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Abstract

We deal with nonparametric estimation in a nonlinear cointegration model
whose regressor and dependent variable can be contemporaneously corre-
lated. The asymptotic properties of the Nadaraya-Watson estimator are
already examined in the literature. In this paper, we consider nonparametric
least absolute deviation (LAD) regression and derive the asymptotic distri-
butions of the local constant and local linear estimators by appealing to the
local time approach.
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1. Introduction

There have been a lot of papers applying nonparametric regression tech-
niques to time series data. Nonparametric regression techniques are flexible
and robust to model misspecifications. The techniques are also useful for
specification testing of parametric models. See Fan and Yao [6], Gao [7],
and Li and Racine [17] and the references therein for recent developments of
nonparametric estimation for stationary time series data.

Recently, Karlsen and Tjøstheim [13], Karlsen et al. [14], and Wang
and Phillips [21]-[23] have successfully applied nonparametric regression es-
timation to nonlinear cointegration models and investigated the asymptotic
properties of the estimators. Since Granger [9] and Engle and Granger [5],
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cointegartion models have been one of most popular models for nonstation-
ary time series data. However, most researches were limited to linear models
until [13], [14], and [21]-[23]. [13], [14], and [20] are based on the theory of
null recurrent Markov chains and [21]-[23] exploited the theory of local time
of nonstationary processes. See [1], [3], [8], [24] for specification testing and
semiparametric models of nonstationary time series.

Chen et al. [4] considered robust nonparametric regression in the setup
of [21] and derived the asymptotic distribution of the estimator. In [4], the
regressor and the dependent variable are assumed to be mutually independent
as in Theorem 3.1 of [21]. Their robust nonparametric regression estimators
include nonparametric quantile regression estimators. However, Theorem 1
below contradict with their Theorem 3.2. The asymptotic distributions in
Theorem 1 are similar to that in (3.12) of [22]. These implies that the result
of [4] may be false. See also Remark 2 below. Lin et al. [18] deals with robust
nonparametric regression by using the null recurrent Markov chain approach
and we cannot apply their approach to the setup of this paper because {Xi}
is not a Markov chain and Xi and ui are correlated in this paper.

In this paper, we consider least absolute deviation (LAD) regression in
the setup of [22] where the regressor and dependent variable can be contem-
poraneously correlated. We examine the asymptotic properties of the local
constant estimator (LCE) and local linear estimator (LLE). The proof of
our main result crucially depend on the results in [21] and [22]. Our results
can be easily extended to general q-th quantile regression and we also give a
comment on how to deal with nonparametric robust estimators in Remark 4
in section 3.

Our nonlinear coinegartion model is given by

Yi = g(Xi) + vi, i = 1, . . . , n, (1)

where vi = v(Xi, ui), {Xi} is a near-integrated or integrated process, {ui} is
a stationary process, and they will be specified later in section 2 as in [22].
We estimate g(x0) for a fixed x0. We assume that g(x) is twice continuously
differentiable in a neighborhood of x0.

In this paper we assume that E{sign(vi)} = 0, where sign(v) = −1, v <
0, = 1, v ≥ 0, while vi = ui and E{vi} = 0 in [22]. We can estimate g(x0)
by using nonparametric LAD regression in spite of the contemporaneous
correlation between Xi and vi as in [22].

We present the assumption on v(x, u) here. The other assumptions are
given in section 2.
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Assumption V: v(x, u) is monotone increasing in u for any x and v(x,mu) =
0 for any x, where mu is the median of ui. In addition, v(x, u) is continuously
differentiable in a neighborhood of (x0,mu) and ∂v

∂u
(x0,mu) 6= 0. When we

deal with the local constant estimator (LCE), v(x, u) is twice continuously
differentiable in a neighborhood of (x0,mu).

