullo (1990, p. 1095) and Assumptions 5.1-5.2 imposed by Dutta and Sen (1991, p.

125), whenever X is a subset of a finite-dimensional Euclidean space.33 For example, this

restriction is satisfied in environments with continuous and locally non-satiated preferences

or in environments in which the set of outcomes is a space of lotteries over a finite set of

outcomes and agents’ preferences over lotteries are represented by von Neumann-Morgenstern

utility functions. Given Assumption 3, we can define a condition that, when combined with

others, suffices to ensure Condition μ2◦◦.

Definition 7. An SCC F on R2 satisfies the non-empty lower intersection if for all

(x,R, x0, R0) ∈ X×R2×X×R2, with x ∈ F (R) and x0 ∈ F (R0), we have that SL (R01, x0)∩
SL (R2, x) 6= ∅.
This property appears in Moore and Repullo (1990) and Dutta and Sen (1991) and holds in

many environments. For example, it holds in an exchange economy for which indifference

curves never touch the axes, and for which the SCC recommends only interior allocations.

We can now state our last two results.

Corollary 6. Let Assumption 1 and Assumption 3 hold. An SCC F on R2 is partially-

honest implementable if it satisfies non-empty lower intersection and restricted veto power.

Proof. Let Assumption 1 and Assumption 3 hold. Suppose that F on R2 satisfies non-

empty lower intersection, weak restricted veto power, and unanimity. We show that F is

partially-honest implementable. It suffices to show that Condition μ2◦◦ is implied by our
suppositions.

For all i ∈ N , all (x,R) ∈ X×R2, and all x ∈ F (R), let Ci (R, x) = SL (Ri, x)∪{x} and
Y = X. It is easy to verify that Ci (R, x) ⊆ L (Ri, x)∩Y . For all (x0, R0, x,R) ∈ X×R2×X×
R2, with x ∈ F (R) and x0 ∈ F (R0), let e (x0, R0, x,R) ∈ SL (R0i, x0) ∩ SL (R`, x) if (x,R) 6=
(x0, R0); otherwise, e (x0, R0, x, R) = x. By definition of e (x0, R0, x, R) and non-empty lower
intersection, it is easy to see that Condition μ2◦◦(v.a) is satisfied, while Condition μ2◦◦(v.b)
and Condition μ2◦◦(v.c) are vacuously satisfied since (x,R) 6= (x0, R0).
Take any R,R∗ ∈ R2. Let x ∈ F (R), y ∈ Ci (R, x) ⊆ L (R∗i , y), and y ∈ maxR∗` Y for

i, ` ∈ N with i 6= `. It cannot be that y ∈ Ci (R, x) \ {x}; otherwise, y ∈ maxR∗i SL (Ri, x) ∩
maxR∗j SL (Ri, x), contradicting Assumption 3(i). Let x = y. Condition μ2◦◦(vi) is satisfied,
trivially. Moreover, since restricted veto power implies that x ∈ F (R∗), it follows that
Condition μ2◦◦(ii) and Condition μ2◦◦(iv) are satisfied. Clearly, restricted veto power implies
Condition μ2◦◦(iii). The statement follows by observing that Condition μ2◦◦(i) is satisfied
by all F ∈ F .
33The formal arguments are provided in Busetto and Codognato (2009).
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Corollary 7. Let Assumption 1 and Assumption 3 hold, and let H = {N}. An SCC
F on R2 is partially-honest implementable if it satisfies non-empty lower intersection and

unanimity.

Proof. The proof of this statement directly follows from the proof of Corollary 6, and so it

is omitted here.

Consider a two-agent exchange economy with ` ≥ 2 divisible goods, in which agents have
continuous and strongly monotonic preferences, and in which indifference curves never touch

the axes (for instance, Cobb-Douglas preferences). Suppose that an SCC F selects only

interior allocations of the feasible set. In this setting, restricted veto power, unanimity, and

non-empty lower intersection are satisfied by this F . The Walrasian correspondence and

the egalitarian-equivalent solution are examples of such SCC s.34 This implies that they are

partially-honest implementable, according to Corollary 6 and Corollary 7.

6 Concluding remarks

In this closing section, rather than restating the main contributions of the paper, we conclude

with a word of caution and with a couple of alleys for research.

In the framework developed by Moore and Repullo (1990), this paper has studied the

consequences of injecting a minimal dishonesty aversion in implementation theory. While

it is undeniable that there are people who care not only about welfaristic features of the

consequences, but also - to some extent - non-consequential features of lying, it is equally

undeniable that it would be a mistake to apply the kind of aversion studied here carelessly.

Caution seems advisable in all applied fields in which the idea of partial-honesty may not be

appealing or plausible, like in the playground of auction design. Nonetheless, this idea can

be fruitfully applied to a wide range of public decision making problems. Applications to

problems of public goods provision, externalities, voting, taxation, and income distribution

seem to hold exciting potential. The tools developed and the results reported herein can

provide useful arguments and insights in this respect.

Second, while the paper has focussed on a minimal aversion to lying by agents involved

in a mechanism, the departure from the standard assumption that agents are unconcerned

about the non-welfaristic features of the consequences can be modelled in a variety of ways.

An interesting direction has been taken up in a recent work by Lombardi and Yoshihara

(2011b), where the authors explore the consequences of injecting a ‘stronger’ degree of hon-

esty in implementation problems by also connecting the outcome announcement with the

deception. It is certainly worth considering other views on modelling agents’ preferences.

Third, while a considerable amount of experimental data suggests that agents may display

preferences for truth-telling, all lab experiments designed to test whether or not agents

consider more than “just” their material payoffs in strategic situations are not geared towards

implementation theory. There is little evidence that experimental subjects are willing to

uphold the truth when called to perform implementation tasks if consequences of doing so

are not costly - e.g., Cabrales et al. (2003). The design of experimental tests for dishonesty

aversion specifically tailored towards implementation theory is highly desirable and promise

to be a fruitful and interesting area of research for years to come.

