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Abstract

The work of Professor P.C.B. Phillips, even if it is focused on the area of linear non-
stationary models, is enormous. So it is hard for me to explore the whole of his work in
this paper. Therefore I have decided to take up only a few results of his work. The topics
chosen here are applications of the martingale approximation and the problem of choosing
between stochastic and deterministic trends, which I discuss and, hopefully extend.

An earlier version of this paper was presented at the special meeting of the New
Zealand Econometrics Study Group held at the University of Auckland in March 2008
in honor of Professor P.C.B. Phillips. I am grateful to Professors P.C.B. Phillips, B.E.
Hansen and two anonymous referees for their useful comments and suggestions.
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1. Introduction
There is no doubt that Professor P.C.B. Phillips is one of the greatest and most

influential econometricians in the history of our profession. His research extends over a
wide range of the theoretical and empirical problems in econometrics (see, for details, his
home page “http://korora.econ.yale.edu/phillips/index.htm”). In particular, his work is
enormous on the asymptotic as well as finite sample distribution theory in simultaneous
econometric models, the asymptotic inference in integrated and long memory time series
models, and a general asymptotic theory for nonstationary panel data.

It is a great honor to overview his work on this occasion, but it is quite difficult for
me to give a general and fair view. Among many contributions of Professor Phillips, I
have decided to take up the following two topics, the choice of which is, to some extent,
in line with my interest, but does reflect the relative importance that his work conveyed
to us. In each topic I try to extend and reinterpret his results.

In Section 2 we discuss the first topic, which is the martingale approximation or the
so-called B-N decomposition in the econometrics literature. The former idea was first
suggested in Gordin (1969) in a wide context, and was extensively discussed in Hall and
Heyde (1980), whereas the latter idea was first given in Beveridge and Nelson (1981) in
the case of a scalar linear stationary process. Phillips (1988) dealt with a vector case and
discussed weak convergence of the sum of matrix products to the Ito integral by using the
martingale approximation. The proof of the vector case is quite different from that of the
scalar case and is much involved. A simplified proof will be given. This approximation or
decomposition is based on expanding a polynomial in a Taylor series about unity. Phillips
and Solo (1992) and Phillips (1999), on the other hand, considered the expansion about
an arbitrary complex value on the unit circle. It turns out that this latter expansion is
suitable for frequency domain applications and is useful for establishing asymptotic results
related to Fourier transforms, periodograms and spectra. The expansion will be applied
to the analysis of the complex unit root model, extending the original model discussed by
Ahtola and Tiao (1987).

In Section 3 we deal with somewhat a philosophical problem, that is, the problem
of differentiating between deterministic and stochastic trends. Phillips (1998, 2002) con-
sidered a situation where the I(1) process, which is a stochastic trend, is regressed on
deterministic trends, and developed an asymptotic theory when K, the number of re-
gressors, becomes large in additon to T , the sample size. This situation is referred to
as K-asymptotics. It turns out that the stochastic trend can be well approximated by
deterministic trends under K-asymptotics. This poses a question about the validity of
unit root tests that aim to differentiate between deterministic and stochastic trends. The
discussion will be extended to the near I(1) case, where it is shown that the unit root test
becomes invalid under K-asymptotics in the sense that the test gives rise to no power
under the local alternative.

In the following we use the symbol “⇒” to signify weak convergence. The limit is
taken with respect to the sample size T or the number of deterministic regressors K when
T or K goes to ∞.

2. Martingale approximation

2.1. Time domain
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Let us consider a q-dimensional I(1) process {yj} defined by

yj = yj−1 + uj , y0 = 0, (j = 1, . . . , T ), (1)

where {uj} is a stationary linear process given by

uj =
∞∑
l=0

Alεj−l,
∞∑
l=1

l ||Al|| <∞, A =
∞∑
l=0

Al �= 0. (2)

Here ||B|| is the matrix norm of B defined by maxa,b|Bab| with Bab being the (a, b)th ele-
ment of B, whereas {εj} follows i.i.d.(0, Iq) with Iq being the identity matrix of dimension
q. It holds that the process {uj} is strictly stationary and ergodic with the continuous
spectral matrix given by

fu(ω) =
1

2π

∞∑
j=0

Aje
ijω

∞∑
j=0

A′
je

−ijω.

Note in passing that A0 is not assumed to be the identity matrix so that V(εj) = Iq is
justified.

Under the above situation Phillips (1988) proved the following important fact:

1

T

T∑
j=1

yj−1u
′
j ⇒ A

∫ 1

0
W (t) dW ′(t)A′ + Λ, (3)

where {W (t)} is the q-dimensional standard Brownian motion and

Λ =
∞∑

h=1

E(u0 u′
h) =

∞∑
h=1

Γ(h) = lim
T→∞

1

T

T∑
j=1

E(yj−1u
′
j).

In the proof, the following martingale approximation (B-N decomposition) plays an
important role:

uj = A εj + ε̃j−1 − ε̃j , (4)

where

ε̃j =
∞∑
l=0

Ãl εj−l, Ãl =
∞∑

k=l+1

Ak,
∞∑
l=0

||Ãl|| <∞. (5)

Here the process {ε̃j} is evidently a stationary linear process because of the last condition
in (5), which follows from (2). Then we have

yj =
j∑

i=1

ui = A
j∑

i=1

εi + ε̃0 − ε̃j = Azj + ε̃0 − ε̃j,

where

zj =
j∑

i=1

εi = zj−1 + εj , z0 = 0.
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The following may be a simplified proof of Phillips (1988). First of all, we have

T∑
j=1

yj−1u
′
j =

T∑
j=1

[Azj−1 + ε̃0 − ε̃j−1] [Aεj + ε̃j−1 − ε̃j]
′

= A
T∑

j=1

zj−1ε
′
jA

′ +HT +RT , (6)

where

HT =
T∑

j=1

[
Aεjε̃

′
j − ε̃j−1u

′
j

]
, RT =

T∑
j=1

[
Azj−1(ε̃j−1 − ε̃j)

′ − Aεjε̃
′
j + ε̃0u

′
j

]
.

