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Abstract

We discuss some computational problems associated with distributions of statistics
arising from the fractional Brownian motion (fBm). In particular, we deal with (ratios
of) its quadratic functionals. While it is easy in principle to deal with the standard Bm,
the fBm is difficult to analyze because of its non-semimartingale nature. Here we suggest
how to derive and compute the distributions of such functionals by using a martingale
approximation. For this purpose we employ the Fredholm theory concerning the integral
equations, illustrating how to compute the characteristic function via the Fredholm de-
terminant. We also apply the present methodology to compute the fractional unit root
distribution, and demonstrate some interesting moment properties.
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1. Introduction
The present paper is concerned with distributions associated with the fractional Brow-

nian motion (fBm). The fBm is a continuous-time process that describes long-memory
phenomena, and is now receiving much attention in the literature. It was invented by
Kolmogorov (1940) and was largely developed by Mandelbrot and Van Ness (1968).

Let us denote by {BH(t)} the standard fBm defined on [0, 1], which is expressed as

BH(t) = cH

[∫ 0

−∞

{
(t− u)H−1/2 − (−u)H−1/2

}
dW (u) +

∫ t

0
(t− u)H−1/2 dW (u)

]
, (1)

where cH = (2HΓ(3/2 −H)/(Γ(H + 1/2)Γ(2 − 2H)))1/2 with Γ(z) being the gamma
function and H the Hurst parameter assumed to be 1/2 ≤ H < 1, whereas {W (t)}
is the standard Bm. When H = 1/2, the fBm reduces to the standard Bm, that is,
B1/2(t) = W (t).

The process {BH(t)} is a zero-mean Gaussian process and its covariance kernel is given
by

KH(s, t) = Cov(BH(s), BH(t)) =
1

2

(
s2H + t2H − |s− t|2H

)
. (2)

It follows that the fBm has stationary increments in the sense that

V(BH(t) −BH(s)) = |s− t|2H , (H ≥ 1/2), (3)

and, as was shown in Gripenberg and Norros (1996), the following infinitesimal rule holds:

Cov(dBH(s), dBH(t)) = H(2H − 1) |s− t|2H−2 dsdt, (H > 1/2). (4)

It is seen that the increments of the fBm are not independent, but are positively correlated
for H > 1/2. Of course, when H = 1/2, the increments are independent and it holds that

Cov(dB1/2(s), dB1/2(t)) = Cov(dW (s), dW (t)) = δst dt,

where δst is Kronecker’s delta.
The fBm may be regarded as a continuous version of the discrete-time unit root process

whose innovation error follows a long-memory process. More specifically, let us consider

yj = yj−1 + vj, (1 − L)H−1/2vj = εj, y0 = 0, (j = 1, · · · , T ). (5)

where L is the lag-operator, {εj} ∼ i.i.d.(0, 1), whereas {vj} is a stationary long-memory
process generated by

vj = (1 − L)−(H−1/2)εj =
∞∑

k=0

Γ(k +H − 1/2)

Γ(H − 1/2)Γ(k + 1)
εj−k. (6)

Then it holds (Davydov (1970)) that

cH Γ(H + 1/2)

TH
y[Tt] ⇒ BH(t),

where ⇒ signifies weak convergence as T → ∞.
It is sometimes the case that the infinite sum in (6) is truncated so that we obtain

v∗j = (1 − L)−(H−1/2) {I(j > 0) εj} =
j−1∑
k=0

Γ(k +H − 1/2)

Γ(H − 1/2)Γ(k + 1)
εj−k, (7)
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where I(j > 0) takes 1 for j > 0 and 0 otherwise. In this case we have

y∗j = y∗j−1 + v∗j , (1 − L)H−1/2 v∗j = I(j > 0) εj, y∗0 = 0, (j = 1, · · · , T ), (8)

and the following weak convergence holds (Marinucci and Robinson 1999):

cH Γ(H + 1/2)

TH
y∗[Tt] ⇒ B∗

H(t) = cH

∫ t

0
(t− u)H−1/2 dW (u). (9)

It is seen that B∗
H(t) is a portion of BH(t) in (1). Since the omitted term BH(t)−B∗

H(t)
is independent of B∗

H(t), it holds that V(BH(t)) > V(B∗
H(t)). In fact we have

V(BH(t)) = t2H > V(B∗
H(t)) =

c2H
2H

t2H =
Γ(3/2 −H)

Γ(H + 1/2)Γ(2 − 2H)
t2H .

The truncated process {B∗
H(t)} is called the type II fBm, whereas the standard fBm

{BH(t)} the type I fBm (Marinucci and Robinson 1999).
An advantage of the use of B∗

H(t) is that it can accommodate any positive value of
H unlike BH(t). There are some other differences between the two processes, as was
investigated in Davidson and Hashimzade (2009). In this paper, however, we stick to
BH(t) mainly because its covariance kernel is simply expressed as in (2), while that of
B∗

H(t) cannot be explicitly given. In fact, we have

Cov(B∗
H(s), B∗

H(t)) = c2H

∫ min(s,t)

0
((s− u)(t− u))H−1/2 du,

which complicates the subsequent discussion.
Returning to {BH(t)}, the most important difference between W (t) and BH(t) is that

the latter is neither a martingale nor a semimartingale so that we cannot use the stochastic
Ito calculus based on semimartingales. The relation (4) is a direct consequence of this.

One of the main purposes of the present paper is to derive the distribution of

SH =
∫ 1

0
B2

H(t) dt
D
=
∫ 1

0

∫ 1

0
KH(s, t) dW (s)dW (t), (10)

where
D
= denotes the equality in the sense of distribution, and its equivalence will be

shown in the next section together with another equivalent expression. The quantity SH

plays an important role in the estimation and testing problems associated with the fBm.
It holds that, when H = 1/2,

SH =
∫ 1

0
W 2(t) dt

D
=
∫ 1

0

∫ 1

0
[1 − max(s, t)] dW (s)dW (t), (H = 1/2),

and its distribution has been well studied. The distribution of SH for H �= 1/2, however,
is still unknown.

In Section 2 we describe some basic properties associated with quadratic functionals
of the standard Bm. Section 3 discusses how to derive the characteristic function (c.f.) of
such functionals, where we present two approaches for this purpose. The first approach
is based on Girsanov’s theorem concerning the transformation of measures induced by
the fBm. The second approach uses the theory of integral equations of Fredholm type.
Both approaches are useful for dealing with quadratic functionals of the Bm, but it turns
out that neither approach is successful when we deal with the fBm. In Section 4 we
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consider approximating the distribution using a martingale approximation to the fBm.
For this purpose the second approach proves to be useful, which enables us to compute the
approximate densitiy of SH . We also present graphs of those densities for various values
of H . Section 5 applies our methodology to compute the approximate fractional unit
root distribution, where an interesting moment property is found and a conjecture that
the same moment property holds is given for the true fractional unit root distribution.
Concluding remarks are given in Section 6, and the proofs of theorems are provided in
the Appendix.

2. Quadratic functionals of the Bm
Let us consider the following statistic

S =
∫ 1

0

∫ 1

0
K(s, t) dW (s)dW (t), (11)

where the kernel K(s, t) is assumed to be continuous, symmetric and positive definite. To
define positive definiteness of the kernel K(s, t), we consider the integral equation for λ
and f(t)

f(t) = λ
∫ 1

0
K(s, t) f(s) ds. (12)

A value λ for which this integral equation possesses a nonvanishing continuous solution is
called an eigenvalue of K(s, t); the corresponding solution f(t) is called an eigenfunction
for the eigenvalue λ. The maximum number of linearly independent solutions f(t) corre-
sponding to λ is called the multiplicity of λ. Then K(s, t) is positive definite if all of the
eigenvalues are positive. Note that zero is never an eigenvalue. We also note that, since
K(s, t) is continuous and symmetric, the sequence of eigenfunctions {fn(t)} can be taken
to be orthonormal, which we assume in subsequent discussions.