34This non-monotonic SCC is well-defined under our assumptions on preferences (Pazner and Schmeidler,

1978).
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Finally, while the paper sets solid foundations for implementation with partially-honest

agents, it falls short in many important aspects. For example, while the paper specified

the set of properties that an SCC should satisfy in order to be partially-honest imple-

mentable, the devised mechanisms present the disadvantage of involving complex strategy

spaces. In particular, strategies include either whole preference profiles or whole indiffer-

ence sets of several agents. This implies that the message space is of infinite dimension in

many economic applications. Furthermore, the components of the strategy space do not

have a straightforward economic interpretation such as consumption bundles, allocations,

and prices. Therefore, there is a need for specifying the scope of the analysis reported herein

away from abstract social choice environments. In this regard, the exploration of the rich

set of implications that arise from the injection of a minimal dishonesty aversion to eco-

nomic agents involved in a mechanism can take many directions. One interesting direction

is explored in a recent work of Lombardi and Yoshihara (2011a) in which implementation

of efficient SCC s by natural mechanisms is analyzed in classical exchange economies and

results in line with those reported herein are unveiled.
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7 Appendix

Proof of Theorem 2. Let Assumption 1 hold and let Rn satisfy RD. Take any F ∈ F .
Let ¦ ∈ N be an arbitrary agent index.

1. The necessity of Condition μ∗∗.
Let F be partially-honest implemented by γ ≡ (M,g) ∈ ΓSP . Let Y ≡ g (M). Take

any R ∈ Rn and any x ∈ F (R). Then, there exists an m (R, x) ∈ NE ¡γ,<R¢ for any
H 0 ∈ H, such that g (m (R, x)) = x and mh (R, x) ∈ T γ

h (R,F ) for any h ∈ H 0 and any
H 0 ∈ H, because γ ∈ ΓSP . For all ` ∈ N , let C` (R, x) ≡ g (M`,m−` (R, x)). Then,

C` (R, x) ≡ g (M`,m−` (R, x)) ⊆ L (R`, x) ∩ Y for all ` ∈ N . Take any R∗ ∈ Rn and any

H ∈ H. By Theorem 1, it follows that F satisfies Condition μ∗. Thus, we only show that F
satisfies μ∗∗(ii.c)-μ∗∗(iv).
Given i ∈ N , suppose that y ∈ Ci (R, x) ⊆ L (R∗i , y), y ∈ maxR∗` Y for all ` ∈ N\ {i},

and y /∈ F (R∗). Thus, g (mi,m−i (R, x)) = y for some mi ∈ Mi. Assume, to the contrary,

that R = R∗ and i /∈ H. Then, (mi,m−i (R, x)) ∈ NE
¡
γ,<R∗

¢
for this specific H, a

contradiction. Hence, F satisfies Condition μ∗∗(ii.c).
Suppose that y ∈ maxR∗` Y for all ` ∈ N . Then, there exists an m̄ ∈M such that g (m̄) =

y. Consider R̄ ≡ ¡R̄`¢`∈N ∈ Rn such that L
¡
R̄`, y

¢
= L (R∗` , y) with ∂L

¡
R̄`, y

¢
= {y} for

all ` ∈ N . Since Rn satisfies RD, such a profile is admissible. Condition μ∗(iii) implies
that y ∈ F ¡R̄¢, given that F satisfies Condition μ∗. Suppose that there exists a non-empty
set S ⊆ N such that m̄` /∈ T γ

` (R
∗, F ) for all ` ∈ S; otherwise g (m̄) ∈ F (R∗), as sought.

Then, by SP, for each ` ∈ S, there exists an m̄0
` ∈ T γ

` (R
∗, F ) such that g (m̄0

`, m̄−`) = y.

By repeatedly applying SP from `1 ∈ S to `s ∈ S, where S = {`1, . . . , `s}, it follows that
g (m̄0

S, m̄−S) = y. Thus, (m̄
0
S, m̄−S) ∈ NE

¡
γ,<R∗

¢
for any H 0 ∈ H. Therefore, F satisfies

Condition μ∗∗(iii).
Take any i ∈ N . Suppose that L (Ri, x) = L (R∗i , x), x ∈ maxR∗` Y for all ` ∈ N\ {i},

R−i = R∗−i, and x /∈ F (R∗). Then, since x = g (m (R, x)) and g (Mi,m−i (R, x)) ⊆
L (Ri, x) = L (R

∗
i , x), it follows from the implementability of F that R

∗
i 6= Ri and m (R, x) /∈

NE
¡
γ,<R∗

¢
holds for any H 0 ∈ H. It follows that there is an h ∈ H such that mh (R, x) /∈

T
γ
h (R

∗, F ) and (g (mh,m−h (R, x)) , g (m (R, x))) ∈ I∗h for some mh ∈ T γ
h (R

∗, F ). Assume,
to the contrary, that H = {i}. Then, the only deviator is agent i. Since γ satisfies SP, there
exists an m∗i ∈ T γ

i (R
∗, F ) such that g (m∗i ,m−i (R, x)) = g (m (R, x)) = x. This implies that

(m∗i ,m−i (R, x)) ∈ NE
¡
γ,<R∗

¢
and so x ∈ NA ¡γ,<R∗¢ for this H = {i}, a contradiction.

Therefore, F satisfies Condition μ∗∗(iv).

2. The sufficiency of Condition μ∗∗.
Suppose that F satisfies Condition μ∗∗. Let γ ≡ (M, g) be the mechanism defined in

sub-section 3.1. For each ` ∈ N , the set of truthful message is that defined in (1). By
construction, γ ∈ ΓSP . Take any R ∈ Rn.