Here it holds

1

T
HT → E

(
Aεj ε̃

′
j − ε̃j−1u

′
j

)
= A(A−A0) −

∞∑
l=0

⎛
⎝ ∞∑

k=l+1

Ak

⎞
⎠ A′

l+1

=
∞∑
l=0

∞∑
k=1

AlA
′
k+l =

∞∑
h=1

E(u0u
′
h) =

∞∑
h=1

Γ(h),

1

T
RT =

1

T

T∑
j=1

[
Azj−1ε̃

′
j−1 − A(zj − εj)ε̃

′
j − Aεjε̃

′
j + ε̃0u

′
j

]

=
1

T

⎡
⎣A(z0ε̃

′
0 − zT ε̃′

T ) + ε̃0

T∑
j=1

u′
j

⎤
⎦ → 0,

where the symbol “→” signifies convergence in probability. Moreover it follows from Chan
and Wei (1988) that

1

T

T∑
j=1

zj−1ε
′
j =

1

T

T∑
j=1

(ε1 + ε2 + ... + εj−1)ε
′
j ⇒

∫ 1

0
W (t) dW ′(t). (7)

Therefore we can establish (3) by the continuous mapping theorem (CMT).
In particular, if {yj} and {uj} are scalar processes, we have

1

T

T∑
j=1

yj−1uj ⇒ 2πfu(0)
∫ 1

0
W (t) dW (t) + λ,

where fu(ω) is the spectrum of {uj}, whereas {W (t)} is the one-dimensional standard
Brownian motion, and

λ =
∞∑

h=1

γ(h) =
1

2
(2πfu(0) − γ(0)) , γ(h) = E(u0uh).

It also holds that, for yj = ρyj−1 + uj with ρ = 1, the LSE ρ̂ of ρ follows

T (ρ̂− 1) =

∑T
j=2 yj−1uj/T∑T
j=2 y

2
j−1/T

2
⇒

∫ 1
0 W (t) dW (t) + 1

2
(1 − r)∫ 1

0 W 2(t) dt
, (8)

where r is the ratio of the short-run variance to the long-run variance defined by

r =
γ(0)

2πf(0)
=

γ(0)∑∞
h=−∞ γ(h)

=
1∑∞

h=−∞ ρ(h)
.
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Here ρ(h) = γ(h)/γ(0) is the lag h auto-correlation of {uj}.
As another application, let us consider the unit root seasonal model

yj = ρm yj−m + vj , ρm = 1, (j = 1, . . . , T ), (9)

where m is the period, whereas yj = 0 for j ≤ 0, and

vj =
∞∑
l=0

αlm εj−lm,
∞∑
l=1

l |αlm| <∞.

Then we have, for N = [T/m], the LSE ρ̂m of ρm follows

N(ρ̂m − 1) ⇒
∫ 1
0 W ′(t) dW (t) + m

2
{1 − γ(0)/(2πfv(0))}∫ 1

0 W ′(t)W (t) dt
, (10)

where {W (t)} is the m−dimensional standard Brownian motion, whereas fv(ω) is the
spectrum of {vj}.

2.2. Fourier transforms
The martingale approximation in (4) was derived by expanding a polynomial in a

Taylor series about unity. Here we consider expanding a polynomial about an arbitrary
complex value on the unit circle, which will prove useful when we consider the asymptotic
distributions of statistics associated with Fourier transforms. Following Phillips and Solo
(1992) and Phillips (1999), let us consider

uj =
∞∑
l=0

αl εj−l = α(L)εj,
∞∑

j=1

l|αl| <∞, α0 = 1,
∞∑

j=0

α �= 0, (11)

where {εj} ∼ i.i.d.(0, σ2), whereas α(L) = 1 + α1L + α2L
2 + ... with L being the lag

operator. Then, expanding the polynomial α(z) about z = eiθ with 0 < θ < π, we have

α(z) = α(eiθ) + α(z) − α(eiθ) = α(eiθ) + (e−iθz − 1)α̃(z),

where

α̃(z) =
∞∑
l=0

α̃lz
l, α̃l =

∞∑
k=l+1

αke
i(k−l)θ.

Thus we have

uj = α(L)εj =
[
α(eiθ) + (e−iθL− 1)α̃(L)

]
εj = α(eiθ)εj + e−iθε̃j−1 − ε̃j, (12)

where

ε̃j = α̃(L)εj =
∞∑
l=0

α̃lεj−l.

Note that the process {ε̃j} is complex-valued because coefficients α̃l’s are, and is stationary
because of the assumption given in (11). It is also noticed that the expansion (12) reduces
to that in the time domain when θ = 0.

It then follows that
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T∑
j=1

eijθuj = α(eiθ)
T∑

j=1

eijθεj +
T∑

j=1

ei(j−1)θ ε̃j−1 −
T∑

j=1

eijθε̃j

= α(eiθ)
T∑

j=1

eijθεj + ε̃0 − eiT θε̃T . (13)

Taking the real and imaginary parts of this last expression separately, we obtain

T∑
j=1

(
cos j θ
sin j θ

)
uj =

(
a(θ) −b(θ)
b(θ) a(θ)

) T∑
j=1

(
cos j θ
sin j θ

)
εj +

(
R1T

R2T

)
, (14)

where

a(θ) = Re[α(eiθ)], b(θ) = Im[α(eiθ)], R1T = Re[ε̃0 − eiT θ ε̃T ], R2T = Im[ε̃0 − eiT θε̃T ].

