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Abstract

This paper develops a simple test for the null hypothesis of no unit root for panel data

with cross-sectional dependence in the form of a common factor in the disturbance. We do not

estimate the common factor but mop-up its effect by employing the same method as the one

proposed in Pesaran (2007) in the unit root testing context. We show that our test is

asymptotically locally optimal, although the optimality is not guaranteed under a wide range of

the alternative.
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I. Introduction

Since the beginning of the 1990s, much theoretical and empirical econometrics literature
was devoted to testing unit root and stationarity in panel data with a large T (time dimension)
and a large N (cross-section dimension). The main motive for applying unit root and
stationarity tests to panel data is to improve the power of the tests relative to their univariate
counterparts. This was supported by the ensuing applications and simulations. The early
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theoretical contributions were made from the mid-1990s to the early 2000s under the
assumption that the cross-sectional units are independent or at least not cross-sectionally
correlated. Banerjee (1999), Baltagi and Kao (2000), and Baltagi (2001) provide comprehensive
surveys on the first generation panel tests.

However, in most empirical applications, this assumption is erroneous. OʼConnell (1998)
was the first to show via simulation that the panel tests are considerably distorted when the
independence assumption is violated. Banerjee, Marcellino and Osbat (2001, 2004) argued
against the use of panel unit root tests due to this problem. Therefore, it became imperative to
develop panel tests that take the possibility of cross-sectional dependence into account. This
led, recently, to a flurry of papers accounting for cross-sectional dependence in different forms
or to the arrival of second generation panel unit root tests. The most noticeable proposals in
this area are by Chang (2004), Phillips and Sul (2003), Bai and Ng (2004), Moon and Perron
(2004), Choi and Chue (2007), and Pesaran (2007) for unit root panel tests. For panel
stationarity tests, the only contributions thus far are by Bai and Ng (2005) and Harris,
Leybourne and McCabe (2005), both of which corrected for cross-sectional dependence by
using the principal component analysis proposed by Bai and Ng (2004).

In this paper, we focus on a test for the null hypothesis that there is no unit root in cross-
sectionally dependent panel data against the alternative of the existence of unit roots. To deal
with cross-sectional dependence, we adapt the Pesaran (2007) approach to the panel stationarity
test of Hadri (2000) due to its conceptual simplicity. Our test is basically the same as the
Kwiatkowski et al. (1992) test (KPSS test), and therefore, we call it the augmented KPSS test.
We also derive a Lagrange multiplier (LM) test, which is known to be locally optimal under
the assumption of normality. We show that these two tests have the same asymptotic property
under the null of no unit root and under the local alternative. This implies that the augmented
KPSS test is asymptotically locally optimal. Since it is much easier to construct the augmented
KPSS test statistic than the LM test statistic while both tests have the same asymptotic
optimality, our test is useful in practical analysis.

The paper is organized as follows. Section 2 sets up the model and assumptions, and
defines the augmented test statistic. We also develop the LM test allowing for cross-sectional
dependence. Section 3 is devoted to the comparison of our augmented KPSS test under
restrictive assumptions with the LM test under the null of no unit root, under the local
alternative and under the fixed alternative. We show that the limiting null distribution of the
augmented KPSS test is the same as that of Hadriʼs (2000) test. In Section 4, we examine
whether our theoretical result is valid in finite samples via simple Monte Carlo simulations.
Section 5 gives concluding remarks. All the proofs are relegated to the Appendix.

We now give a summary on the notations. We define MA=IT,A(A'A)
-1A' for a full

column rank matrix A. The symbols
p (N, T)
�� and

(N, T)

�� imply joint convergence in probability and
joint weak convergence, respectively, when both N and T approach infinity simultaneously,
while

T
�� and

N
�� imply weak convergence when only T or N approaches infinity.
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II. Model and Test Statistics

1. Model and Assumptions

Let us consider the following model:

yit=z'td i+rit+uit, rit=rit-1+vit, uit=f tg i+e it (1)

for i=1, �, N and t=1, �, T, where zt is deterministic and ri0=0 for all i. The commonly

used specification of zt in the literature is either zt=z
m
t=1 or zt=z

t
t=[1, t]'. In this paper, we

consider these two cases. Accordingly, we define d i=a i when z=1 and d i=[a i, b i]' when

z=[1, t]'. In model (1), z'td i is the individual effect while f t is the one-dimensional unobserved

common factor, g i is the loading factor, and e it is the individual-specific (idiosyncratic) error.