To show that F (R) ⊆ NA
¡
γ,<R

¢
for any H ∈ H, let x ∈ F (R) and suppose that,

for all ` ∈ N , m` = (R, x, ¦) ∈ T γ
` (R,F ). Rule 1 implies that g (m) = x. Suppose that

` ∈ N deviates from m` to m
∗
` ∈M`. It follows from Rules 2 that g (M`,m−`) = C` (R, x) ⊆

L (R`, x). We conclude that m ∈ NE
¡
γ,<R

¢
and so x ∈ NA ¡γ,<R¢ for any H ∈ H, since

m` = (R, x, ¦) ∈ T γ
` (R,F ) for each ` ∈ N .

To show that NA
¡
γ,<R

¢ ⊆ F (R) for any H 0 ∈ H, taking any H ∈ H, let m ∈
NE

¡
γ,<R

¢
with g (m) = x for this H, and let us consider the following cases.

Case 1 : m corresponds to Rule 1.
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Suppose that R 6= R̄ = R` for all ` ∈ N\ {i}. Then, mh /∈ T γ
h (R,F ) for all h ∈ H. Take

any m0
h ∈ T γ

h (R,F ) such that the outcome announced is x
h = x. Rule 2.2 implies that

g (m0
h,m−h) = x so that ((m

0
h,m−h) ,m) ∈ÂRh , a contradiction. Otherwise, R = R̄ and so

x ∈ F (R).
Case 2 : m corresponds to Rule 2.1.

Then, Y ⊆ L (R`, x) for all ` ∈ N\ {i} and Ci
¡
R̄, x

¢ ⊆ L (Ri, x). Suppose thatRi = R` =
R̄ 6= R. Let i /∈ H and there is another h ∈ H. Agent h can induce Rule 3 by unilaterally
deviating to m0

h =
¡
R, x, kh

¢ ∈ T γ
h (R,F ). By choosing k

h so as to have h = `∗ (m−h,m0
h),

she obtains g (m−h,m0
h) = x. Then, ((m−h,m

0
h) ,m) ∈ÂRh , a contradiction. Otherwise, let

i ∈ H. As agent i can induce Rule 2.2 by deviating to m0
i = (R, x, ¦) ∈ T γ

i (R,F ), we
have that g (m−h,m0

h) = x, which again leads to a contradiction. Therefore, R̄ = R and so
x ∈ F (R).
Case 3 : m corresponds to Rule 2.2.

Then, Y ⊆ L (R`, g (m)) for all ` ∈ N\ {i} and Ci
¡
R̄, x

¢ ⊆ L (Ri, g (m)). Suppose
that mh /∈ T γ

h (R,F ) for some h ∈ H\ {i}. Then, agent h ∈ H\ {i} can induce Rule 3
by deviating to a suitable m0

h ∈ T γ
h (R,F ) so as to obtain g (m

0
h,m−h) = g (m), which

leads to m /∈ NE ¡γ,<R¢, a contradiction. Therefore, mh ∈ T γ
h (R,F ) for all h ∈ H\ {i}.

Suppose that #H > 1 and i ∈ H. As mh ∈ T γ
h (R,F ) for all h ∈ H\ {i}, it follows

that R = R̄ and x ∈ F (R). Since m falls into Rule 2.2, it follows that Ri 6= R, so that

mi /∈ T γ
i (R,F ). It follows from x ∈ Ci (R, x) ⊆ L (Ri, g (m)) and g (m) ∈ Ci (R, x) ⊆

L (Ri, x) that (x, g (m)) ∈ Ii. Agent i can deviate to m0
i = (R, x, k

i) ∈ T γ
i (R,F ) so that she

induces Rule 1 and obtains g (m0
i,m−i) = x, which contradicts m ∈ NE

¡
γ,<R

¢
. Therefore,

#H ≯ 1 or i /∈ H. Suppose that #H ≥ 1 and i /∈ H. Since R = R̄, Condition μ∗∗(ii.c)
implies that g (m) ∈ F (R). Otherwise, let H = {i}. Observe that R 6= R̄ = R` for all

` ∈ N\ {i}; otherwise agent i can induce Rule 1 by deviating to a suitable truthful message
and obtain a profitable deviation. Notice that mi ∈ T γ

i (R,F ), otherwise agent i can induce
Rule 2.2 by deviating to an m0

i = (R, g (m) , ki) ∈ T γ
i (R,F ) and obtain g (m

0
i,m−i) =

g (m), which leads to m /∈ NE ¡γ,<R¢, a contradiction. Take an R̂i ∈ Ri (X) such that

L
³
R̂i, g (m)

´
= L (Ri, g (m)) with ∂L

³
R̂i, g (m)

´
= {g (m)}. As Rn satisfies RD, we have

that R̂ ≡
³
R̂i, R−i

´
∈ Rn. Then, μ∗∗(ii.a) implies that g (m) ∈ F

³
R̂
´
. Since F satisfies

μ∗∗, there exists a profile
³
C`

³
R̂, g (m)

´´
`∈N

such that C`

³
R̂, g (m)

´
⊆ L

³
R̂`, g (m)

´
∩ Y

for all ` ∈ N . As L
³
R̂i, g (m)

´
= L (Ri, g (m)), R−i = R̂−i, and H = {i}, Condition μ∗∗(iv)

implies that g (m) ∈ F (R).
Case 4 : m corresponds to Rule 3.

Then, g (m) ∈ maxR` Y for all ` ∈ N . So, by Condition μ∗∗(iii), g (m) ∈ F (R).

Proof of Theorem 4. Let Assumption 1 hold and let Rn satisfy RD. Take any F ∈ F
and let ¦ ∈ N be an arbitrary agent index. Let γ ≡ (M, g) be an s-mechanism.
1. The necessity of Condition M∗∗

s .

Suppose that F is partially-honest implemented by γ ≡ (M, g) ∈ ΓSP . From Theorem

3, it follows that F satisfies Condition M∗
s . Furthermore, by using the same reasoning used

in Theorem 2, it can readily be obtained that F satisfies Condition M∗∗
s (iii) and Condition

M∗∗
s (iv).