It is seen that the quantities on the left of (14) are trigonometric coefficients computed
from the stationary process {uj}, which can be approximated by a linear transformation
of trigonometric coefficients computed from the i.i.d. process. Note that R1T and R2T are
negligible as compared with the dominant term.

From the above expansion, it is straightforward to derive the distribution of trigono-
metric coefficients

XT (θ) =
T∑

j=1

uj cos jθ, YT (θ) =
T∑

j=1

uj sin jθ, (0 < θ < π). (15)

Asymptotic normality of XT (θ) and YT (θ) was earlier given in Anderson (1971) by a
somewhat complicated approach. Here we use the expansion (14). First of all we employ
results by Helland (1982) and Chan and Wei (1988), which implies that

√
2√
Tσ

[Tt]∑
j=1

(
cos j θ
sin j θ

)
εj ⇒ W (t),

√
2√
Tσ

T∑
j=1

(
cos j θ
sin j θ

)
εj ⇒ N(0, I2),

where {W (t)} is the two-dimensional standard Brownian motion. Because of the above
results, we can immediately establish, by using (14) and the CMT,

Theorem 2.1. For the linear process {uj} defined by (11) it holds that

√
2√
Tσ

[Tt]∑
j=1

(
cos j θ
sin j θ

)
uj ⇒ K(θ) W (t), (0 ≤ t ≤ 1), (16)

where

K(θ) =
(
a(θ) −b(θ)
b(θ) a(θ)

)
, a(θ) = Re[α(eiθ)], b(θ) = Im[α(eiθ)]. (17)

It follows from Theorem 2.1 that
√

2√
Tσ

T∑
j=1

(
cos j θ
sin j θ

)
uj ⇒ N(0, K(θ)K ′(θ)) = N

(
0,

2π

σ2
f(θ) I2

)
,
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where f(θ) = σ2(a2(θ)+b2(θ))/(2π) is the spectrum of {uj} evaluated at θ. More generally,
let us consider trigonometric coefficients defined by

A(θk) =
1√
T

T∑
j=1

uj cos j θk, B(θk) =
1√
T

T∑
j=1

uj sin j θk, (k = 1, . . . , n),

where 0 < θ1 < . . . , < θn < π. Then we have

A(θ1), B(θ1), . . . , A(θn), B(θn) ⇒ N(0, D),

where

D = diag (πf(θ1), πf(θ1), . . . , πf(θn), πf(θn))

2.3. Complex unit roots
As another application of the expansion (14), let us consider the following model

(1 − eiθL)(1 − e−iθL) yj = uj ⇔ yj = φ1yj−1 + φ2yj−2 + uj, (18)

where φ1 = 2 cos θ, φ2 = −1, and {uj} is the stationary linear process given in (11). The
present model describes a nonstationary cyclical behavior with period 2π/θ and is also
discussed in Bierens (2001). Ahtola and Tiao (1987) originally considered the model (18)
with the error term being i.i.d., where the asymptotic distribution of the LSEs of φ1 and
φ2 was discussed. Here we consider the same problem for the extended model (18), and
compute, by numerical integration, the limiting distribution.

Assuming that y−1 = y0 = 0, we have

yj =
uj

(1 − eiθL)(1 − e−iθL)
=

1

sin θ
[ z1j sin(j + 1)θ − z2j cos(j + 1)θ ]

=
1

sin θ
a′

jzj , (19)

where

zj =
(
z1j

z2j

)
=

j∑
l=1

(
cos lθ
sin lθ

)
ul, aj =

(
sin(j + 1)θ

− cos(j + 1)θ

)
.

Applying the expansion (14) to ul in the expression for zj , we obtain

zj =
j∑

l=1

(
cos lθ
sin lθ

)
ul = K(θ)xj + wj , (20)

where K(θ) is defined in (17), whereas

xj =
j∑

l=1

(
cos lθ
sin lθ

)
εl, wj =

(
Re[ε̃0 − eijθε̃j]
Im[ε̃0 − eijθε̃j ]

)
.

7



Then we obtain the asymptotic distribution of various second moments as follows (see,
for more details, Tanaka (2008)).

RT (h) =
1

T 2

T∑
j=h+1

yj−h yj ⇒ πf(θ) coshθ

2 sin2 θ

∫ 1

0
W ′(t)W (t) dt,

ST (h) =
1

T

T∑
j=h+1

yj−h uj

⇒ 1

sin θ

⎡
⎣πf(θ)

∫ 1

0
W ′(t) Jh(θ) dW (t) +

∞∑
j=h

γ(j) sin(j − h+ 1)θ

⎤
⎦ ,

where f(θ) is the spectrum of {uj} evaluated at θ, and γ(h) is the lag h auto-covariance
of {uj}, whereas

Jh(θ) =
(− sin(h− 1)θ cos(h− 1)θ
− cos(h− 1)θ − sin(h− 1)θ

)
. (21)

Denoting by φ̂ the LSE of φ = (φ1, φ2)
′ in the present model, we can now establish

Theorem 2.2. For the AR(2) model with complex unit roots defined by (18) it holds
that

T (φ̂ − φ) =

⎡
⎣ 1

T 2σ2

T∑
j=3

(
y2

j−1 yj−1yj−2

yj−1yj−2 y2
j−2

)⎤⎦
−1 ⎡

⎣ 1

Tσ2

T∑
j=3

(
yj−1uj

yj−2uj

)⎤⎦

⇒
(
Z1

Z2

)
,

Z1 = 2
[
πf(θ)