The statistic S in (11) naturally arises from the usual qudratic form. To see this let
us consider the following quadratic form:

ST =
1

T
ε′Aε =

1

T

T∑
j=1

T∑
k=1

AT (j, k) εjεk,

where ε = (ε1, . . . εT )′ with {εj} ∼ i.i.d.(0, 1), whereas A is a T × T symmetric matrix
with AT (j, k) in the (j, k)th element. Then, if AT (j, k) converges uniformly to K(s, t) in
the sense that

lim
T→∞

max
1≤j,k≤T

|AT (j, k) −K(j/T, k/T )| = 0,

it holds that ST ⇒ S (Nabeya and Tanaka (1988)).
The statistic S defined by the double integral as in (11) has two equivalent expressions

in the sense of distribution. First of all, Mercer’s theorem (Hochstadt (1973)) gives us
the expansion

K(s, t) =
∞∑

n=1

1

λn
fn(s) fn(t), (13)

where {λn} is a sequence of eigenvalues repeated as many times as their multiplisities,
whereas {fn(t)} is an orthonormal sequence of eigenfunctions corresponding to λn. It is
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ensured that the series on the right side converges absolutely and uniformly to K(s, t).
Then we have∫ 1

0

∫ 1

0
K(s, t) dW (s)dW (t) =

∞∑
n=1

1

λn

(∫ 1

0
fn(t) dW (t)

)2 D
=

∞∑
n=1

1

λn

Z2
n, (14)

where {Zn} ∼ NID(0, 1) and λn is repeated as many times as its multiplicity.
On the other hand, the Karhunen-Loève expansion (Loève (1978)) enables us to define

X(t) =
∞∑

n=1

fn(t)√
λn

Zn, (15)

where the series converges uniformly on [0, 1] in the mean square sense, and λn is repeated
as many times as its multiplicity. Then it holds that

∫ 1

0
X2(t) dt =

∫ 1

0

∞∑
m=1

∞∑
n=1

fm(t)fn(t)√
λm

√
λn

Zm Zn dt =
∞∑

n=1

1

λn
Z2

n. (16)

It follows from (14) and (16) that

S =
∫ 1

0

∫ 1

0
K(s, t) dW (s)dW (t)

D
=
∫ 1

0
X2(t) dt

D
=

∞∑
n=1

1

λn
Z2

n, (17)

Note also that, given {X(t)}, it always holds that

∫ 1

0
X2(t) dt

D
=
∫ 1

0

∫ 1

0
Cov (X(s), X(t)) dW (s)dW (t), (18)

on which the distributional relationship presented in (10) is based.
In terms of the derivation of the characteristic function (c.f.) of S, the expression on

the extreme right side of (17) is the simplest of the three. In fact we readily have

φ(θ) = E(eiθS) =
∞∏

n=1

(
1 − 2iθ

λn

)−1/2

.

This, however, is possible only if the sequence {λn} is known, which is rarely the case.
Thus we need to take a different approach based on the other expressions in (17), which
we discuss in the next section.

3. Derivation of the c.f.
In this section we present two methods for deriving the c.f. of the statistic S defined in

(17). Section 3.1 deals with the simple integral expression, and then we treat the double
integral expression in Section 3.2.

3.1 Stochastic process approach via Girsanov’s theorem
Let (C,B(C)) be the measurable space of continuous functions on [0, 1] with the as-

sociated Borel σ-field generated under the supremum norm. Then consider the statistic

S =
∫ 1

0
X2(t) dt,
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where {X(t)} is the Gaussian stochastic process that can be expanded as in (15). In
particular, we consider, as X(t),

dY α
H (t) = −αY α

H (t)dt+ dBH(t), Y α
H (0) = 0, (19)

where α is a fixed parameter. The process {Y α
H (t)} is called the fractional Ornstein-

Uhlenbeck (O-U) process (see, for details, Kleptsyna and Le Breton (2002)), which reduces
to the standard O-U process when H = 1/2. The process {Y α

H (t)} can arise from the
following discrete-time process:

yj = ρyj−1 + vj , (1 − L)H−1/2vj = εj , y0 = 0, (j = 1, · · · , T ), (20)

where ρ = 1 − α/T and {εj} ∼ i.i.d. (0,1). Then it holds that

cHΓ(H + 1/2)

TH
y[Tt] ⇒ Y α

H (t).

We also define the auxiliary process

dY β
H(t) = −βY β

H(t)dt+ dBH(t), Y β
H(0) = 0, (21)

where β is a parameter to be determined later.
Let μY α

H
and μY β

H
be the probability measures on (C,B(C)) induced by {Y α

H (t)} and

{Y β
H(t)}, respectively, by the relation

μY α
H
(A) = P (ω : Y α

H ∈ A), μY β
H
(A) = P (ω : Y β

H ∈ A), A ∈ B(C).

Then the fractional version of Girsanov’s theorem was obtained by Kleptsyna, Le Breton
and Roubaud (2000), which says that measures μY α

H
and μY β

H
are equivalent and the

Radon-Nikodym derivative is given by

dμY α
H

dμY β
H

(Y β
H) = exp

[
(β − α)

∫ 1

0
Qβ

H(t) dZβ
H(t) − α2 − β2

2

∫ 1

0

{
Qβ

H(t)
}2

dvH(t)

]
, (22)

where vH(t) = t2−2HΓ(3/2 −H)/(2HΓ(3 − 2H)Γ(H + 1/2)), and

Qβ
H(t) =

d

dvH(t)

∫ t

0
lH(t, s) Y β

H(s) ds, (23)

Zβ
H(t) =

∫ t

0
lH(t, s) dY β

H(s), (24)

MH(t) =
∫ t

0
lH(t, s) dBH(s), (25)

with lH(t, s) = (2HΓ(3/2 −H)Γ(H + 1/2))−1 (s(t− s))1/2−H .
It is shown in Norros, Valkeila and Virtamo (1999) that the process {MH(t)} in (25)

is a Gaussian martingale with the variance vH(t), which has the inverse relationship

BH(t) =
∫ t

0
LH(t, s) dMH(s), LH(t, s) = H(2H − 1)

∫ t

s
uH−1/2(u− s)H−3/2 du,

so that {MH(t)} generates the same filtration as {BH(t)} and is called the fundamental
martingale. The process {MH(t)} will play an important role in this paper.
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The process {Qβ
H(t)} in (23) admits the representation

Qβ
H(t) =

ηH

4(1 −H)

{
t2H−1Zβ

H(t) +
∫ t

0
s2H−1 dZβ

H(s)
}
, ηH =

2HΓ(3 − 2H)Γ(H + 1/2)

γ(3/2 −H)
,

and will be important in constructing the likelihood function, as is discussed shortly.
The process {Zβ

H(t)} in (24) admits the representation

Zβ
H(t) = −β

∫ t

0
Qβ

H(s) dvH(s) +MH(t),

and is seen to be a Gaussian semimartingale. In particular, it reduces to the martingale
MH(t) when β = 0. It also holds that

Y β
H(t) =

∫ t

0
LH(t, s) dZβ

H(s),

so that the natural filtration generated by the semimartingale {Zβ
H(t)} and the fractional

O-U process {Y β
H(t)} coincides.

The Radon-Nikodym derivative in (22) is composed of various complicated processes.
Suppose that H = 1/2. Then it is seen that we have M1/2(t) = B1/2(t) = W (t), η1/2 = 1,

v1/2(t) = t, and Qβ
1/2(t) = Zβ

1/2(t) = Y β
1/2(t) so that both Qβ

1/2(t) and Zβ
1/2(t) follow the

same standard O-U process as Y β
1/2(t). Thus the Radon-Nikodym derivative reduces to

dμY α
1/2

dμY β
1/2

(Y β
1/2) = exp

[
(β − α)

∫ 1

0
Y β

1/2(t) dY
β
1/2(t) −

α2 − β2

2

∫ 1

0

{
Y β

1/2(t)
}2

dt

]
.