An example of v(x, u) is σ(x)(u − mu).
There has been a lot of interest in quantile regression since Koenker and

Basset [16]. It is because quantile regression is robust to outliers and of-
fers more information on data than mean regression. See Koenker [15] for
more details on quantile regression. There are a lot of papers which deal
with nonparametric quantile regression for time series data, to name only a
few, Honda [11], [12], Cai [2], Hall et al. [10]. Xiao [26] considers quantile
regression in linear and time-varying cointegration models.

The rest of this paper is organized as follows. We state assumptions,
define the nonparametric estimators, and present the main result Theorem
1 in section 2. We rather focus on the local linear estimator (LLE) in this
paper. The proof of Theorem 1 and the propositions for the proof are given
in section 3. The proofs of the propositions are relegated to section 4.

We denote convergence in distribution and in probability by
d→ and

p→,
respectively and C is a generic positive constant whose value vary from place
to place. When X has a normal distribution with mean µ and covariance
matrix Ω, we write X ∼ N(µ, Ω). For a vector v, vT is the transpose of v.
We write [a] for the largest integer less than or equal to a. We introduce two
i.i.d. processes {εi| − ∞ < i < ∞} and {λi| − ∞ < i < ∞} later in section
2. For notational simplicity, we write {εi} and {λi} for them, respectively.

2. Estimators and asymptotic distributions

First we follow [22] to define {Xi} and describe the limiting process
Jκ(t), 0 ≤ t ≤ 1, of X[nt]/

√
n, 0 ≤ t ≤ 1. Next we specify {ui} as in [22].

We borrow a lot of notation from [22] in the definitions and specifications.
Then we define the LCE and LLE and present the asymptotic distributions
in Theorem 1, which crucially depends on the results in [21] and [22] and will
be proved in section 3.

We specify {Xi} in Assumption X below and the assumption is Assump-
tion 1 of [22]
Assumption X: With X0 = 0 and ρ = 1+κ/n for some constant κ, we define
Xi by Xi = ρXi−1 + ηi. {ηi} is a linear process given by ηi =

∑∞
k=0 φkεi−k,
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where 0 <
∑∞

k=0 φk = φ < ∞ and {εi} is an i.i.d. process. Besides, E{εi} = 0,
Var{εi} = 1, and the characteristic function of εi is integrable.

Suppose that Assumption X holds throughout this paper. Then X[nt], 0 ≤
t ≤ 1, converges in distribution to

Jκ(t) = φ(W (t) + κ

∫ t

0

e(t−s)κW (s)ds), 0 ≤ t ≤ 1, (2)

in the Skorokhod topology on D[0, 1], where W (s), 0 ≤ s ≤ 1, is a standard
Brownian motion. See Proposition 7.1 of [22] for the proof. The local time
process L(s, a) of Jκ(t), 0 ≤ t ≤ 1 is defined as in (3.10) of [22]. Note that
Jκ(t) in (2) is Jκ(t) in (3.9) of [22] multiplied by φ.

Next we define {ui} in Assumption U1 below, which is essentially As-
sumption 2 of [22]. In the setup, Xi and ui can be correlated.
Assumption U1: Letting {λi} be another i.i.d. process independent of {εi},
we have ui = u(εi, . . . , εi−m0 , λi, . . . , λi−m0), where m0 is a positive integer.

We do not need any assumptions on moments of ui. Instead we have to
impose another assumption on the conditional density of ui to deal with non-
parametric LAD regression. We write E and E i

i−m0
for the σ-field generated

by {εi} and {εi, . . . , εi−m0}, respectively. If ui has the conditional density
given E , then we can denote it by fu(u|E i

i−m0
) due to Assumption U1. Recall

that we denote the median of ui by mu.
Assumption U2: There exists the conditional density function of ui given E
in a neighborhood of mu. The neighborhood does not depend on (εi, . . . , εi−m0).
Besides fu(u|E i

i−m0
) is uniformly bounded in (εi, . . . , εi−m0) and continuously

differentiable in the neighborhood and the derivative f ′
u(u|E i

i−m0
) is uniformly

bounded. We also have fu(mu) > 0, where fu(u) is the density function of
ui.