33



2. The sufficiency of Condition M∗∗
s .

Suppose that F satisfiesM∗∗
s . Then, for all (R, x) ∈ Rn×X with x ∈ F (R), x ∈ Y . Let

γ ≡ (M, g) be the mechanism defined in sub-section 3.1. For each ` ∈ N , the set of truthful
messages is that defined in (2). By construction, γ ∈ ΓSP . Suppose that R ∈ Rn is the

true state. The proof that F (R) ⊆ NA ¡γ,<R¢ for any H 0 ∈ H can be given similar to the

corresponding part in the proof of Theorem 2, so we omit it here. Conversely, to show that

NA
¡
γ,<R

¢ ⊆ F (R) for any H 0 ∈ H, taking any H ∈ H, let m ∈ NE ¡γ,<R¢ for this H,
and let h be an arbitrary partially-honest agent in H. Let us consider the following cases.

Case 1 : m falls into Rule 1.

Then, m is consistent with x and R̄ ∈ Rn, where x ∈ F ¡R̄¢. Thus, g (m) = x. Moreover,
C`
¡
R̄`, x

¢ ⊆ L (R`, x) for all ` ∈ N . Suppose that mh /∈ T γ
h (R,F ) for some h ∈ H. Suppose

that Ch
¡
R̄h, x

¢
= Y . By changing her strategy mh into m

0
h ∈ T γ

h (R,F ), agent h can trigger
the modulo game and choose an agent index kh so that ` = `∗ (m0

h,m−h) 6= h. This implies
g (m0

h,m−h) = x. Hence, m /∈ NE ¡γ,<R¢, a contradiction. Otherwise, let Ch ¡R̄h, x¢ 6= Y .
By changing her strategy mh into m

0
h = (Rh, Rh+1, x, ¦) ∈ T γ

h (R,F ), (m
0
h,m−h) falls into

Rule 2 so that g (m0
h,m−h) = x. Then, m /∈ NE ¡γ,<R¢, a contradiction. Therefore,

mh ∈ T γ
h (R,F ) for all h ∈ H. This reasoning is applied to any H ∈ H, thus Condition

M∗∗
s (i) implies x ∈ F (R).

Case 2 : m falls into Rule 2.

Then, m is m−i quasi-consistent with
¡
R̄, x

¢ ∈ Rn × Y , where x ∈ F
¡
R̄
¢
. Thus,

g (m) = x. We proceed accordingly the following sub-cases: 1) Rii 6= R̄i and Rii+1 6= R̄i+1
and 2) Rii 6= R̄i and Rii+1 = R̄i+1.35
Sub-case 2.1. Rii 6= R̄i and Rii+1 6= R̄i+1.
So, Ci

¡
R̄i, x

¢ ⊆ L (Ri, x) and x ∈ maxR` Y for all ` ∈ N\ {i}. By the definition of g,
mh ∈ T γ

h (R,F ) for all h ∈ H; otherwise a contradiction can be obtained. Observe that
if agent i is a partially-honest agent, it must be the case that Ri−1i 6= Ri or R

i+1
i+1 6= Ri+1.

To show this, suppose that Ri−1i = Ri and R
i+1
i+1 = Ri+1. Then, agent i ∈ H can change

mi into m
0
i = (Ri, Ri+1, x, k

i) ∈ T γ
i (R,F ) and induce Rule 1. Then, g (m

0
i,m−i) = x and

so ((m0
i,m−i) ,m) ∈ÂRi , which contradicts m ∈ NE

¡
γ,<R

¢
for this H. Therefore, for any

H ∈ H, if m ∈ NE ¡γ,<R¢ falls into Rule 2 and i ∈ H, it has to be the case that Ri−1i 6= Ri
or Ri+1i+1 6= Ri+1. It follows that i− 1 /∈ H or i+ 1 /∈ H if i ∈ H.
Suppose that #H > 1. Condition M∗∗

s (ii.b) implies that x ∈ F (R). Otherwise, let
#H = 1. If H ⊆ N\ {i}, Condition M∗∗

s (ii.b) implies that x ∈ F (R). Finally, suppose that
H = {i}. By following the same reasoning used in Case 3 of the proof of Theorem 2, RD,

Condition M∗∗
s (ii.a), and Condition M

∗∗
s (iv) imply that x ∈ F (R).

Sub-case 2.2. Rii 6= R̄i and Rii+1 = R̄i+1
Let Rii = R

0
i and R̄

0 ≡ ¡R̄−i, R0i¢. We distinguish whether x ∈ F ¡R̄0¢ or not. Suppose
that x /∈ F ¡R̄0¢. Then, since x ∈ F ¡R̄¢, the same reasoning used above for sub-case 2.1
carries over into this sub-case, so that x ∈ F (R). Otherwise, let x ∈ F ¡R̄0¢. Then, there
are two potential deviators, i− 1 and i. Agent ` ∈ N\ {i− 1, i} can attain any y ∈ Y \ {x}
by inducing Rule 4, so that x ∈ maxR` Y as m ∈ NE (γ, R). Consider agent i− 1. Take any
y ∈ Ci−1

¡
R̄i−1, x

¢
= Ci−1

¡
Ri−2i−1, x

¢
. Suppose that Ci−1

¡
R̄i−1, x

¢ 6= Y . By changing mi−1 to
m∗i−1 =

¡
Ri−1i−1, R

i−1
i , y, ¦¢ ∈Mi−1, agent i−1 can obtain y = g

¡
m∗i−1,m−(i−1)

¢
via Rule 3. In

the case that Ci−1
¡
R̄i−1, x

¢
= Y , by changing mi−1 to m∗i−1 =

¡
Ri−1i−1, R

i−1
i , y, ki−1

¢ ∈ Mi−1,

35The sub-case Rii = R̄i and R
i
i+1 6= R̄i+1 is not explicitly considered as it can be proved similarly to the

sub-case 2.2 shown below.
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agent i − 1 can attain y = g
¡
m∗i−1,m−(i−1)

¢
via Rule 4 by an appropriate choice of ki−1.