This formula was initially given by Liptser and Shiryaev (1977), and is useful for deriving
the moment generating function (m.g.f.) of the integral of the square of the standard O-U
process {Y α

1/2(t)} in the following way:

m(θ) = E
[
exp

{
θ
∫ 1

0

(
Y α

1/2(t)
)2
dt
}]

= E

⎡
⎢⎣exp

{
θ
∫ 1

0

(
Y β

1/2(t)
)2
dt
} dμY α

1/2

dμY β
1/2

(Y β
1/2)

⎤
⎥⎦

= E

[
exp

{(
θ − α2 − β2

2

)∫ 1

0

(
Y β

1/2(t)
)2
dt+ (β − α)

∫ 1

0
Y β

1/2(t) dY
β
1/2(t)

}]

= E

[
exp

{
β − α

2

((
Y β

1/2(1)
)2 − 1

)}]
= eα/2

[
cosh β + α

sinh β

β

]−1/2

,

where we have chosen β =
√
α2 − 2θ so that the term containing the integral of

(
Y β

1/2(t)
)2

vanishes. We have also used the Ito calculus d
(
Y β

1/2(t)
)2

= 2Y β
1/2(t)dY

β
1/2(t) + dt and the

fact that Y β
1/2(1) is normally distributed with mean 0 and variance (1 − e−2β)/(2β). In

particular, putting α = 0, we obtain

E
[
exp

{
θ
∫ 1

0
W 2(t) dt

}]
=
(
cosh

√−2θ
)−1/2

=
(
cos

√
2θ
)−1/2

.
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The above argument, however, cannot be carried over directly to the fractional O-
U process. In fact, what we can compute via the fractional Girsanov theorem is the
following:

m(θ) = E
[
exp

{
θ
∫ 1

0
(Qα

H(t))2 dvH(t)
}]

= E

⎡
⎣exp

{
θ
∫ 1

0

(
Qβ

H(t)
)2
dvH(t)

} dμY α
H

dμY β
H

(Y β
H)

⎤
⎦

= E

[
exp

{(
θ − α2 − β2

2

)∫ 1

0

(
Qβ

H(t)
)2
dvH(t) + (β − α)

∫ 1

0
Qβ

H(t) dZβ
H(t)

}]

= E
[
exp

{
(β − α)

∫ 1

0
Qβ

H(t) dZβ
H(t)

}]
, (26)

where we have chosen β =
√
α2 − 2θ so that the term containing the integral of

(
Qβ

H(t)
)2

vanishes. Even when α = 0, the deterministic process vH(t) is independent of α, and

Qα
H(t) =

d

dvH(t)

∫ t

0
lH(t, s)BH(s) ds, (α = 0).

Thus it is seen that the fractional Girsanov theorem is not directly related with the fBm
BH(t), but with its linear functional Qα

H(t).
For general H ( �= 1/2) and nonzero α, Kleptsyna and Le Breton (2002) went on to

compute (26). This computation is much involved, but is useful when we discuss the MLE
of the parameter α. In fact, on the basis of the Radon-Nikodym derivative, the likelihood
function L(α) for the fractional O-U process in (19) is obtained as

L(α) = exp

[
−α

∫ 1

0
Qα

H(t) dZα
H(t) − α2

2

∫ 1

0
{Qα

H(t)}2 dvH(t)

]
.

Then the MLE α̃ of α is given by

α̃ = −
∫ 1

0
Qα

H(t) dZα
H(t)

/∫ 1

0
{Qα

H(t)}2 dvH(t),

which will also be regarded as the weak limit of −T (ρ̃ − 1) as T → ∞, where ρ̃ is the
MLE of ρ in the discrete-time model (20) under the assumption {εj} ∼ N.I.D.(0,1). In
particular, when H = 1/2, −α̃ corresponds to the near-unit root distribution, that is,

−α̃ =
∫ 1

0
Y α

1/2(t) dY
α
1/2(t)

/∫ 1

0

(
Y α

1/2(t)
)2
dt, (H = 1/2).

Of course, when H = 1/2 and α = 0, −α̃ reduces to the unit root distribution

−α̃ =
∫ 1

0
W (t) dW (t)

/∫ 1

0
W 2(t) dt, (H = 1/2, α = 0).

To derive the distribution of the MLE of α for the general case, we need to compute

ψ(θ1, θ2) = E
[
exp

{
θ1

∫ 1

0
Qα

H(t) dZα
H(t) + θ2

∫ 1

0
{Qα

H(t)}2 dvH(t)
}]

= E
[
exp

{
(θ1 + β − α)

∫ 1

0
Qβ

H(t) dZβ
H(t)

}]
, (27)
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where the parameter β is now chosen as β =
√
α2 − 2θ2. It is seen that the computation

involved in (27) is essentially the same as in (26). Note that the argument here has
assumed that the Hurst parameter H is known. If it is unknown, the problem becomes
highly complicated and needs another considereation. We do not pursue the matter here.
In any case, the above argument does not give us the c.f. of our statistic SH in (10).

In conclusion, the standard Girsanov theorem is useful for deriving the distribution
of quadratic functionals of the standard O-U process, whereas the fractional Girsanov
theorem computes the c.f. of quadratic functional of the quantity quite different from the
fBm. It seems that the stochastic process approach via Girsanov’s theorem is of little
help in the present situation.

3.2 Fredholm approach via the Fredholm determinant
Here we deal with the statistic of the form

S =
∫ 1

0

∫ 1

0
K(s, t) dW (s)dW (t),

where K(s, t) is assumed to be continuous, symmetric and nearly definite. By nearly
definiteness we mean that all but a finite number of eigenvalues of K(s, t) have the same
sign. This weakened assumption may be necessary when we deal with a ratio statistic of
the following form:

R =
∫ 1

0
KN(s, t) dW (s)dW (t)

/∫ 1

0
KD(s, t) dW (s)dW (t),

where KD(s, t) is positive definite. Then we deal with

P (R < x) = P
(∫ 1

0

∫ 1

0
[xKD(s, t) −KN(s, t)] dW (s)dW (t) > 0

)
.

Here the kernel xKD(s, t) − KN (s, t) is not ensured to be definite, although KD(s, t) is
assumed to be definite. Thus the assumption of K(s, t) being nearly definite is necessary.
Note that Mercer’s theorem is still valid so that the expansion described in (13) and the
distributional equivalence in (14) continue to hold.

Under the above assumptions it was shown by Anderson and Darling (1952) (see also
Hochstadt (1973)) that

φ(θ) = E
(
eiθS

)
= (D(2iθ))−1/2 , (28)

where D(λ) is the Fredholm determinant (FD) of the kernel K(s, t).
The FD of the kernel K(s, t) is defined as

D(λ) = lim
T→∞

DT (λ) =
∞∏

n=1

(
1 − λ

λn

)ln

=
∞∑

n=0

(−λ)n

n!

∫ 1

0
· · ·
∫ 1

0

∣∣∣∣∣∣∣
⎛
⎜⎝
K(t1, t1) · · · K(tn, t1)

...
...

K(tn, t1) · · · K(tn, tn)

⎞
⎟⎠
∣∣∣∣∣∣∣ dt1 · · · dtn, (29)

where λ1 < λ2 < · · · are eigenvalues of K and ln is the multiplicity of λn, whereas

DT (λ) =

∣∣∣∣∣IT − λ

T
KT

∣∣∣∣∣ , KT = [(K(j/T, k/T ))] : T × T.
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It is seen that D(λ) is the limit of the determinant whose zero yields eigenvalues in the
matrix theory. The series in (29) is shown to converge for all λ, that is, D(λ) is an integral
function with D(0) = 1. It also holds that every zero of D(λ) is an eigenvalue of K, and
in turn every eigenvalue of K is a zero of D(λ). Thus the FD contains necessary and
sufficient information about eigenvalues. It, however, is usually impossible to compute
the FD following (29).