We assume that Assumptions U1 and U2 hold throughout this paper.
Denoting the conditional density of vi given E by fvi

(v|E), we have a repre-
sentation of fvi

(0|E) in (3).

fvi
(0|E) = fu(mu|E i

i−m0
)
(∂v

∂u
(Xi, mu)

)−1

. (3)

Writing fv(v|x) for the density function of v(x, ui), we have

fv(0|x0) = fu(mu)
(∂v

∂u
(x0,mu)

)−1

. (4)
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Recall that fu(u) is the density function of ui. Since Xi and ui are not
independent, fv(v|x) is not the conditional density function of v(Xi, ui) given
Xi = x.

We state assumptions on the kernel function K(ξ) and the bandwidth
h. We define the Fourier transform of f(x) by f̂(t) = (2π)−1/2

∫
eitxf(x)dx,

where f(x) is an integrable function and i is the imaginary unit.
Assumption K: K(ξ) is a nonnegative bounded continuous function with
compact support and K̂(t) is integrable. In addition, the Fourier transforms
of ξK(ξ), ξ2K(ξ), and ξ3K(ξ) are also integrable.

Assumption K above is Assumption 3 of [22] plus the last part of As-
sumption K. Assumption 3 is not restrictive as in [22] and the last part of
Assumption K is not restrictive, either because

dj

dtj
K̂(t) =

ij√
2π

∫
eitξξjK(ξ)dx.

We introduce some notation related to the kernel function here.

Ki = K((Xi − x0)/h) and ηi = (1, (Xi − x0)/h)T (5)

κj =

∫
ξjK(ξ)dξ and νj =

∫
ξjK2(ξ)dξ (6)

Assumption H: nh6 → ∞ and nh10 = O(1) for the LLE and nh8 → ∞ and
nh10 = O(1) for the LCE.

Assumption H is more restrictive than that for Theorem 3.1 of [22] be-
cause we closely examine the bias term here. It is easy to see from The-
orem 1 below that the asymptotically optimal bandwidth has the form of
h = cn−1/10.

We define the LLE β̂ = (β̂1, β̂2)
T of (g(x0), hg′(x0))

T by

β̂ = argmin
β∈R2

n∑
i=1

Ki|Yi − ηT
i β|. (7)

The convergence rate of β̂ is (nh2)−1/4 and we set

τn = (nh2)1/4.

We use both τn and (nh2)1/4 in this paper. By normalizing β̂ as

θ̂ = τn(β̂1 − g(x0), β̂2 − hg′(x0))
T ,
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we have from (7)

θ̂ = argmin
θ∈R2

n∑
i=1

Ki(|v∗
i − τ−1

n ηT
i θ| − |v∗

i |), (8)

where

v∗
i = vi +

1

2

(Xi − x0

h

)2

h2g′′(X̄i) (9)

and X̄i is defined in the second order Taylor expansion of g(x) at x0. For the
LCE, we can define θ̂ in (8) by removing ηi and replacing v∗

i with v∗∗
i below.

v∗∗
i = vi + (Xi − x0)g

′(x0) +
1

2

(Xi − x0

h

)2

h2g′′(X̄i) (10)

Here we state Theorem 1, which is the main result of this paper and will
be proved in section 3. The theorem says we can estimate g(x0) without any
instrumental variables as in [22]. We also give a remark on the extension to
nonparametric robust regression at the end of section 3.

Theorem 1. Suppose that Assumptions V, X, U1, U2, K, and H hold. Then
we have for the LLE,

θ̂
d→ 1

2
(fv(0|x0)L

1/2(1, 0))−1

(
κ0 κ1

κ1 κ2

)−1 (
Z1

Z2

)
+(nh2)1/4h2

2

(
κ0 κ1

κ1 κ2

)−1 (
κ2

κ3

)
g′′(x0),

where (Z1, Z2)
T below is independent of L(1, 0) and(

Z1

Z2

)
∼ N

((
0
0

)
,

(
ν0 ν1

ν1 ν2

))
.