It follows that Ci−1
¡
R̄i−1, x

¢ ⊆ g
¡
Mi−1,m−(i−1)

¢
; then, Ci−1

¡
R̄i−1, x

¢ ⊆ L (Ri−1, x) as
m ∈ NE (γ, R). As a similar argument applies to agent i, we have that Ci

¡
R̄i, x

¢ ⊆
g (Mi,m−i) ⊆ L (Ri, x) as m ∈ NE (γ, R). Furthermore, by definition of g, mh ∈ T γ

h (R,F )
for all h ∈ H. Therefore, x ∈ F (R) by M∗∗

s (i).

Case 3 : m falls into Rule 3.

Then, m is m−i consistent with x and R̄ ∈ Rn, where x ∈ F ¡R̄¢. Moreover, Ci ¡R̄i, x¢ 6=
Y . By the definition g andm ∈ NE ¡γ,<R¢, we have that g (m) ∈ Ci ¡R̄i, x¢ ⊆ L (Ri, g (m))
and g (m) ∈ maxR` Y for all ` ∈ N\ {i}.36 Moreover,mh ∈ T γ

h (R,F ) for all h ∈ N ; otherwise
a contradiction can be obtained. Suppose that #H > 1. Condition M∗∗

s (ii.b) implies that

g (m) ∈ F (R). Otherwise, let #H = 1. If H ⊆ N\ {i}, Condition M∗∗
s (ii.b) implies that

g (m) ∈ F (R). Finally, suppose that H = {i}. By following the same reasoning used in
Case 3 of Theorem 2, it follows from RD, Condition M∗∗

s (ii.a), and ConditionM
∗∗
s (iv) that

g (m) ∈ F (R).
Case 4 : m falls into Rule 4.

Then, Y = g (M`,m−`) for all ` ∈ N . As m ∈ NE
¡
γ,<R

¢
, g (m) ∈ maxR` Y for all

` ∈ N . Then, Condition M∗∗
s (iii) implies that g (m) ∈ F (R).

Proof of Theorem 6. Let Assumption 1 hold and let Rn satisfy RD. Take any F ∈ F
and let ¦ ∈ N be an arbitrary agent index. Let γ ≡ (M, g) be a self-relevant mechanism.
1. The necessity of Condition λ∗∗.
Suppose that F is partially-honest implemented by γ = (M, g) ∈ ΓSP . It is clear that

F satisfies Condition λ∗. Further, as in the proof of Theorem 2, we can see that F satisfies

Condition λ∗∗(iii) and Condition λ∗∗(v). Thus, F satisfies Condition λ∗∗.

2. The sufficiency of Condition λ∗∗.
Let F satisfy Condition λ∗∗. The proof can be obtained by using the self-relevant mecha-

nism devised by Tatamitani (2001). We report it only for completeness. Define the outcome

function g :M → X as follows. For all m ∈M and
¡
R̄, x

¢ ∈ Rn × Y ,
Rule 1 : If

¡
R``, x

`
¢
=
¡
R̄`, x

¢
for all ` ∈ N and x ∈ F ¡R̄¢, then g (m) = x.

Rule 2 : If there exists i ∈ N such that
¡
R``, x

`
¢
=
¡
R̄`, x

¢ 6= (Rii, xi) for all ` ∈ N\ {i}, with
xi 6= x ∈ F ¡R̄¢, i ∈ D ¡¡Rii, R̄−i¢ , x¢, and Ci ¡R̄−i, x¢ 6= Y , then

g (m) =

½
xi if xi ∈ Ci

¡
R̄−i, x

¢
x otherwise

.

Rule 3 : If
¡
R``, x

`
¢
=
¡
R̄`, x

¢
for all ` ∈ N , x /∈ F ¡R̄¢, and D ¡R̄, x¢ 6= ∅, then g (m) =

p
¡
R̄, x

¢
.

Rule 4 : Otherwise, g (m) = x`
∗(m) where `∗ (m) ≡ P

i∈N
ki (mod n).37

For each ` ∈ N , the set of truthful messages is that defined in (3). Moreover, by construc-
tion, γ ∈ ΓSP . Observe that as F satisfies λ

∗∗, we have that for all R ∈ Rn and all x ∈ F (R),
x ∈ Y holds. Take any R ∈ Rn and any H ∈ H. The proof that F (R) ⊆ NA ¡γ,<R¢ can
be found in Tatamitani (2001), so we omit it here. To show that NA

¡
γ,<R

¢ ⊆ F (R), let
36A detailed and exhaustive argument is provided in Lombardi and Yoshihara (2010).
37If the remainder is zero, the winner of the game is agent n.
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m ∈ NE ¡γ,<R¢ for this H, and let h be an arbitrary partially-honest agent in H. Let us
consider the following cases.

Case 1 : m falls into Rule 1.

Then, m is such that for all ` ∈ N , m` =
¡
R̄`, x, ¦

¢
and x ∈ F ¡R̄¢. By definition of

g and the assumption that m ∈ NE ¡γ,<R¢, we have that C` (R−`, x) ⊆ L (R`, x) for all
` ∈ N . Suppose mh /∈ T γ

h (R,F ) for some h ∈ H. Suppose that Ch
¡
R̄−h, x

¢
= Y . By

changing her strategy mh to m
0
h =

¡
Rh, x

h, kh
¢ ∈ T γ

h (R,F ) with x
h ∈ Y \ {x}, agent h

induces Rule 4 and can obtain ` = `∗ (m−h,m0
h) 6= h. Then, g (m0

h,m−h) = x. Hence,

((m−h,m0
h) ,m) ∈ÂRh , a contradiction. Otherwise, let Ch

¡
R̄−h, x

¢ 6= Y . By changing her

strategy mh to m
0
h =

¡
Rh, x

h, kk
¢ ∈ T γ

h (R,F ) with x
h ∈ Y \Ch

¡
R̄−h, x

¢
, (m0

h,m−h) falls
into Rule 2 as h ∈ D ¡R̄−h, Rh¢. Then, g (m0

h,m−h) = x. Again, ((m0
h,m−h) ,m) ∈ÂRh , a

contradiction. We conclude that mh ∈ T γ
h (R,F ) for all h ∈ H. Condition λ∗∗(i) implies

x ∈ F (R).
Case 2 : m falls into Rule 2.