An alternative method for obtaining the FD is demonstrated in Nabeya and Tanaka
(1988, 1990) and Tanaka (1996), where a set of sufficient conditions for a function of λ to
be the FD is described as follows:

Theorem 1. Let K(s, t) be continuous, symmetric, and nearly definite with a sequence
of eigenvalues {λn}. Suppose that D̃(λ) is an integral function of λ with D̃(0) = 1. Then
D̃(λ) becomes the FD of K if

i) every zero of D̃(λ) is an eigenvalue of K, and in turn every eigenvalue of K is a zero
of D̃(λ);

ii) D̃(λ) can be expanded as

D̃(λ) =
∞∏

n=1

(
1 − λ

λn

)ln

, (30)

where ln is equal to the multiplicity of λn.

A word may be in order. If D̃(λ) satisfies the conditions described in Theorem 1,
D̃2(λ), for example, is not the FD. This is because the zero of D̃2(λ) at λn is of order 2ln,
whereas the multiplicity of λn is ln.

To obtain a candidate D̃(λ) for the FD of K, we work with a differential equation with
some boundary conditions equivalent to the integral equation (12). As an illustration, let
us consider

K1(s, t) = min(s, t) − 1

2
(s+ t) +

1

2
(s− t)2 +

1

12
, (31)

which was used in Watson (1961) for a goodness-of-fit test on a circle, and is positive
definite so that every eigenvalue is positive. Differentiating on both sides of (12) with
respect to t twice replacing K by K1 in (31), we have

f ′(t) = λ
[∫ 1

t
f(s) ds+

∫ 1

0

(
t− s− 1

2

)
f(s) ds

]
, f ′′(t) + λf(t) = λ

∫ 1

0
f(s) ds.

Then it can be shown that the integral equation (12) with K replaced by K1 is equivalent
to the equation f(t) = c1 cos

√
λt+ c2 sin

√
λt+ c3 with three boundary conditions:

f(0) = f(1), f ′(0) = f ′(1), f(0) = λ
[
c3
12

+
1

2

∫ 1

0
(t2 − t)f(t) dt

]
, (32)

where c1, c2 and c3 are arbitrary constants. From these boundary conditions we have the
homogeneous equation M1(λ)c = 0, where c = (c1, c2, c3)

′ and

M1(λ) =

⎛
⎜⎜⎝

1 − cos
√
λ − sin

√
λ 0

sin
√
λ 1 − cos

√
λ 0

cos
√
λ− 2 sin

√
λ√

λ
− 1 sin

√
λ+ 2 cos

√
λ−2√

λ
−2

⎞
⎟⎟⎠ . (33)

10



The solution f(t) must be nonvanishing, which occurs only when c �= 0. Then the
equation M1(λ)c = 0 implies that

|M1(λ)| = −4(1 − cos
√
λ) = −8

(
sin

√
λ

2

)2

= 0.

Thus λ ( �= 0) is an eigenvalue if and only if sin
(√

λ/2
)

= 0, which yields
√
λn = 2nπ (n =

1, 2, ...). To determine the multiplicity we have the following theorem (Tanaka (1996)),
which describes nothing but the dimension of a null space in the theory of matrices.

Theorem 2. Suppose that the integral equation (12) is equivalent to a differential equa-
tion with some boundary conditions. Suppose further that the latter is equivalent to

f(t) = c1φ1(t) + · · ·+ crφr(t), M(λ)c = 0,

where φ1(t), · · · , φr(t) are linearly independent, continuous functions, whereas M(λ) is the
r× r coefficient matrix of the system of linear homogeneous equations in c = (c1, · · · , cr)′.
Then the multiplicity ln of the eigenvalue λn is given by

ln = r − rank(M(λn)).

Applying Theorem 2 to the matrix M1(λ) in (33) with
√
λn = 2nπ, it is seen that

rank(M1(λn)) = 1 for each n so that the multiplicity of λn is 2 for each n. Therefore,
allowing for the infinite product expansion for sinx, we obtain, as a candidate of the FD,

D̃1(λ) =

(
sin

√
λ

2

/ √
λ

2

)2

=
∞∏

n=1

(
1 − λ

(2nπ)2

)2

. (34)

It can now be checked that D̃1(λ) satisfies the two conditions in Theorem 1. Thus the
FD of K1(s, t) in (31) is given by (34) so that we have, from (28),

E
[
exp

{
iθ
∫ 1

0

∫ 1

0
K1(s, t) dW (s)dW (t)

}]
=
(
D̃(2iθ)

)−1/2
=

⎛
⎝sin

√
iθ

2

/√
iθ

2

⎞
⎠

−1

.

The fact that the multiplicity of each eigenvalue is 2 can also be seen by considering
the following equality derived from (13):

∫ 1

0
K1(t, t) dt =

∫ 1

0

1

12
dt =

1

12
=

∞∑
n=1

1

λn
,

where λn = (2nπ)2. Since
∑∞

n=1 1/(2nπ)2 = 1/24, each eigenvalue must be repeated twice
in the above sum.

We also note in passing that it holds that

S1 =
∫ 1

0

∫ 1

0
K1(s, t) dW (s)dW (t)

D
=
∫ 1

0

(
WB(t) −

∫ 1

0
WB(u) du

)2

dt,

where {WB(t)} = {W (t) − tW (1)} is the standard Brownian bridge process, and the
distributional equivalence above comes from the fact that

Cov
(
WB(s) −

∫ 1

0
WB(u) du,WB(t) −

∫ 1

0
WB(u) du

)
= K1(s, t).

11



Thus the c.f. of S1 may also be obtained by the stochastic process approach discussed in
the previous subsection after some algebra.

We now turn to the quadratic functional of the fBm and try to derive the FD of
KH(s, t) defined in (2). It, however, turns out that differentiation on the both sides of
the integral equation (12) with the kernel KH yields no plausible differential equation we
can work with. In fact, putting α = H − 1/2, we have

f ′(t) =
λ(2α + 1)

2

[
t2α
∫ 1

0
f(s)ds−

∫ t

0
(t− s)2αf(s)ds+

∫ 1

t
(s− t)2αf(s)ds

]
,

f ′′(t) = λα(2α+ 1)
[
t2α−1

∫ 1

0
f(s)ds−

∫ t

0
(t− s)2α−1f(s)ds−

∫ 1

t
(s− t)2α−1f(s)ds

]
.

Because of the existence of the term |s − t|2α+1 = |s − t|2H in the kernel KH(s, t), it is
impossible to obtain any plausible differential equation.

Thus the Fredholm approach also seems inapplicable to the kernel KH(s, t). Nonethe-
less we can still compute the FD of a kernel arising from a martingale approximation to
the fBm, which we shall discuss in the next section.

4. Case of the fBm
In this section we approximate the nonsemimartingale fBm {BH(t)} by a martingale

process. The statistic SH in (10) is replaced accordingly so that the Fredholm approach
discussed in the last section is amenable to deriving the FD.

4.1 Martingale approximation to the fBm
As was mentioned in Section 2, Norros, Valkeila and Virtamo (1999) showed that the

stochastic process {MH(t)} defined in (25), that is,

MH(t) = κ−1
H

∫ t

0
(s (t− s))1/2−H dBH(s), κH = 2HΓ(3/2 −H)Γ(H + 1/2), (35)

is a Gaussian martingale, and reduces to B1/2(t) = W (t) when H = 1/2. Some basic
properties of {MH(t)} follow.

(a) {MH(t)} is a Gaussian martingale and thus has independent increments.