For the LCE, we have

θ̂
d→ 1

2
(fv(0|x0)L

1/2(1, 0))−1κ−1
0 Z1 + (nh2)1/4h2

2

κ2

κ0

(fv(0|x0))
−1

×
(
g′′(x0)fv(0|x0) + 2g′(x0)

∂fv

∂x
(0|x0) − (g′(x0))

2∂fv

∂v
(0|x0)

)
,

where

∂fv

∂v
(0|x0)

=
(∂v

∂u
(x0,mu)

)−2{
f ′

u(mu) + fu(mu)
∂

∂u

(∂v

∂u
(x0,mu)

)−1}
.
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The bias term of the LCE is much more complicated than that of the LLE
and that of the Nadaraya-Watson estimator in [22] and [23]. The complicated
form is due to Proposition 5. Thus we should use the LLE for nonparametric
quantile regression with integrated covariates to avoid the complicated bias
term. The asymptotic distributions in Theorem 1 are different from that in
[4]. Compare their Lemma A.1 with Proposition 2 and see Remark 2 below
for more details.

Theorem 1 implies that the asymptotically optimal bandwidth depends
on g′′(x0), L(1, 0), and fv(0|x0) and that larger bandwidths will be preferable.
It might be difficult to estimate fv(0|x0) from regression residuals. We will
need another paper to establish the consistency even if we estimate it by
standard kernel conditional density estimators. We will examine the effects of
bandwidths by simulation studies in the follow-up study. A cross-validation
method as in [4] may be a promising candidate for bandwidth selection.

3. Proof of Theorem 1

We give Propositions 1-5 before we prove Theorem 1. The proofs of the
propositions are postponed to section 4.

Proposition 1 is essentially (3.8) combined with Proposition 7.2 of [22] and
the first two elements of the random vector in Proposition 1 are related to
the stochastic part of the nonparametric LAD regression estimators. Recall
that τn = (nh2)1/4.

Proposition 1. Suppose that Assumptions X, U1, U2, and K hold and that
nh2 → ∞ and h → 0. Then we have(
τ−1
n

n∑
i=1

Kisign(ui), τ
−1
n

n∑
i=1

(Xi − x0

h

)
Kisign(ui),

τ−2
n

n∑
i=1

Ki, τ
−2
n

n∑
i=1

Kifu(mu|E i
i−m0

),

τ−2
n

n∑
i=1

(Xi − x0

h

)
Kifu(mu|E i

i−m0
), τ−2

n

n∑
i=1

(Xi − x0

h

)2

Kifu(mu|E i
i−m0

),

τ−2
n

n∑
i=1

(Xi − x0

h

)3

Kifu(mu|E i
i−m0

)
)T

d→ (L1/2(1, 0)Z1, L
1/2(1, 0)Z2, κ0L(1, 0), κ0fu(mu)L(1, 0),
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κ1fu(mu)L(1, 0), κ2fu(mu)L(1, 0), κ3fu(mu)L(1, 0))T ,

where (Z1, Z2)
T is defined as in Theorem 1 and independent of L(1, 0).

Remark 1. Let Ω be a σ-field generated by {εi} and {λi}. Addendum 1.10.5
of [25] implies that there exists a σ-field Ω̃ satisfies
1. Ω̃ virtually contains Ω,
2. (Z1, Z2)

T and L(1, 0) can be defined on Ω̃,
3. We can replace convergence in distribution with almost sure convergence
in Proposition 1.
Hence we assume that the sequence of random vectors in Proposition 1 also
converges almost surely in Proposition 4 below and the proof of Theorem 1.

Proposition 2 gives the expansion of the objective function for θ̂.