Then, m is such that m` =
¡
R̄`, x, ¦

¢
for any ` ∈ N\ {i} and mi = (Rii, x

i, ¦), with
xi 6= x, i ∈ D ¡¡R̄−i, Rii¢ , x¢, and Ci ¡R̄−i, x¢ 6= Y . By the definition of g, we have that

Ci
¡
R̄−i, x

¢ ⊆ g (Mi,m−i).
Next, we claim that g (M`,m−`) = Y for all ` ∈ N\ {i}. We proceed according to whether

#Y = 2 and n = 3 or not.

Sub-case 2.1. not[#Y = 2 and n = 3]
Suppose that #Y > 2. Take any ` ∈ N\ {i}. Then, agent ` can induce the modulo

game by choosing any y ∈ Y \ {x, xi} and changing m` into m
∗
` =

¡
R̄`, y, k

`
¢
. To attain y,

agent ` has only to adjust k` by which `∗ (m∗` ,m−`) = `. To attain x (resp., xi), agent `

has only to adjust k` by which `∗ (m∗` ,m−`) = j for j ∈ N\ {`, i} (resp., `∗ (m∗` ,m−`) = i).
Therefore, Y ⊆ g (M`,m−`) for any ` ∈ N\ {i}. Otherwise, let #Y = 2. Then, n > 3.
Take any ` ∈ N\ {i}. Choosing x` = xi, agent ` can make #

©
` ∈ N |x` = xª ≥ 2 and

#
©
` ∈ N |x` 6= xª ≥ 2. As the outcome is determined by Rule 4, agent ` can attain any

outcome in Y by appropriately choosing k`. Therefore, Y ⊆ g (M`,m−`) for any ` ∈ N\ {i}.
Sub-case 2.2. #Y = 2 and n = 3
Then, Y = {x, xi} and N = {i, `, `0}. Moreover, g (m) = x. Agent ` can change her

strategy m` to m
∗
` =

¡
R̄`, x

i, k`
¢
. If `0 /∈ D ¡R̄, xi¢, then the outcome is determined by

Rule 4. Therefore, agent ` can attain xi ∈ Y by appropriately choosing the integer index

k`. Otherwise, let `0 ∈ D ¡R̄, xi¢. Suppose that C`0 ¡R̄−`0 , xi¢ 6= Y . As (m∗` ,m−`) falls into
Rule 2 , it follows that g (m∗i ,m−i) = x

i. Otherwise, agent ` can attain xi by appropriately

choosing k`, since the outcome is determined by Rule 4.

Sincem ∈ NE ¡γ,<R¢, we have that Ci ¡R̄−i, x¢ ⊆ L (Ri, g (m)) and g (m) ∈ maxR` Y for
all ` ∈ N\ {i}. Moreover, by the definition of g, we have that mh ∈ T γ

h (R,F ) for all h ∈ H;
otherwise m ∈ NE ¡g,<R¢ cannot hold, a contradiction (details available from the authors).
Suppose that #H > 1, Condition λ∗∗(ii.b) implies that g (m) ∈ F (R). Otherwise, let

#H = 1. Suppose that H ⊆ N\ {i}. Again, Condition λ∗∗(ii.b) implies that g (m) ∈ F (R).
Finally, let H = {i}. By following the same reasoning used in Case 3 of Theorem 2, it

follows from RD, Condition λ∗∗(ii.a), and Condition λ∗∗(v) that g (m) ∈ F (R).
Case 3 : m falls into Rule 3.

Then, m is such that m` =
¡
R``, x

`, ¦¢ = ¡R̄`, x, ¦¢ ∈ M`, x /∈ F
¡
R̄
¢
, and D

¡
R̄, x

¢ 6= ∅.
By Rule 3, g (m) = p

¡
R̄, x

¢
.
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Take any i ∈ D ¡R̄, x¢. We show that Ci ¡R̄−i, x¢ ⊆ g (Mi,m−i). As i ∈ D
¡
R̄, x

¢
, there

exists R0i ∈ Ri such that x ∈ F
¡
R0i, R̄−i

¢
. By changing mi to m

0
i = (R0i, x, ¦), agent i

can induce Rule 1 and obtain g (m0
i,m−i) = x. Take any xi ∈ Ci

¡
R̄−i, x

¢ \ {x}. Suppose
Ci
¡
R̄−i, x

¢ 6= Y . By changing mi to m
0
i =

¡
R̄i, x

i, ki
¢
, agent i can induce Rule 2 and obtain

g (m0
i,m−i) = x

i. Suppose Ci
¡
R̄−i, x

¢
= Y . Then, the modulo game is triggered and agent

i can attain xi by choosing ki appropriately.

Take any ` ∈ N\D ¡R̄, x¢. We show that Y ⊆ g (M`,m−`). Then, agent ` can induce
the modulo game by choosing any x` ∈ Y \ {x} and changing m` into m

0
` =

¡
R̄`, x

`, k`
¢
. To

attain x and x`, agent ` has only to adjust k` by which `∗ (m0
`,m−`) = i for i ∈ N\ {`} and

`∗ (m∗` ,m−`) = `, respectively.
Since m ∈ NE ¡γ,<R¢, Ci ¡R̄−i, x¢ ⊆ L ¡Ri, p ¡R̄, x¢¢ holds for any i ∈ D ¡R̄, x¢, and

p
¡
R̄, x

¢ ∈ maxR` Y holds for all ` ∈ N\D ¡R̄, x¢. Moreover, by the definition of g, we have
that mh ∈ T γ

h (R,F ) for any h ∈ H; otherwise m ∈ NE
¡
g,<R

¢
cannot hold, a contradiction

(details available from the authors). Condition λ∗∗(iv) implies that p
¡
R̄, x

¢ ∈ F (R).
Case 4 : m falls into Rule 4.