∫ 1

0
W ′(t)

(
cos θ sin θ
− sin θ cos θ

)
dW (t)

+ sin θ
∞∑

j=1

γ(j) cos(j − 1)θ

⎤
⎦/{

πf(θ)
∫ 1

0
W ′(t)W (t) dt

}
, (22)

Z2 =
−2

[∫ 1
0 W ′(t) dW (t) + 1 − γ(0)/ (2πf(θ))

]
∫ 1
0 W ′(t)W (t) dt

. (23)

It is seen that the asymptotic distributions of φ̂1 and φ̂2 both depend on the parameter
θ in the present model. Note that, when the error term {uj} becomes independent, the
distribution of the former still depends on θ, but the latter does not. More specifically, it
holds that, when uj = εj so that γ(0) = 2πf(θ) = σ2,

T (φ̂1 + 1) ⇒
2
∫ 1
0 W ′(t)

(
cos θ sin θ
− sin θ cos θ

)
dW (t)∫ 1

0 W ′(t)W (t) dt
,

T (φ̂2 + 1) ⇒ −2
∫ 1
0 W ′(t) dW (t)∫ 1

0 W ′(t)W (t) dt
.
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It is of some interest to compare the distribution of Z2 in (23) with the unit root
seasonal distribution in (10) which arises from the seasonal model in (9). In particular, it
is seen that −Z2/2 has the same distribution as the seasonal unit root distribution when
m = 2 and uj = εj.

The distribution of Z2 may be called the complex unit root distribution, and can be
computed as follows. Let us put r = γ(0)/(2πf(θ)). Then we have the following theorem
(see, for details, Tanaka (1996))

Theorem 2.3.

P (Z2 ≤ x) =
1

2
− 1

π

∫ ∞

0

1

u
Im[ψ(u)] du, (24)

where ψ(u) is the characteristic function (c.f.) of

X = −x
2

∫ 1

0
W ′(t)W (t) dt−

∫ 1

0
W ′(t) dW (t) − (1 − r),

and is given by

ψ(u) = E(eiuX) = eiru

/(
cos

√
2iuy + iu

sin
√

2iuy√
2iuy

)
, y = −x/2.

Figure 1 draws the probability density of Z2 for r = 0.2, 0.5, 1, 1.5, 2, which can be
computed from (24) by numerical integration. It is seen that the distribution is shifted
to the right as r becomes large. Table 1 reports percent points and moments of Z2 for
r = 1.

Table 1. Percent points and some moments of Z2 for r = 1

0.01 0.05 0.1 0.5 0.9 0.95 0.99 Mean SD

−2.956 −2.028 −1.539 0.775 6.010 8.389 14.115 1.664 3.460

Figure 1

3. K-asymptotics in integrated and near-integrated processes

3.1. Case of integrated processes
Let us consider the scalar I(1) process

yj = yj−1 + uj, y0 = 0, (j = 1, . . . , T ), (25)

where {uj} is a stationary linear process defined by

uj =
∞∑
l=0

αlεj−l,
∞∑
l=1

l |αl| <∞, α0 = 1, α ≡
∞∑
l=0

αl �= 0, (26)

9



with {εj} ∼ i.i.d.(0, σ2). We denote the short-run and long-run variances of {uj} by
σ2

S = V(uj) and σ2
L = α2σ2, respectively. Then, for the partial sum process given by

XT (t) =
1√
TσL

y[Tt] =
1√
TσL

[Tt]∑
j=1

uj, (0 ≤ t ≤ 1),

the following FCLT holds:

XT (·) ⇒W (·),

where {W (t)} is the standard Brownian motion on [0, 1]. This is a typical invariance
principle in the weak version, while the strong version [Csörgő and Horváth (1993)] says
that {XT (t)} can be well approximated by {W (t)} in the sense that, if E(|εj|p) < ∞ for
some p > 2, we can construct a standard Brownian motion such that

sup
0≤t≤1

T δ |XT (t) −W (t)| = sup
0≤t≤1

T δ

∣∣∣∣∣ 1√
TσL

y[Tt] −W (t)

∣∣∣∣∣ −→ 0

with probability 1, where 0 < δ = 1/2 − 1/p < 1/2.
On the other hand, it is known [Loève (1978), Chan and Wei (1988)] that W (t) admits

infinitely many series representations in the L2-sense. For example, we have

W (t) =
m∑

k=1

gk(t)νk +
∞∑

n=1

fn(t)√
λn

ξn , (27)

where {νk} ∼ NID(0,1), {ξn} ∼ NID(0,1), and the two sequences are independent of each
other, whereas gk(t) is a continuous function. Moreover, λn is the nth smallest eigenvalue,
and fn(t) is the corresponding orthonormal eigenfunction for the integral equation

f(t) = λ
∫ 1

0
K(s, t) f(s) ds, (28)

where K(s, t) is a continuous, symmmetric and positive definite kernel defined by

K(s, t) = Cov

(
W (s) −

m∑
k=1

gk(s)νk,W (t) −
m∑

l=1

gl(t)νl

)
=

∞∑
n=1

fn(s)fn(t)

λn

. (29)

The expansion in (27) is called the Karhunen-Loève expansion, where the λn is repeated
as many times as its multiplicity which is defined by the number of linearly independent
solutions of eigenfunctions corresponding to λn. Note also that the expansion in (29) is
ensured to converge absolutely and uniformly to K(s, t) by Mercer’s theorem (Hochstadt
(1973)).