Proposition 2. Suppose that Assumptions V, X, U1, U2, and K hold and
that nh2 → ∞ and h → 0. Then for any θ ∈ R2, we have

n∑
i=1

Ki(|v∗
i − τ−1

n ηT
i θ| − |v∗

i |)

= −θT (τ−1
n

n∑
i=1

ηiKisign(v∗
i ))

+θT
{

τ−2
n

n∑
i=1

ηiη
T
i Kifu(mu|E i

i−m0
)
(∂v

∂u
(x0, mu)

)−1}
θ + op(1).

Remark 2. From Proposition 1, we have

τ−2
n

n∑
i=1

ηiη
T
i Kifu(mu|E i

i−m0
)
(∂v

∂u
(x0,mu)

)−1 d→
(

κ0 κ1

κ1 κ2

)
fv(0|x0)L(1, 0).

This and Proposition 2 contradict with Lemma A.1 of [4].

Proposition 3 is about the bias term of the LLE.

Proposition 3. Suppose that Assumptions V, X, U1, U2, K, and H hold.
Then we have

h−2τ−2
n

n∑
i=1

Kiηi(sign(v∗
i ) − sign(vi))

= τ−2
n g′′(x0)

n∑
i=1

(Xi − x0

h

)2

Kiηifu(mu|E i
i−m0

)
(∂v

∂u
(x0,mu)

)−1

+ op(1).
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Proposition 4 is a version of the convex theorem in Pollard [19] adapted
to the setup of this paper. We use Proposition 1 as in Remark 1.

Proposition 4. Suppose that Assumptions V, X, U1, U2, K, and H hold..
Then for any compact subset K of R2, we have

sup
θ∈K

∣∣∣ n∑
i=1

Ki(|v∗
i − τ−1

n ηT
i θ| − |v∗

i |) + θT (τ−1
n

n∑
i=1

ηiKisign(v∗
i )) − θT Aθ

∣∣∣ p→ 0,

where

A = lim
n→∞

τ−2
n

n∑
i=1

Kiηiη
T
i fu(mu|E i

i−m0
)
(∂v

∂u
(x0,mu)

)−1

=

(
κ0 κ1

κ1 κ2

)
fv(0|x0)L(1, 0).

Proposition 5 is necessary to examine the bias term of the LCE. Recall
the definition of v∗∗

i in (10).

Proposition 5. Suppose that Assumptions V, X, U1, U2, K, and H hold.
Then we have

h−2τ−2
n

n∑
i=1

Ki(sign(v∗∗
i ) − sign(vi))

= τ−2
n

n∑
i=1

(Xi − x0

h

)2

Ki

[
g′′(x0)fu(mu|E i

i−m0
)
(∂v

∂u
(x0,mu)

)−1

+2g′(x0)fu(mu|E i
i−m0

)
∂

∂x

(∂v

∂u
(x0,mu)

)−1

−(g′(x0))
2
(∂v

∂u
(x0,mu)

)−2{
f ′

u(mu|E i
i−m0

)

+fu(mu|E i
i−m0

)
∂

∂u

(∂v

∂u
(x0,mu)

)−1}]
+ op(1).

Remark 3. It is easy to see that Proposition 2 holds for any θ ∈ R with
v∗

i replaced by v∗∗
i and without ηi. Proposition 4 is also true with the same

changes.

We prove Theorem 1 only for the LLE by exploiting Propositions 1-4.
We can deal with the LCE similarly by employing Proposition 5 instead of
Proposition 3.
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Proof of Theorem 1. We consider all the random variables on Ω̃ in Re-
mark 1. Taking a compact subset K of R2, we have from Propositions 1 and
4 that uniformly in θ on K,

n∑
i=1

Ki(|v∗
i − τ−1

n ηT
i θ| − |v∗

i |) (11)

= −θT (τ−1
n

n∑
i=1

ηiKisign(v∗
i )) + θT

(
κ0 κ1

κ1 κ2

)
θfv(0|x0)L(1, 0) + op(1).