Then, g (m) = x`
∗(m) where `∗ (m) ∈ N is the winner of the modulo game. We show that

Y ⊆ g (M`,m−`) for any ` ∈ N . Take any i ∈ N and consider the following two sub-cases.

Let
¡
R``
¢
`∈N ≡ R̄.

Sub-case 4.1 : For all `, `0 ∈ N\ {i}, x` = x`0.
Suppose that x` = x for all ` ∈ N . As m falls into Rule 4, it follows that x /∈ F ¡R̄¢

and D
¡
R̄, x

¢
= ∅. By changing mi to m

0
i =

¡
R̄i, x

i, ki
¢
with xi ∈ Y , agent i can trigger

the modulo game and obtain g (m0
i,m−i) by appropriately choosing k

i. Therefore, Y ⊆
g (Mi,m−i). On the other hand, suppose that x` = x for all ` ∈ N\ {i}, and xi 6= x. Take
any x̂i ∈ Y \ {x}. Since g (m) = x`∗(m), it follows that either i /∈ D ¡R̄, x¢ or i ∈ D ¡R̄, x¢, and
Ci
¡
R̄−i, x

¢
= Y . Therefore, by deviating frommi tom

0
i =

¡
R̄i, x̂

i, ki
¢
, agent i can trigger the

modulo game. To attain x and x̂i, agent i has only to adjust ki so that `∗ ((m0
i,m−i)) ∈ N\ {i}

and `∗ ((m0
i,m−i)) = i, respectively. Again, we have that Y ⊆ g (Mi,m−i).

Sub-case 4.2 : For some `, `0 ∈ N\ {i}, x` 6= x`0.
Suppose that #Y = 2 and let Y =

©
x`, x`

0ª
. By changing mi to m

0
i =

¡
R̄i, x

i, ki
¢
, agent

i induces the modulo game. To attain x` and x`
0
, agent i has only to adjust the integer

index ki so that `∗ ((m0
i,m−i)) = ` and `∗ ((m0

i,m−i)) = `0, respectively. Otherwise, let
#Y > 2. Take any xi ∈ Y \©x`, x`0ª. By deviating from mi to m

0
i =

¡
R̄i, x

i, ki
¢
, agent i

can trigger the modulo game. To attain x`, x`
0
, and xi, agent i has only to adjust ki so that

`∗ ((m0
i,m−i)) = `, `

∗ ((m0
i,m−i)) = `

0, and `∗ ((m0
i,m−i)) = i, respectively. Again, we have

that Y ⊆ g (Mi,m−i).
Since Y ⊆ g (Mi,m−i) for any i ∈ N andm ∈ NE

¡
γ,<R

¢
, we have that g (m) ∈ maxR` Y

for all ` ∈ N . Condition λ∗∗(iii) implies that g (m) ∈ F (R).
Proof of Theorem 8. Let Assumption 1 and RD hold. Let H = {{1} , {2}}. Take
any F ∈ F defined on R2. Let γ ≡ (M,g) be a mechanism. Let h denote the unique
partially-honest agent in N .

1. The necessity of Condition μ2∗∗.
Let F be partially-honest implemented by γ ∈ ΓSP . Let Y ≡ g (M). Take any H ∈ H,

any R ∈ R2, and any x ∈ F (R). Then, there exists an m (R, x) ∈ NE ¡γ,<R¢ for this H
such that g (m (R, x)) = x. Observe that mh (R, x) ∈ T γ

h (R,F ) as γ ∈ ΓSP . For all ` ∈ N ,
let C` (R, x) ≡ g (M`,mi (R, x)), where i ∈ N\ {`}. Then, g (M`,mi (R, x)) ⊆ L (R`, x) ∩ Y
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for all ` ∈ N . From Theorem 2, it follows that F satisfies Conditions μ∗∗. Next, we

show that F satisfies Condition μ2∗∗(v). Pick any (x0, R0) ∈ X × R2 with x0 ∈ F (R0),
and take any R∗ ∈ R2. Since x0 ∈ F (R0), it follows that there exists an m (R0, x0) ∈
NE

¡
γ,<R0

¢
and g (m (R0, x0)) = x0, wheremh (R

0, x0) ∈ T γ
h (R

0, F ). Let e ≡ e (x0, R0, x, R) =
g (m1 (R, x) ,m2 (R

0, x0)). Then, defining C1 (R0, x0) ≡ g (M1,m2 (R
0, x0)) and C2 (R, x) ≡

g (m1 (R, x) ,M2), e ∈ C1 (R0, x0)∩C2 (R, x) holds. Thus, F satisfies μ2∗∗(v.a). It is also clear
that F meets Condition μ2∗∗(v.c), since R = R0 = R∗ implies that every agent is truthful
and e is optimal at state R∗. Finally, we check μ2∗∗(v.b). Let x 6= x0 and R 6= R0. Moreover,
suppose that C1 (R

0, x0) ⊆ L (R∗1, e), C2 (R, x) ⊆ L (R∗2, e), and e /∈ F (R∗). Suppose that
R = R∗. Assume, to the contrary, that H = {1}. Then, m1 (R, x) ∈ T γ

1 (R
∗, F ). Since

there cannot be any profitable deviation, we have that e ∈ NA ¡γ,<R∗¢ for H = {1}, a
contradiction. Thus, H = {2}. Similarly, we obtain H = {1} if R0 = R∗. In summary, F
satisfies Condition μ2∗∗(v).

2. The sufficiency of Condition μ2∗∗.
Suppose that F satisfies Condition μ2∗∗. Then, F (R2) ⊆ Y . For each ` ∈ N , define M`

as follows

M` ≡
©
m` =

¡
R`, x`, y`, k`

¢ ∈ R2 ×X × Y × Z+ | x` ∈ F
¡
R`
¢ª
, (4)

where Z+ is the set of nonnegative integers. The set of truthful messages is that defined in
(1).