Thus, allowing for various values of m and various functions gk(t), we obtain infinitely
many series representations forW (t) in the L2-sense.Among such representations the most
convenient for the present purpose is

W (t) =
∞∑

n=1

φn(t)

(n− 1/2)π
ξn , φn(t) =

√
2 sin[(n− 1/2)πt], (30)

where λn = (n− 1/2)2π2 is the nth smallest eigenvalue of the kernel K(s, t) = min(s, t),
while φn(t) is the corresponding orthonormal eigenfunction. It can be checked that the
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multiplicity is unity for each eigenvalue. Because of the martingale convergence theorem,
the representation in (30) holds, not only in the L2-sense, but also with probability 1,
uniformly in t ∈ [0, 1]. It follows that {W (t)} can be represented by an infinite number
of linear combinations of trigonometric functions with random coefficients.

On the basis of the above facts, Phillips (1998) considers approximating the I(1) pro-
cess, that is, the process that contains purely stochastic trends, by trigonometric functions
with stochastic coefficients. More specifically, the following regression was considered:

yj =
K∑

k=1

b̂kφk

(
j

T

)
+ ûj, (j = 1, ..., T ), (31)

where b̂1, ..., b̂K are LSEs and ûj is the OLS residual. We also denote the t-ratio statistic

for b̂k by tb̂k
, the coefficient of determination by R2, and the Durbin-Watson statistic by

DW .
Under the above setting, Phillips (1998) obtained T -asymptotics for the above statis-

tics. The following are just a summary of those results.

(a) b̂1/
√
T , ..., b̂K/

√
T tend to be independently distributed as normal.

(b)
∑T

j=1 û
2
j = Op(T

2),

(c) tb̂k
= Op(

√
T ),

(d) R2 has a non-degenerate limiting distribution.

(e) DW = Op(1/T ).

The result (a) comes from (30) and the orthogonality of {φn(t)}. The result (b)
implies that the regression residuals still contain nonstaionary components, whereas it
follows from (c) that the regression coefficients of deterministic trends are significant.
This also applies when the robust t-ratio which accommodates serial dependence in the
residuals is used. Moreover, the result (d) also signals that the fitted regression is valid.
The result (e), however, serves as conventional wisdom that detects poor performance of
the fitted model.

We move on to K-asymptotics by letting T → ∞ and then K → ∞. It holds that

(a) b̂1/
√
T , ..., b̂K/

√
T tend to be independently distributed as normal.

(b)
∑T

j=1 û
2
j/T

2 = Op(1/K),

(c) tb̂k
/
√
T = Op(

√
K),

(d) R2 → 1 in probability,

(e) T ×DW = Op(K).

All of the above statistics signal that the regression relation is valid in K-asymptotics.
We have that the coefficients of deterministic trends are still significant because of (c),
and the regression (31) fully captures the variation of {yj} because of (d). Moreover, as
described in (e), the DW statistic does produce a nonnegligible value. More specifically,

11



it holds that, as T → ∞ and then K → ∞, T × DW/K converges to π2 in probability.
In conclusion, stochastic trends cannot be distinguished from deterministic trends in K-
asymptotics of the integrated process.

It is of great interest to study K-asymptotics in nested models for unit root tests. To
this end we consider the regression relation

yj = ρ̂yj−1 +
K∑

k=1

b̂kφk

(
j

T

)
+ ûj, (j = 1, ..., T ). (32)

We first deal with T -asymptotics. Let ADFρ and Zρ be the unit root coefficient
statistics suggested in Said and Dickey (1984) and Phillips (1987), respectively. Let also
ADFt and Zt be the corresponding unit root t-ratio statistics. Then Phillips (2002) proved
that it holds that, as T → ∞,

ADFρ, Zρ ⇒
∫ 1
0 WφK

(t) dW (t)∫ 1
0 W

2
φK

(t) dt
, (33)

ADFt, Zt ⇒
∫ 1
0 WφK

(t) dW (t)(∫ 1
0 W

2
φK

(t) dt
)1/2

, (34)

where

WφK
(t) = W (t) −

∫ 1

0
φ(K, s)′W (s) dsφ(K, t), φ(K, t) = (φ1(t), ..., φK(t))′.

Note that the process {WφK
(t)} is a detrended Brownian motion, which is the residual

process of the Hilbert space projection of W (t) on the space spanned by φ(K, t).
It also follows that, unlike in the case of the purely deterministic regression in (31),

the estimators b̂1, ..., b̂K do not tend to normality, and the stochastic order of these

estimators decrease to 1/
√

(T ) so that the estimators are consistent and converge to the

true value of 0. Nonetheless it holds that the corresponding t-ratio is Op(1) but not op(1),
which implies possible significance of the coefficients of deterministic trends.

This last statement becomes much clearer in K-asymptotics. In fact we have that√
T b̂k = Op(K) and the t-ratio for b̂k is of order

√
K. Moreover Phillips (2002) proved

that, as K becomes large,

ADFρ, Zρ ⇒ N

(
−π

2K

2
,
π4K

6

)
= N(−4.93K, 16.23K), (35)

ADFt, Zt ⇒ N

(
−π

√
K

2
,
π2

24

)
= N(−1.57

√
K, 0.41). (36)

The asymptotic distributions described in (35) and (36) do vary depending on deter-
ministic trends chosen as regressors. In fact, when we consider a usual model for unit
root tests that uses polynomials given by

yj = ρ̂yj−1 +
K∑

k=0

b̂k

(
j

T

)k

+ ût, (j = 1, ..., T ), (37)

12



Nabeya (1999) obtained the following results as K becomes large.

ADFρ, Zρ ⇒ N(−4K, 16K), (38)

ADFt, Zt ⇒ N
(
−
√

2K, 1/2
)
. (39)

Note that (38) and (39) are polynomial versions of (35) and (36), respectively. It is seen
that the asymptotic distributions based on trigonometric and polynomial functions are
different, although they are close to each other.