We evaluate the first term of the RHS of (11) by combining Propositions
1 and 3 and get

τ−1
n

n∑
i=1

Kiηisign(v∗
i ) (12)

= τ−1
n

n∑
i=1

Kiηisign(vi) +
h2g′′(x0)

τn

n∑
i=1

(Xi − x0

h

)2

Kiηifv(0|x0) + op(1)

=

(
Z1

Z2

)
L1/2(1, 0) + τnh2g′′(x0)

(
κ2

κ3

)
fv(0|x0)L(1, 0) + op(1)

= Op(1).

Since L(1, 0) is a random variable, we have to modify the standard argument
about quantile regression.

We fix a small positive δ1 and take a sufficiently small δ2 s.t. P(δ2 <
L(1, 0) < 1/δ2) > 1 − δ1. Then setting Ω̃δ2 = {δ2 < L(1, 0) < 1/δ2}, we
temporarily consider the conditional probability given Ω̃δ2 .

The uniformity of (11), (12), and the convexity of the objective function
yield that θ̂ = Op(1) on Ω̃δ2 . Then from the uniformity of (11), Proposition
1, and the standard argument as in [10] and [12], we have that given Ω̃δ2 ,

θ̂ =
1

2
(fv(0|x0)L

1/2(1, 0))−1

(
κ0 κ1

κ1 κ2

)−1 (
Z1

Z2

)
(13)

+
τnh

2g′′(x0)

2

(
κ0 κ1

κ1 κ2

)−1 (
κ2

κ3

)
+ op(1).

Since we can choose an arbitrarily small positive δ1, we also have (13) on Ω̃.
Hence the proof of Theorem 1 is complete.
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In Remark 4 below, we describe how to deal with a robust local linear
estimator defined by a convex loss function.

Remark 4. Suppose that we define the LLE by using a convex loss function
ρ(v) instead of |v|. We assume that ρ(0) = 0 and ρ(v) ≥ 0 and that ρ(v)
is differentiable except at the origin. In addition, we have E{ρ′(vi)} = 0.
Then we have to make some changes to Propositions 2 and 3. Let ξ and δ
be a generic random variable with density fξ(ξ) and a constant tending to 0,
respectively.

In Proposition 2, we deal with ρ(ξ − δ) − ρ(ξ) + δρ′(ξ) and we need (14)
and (15) below to establish the proposition.

E{|ρ(ξ − δ) − ρ(ξ) + δρ′(ξ)|2} = o(δ2) (14)

E{ρ(ξ − δ) − ρ(ξ) + δρ′(ξ)} = δ2s1(fξ) + o(δ2), (15)

where s1(fξ) is a functional of a density function and satisfies the regularity
conditions necessary in the proof of Proposition 2 given in section 4.

In Proposition 3, we consider ρ′(ξ + δ)− ρ′(ξ) and we need (16) and (17)
below to establish the proposition.

E{|ρ′(ξ + δ) − ρ′(ξ)|2} = O(δ) (16)

E{ρ′(ξ + δ) − ρ′(ξ)} = δs2(fξ) + o(δ), (17)

where s2(fξ) is a functional of a density function and satisfies the regularity
conditions necessary in the proof of Proposition 3 given in section 4.

When we have (14)-(17) for ρ(v), we can establish the same result as
in Theorem 1. However, fξ(ξ) is fvi

(v|E) in the propositions and fvi
(v|E)

depends on Xi and E i
i−m0

in a complicated way. Therefore we have to impose
much more restrictive assumptions on fvi

(v|E) or fu(u|E i
i−m0

) to obtain the
same results for a general ρ(v) than for a specific ρ(v) such as |v|. Thus we
decided to focus on LAD regression in this paper.

When ρ(v) = |v|q for some 1 < q < 2, it is easy to verify (14) and (16).
We also have

s1(fξ) =
1

2

∫
|ξ|qf ′′

ξ (ξ)dξ = −q

2

∫
|ξ|q−1f ′

ξ(ξ)dξ,

s2(fξ) = −q

∫
|ξ|q−1f ′

ξ(ξ)dξ

with some conditions on fξ(ξ). We will also need some assumptions on
fvi

(v|E) or fu(u|E i
i−m0

) to get the same results as in Propositions 2 and 3
and the assumptions will depend on q.
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4. Proofs of propositions

In this section, we give the proofs of Propositions 1-5.