Define the outcome function g : M → X as follows: For all m ∈ M , for i, j ∈ N , with
i 6= j:
Rule 1: If (Ri, xi) = (Rj, xj) and ki = kj = 0, then g (m) = xi.
Rule 2: If ki > kj = 0, then

g (m) =

½
yi if yi ∈ Ci (Rj, xj)

e ≡ e (x2, R2, x1, R1) otherwise.

Rule 3: If (R1, x1) 6= (R2, x2) and k1 = k2 = 0, then

g (m) =

½
x1 if x1 = x2

e ≡ e (x2, R2, x1, R1) otherwise.

Rule 4: If k1 ≥ k2 > 0, then, g (m) = y1.
Rule 5: Otherwise, g (m) = y2.

The outcome e ≡ e (x2, R2, x1, R1) is the outcome specified in Condition μ2∗∗(v.a). Observe
that γ ∈ ΓSP , by construction.
Suppose that R ∈ R2 is the true state and take any H ∈ H.
Let x ∈ F (R) and suppose that for all ` ∈ N , m` (R, x) = (R, x, x, 0) ∈ T γ

` (R,F ).
Rule 1 implies that g (m) = x. By the definition of g, any deviation by agent ` ∈ N leads

to an outcome in C` (R, x), so that g (M`,mi (R, x)) = C` (R, x), where i ∈ N\ {`}. Since
C` (R, x) ⊆ L (R`, x), such deviations are not profitable. It follows that x ∈ NA

¡
γ,<R

¢
for

this H. To show that NA
¡
γ,<R

¢ ⊆ F (R), let m ∈ NE ¡γ,<R¢ and let us consider the
following cases.

Case 1: m corresponds to Rule 1.

Suppose that m falls into Rule 1. Then, g (m) = x1. By the definition of g, it follows
that mh ∈ T γ

h (R,F ). Then, x
1 = x2 ∈ F (R).
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Case 2: m corresponds to Rule 2.

Without loss of generality, let i = 1. Then, g (m1,M2) = Y ⊆ L (R2, g (m)) and
C1 (R

2, x2) = g (M1,m2) ⊆ L (R1, g (m)). By the definition of g, mh ∈ T γ
h (R,F ). Sup-

pose that H = {2}. Condition μ2∗∗(ii.c) implies that g (m) ∈ F (R) as R2 = R. Otherwise,
let H = {1}. Following the same reasoning used in Case 3 of Theorem 2, it follows from

RD, Condition μ2∗∗(ii.a), and Condition μ2∗∗(iv) that g (m) ∈ F (R).
Case 3: m corresponds to Rule 3.

Then, C1 (R
2, x2) = g (M1,m2 (R

2, x2)) ⊆ L (R1, g (m)) andC2 (R1, x1) = g (m1 (R
1, x1) ,M2) ⊆

L (R2, g (m)). Observe that mh

¡
Rh, xh

¢ ∈ T γ
h (R,F ). If x

1 = x2, then g (m) ∈ F (R). Oth-
erwise, let x1 6= x2. Suppose that R1 = R2. Then, since F satisfies Condition μ2∗∗, it follows
that (g (m) , x2) ∈ I1 and (g (m) , x1) ∈ I2. Condition μ2∗∗(v.c) implies that g (m) ∈ F (R).
Finally, let R1 6= R2. Suppose that H = {1}, so that R1 = R. Condition μ2∗∗(v.b.1) implies
that g (m) ∈ F (R). Otherwise, let H = {2}, and so R2 = R. Condition μ2∗∗(v.b.2) implies
that g (m) ∈ F (R).
Cases 4: m corresponds to Rule 5 or Rule 6.

Then, g (M1,m2) = Y ⊆ L (R1, g (m)) and g (m1,M2) = Y ⊆ L (R2, g (m)). Condition
μ2∗∗(iii) implies that g (m) ∈ F (R).

Proof of Theorem 10. Let Assumption 1 and RD hold. Take any F ∈ F defined on R2.

Let γ ≡ (M,g) be a mechanism.
1. The necessity of Condition μ2◦◦.
Suppose that F is partially-honest implemented by γ ∈ ΓStP . FromTheorem 8, Condition

μ2∗∗ is satisfied. Furthermore, as it is clear that F satisfies Condition μ2◦◦(vi), we conclude
that F meets Condition μ2◦◦.

2. The sufficiency of Condition μ2◦◦.
Suppose that F satisfies Condition μ2◦◦. Then, F (R2) ⊆ Y . Consider the mechanism γ

constructed in Theorem 8. Clearly, γ ∈ ΓStP . Moreover, let the set of truthful messages be
that defined in (1).

Suppose that R ∈ R2 is the true state and pick any H ∈ H. The proof that F (R) ⊆
NA

¡
γ,<R

¢
follows from Theorem 8. Then, to show that NA

¡
γ,<R

¢ ⊆ F (R) for this H, let
m ∈ NE ¡γ,<R¢ for this H. As in Theorem 8, we have to consider several cases. The proof
that g (m) ∈ F (R) follows from the same arguments used in Theorem 8 whenever Rule 1,

Rule 3, Rule 4, or Rule 5 applies tom. Therefore, suppose thatm falls into Rule 2. Without

loss of generality, let i = 1. Then, g (m1,M2) = Y ⊆ L (R2, g (m)) and C1 (R
2, x2) ⊆

g (M1,m2) ⊆ L (R1, g (m)). By the definition of g, we have that mh ∈ T γ
h (R,F ) for all

h ∈ H. Suppose that #H = 1. Then, g (m) ∈ F (R) by Case 2 of Theorem 8. Suppose that
#H = 2. Then, Condition μ2◦◦(vi) implies that g (m) ∈ F (R), as sought.
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