3.2. Case of near-integrated processes
We next extend the above arguments to deal with near-integrated processes. Thus we

consider

yj = ρyj−1 + uj, y0 = 0, ρ = 1 − (c/T ), (j = 1, . . . , T ), (40)

where c is a fixed positive constant, whereas {uj} is a stationary process described in (26)
with the long-run variance σ2

L. Then it is known that, for the partial sum process defined
by

YT (t) =
1√
TσL

y[Tt] =
1√
TσL

[Tt]∑
j=1

ρ[Tt]−juj , (41)

the following FCLT holds:

YT (·) ⇒ Jc(·) ,
where {Jc(t)} is the Ornstein-Uhlenbeck (O-U) process given by

Jc(t) = e−ct
∫ t

0
ecs dW (s) ⇔ dJc(t) = −cJc(t) dt+ dW (t), Jc(0) = 0 . (42)

The O-U process {Jc(t)} admits the following series representation:

Jc(t) =
∞∑

n=1

fn(t)√
λn

ξn , (43)

where {ξn} ∼ NID(0,1), whereas λn is the n-th smallest eigenvalue of the positive definite
kernel

Cov(Jc(s), Jc(t)) =
e−c|s−t| − e−c(s+t)

2c
,

and fn(t) is the corresponding orthonormal eigenfunction. Unlike in the expansion (30)
of the standand Brownian motion W (t), it is impossible to obtain λn and fn(t) explicitly,
although numerically possible once c is given. We can show (see, for details, Tanaka
(2001)) that λn is the n-th smallest positive solution to

tan
√
λ− c2 = −

√
λ− c2

c
.

Then it can be checked easily that

(n− 1/2)2π2 + c2 < λn < n2π2 + c2 .

13



We also obtain

fn(t) =
sin μnt

Mn
, μn =

√
λn − c2, Mn =

√
1

2
− sin 2μn

4μn
. (44)

Under the above setting we first consider the regression relation

yj =
K∑

k=1

b̃kfk

(
j

T

)
+ ũj = b̃(K)′f (K, t/T ) + ũj , (j = 1, . . . , T ), (45)

where b̃1, . . . , b̃K are LSEs and ũj is the OLS residual, whereas

b̃(K) = (b̃1, . . . , b̃K)′, f (K, t) = (f1(t), . . . , fK(t))′.

Then it holds that, as T → ∞ under ρ = 1 − (c/T ),

1√
TσL

ũ[Tt] ⇒ Jc
fK(t) = Jc(t) −

∫ 1

0
f(K, s)′Jc(s) ds f(K, t) . (46)

We now have the following T -asymptotics for near-integrated processes (Tanaka (2001)).

Theorem 3.1. When {yj} follows a near-integrated process defined by (40), it holds for
the regression relation (45) that

(a) c(K)′b̃(K)
/√

T ⇒ σLc(K)′
∫ 1
0 f (K, t)Jc(t) dt,

(b)
∑T

j=1 ũ
2
j

/
T 2 ⇒ σ2

L

∫ 1
0 {Jc

fK(t)}2 dt,

(c) t
c(K)′ ˜b(K)

/√
T ⇒ c(K)′

∫ 1
0 f (K, t)Jc(t) dt

/(∫ 1
0 {Jc

fK(t)}2 dt
)1/2

,

(d) R2 = 1 −∑T
j=1 ũ

2
j

/∑T
j=1 y

2
j ⇒ 1 − ∫ 1

0 {Jc
fK(t)}2 dt

/ ∫ 1
0 {Jc(t)}2 dt,

(e) T ×DW ⇒ σ2
S

/(
σ2

L

∫ 1
0 {Jc

fK(t)}2 dt
)

,

where c(K) = (c1, . . . , cK)′ is any K × 1 vector such that c(K)′c(K) = 1.

Theorem 3.1 implies that T -asymptotics in the near-integrated process give essentillay
the same results as in the integrated process. The only difference is that the limiting
process Jc(t) and the eigenfunction f (K, t) have been substituted for W (t) and φ(K, t),
respectively. Then it follows from (43) and the orthonormality of {fn(t)} that∫ 1

0
f (K, t)Jc(t) dt =

(
ξ1/

√
λ1, . . . , ξK/

√
λK

)′
,

which implies that the components of b̃(K) are asymptotically normal and independent
of each other.

It may be noted that this eigenvalue decomposition does not hold if f (K, t) is replaced
by the much simpler function φ(K, t). The reason will be explained shortly. In any case
use of φ(K, t) rather than f (K, t) in the above theorem makes arguments complicated.

We now discuss K-asymptotics by letting K → ∞ in Theorem 3.1, which yields

Theorem 3.2. For the regression relation (45), it holds that, as T → ∞ and then as K
becomes large,
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(a) c(K)′b̃(K)
/√

T ⇒ N(0, σ2
c ), σ2

c = σ2
L

∑∞
n=1 c

2
n/λn,

(b)
∑T

j=1 ũ
2
j

/
T 2 = Op(1/K),

(c) t
c(K)′ ˜b(K)

/√
T = Op(

√
K),

(d) R2 → 1 in probability,

(e) T ×DW = Op(K).