Proof of Proposition 1. First note the Fourier transforms of ξjK(ξ),
j = 1, 2, 3, are integrable from Assumption K. Besides, fu(mu|E i

i−m0
) satisfies

Assumption 2 of [22] and we obtain the same result as in Proposition 7.2 of
[22] for {(Xi − x0)/h}jKifu(mu|E i

i−m0
), j = 0, 1, 2, 3.

Applying the arguments on pp.1922-1924 and Proposition 7.2 of [22] at
the same time to

τ−1
n

n∑
i=1

{
aKi + b

(Xi − x0

h

)
Ki

}
sign(ui), (18)

where a and b are arbitrary constants, and τ−2
n

∑n
i=1 Ki, τ−2

n

∑n
i=1{(Xi −

x0)/h}jKifu(mu|E i
i−m0

), j = 0, 1, 2, 3, we have the same result as in Proposi-
tion 1 with the first two elements of the both sides replaced with (18) and

(a2ν0 + 2abν1 + b2ν2)
1/2L1/2(1, 0)Z, (19)

respectively. Note that Z in (19) has the standard normal distribution and
is independent of L(1, 0). Since a and b are arbitrary constants, the desired
result follows from the Cramér-Wold device. Hence the proof of Proposition
1 is complete.

Proof of Proposition 2. Set

B2i(θ) = |v∗
i − τ−1

n ηT
i θ| − |v∗

i | + τ−1
n ηT

i θsign(v∗
i )

and notice
|B2i(θ)| ≤ Cτ−1

n |ηT
i θ|I(|v∗

i | ≤ Cτ−1
n |ηT

i θ|). (20)

We also set
D2i(θ) = B2i(θ) − E{B2i(θ)|E}.

First we evaluate
∑n

i=1 KiD2i(θ). From (20) and Assumption U2, we have

E{D2
2i(θ)|E} ≤ Cτ−2

n E{I(|v∗
i | ≤ Cτ−1

n |ηT
i θ|)|E} ≤ Cτ−3

n . (21)

12



Assumption U1, (21), and (5.19) of [21] imply

E
[{ n∑

i=1

KiD2i(θ)
}2]

(22)

≤ E
[ n∑

i=1

K2
i E{D2

2i(θ)|E}
]

+ E
[ ∑
|i−i′|≤m0

KiKi′E{D2i(θ)D2i′(θ)|E}
]

≤ CE
{

τ−3
n

n∑
i=1

K2
i

}
= O(τ−1

n ).

Next we evaluate
∑n

i=1 KiE{B2i(θ)|E}. From Assumption U2 and the
standard calculation, we obtain uniformly in i,

E{B2i(θ)|E} = τ−2
n (ηT

i θ)2fu(mu|E i
i−m0

)
(∂v

∂u
(Xi,mu)

)−1

+ op(τ
−2
n ). (23)

The desired result follows from (22), (23), Assumption V, and Proposition
1. Hence the proof of Proposition 2 is complete.

Proof of Proposition 3. We can establish Proposition 3 almost in the
same way as Proposition 2. Set

B3i = sign(v∗
i ) − sign(vi) and D3i = B3i − E{B3i|E}.

Notice that
|sign(v∗

i ) − sign(vi)| ≤ CI(|vi| ≤ Ch2).

Hence we have
E{|D3i|2|E} ≤ Ch2.

The above inequality and the same argument for (22) yield

h−2τ−2
n

n∑
i=1

KiηiD3i = Op((nh6)−1/4). (24)

By some calculation, we get uniformly in i,

h−2E{B3i|E} (25)

=
(Xi − x0

h

)2

g′′(X̄i)fu(mu|E i
i−m0

)
(∂v

∂u
(Xi,mu)

)−1

+ op(1).