(b) Increments of MH(t) are independent of BH(s) for t > s.

(c) Cov(MH(s),MH(t)) = a2
H (min(s, t))2−2H , aH =

√
Γ(3/2−H)

2HΓ(H+1/2)Γ(3−2H)
,

(d) Corr(BH(t),MH(t)) = a−1
H

(e) MH(t)
D
= bH

∫ t
0 s

1/2−H dW (s), bH =
√

2(1 −H) aH .

The property (b) is a consequence of the martingale property of {MH(t)} and (35).
The covariance structure in (c) also leads to the martingale nature of {MH(t)}. The
correlation property (d) is of our most concern in terms of approximating BH(t) by MH(t).
It is noticed that the correlation depends on H , but is the same for all t. The property
(e) is useful for expressing the quadratic functional of MH(t) in terms of W (t).

12



Figure 1 is concerned with the property (d) mentioned above and draws the correlation
between BH(t) and MH(t) as a function of H (0 < H < 1). It is seen that the correlation
is very close to 1 for H > 0.4. In fact it is greater than 0.99 for H > 0.4, which is, of
course, equal to 1 when H = 1/2.

Figure 1

For H > 1/2, we are now led to approximate BH(t) by CH(t), where

CH(t) = a−1
H t2H−1 MH(t)

D
=
√

2(1 −H) t2H−1
∫ t

0
s−(H−1/2) dW (s). (36)

Note that the above approximation ensures that Corr(BH(t), CH(t)) = a−1
H and

E(BH(t)) = E(CH(t)) = 0, V(BH(t)) = V(CH(t)) = t2H . (37)

Note, however, the covariance structure of {CH(t)} is different from that of {BH(t)} since

Cov(CH(s), CH(t)) = (st)2H−1 (min(s, t))2−2H . (38)

We now consider, as an approximation to SH in (10),

S̃H =
∫ 1

0
C2

H(t) dt = a−2
H

∫ 1

0

(
t2H−1MH(t)

)2
dt

D
=

1 − 2α

4α+ 1

∫ 1

0

∫ 1

0

[
1 − (max(s, t))4α+1

]
s−α t−α dW (s)dW (t) (39)

D
=

∫ 1

0

∫ 1

0
(st)2α (min(s, t))1−2α dW (s) dW (t), (40)

where we have put α = H − 1/2 (0 ≤ α < 1/2). Here the equality in (39) comes
from expressing MH(t) by using the property (e) mentioned above, whereas (40) from the
expression for Cov(CH(s), CH(t)) described in (38). Note that, when H = 1/2 (α = 0),
both expressions coincide in the sense of distribution with S1/2. It is also of interest to
note that, when H = 1 (α = 1/2), the expression in (40) is equal to SH = S1, whereas
(39) is meaningless, although we exclude that case. To see the differences of the true and
approximate kernels, Figure 2 draws DH(s, t) = Cov(CH(s), CH(t)) −Cov(BH(s), BH(t))
for H = 0.3, whereas Figure 3 draws DH(s, t) for H = 0.8. It is seen that the difference
is quite large when H = 0.3 in comparison with the case of H = 0.8. This reflects the
correlation sturucture between BH(t) and CH(t) shown in Figure 1.

Figure 2 Figure 3

We can now compute the FD of the kernel in (39) or (40), which we discuss in the
next subsection.

4.2 Approximate distribution

13



We use the Fredholm approach to compute the distribution of S̃H given in (39) or
(40). For this purpose we obtain the following theorem, which is proved in the Appendix.

Theorem 3. For the random variable S̃H given in (39) or (40) it holds that

φH(θ) = E(eiθS̃H ) =

[(
δ

2

)ν

Γ(1 − ν) J−ν(δ)

]−1/2

, (41)

where

δ =

√
1 − 2α

α + 1

√
2iθ, ν =

2α + 1/2

α + 1
, α = H − 1/2,

and Jν(z) is the Bessel function of the first kind defined by

Jν(z) =
∞∑

k=0

(−1)k (z/2)2k+ν

k! Γ(k + ν + 1)
.

Note that, when H = 1/2 (α = 0), we have δ =
√

2iθ, ν = 1/2 and J−1/2(z) =√
2/(πz) cos z so that

φH(θ) =
(
cos

√
2iθ
)−1/2

, (H = 1/2),

which is the c.f. of
∫ 1
0 W 2(t) dt.

On the basis of Theorem 3, we can compute numerically the distribution function of
the positive random variable S̃H using the inversion formula:

P (S̃H < x) =
1

π

∫ ∞

0
Re

[
1 − e−iθx

iθ
φH(θ)

]
dθ.

The probability density of S̃H can be computed by dP (S̃H < x)/dx or numerical
differentiation of the distribution function and the computation of integration can be
done by Simpson’s rule. Care, however, needs to be taken in the computation of the
c.f. because it contains the square root of complex-valued quantities. To overcome this
difficulty a modified algorithm as shown in Tanaka (1996) may be necessary.

Figure 4 presents graphs of probability densities of S̃H for various values of H . The
density of S̃1/2 is exact, but the others are approximations to the density of SH . Note

that both SH and S̃H converge to χ2(1)/3 as H → 1. The limiting density as H → 1
becomes monotone and diverges at 0, unlike the densities for H < 1.

Figure 4

To see the closeness of the densities of S̃H to SH , we have compared the first two
moments of SH and S̃H . It holds that

E(SH) = E(S̃H) =
∫ 1

0
t2H dt =

1

2H + 1
,
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V(SH) = 2
∫ 1

0

∫ 1

0

{
1

2

(
s2H + t2H − |s− t|2H

)}2

dsdt,

V(S̃H) =
d2φH(−iθ)

dθ2

∣∣∣∣∣
θ=0

− E2(S̃H) =
4H + 5

3(2H + 1)2
− 1

(2H + 1)2
=

2

3(2H + 1)
.

Table 1 reports V(SH) and V(S̃H) for various values of H , where the case for H = 1
was also presented as a limiting case. It is seen that the variances of the approximate
densities coincide with the true ones up to the second decimal places as a whole. There is
no evidence that the approximation is poor, but more details remain to be investigated.
Table 2 reports percent points of S̃H for the same values of H as in Table 1. It is
anticipated that the density behaves quite differently as H approaches 1.

Table 1 Table 2

As was noted before, the approximation may be worse when H < 0.4 because of low
correlation between SH and S̃H . We, however, are still able to compute the densities of
S̃H . Figure 5 draws densities of S̃H for H = 0.2, 0.3, · · · , 0.9. It is seen that these densities
are unimodal and are shifted to the right with larger variances as H becomes smaller.

Figure 5

5. Fractional unit root distribution
In this section we apply the martingale approximation discussed in the previous section

to compute the density of the fractional unit root distribution. Let us consider

yj = ρyj−1 + vj , (1 − L)H−1/2vj = uj, true ρ = 1, y0 = 0, (j = 1, · · · , T ), (42)

where 1/2 < H < 1 and {uj} is a short-memory stationary process like the ARMA process
with the long-run variance σ2. Then the error process {vj} is a long-memory process that
admits the following weak convergence:

cH Γ(H + 1/2)

σ TH
y[Tt] =

cH Γ(H + 1/2)

σ TH

[Tt]∑
j=1

vj ⇒ BH(t),

where cH is a constant defined in (1). Then, as was shown in Sowell (1990), the OLSE ρ̂
of ρ follows

T (ρ̂− 1) ⇒ RH =
1
2
B2

H(1)∫ 1
0 B2

H(t) dt
, (1/2 < H < 1). (43)

It is noticed that RH is a functional of {BH(t)} dealt with in previous sections. We
now try to approximate the distribution of RH by using the martingale approximation.