It is seen that K-asymptotics in the near-integrated process are, like T -asymptotics,
essentially similar to those in the integrated process. We note, however, that, if the
deterministic trend f(K, t) is replaced by φ(K, t) in the regression equation (45), the
above result (a) has to be changed. This is because, in that case, we have, as T → ∞,

b̃k/
(√

TσL

)
⇒

∫ 1

0
φk(t)J

c(t) dt

=
∞∑

n=1

ξn√
λn

∫ 1

0
fn(t)φk(t) dt

=
∞∑

n=1

√
2 ξn

Mn

√
λn

∫ 1

0
sin μnt sin(k − 1/2)πt dt

=
∞∑

n=1

ξn
Mn

√
2λn

[
sin (μn − (k − 1/2)π)

μn − (k − 1/2)π
− sin (μn + (k − 1/2)π)

μn + (k − 1/2)π

]
,

so that this last sum need not be ξk/
√
λk, which is to be attained when φk(t) is replaced

by fk(t). This means that the components of b̃(K) are asymptotically not independent,
but a closer examination reveals that, in the above infinite sum, the term corresponding
to n = k dominates and yields a value which is close to ξk/

√
λk. This property will be

effectively used when we formulate a model for unit root tests.
We move on to deal with the regression relation

yj = ρ̂yj−1 +
K∑

k=1

b̂kfk

(
j

T

)
+ ûj = ρ̂yj−1 + b̂(K)′f(K, j/T ) + ûj, (47)

and obtain the following results.

Theorem 3.3. For the regression relation (47) it holds that, as T → ∞,

ADFρ, Zρ ⇒
∫ 1
0 J

c
fK(t) dJc(t)∫ 1

0 {Jc
fK(t)}2 dt

, (48)

ADFt, Zt ⇒
∫ 1
0 J

c
fK(t) dJc(t)(∫ 1

0 {Jc
fK(t)}2 dt

)1/2
, (49)

√
Tc(K)′b̂K

/
σL ⇒ c(K)′Y (K, f) , (50)
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t
c(K)′ ˆb(K)

⇒ c(K)′Y (K, f)
/√

c(K)′Σ(K, f)−1c(K) , (51)

where

Y (K, f) =
∫ 1

0
f(K, t) dW (t) −

(∫ 1
0 J

c
fK(t) dJc(t) + (1 − σ2

S/σ
2
L)/2∫ 1

0 {Jc
fk(t)}2 dt

+ c

)

×
∫ 1

0
f(K, t)Jc(t) dt ,

Σ(K, f) = IK −
∫ 1

0
f(K, t)Jc(t) dt

∫ 1

0
f(K, t)′Jc(t) dt

/∫ 1

0
{Jc(t)}2 dt.

Theorem 3.4. For the regression relation (47) it holds that, as T → ∞ and then as K
becomes large,

ADFρ, Zρ ⇒ N

(
−π

2K

2
,
π4K

6

)
, (52)

ADFt, Zt ⇒ N

(
−π

√
K

2
,
π2

24

)
, (53)

√
Tc(K)′b̂(K)

/
σS ⇒ N

(
0,
π4K2

4

K∑
k=1

c2k
λk

)
, (54)

t
c(K)′ ˆb(K)

= Op(
√
K). (55)

It is seen that the T - and K-asymptotics in the near-integrated process are essentially
the same as in the integrated process. In particular, it is quite interesting to notice that,
in K-asymptotics, the statistics ADFρ and ADFt are normally distributed independently
of the near-integration parameter c. Note, however, that these statitsics do depend on c
in T -asymptotics.

The regression relation (47) cannot be used as a model for tesing a unit root hypothesis
H0 : ρ = 1 because the deterministic regressor f(K, t) depends on the unknown parameter
c. We should use the model (32) discussed in Section 3.1 as a suitable model for this
purpose, for which Phillips (2002) derived the limiting distributions of test statistics
ADFρ and ADFt under H0. To derive the limiting power under H1 : ρ = 1 − (c/T ), we
need consider the regression (32) under H1, that is, under the situation where the true
model is the near-integrated process (40). In that case, results on T -asymptotics can be
obtained in the same way as in Theorem 3.3 by replacing fk(t) by φk(t). For instance, we
have, as T → ∞ under ρ = 1 − (c/T ),

ADFρ ⇒
∫ 1
0 J

c
φK dJc(t)∫ 1

0 {Jc
φK(t)}2 dt

.

It, however, turns out that results on K-asymptotics in the present case are not clear-
cut because of the reason described below Theorem 3.2. We also mentioned there that
replacing fk(t) by φk(t) affects K-asymptotics little. Thus it is expected that results
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similar to those in Theorem 3.4 hold true in this case. It follows that the unit root test
loses its local power in K-asymptotics. This last point will be examined by simulations
in the next subsection.

3.3. Some simulations
We examine, by simulations, the finite sample performance of T - and K-asymptotics

developed in previous sections. For simplicity we assume the process {yj} to be generated
by

yj = ρyj−1 + εj, y0 = 0, ρ = 1 − (c/T ), (j = 1, . . . , T ), (56)

where {εj} ∼ NID(0, 1) and c is a nonnegative constant.
The regression relations considered are

yj =
K∑

k=1

b̃kgk

(
j

T

)
+ ε̃j , (j = 2, . . . , T ) , (57)

yj = ρ̂yj−1 +
K∑

k=1

b̂kgk

(
j

T

)
+ ε̂j , (j = 2, . . . , T ) , (58)

where gk(t) is a deterministic function equal to φk(t) in (30) when c = 0 (ρ = 1) and
equal to fk(t) in (44) when c > 0 (ρ < 1). Note that fk(t) cannot be given explicitly so
that it has to be computed numerically.

Table 2 is concerned with R2 and DW for the model (57) with ρ=1. The entries
are the means and standard deviations (SDs) of these statistics computed from 1,000
replications. We fix the number of replications at 1,000 throughout simulations. The
sample sizes used here are T=400 and 800, for which six values of the number of terms K
are examined. It is seen from Table 2 that the distribution of R2 with K fixed depends
little on T , as was described in Theorem 3.1, although R2 tends to 1 as K becomes large.
On the other hand the distribution of DW does depend on T even if T is large and K is
fixed. Both the mean and SD decrease to half as the sample size doubles. This is because
DW = Op(1/T ) with K fixed. When K becomes large with large T fixed, DW increases
in proportion to K because T ×DW = Op(K).