The desired result follows from (24), (25), the continuity of g′′(x) at x0,
Assumption V, and Proposition 1. Hence the proof of Proposition 3 is com-
plete.

13



Proof of Proposition 4. We verify this proposition by modifying the
proof of the convex lemma in Pollard [19].

From Propositions 1 and 2, we have for any fixed θ ∈ K,∣∣∣ n∑
i=1

KiB2i(θ) − θT Aθ
∣∣∣ p→ 0. (26)

As in the proof of Theorem 1, choose a small positive δ3 and take δ4 s.t.
P(δ4 < L(1, 0) < 1/δ4) > 1 − δ3. Then we set Ω̃δ4 = {δ4 < L(1, 0) < 1/δ4}.

On Ω̃δ4 , we can take δ-cubes on p.197 of [19] for any small positive ε. Then
θT Aθ varies by less than ε in each of the δ-cubes. Since we have δ-cubes, we
can proceed exactly in the same way as on pp.197-198 of [19]. Thus from
(26) and the convexity of

∑n
i=1 KiB2i(θ) and θT Aθ, we have that given Ω̃δ4 ,

sup
θ∈K

∣∣∣ n∑
i=1

KiB2i(θ) − θT Aθ
∣∣∣ p→ 0. (27)

Since we can choose any small δ3, we have (26) on Ω̃. Hence the proof of
Proposition 4 is complete.

Proof of Proposition 5. Set

δ∗∗i = v∗∗
i − vi = (Xi − x0)g

′(x0) +
1

2

(Xi − x0

h

)2

h2g′′(X̄i), (28)

B4i = sign(v∗∗
i ) − sign(vi), and D4i = B4i − E{B4i|E}.

Since
|B4i| ≤ CI(|vi| ≤ Ch),

we have
E{|D4i|2|E} ≤ Ch. (29)

From (29) and the same argument as in the proofs of Propositions 2 and 3,
we obtain

h−2τ−2
n

n∑
i=1

KiD4i = Op((nh8)−1/4). (30)

Next we consider E{B4i|E}. By some calculation, we have uniformly in i,

h−2E{B4i|E} = 2δ∗∗i fvi
(0|E) − (δ∗∗i )2f ′

vi
(0|E) + op(1). (31)

14



We evaluate the first and second terms of the RHS of (31). By some calcu-
lation, we obtain

2h−2τ−2
n

n∑
i=1

Kiδ
∗∗
i fvi

(0|E) (32)

= τ−2
n

n∑
i=1

(Xi − x0

h

)2

Kig
′′(x0)fu(mu|E i

i−m0
)
(∂v

∂u
(x0,mu)

)−1

+2τ−2
n

n∑
i=1

(Xi − x0

h

)2

Kig
′(x0)fu(mu|E i

i−m0
)

∂

∂x

(∂v

∂u
(x0,mu)

)−1

+ op(1)

We used Theorem 2.1 of [23] to evaluate
∑n

i=1{(Xi − x0)/h}Ki here.
We give a representation of f ′

vi
(0|E) by Assumptions V and U2 and some

calculation before we evaluate the second term of (31).

f ′
vi
(0|E) (33)

=
(∂v

∂u
(Xi,mu)

)−2(
f ′

u(mu|E i
i−m0

) + fu(mu|E i
i−m0

)
∂

∂u

(∂v

∂u
(Xi,mu)

)−1)
.

From (28), (33), and Assumption V, we have

h−2τ−2
n

n∑
i=1

Ki(δ
∗∗
i )2f ′

vi
(0|E) (34)

= τ−2
n

n∑
i=1

(Xi − x0

h

)2

Ki

(∂v

∂u
(x0,mu)

)−2{
f ′

u(mu|E i
i−m0

)

+fu(mu|E i
i−m0

)
∂

∂u

(∂v

∂u
(x0,mu)

)−1}
+ op(1).

Proposition 5 follows from (31), (32), (34). Hence the proof of Proposition
5 is complete.
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