5.1 The FD associated with the approximate distribution
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Let us consider the following approximation:

RH =
1
2
B2

H(1)∫ 1
0 B2

H(t) dt
≈ R̃H =

1
2
M2

H(1)∫ 1
0 (t2H−1MH(t))2 dt

. (44)

Then we deal with the following approximate distribution:

P (R̃H < x) = P
(
x
∫ 1

0

(
t2H−1MH(t)

)2
dt− 1

2
M2

H(1) > 0
)

= P
(∫ 1

0

∫ 1

0
KH(s, t; x) dW (s)dW (t) > 0

)
,

where, putting α = H − 1/2 (0 < α < 1/2),

KH(s, t; x) =
x

4α + 1

(
1 − (max(s, t))4α+1

)
s−αt−α − 1

2
s−αt−α. (45)

Now we have the following theorem concerning the FD of the kernel KH(s, t; x):

Theorem 4. The FD of KH(s, t; x) in (45) is given by

DH(λ; x) =
(
κ

2

)ν

Γ(1 − ν)

(
J−ν(κ) +

λ

2

J1−ν(κ)√
λx

)
, (46)

where

κ =

√
λx

H + 1/2
, ν =

2H − 1/2

H + 1/2
.

When H = 1/2 (α = 0), we have κ =
√
λx, ν = 1/2, and noting that J−1/2(z) =√

2/(πz) cos z and J1/2(z) =
√

2/(πz) sin z, it is seen that the FD of K1/2(s, t; x) = x(1 −
max(s, t)) − 1/2 associated with R̃1/2 is given by

D1/2(λ; x) = cos
√
λx+

λ

2

sin
√
λx√

λx
,

which is also the FD associated with R1/2. On the basis of Theorem 4 we can compute
the approximate distribution of RH employing Imhof’s formula:

P (R̃H < x) =
1

2
+

1

π

∫ ∞

0

1

θ
Im
[
(DH(2iθ; x))−1/2

]
dθ.

Figure 6 draws probability densities of R̃H for various values of H (≥ 1/2). These
are approximate densities of the original fractional unit root distribution RH , although
the density with H = 1/2 is exact. The densities have a positive support and diverge
at the origin, and are shifted to the right as H becomes large. These densities have an
interesting moment property, which we discuss in the next subsection.

Figure 6
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5.2 An interesting moment property
Here we first compute the moments of the approximate unit root distributions. For

this purpose let us define the joint m.g.f. of the numerator ŨH and the denominator ṼH

of R̃H in (44) by

mH(θ1, θ2) = E
[
exp

{
θ1ŨH + θ2ṼH

}]

= E
[
exp

{
θ1

1

2
M2

H(1) + θ2

∫ 1

0

(
t2H−1MH(t)

)2
dt
}]

= [DH(−2θ1;−θ2/θ1)]−1/2

=

[( √
2θ2

2(α+ 1)

)ν

Γ(1 − ν)

(
J−ν

(√
2θ2

α + 1

)
− θ1√

2θ2
J1−ν

(√
2θ2

α + 1

))]−1/2

, (47)

where α = H − 1/2, ν = (2α+ 1/2)/(α+ 1). Note that, when H = 1/2, we have

mH(θ1, θ2) =

[
cos

√
2θ2 − θ1

sin
√

2θ2√
2θ2

]−1/2

, (H = 1/2).

The jth order moment of R̃H can then be computed as

E
(
R̃j

H

)
= E

⎡
⎣( M2

H(1)/2∫ 1
0 (t2H−1MH(t))2 dt

)j
⎤
⎦ =

1

(j − 1)!

∫ ∞

0
θj−1
2

∂jm(θ1,−θ2)
∂θj

1

∣∣∣∣∣
θ1=0

dθ2.

In particular, when j = 1, we have the following result.

Theorem 5. The mean of R̃H is given by

E
(
R̃H

)
= E

(
ŨH

ṼH

)
= E

(
M2

H(1)/2∫ 1
0 (t2H−1MH(t))2 dt

)
= α + 1 = H +

1

2
. (48)

Noting that E(M2
H(t)) = a2

Ht
2−2H , the simple expression as was obtained in Theorem

5 leads us to conclude that

E
(
R̃H

)
= E

(
ŨH

ṼH

)
=

E(ŨH)

E(ṼH)
=

1

2

/
1

2H + 1
= H +

1

2
.

This implies that the expectation of the ratio is equal to the ratio of expectations, which
occurs if R̃H is independent of ṼH . This, however, is not the case, which can be checked
by verifying that

E(R̃2
H Ṽ

2
H) = E(Ũ2

H) �= E(R̃2
H) E(Ṽ 2

H).

In fact, when H = 1/2, we have

E(R̃2
1/2) = E

[(
1

2
W 2(1)

/∫ 1

0
W 2(t) dt

)2
]

=
∫ ∞

0
θ2
∂2

∂θ2
2

[
cosh

√
2θ2 − θ1

sinh
√

2θ2√
2θ2

]−1/2
∣∣∣∣∣∣
θ1=0

dθ2

=
3

8

∫ ∞

0

tanh2
√

2θ2√
cosh

√
2θ2

dθ2 = 1.8907,
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E(Ũ2
1/2) =

1

4
E(W 4(1)) =

3

4
, E(Ṽ 2

1/2) = E

[(∫ 1

0
W 2(t) dt

)2
]

=
7

12
,

so that

E(Ũ2
1/2) =

3

4
�= E(R̃2

1/2) E(Ṽ 2
1/2) = 1.8907 × 7

12
= 1.103.

The above moment property also holds for the OLSE of ρ in the I(d+ 1) model:

yj = ρyj−1 + vj , (1 − L)dvj = uj, true ρ = 1, yk = vk = 0, (k ≤ 0), (49)

where d is a positive integer, whereas {uj} is a short-memory stationary process. Then
it holds (Chan and Wei (1988)) for the OLSE ρ̂ of ρ in the above model that

T (ρ̂− 1) ⇒ Xd =
F 2

d (1)/2∫ 1
0 F 2

d (t) dt
, (d = 1, 2, · · ·), (50)

where {Fd(t)} is the d-fold integrated Brownian motion defined by

Fd(t) =
∫ t

0
Fd−1(u) du =

1

d!

∫ t

0
(t− u)d dW (u), (d = 1, 2, · · ·), F0(t) = W (t).

Note that {Fd(t)} is, except for a constant, the same as the truncated fBm or the type II
fBm {B∗

H(t)} defined in (9) when H − 1/2 (= d) is a positive integer. The distribution of
Xd in (50) may be called the higher order unit root distribution.

We can now establish the following theorem concerning the mean of the higher order
unit root distribution:

Theorem 6. For the OLSE of ρ in the I(d + 1) model in (49), the weak convergence in
(50) holds and, for d = 1, 2,

E(Xd) = E

(
F 2

d (1)/2∫ 1
0 F 2

d (t) dt

)
= d+ 1.

Note here that

E(F 2
d (t)) =

1

(d!)2

∫ t

0
(t− u)2d du =

t2d+1

(2d+ 1) (d!)2
,

so that Theorem 6 implies that, for d = 1, 2,

E(Xd) = E

(
F 2

d (1)/2∫ 1
0 F 2

d (t) dt

)
=

E(F 2
d (1)/2)

E
(∫ 1

0 F 2
d (t) dt

) =
1/2

1/(2(d+ 1))

= d+ 1.