Table 2

Table 3 is concerned with the means and SDs of T (ρ̂− 1) obtained from (58) for ρ=1,
0.975, and 0.95, respectively with the sample size T = 400. The entries in parentheses
are the corresponding theoretical values derived from K-asymptotics described in (35)
and (52). It is observed from Table 3 that the distribution depends little on ρ when K is
moderately large (K > 10 in the present case). This last fact is a consequence of Theorem
3.4.

Table 3
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Figure 2 draws the histogram of T (ρ̂ − 1) with T = 400, ρ = 1 and K = 1, together
with the density of N(−4.93, 16.23) derived from K-asymptotics.The approximation is
evidently poor because of a very small value of K. Figure 3 draws the same graph as in
Figure 2, but, with ρ = 1 and K = 20, where the density is N(−98.7, 324.7). It is seen
that the approximation is fairly good.

Figure 2 Figure 3

Figure 4 draws the histogram with ρ=0.95 and K=20 using f (K, t) as regressors,
whereas Figure 5 draws the same histogram using φ(K, t) as regressors. The densities are
N(−98.7, 324.7) in both figures. It is seen that these two figures are much alike, as was
mentioned earlier. Moreover, these figures are quite similar to Figure 3, which implies
that the distribution of T (ρ̂−1) depends little on ρ close to 1 when K is reasonably large.
This means that the unit root test loses its local power in K-asymptotics.

Figure 4 Figure 5

4. Concluding Remarks
We have discussed two topics to which Professor Phillips greatly contributed. The

first topic was concerned with applications of the martingale approximation or the BN
decomposition. It proved to be very useful when we deal with weak convergence to the
matrix-valued Ito integral and derive the asymptotic distribution of Fourier transforms
of stationary processes. The complex unit root distribution was also discussed as a by-
product.

The other topic was somewhat philosophical. We considered K-asymptotics in near-
integrated as well as integrated processes, where K, the number of regressors of determin-
istic trends of trigonometric functions, increases after the sample size T goes to infinity.
The results obtained may be summarized into three respects as follows:

i) The vector of deterministic trends g(K, t) = (g1(t), . . . , gK(t))′ tends to explain
fully the true process {yj} that contains purely stochastic trends in the sense that
the regression of yj on g(K, t) yields significant t-ratios for the fitted coefficients, R2

close to 1, and DW exhibiting little indication of serial correlation. The situation
remains unchanged between the integrated and near-integrated processes.

ii) The deterministic trends are still significant if yj is regressed on g(K, t) in addition
to yj−1, although the true process for yj is purely integrated.

iii) The unit root test based on the regression of yj on yj−1 and g(K, t) loses its local
power against near-integration since the unit root distribution in the integrated
process is the same as that in the near-integrated process.

Needless to say, the model with stochastic trends is preferred to the one with deter-
ministic trends on the ground of parsimony. The truth, however, may be that the actual
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process is generated by an infinite number of deterministic trends with random coeffi-
cients. There is no way of choosing between the two in K-asymptotics of the integrated
and near-integrated processes. This raises a question of what the trend is, which arises
just because the trend, if any, is unobservable. More recent papers by Phillips (2005,
2006) also discuss the trending problem in other contexts.
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Table 2. R2 and DW Statistics in (57) with ρ = 1

K = 1 2 5 10 20 50

R2

T = 400
Mean 0.594 0.752 0.887 0.943 0.971 0.989

SD 0.325 0.236 0.121 0.060 0.032 0.013

T = 800
Mean 0.591 0.752 0.888 0.942 0.971 0.988

SD 0.314 0.235 0.117 0.063 0.032 0.012

DW
T = 400

Mean 0.039 0.064 0.136 0.256 0.484 1.100

SD 0.024 0.031 0.047 0.063 0.081 0.104

T = 800
Mean 0.020 0.033 0.069 0.129 0.249 0.586

SD 0.012 0.016 0.023 0.032 0.043 0.062
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Table 3. Distributions of T (ρ̂− 1) in (58) with gk(t) = φk(t) or fk(t)

K = 1 2 5 10 20 50

ρ = 1

Mean −7.03 −11.91 −26.32 −50.60 −96.18 −219.83
(−4.93) (−9.87) (−24.67) (−49.35) (−98.70) (−246.74)

SD 5.10 6.56 9.71 12.77 16.61 21.04
(4.03) (5.70) (9.01) (12.74) (18.02) (28.49)

ρ = 0.975

Mean −14.87 −18.08 −29.67 −52.36 −96.97 −220.10

SD 6.26 7.37 9.67 12.78 16.59 21.06

ρ = 0.95

Mean −24.50 −27.08 −36.56 −56.69 −99.12 −220.78

SD 7.60 8.38 10.09 12.88 16.58 21.07
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Figure 1. Complex unit root distribution: T (φ̂2 + 1)
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Figure 2. Distributions of T (ρ̂− 1) with T = 400, K = 1, ρ = 1
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Figure 3. Distributions of T (ρ̂− 1) with T = 400, K = 20, ρ = 1
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Figure 4. Distributions of T (ρ̂− 1) with T = 400, K = 20, ρ = 0.95
(Regression with f(K, t) as deterministic trends)
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Figure 5. Distributions of T (ρ̂− 1) with T = 400, K = 20, ρ = 0.95
(Regression with φ(K, t) as deterministic trends)
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