Figure 7 draws the densities of Xd for d = 1, 2 in addition to the densities of the
approximate fractional unit root distributions shown in Figure 6. Note that the integration
orders d = 1, 2 correspond to H = 3/2, 5/2, respectively. It is seen that the distributions
are continually shifted to the right as H and d become large. It is really interesting to
note that the means of these distributions are given by H + 1/2 (= d+ 1).
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Figure 7

The same property is expected to hold for d = 3, 4, · · ·, but it remains to be shown
because the derivation of the associated FD is much involved and is yet to be done for
d ≥ 3. It is also our conjecture that the same porperty will hold for the original fractional
unit root distribution, that is,

E (RH) = E

(
B2

H(1)/2∫ 1
0 B2

H(t) dt

)
=

E (B2
H(1)/2)

E
(∫ 1

0 B2
H(t) dt

) =
1/2

1/(2H + 1)
= H +

1

2
. (51)

6. Concluding remarks
We have discussed how to compute the distributions of quadratic functionals of the

fBm. Its exact computation, however, turned out to be difficult. We then suggested how
to approximate the distributions based on a martingale approximation, which seems to
work well, but whose accuracy remains to be investigated. Our methodology was applied
to compute the fractional unit root distributions. We have found that the approximate
fractional as well as higher order unit root distributions have an interesting moment
property. It is our conjecture that the same property will hold for original fractional unit
root distributions.

19



References

Anderson, T.W. & D.A. Darling (1952) Asymptotic theory of certain ‘goodness of fit’
criteria based on stochastic processes. Annals of Mathematical Statistics 23, 193-
212.

Chan, N.H. & C.Z. Wei (1988) Limiting distributions of least squares estimates of un-
stable autoregressive processes. Annals of Statistics 16, 367-401.

Davydov, Y. (1970) The invariance principle for stationary processes. Theory of Proba-
bility and Its Applications 15, 487-498.

Davidson, J. & N. Hashimzade (2009) Type I and type II fractional Brownian motions:
A reconsideration. Computational Statistics and Data Analysis 53, 2089-2106.

Gripenberg, G. & I. Norros (1996) On the prediction of fractional Brownian motion.
Journal of Applied Probability 33, 400-410.

Hochstadt, H. (1973) Integral Equations, New York: Wiley.

Kleptsyna, M.L., A. Le Breton & M.C. Roubaud (2000) Parameter estimation and opti-
mal filtering for fractional type stochastic systems. Statistical Inference for Stochas-
tic Processes 3, 173-182.

Kleptsyna, M.L. & A. Le Breton (2002) Statistical analysis of the fractional Ornstein-
Uhlenbeck type process. Statistical Inference for Stochastic Processes 5, 229-248.

Kolmogorov, A.N. (1940) Wienersche Spiralen und einige andere interessante Kurven im
Hilbertschen Raum. Dokl. Acad. Nauk. SSSR 26, 115-118.

Liptser, R.S. & A.N. Shiryaev (1977) Statistics of Random Processes I: General Theory,
New York: Springer-Verlag.
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Appendix

Proof of Theorem 3. We first work with the kernel in (39):

KA(s, t) =
1 − 2α

4α+ 1

(
1 − (max(s, t))4α+1

)
s−αt−α. (A.1)

The integral equation (12) with the kernel KA(s, t) in (A.1) leads us to derive the following
differential equation and two boundary conditions.

h′′(t) +

(
λ(1 − 2α)t2α − 2α(2α+ 1)

t2

)
h(t) = 0, (A.2)

h(1) = 0, lim
t→0

(
2αt−2α−1h(t) + t−2αh′(t)

)
= 0,

where we have put h(t) = f(t)/tα. Using the fact that

(
2αt−2α−1h(t) + t−2αh′(t)

)′
= −λ(1 − 2α)h(t),

it can be shown that the differential equation (A.2) with two boundary conditions is
equivalent to the integral equation. The general solution to (A.2) is given (Watson (1958))
by

h(t) = t1/2
(
c1Jν(ηt

α+1) + c2J−ν(ηt
α+1)

)
,

where η =
√
λ(1 − 2α)/(α + 1), ν = (2α + 1/2)/(α + 1), whereas c1 and c2 are arbitrary

constants. From the two boundary conditions we have the homogeneous equation on
c = (c1, c2)

′:

MA(λ)c =
(
Jν(η) J−ν(η)

1 0

)
c = 0.

It follows from |MA(λ)| and using the fact (Watson (1958)) that

J−ν(z) =
1

Γ(1 − ν)(z/2)ν

∞∏
n=1

(
1 − z2

a2
n

)
,

where 0 < a1 < a2 < · · · are positive zeros of J−ν(z), we obtain, as the FD of KA,

DH(λ) =
(
η

2

)ν

Γ(1 − ν)J−ν(η).

We next consider the kernel in (40):

KB(s, t) = (st)2α (min(s, t))1−2α, (A.3)

which gives us the following differential equation and boundary conditions:

f ′′(t) − 2α

t
f ′(t) +

(
λ(1 − 2α)t2α +

2α

t2

)
f(t) = 0, (A.4)

lim
t→0

t1−2αf ′(t) = 0, f ′(1) = 2αf(1).

22



The general solution to (A.4) is given by

f(t) = tα+1/2
(
c1Jν−1(ηt

α+1) + c2J1−ν(ηt
α+1)

)
,

where η and ν are the same as before, whereas c1 and c2 are arbitrary constants. We then
have, from the two boundary conditions, the homogeneous equation on c = (c1, c2)

′:

MB(λ) c =

(
1 0
a 1−2α

η(α+1)
J1−ν(η) − J2−ν(η)

)
c

where a is some constant. Since it holds (Watson (1958)) that

Jν(z) =
2(ν + 1)

z
Jν+1(z) − Jν+2(z),

it is seen that

J−ν(η) =
1 − 2α

η(α+ 1)
J1−ν(η) − J2−ν(η). (A.5)

Thus, computing |MB(λ)|, we obtain, as the FD of KB, the same FD as that of KA.
In terms of numerical computations, it may be convenient to compute J−ν(η) using the
expression on the right side of (A.5). This completes the proof of Theorem 3.

Proof of Theorem 4. Putting h(t) = f(t)/tα, the integral equation (12) with the kernel
KH(s, t; x) in (45) takes the form:

t2αh(t) = λ
[

x

4α + 1

{∫ 1

0
h(s) ds− t4α+1

∫ t

0
h(s) ds−

∫ 1

t
s4α+1h(s) ds

}

−1

2

∫ 1

0
h(s) ds

]
. (A.6)

The above integral equation is ensured to be equivalent to

h′′(t) +

(
λxt2α − 2α(2α+ 1)

t2

)
h(t) = 0, (A.7)

2(α− x)h(1) + h′(1) = 0, lim
t→0

(
2αt−2α−1h(t) + t−2αh′(t)

)
= lim

t→0
G(t) = 0,

In fact, the equivalence may be proved by noting that

(
2αt−2α−1h(t) + t−2αh′(t)

)′
= G′(t) = g(t) = −λxh(t).

Then the right side of (A.6) denoted as RH becomes

RH =
1

4α+ 1

{
−
∫ 1

0
g(s) ds+ t4α+1

∫ t

0
g(s) ds+

∫ 1

t
s4α+1g(s) ds

}
+

1

2x

∫ 1

0
g(s) ds

= −
∫ 1

t
s4αG(s) ds+

1

2x
G(1)

= −
∫ 1

0
s4α

(
2αs−2α−1h(s) + s−2αh′(s)

)
ds+ h(1)

= t2αh(t),
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where we have used the two boundary conditions G(1) = 2xh(1) and G(0) = 0.
The general solution to (A.7) is given by

h(t) = t1/2
(
c1Jν(κt

α+1) + c2J−ν(κt
α+1)

)
,

where ν = (2α+1/2)/(α+1), κ =
√
λx/(α+1), whereas c1 and c2 are arbitrary constants.

Then the two boundary conditions give us the homogeneous equation on c = (c1, c2)
′:

M(λ)c =

(
b −

(
2xJ−ν(κ) +

√
λxJ1−ν(κ)

)
1 0

)
= 0,

where b is some constant. Let the positive zeros of J−ν(κ) and J1−ν(κ) be 0 < a1 < a2 < · · ·
and 0 < b1 < b2 < · · ·, respectively. Then it follows from Watson (1958) that

J−ν(κ) =
(κ/2)−ν

Γ(1 − ν)

∞∏
n=1

(
1 − κ2

a2
n

)
, J1−ν(κ) =

(κ/2)1−ν

Γ(2 − ν)

∞∏
n=1

(
1 − κ2

b2n

)
.

Thus we have

|M(λ)| = 2xJ−ν(κ) +
√
λxJ1−ν(κ)

=
(κ/2)−ν

Γ(1 − ν)

[
2x

∞∏
n=1

(
1 − κ2

a2
n

)
+

κ/2

1 − ν

√
λx

∞∏
n=1

(
1 − κ2

b2n

)]

=
2x(κ/2)−ν

Γ(1 − ν)

[ ∞∏
n=1

(
1 − κ2

a2
n

)
+

λ

2(1 − 2α)

∞∏
n=1

(
1 − κ2

b2n

)]
,

and we obtain, as the FD of KH(s, t; x),

DH(λ; x) =
∞∏

n=1

(
1 − κ2

a2
n

)
+

λ

2(1 − 2α)

∞∏
n=1

(
1 − κ2

b2n

)

=
Γ(1 − ν)

2x(κ/2)−ν

[
2xJ−ν(κ) +

√
λxJ1−ν(κ)

]

=
(
κ

2

)ν

Γ(1 − ν)

(
J−ν(κ) +

λ

2

J1−ν(κ)√
λx

)
,

which establishes Theorem 4.

Proof of Theorem 5. Since we have

m(θ1,−θ2) =

[(
ξ

2

)ν

Γ(1 − ν)

(
J−ν(ξ) − θ1

(α + 1)ξ
J1−ν(ξ)

)]−1/2

,

where ξ =
√−2θ2/(α+ 1), we obtain

∂m(θ1,−θ2)
∂θ1

∣∣∣∣∣
θ1=0

=
1

2

(
ξ

2

)−ν/2
(Γ(1 − ν))−1/2

(α + 1)ξ
J1−ν(ξ) (J−ν(ξ))

−3/2

=

[(
η
√
θ2

2

)ν

Γ(1 − ν)J−ν(η
√
θ2)

]−3/2

×
{
− η2

2ν+1
Γ(1 − ν)(η

√
θ2)

ν−1J1−ν(η
√
θ2)

}
× α+ 1

2
,
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where we have put η =
√−2/(α + 1). Using the following formula (Watson (1958))

d{zνJ−ν(z)}
dz

= −z J1−ν(z),

it can be shown that

d

dθ2

(
(η
√
θ2)

νJ−ν(η
√
θ2)
)

= −1

2
ην+1θ

(ν−1)/2
2 J1−ν(η

√
θ2).

Considering the following expansion and the change of variables

u =

(
η
√
θ2

2

)ν

Γ(1 − ν)J−ν(η
√
θ2) =

∞∏
n=1

(
1 − η2θ2

a2
n

)

=
∞∏

n=1

(
1 +

2θ2
(α+ 1)2a2

n

)
,

we have 1 < u <∞ for 0 < θ2 <∞ and

du = − η2

2ν+1
Γ(1 − ν)(η

√
θ2)

ν−1J1−ν(η
√
θ2) dθ2.

Thus we finally arrive at

E(R̃H) =
∫ ∞

0

∂m(θ1,−θ2)
∂θ1

∣∣∣∣∣
θ1=0

dθ2

=
∫ ∞

0

[(
η
√
θ2

2

)ν

Γ(1 − ν)J−ν(η
√
θ2)

]−3/2

×
{
− η2

2ν+1
Γ(1 − ν)(η

√
θ2)

ν−1J1−ν(η
√
θ2)

}
× α + 1

2
dθ2

=
α + 1

2

∫ ∞

1
u−3/2 du

= α + 1 = H +
1

2
,

which proves the theorem.

Proof of Theorem 6. Let us define

md(θ1, θ2) = E

[
exp

{
θ1
2
F 2

d (1) + θ2

∫ 1

0
F 2

d (t) dt

}]
.

Then it follows from Tanaka (1996, p.275) that

m1(θ1,−θ2) =

[
1

2
(1 + cosμ cosh μ) +

θ1
4θ2

(μ coshμ sinμ− μ cosμ sinh μ)

]−1/2

,

m2(θ1,−θ2) =
[

1

18

{
4(1 + cos ν + cos νω + cos νω2) + 2 cos ν cos νω cos νω2

+
θ1
θ2

(
1

2
(ν sin 2ν + νω sin 2νω + νω2 sin 2νω2)

+2(ν sin ν + νω sin νω + νω2 sin νω2)
)}]−1/2

,
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where

μ = (−2θ2)
1/4, ν = (−2θ2)

1/6, ω =
1 +

√
3i

2
.

Thus we have ∂md(θ1,−θ2)/∂θ1|θ1=0 = Ad(θ2)(Bd(θ2))
−3/2, where

A1(θ2) = − 1

8θ2
(μ coshμ sinμ− μ cosμ sinhμ),

B1(θ2) =
1

2
(1 + cosμ cosh μ),

A2(θ2) = − 1

36θ2

(
1

2
(ν sin 2ν + νω sin 2νω + νω2 sin 2νω2)

+2(ν sin ν + νω sin νω + νω2 sin νω2)
)
,

B2(θ2) =
1

9

{
2(1 + cos ν + cos νω + cos νω2) + cos ν cos νω cos νω2

}

Putting u = B1(θ2) and v = B2(θ2), it can be checked after some algebra that

du = A1(θ2) dθ2, dv =
3

2
A2(θ2) dθ2.

We can now compute

E(Xd) = E

(
F 2

d (1)/2∫ 1
0 F 2

d (t) dt

)
=
∫ ∞

0

∂md(θ1,−θ2)
∂θ1

∣∣∣∣∣
θ1=0

dθ2

=
∫ ∞

0
Ad(θ2) (Bd(θ2))

−3/2 dθ2 =
d+ 1

2

∫ ∞

1
u−3/2 du

= d+ 1, (d = 1, 2),

which completes the proof of Theorem 6.
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Table 1. Comparison of variances of SH and S̃H

H 0.5 0.6 0.7 0.8 0.9 0.95 1.0

V(SH) 1/3 0.30652 0.28194 0.25975 0.23990 0.23081 2/9

V(S̃H) 1/3 0.30303 0.27778 0.25641 0.23810 0.22989 2/9

Table 2. Percent points of S̃H

Probability of a smaller value

0.01 0.05 0.1 0.5 0.9 0.95 0.99

H = 0.5 0.0345 0.0565 0.0765 0.2905 1.1958 1.6557 2.7875

H = 0.6 0.0246 0.04160 0.0577 0.2502 1.1181 1.5582 2.6407

H = 0.7 0.0169 0.0296 0.0423 0.2175 1.0521 1.4744 2.5131

H = 0.8 0.0106 0.0196 0.0292 0.1909 0.9952 1.4015 2.4008

H = 0.9 0.0053 0.0108 0.0174 0.1694 0.9456 1.3374 2.3011

H = 0.95 0.0029 0.0064 0.0115 0.1601 0.9231 1.3081 2.2551

H = 1.0 0.00047 0.0118 0.0474 1.3648 8.1166 11.5244 19.9047
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Figure 1. Correlation of BH(t) and MH(t) as a function of H
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Figure 2. DH(s, t) for H = 0.3
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Figure 3. DH(s, t) for H = 0.8
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Figure 4. Approximate densities of
∫ 1
0 B2

H(t) dt for various values of H (≥ 1/2)
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Figure 5. Densities of S̃H for 0 < H < 1
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Figure 6. Approximate densities of the fractional unit root distributions
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Figure 7. Fractional and higher order unit root distributions
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