By stacking yit with respect to t, model (1) can be expressed as

�
yi1

yi2

	

yiT � = �
z'1

z'2

	

z'T � d i+ �
ri1

ri2

	

riT � + �
f1

f2

	

fT � g i+ �
e i1

e i2

	

e iT � ,

�
ri1

ri2

	

riT � = �
1 0

1 1

	 	 


1 1 � 1 � �
vi1

vi2

	

viT � ,
or

y i=Zd i+r i+fg i+h i (2)

=Zd i+Lv i+fg i+h i,

where Z=[z, d] with z=[1, 1, �, 1]' and d=[1, 2, �, T]' being T-1 vectors, L is a T-T
matrix with ones on the main diagonal and everywhere below it. Further, we have

�
y1

y2

	

yN � = �
Z

Z




Z � �
d1

d2

	

dN
� + �

L

L




L � �
v1

v2

	

vN � + �
fg1

fg2

	

fgN � + �
h1

h2

	

hN
�

or

y=(IN�Z)d+r+(g�f)+h (3)

=(IN�Z)d+(IN�L)v+(g�f)+h.

In this paper, we make the following assumption.

Assumption 1. (i) The stochastic processes {e it}, {f t}, and {vit} are independent and

e itpi.i.d.N(0, s2
e), f tpi.i.d.N(0, s2

f ), vitpi.i.d.N(0, s2
v) with known variances.

(ii) There exist real numbers M1, M, and M such that Hg iH<M1<� for all i and

0<M<HḡH<M<� for all N, where g=N-1Σ
N

i=1 g i.
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The assumption of normality with homoskedasticity in (i) is required to derive the LM test and

to discuss the optimal property of the tests. The variances s2
e, s

2
f , and s2

v are assumed to be

known in order to make the theoretical investigation as simple as possible. The unknown case
will be discussed later. (ii) implies that each individual is possibly affected by the common
factor with the finite weight g i and that the absolute value of the average of g i is bounded away

from 0 and above both in finite samples and in asymptotics. The latter property is important in
order to eliminate the common factor effect from the regression. See also Pesaran (2007).

We consider a test for the null hypothesis of no unit root component against the alternative
of the existence of unit roots for model (1). Since all the innovations are homoskedastic, the
testing problem is given by

H0：r=0 vs. H1：r>0 (4)

where r=s2
v/s

2
e is the signal-to-noise ratio. Under H0, all rits become equal to zero and thus do

not have unit root components, unlike under H1.

2. A Simple Stationarity Test

Panel stationarity tests have already been proposed by Hadri (2000) and Shin and Snell
(2006) for cross-sectionally independent data, and we extend Hadriʼs test to the cross-
sectionally dependent case. Hadri (2000) showed that if there is no cross-sectional dependence
in a model, we can construct the LM test using the regression residuals of yit on zt in the same

way as KPSS (1992), and that the limiting distribution of the standardized LM test statistic is
standard normal under the null hypothesis. However, it can be shown that Hadriʼs (2000) test
depends on nuisance parameters even asymptotically if there exits cross-sectional dependence;
we then need to develop a stationarity test that takes into account cross-sectional dependence.

In order to eliminate the effect of the common factor from the test statistic, we make use
of the simple method proposed by Pesaran (2007), which develops panel unit root tests with
cross-sectional dependence. As in Pesaran (2007), we first take a cross-sectional average of the
model:

ȳ t=z'td̄+r̄ t+f tḡ+ē t, (5)

where ȳ t=N
-1Σ

N

i=1 yit, d̄=N
-1Σ

N

i=1 d i, r̄ t=N
-1Σ

N

i=1 rit, ḡ=N
-1Σ

N

i=1 g i, and ē t=N
-1Σ

N

i=1e it.

Since ḡ40 by assumption, we can solve equation (5) with respect to f t as

f t=
1

ḡ
( ȳ t,z'td̄,r̄ t,ē t).

By inserting this solution of f t into model (1), we obtain the following augmented regression

model:

yit=z'td
~
i+g

~
iȳ t+X it, (6)

where d
~
i=d i,g

~
id̄, g

~
i=g i/ḡ, and X it=rit,g

~
i r̄ t+e it,g

~
iē t. Based on (6), we propose to regress

yit on zt and ȳ t for each i, and construct the test statistic in the same way as Hadri (2000). That

is,
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ZA=
� N (ST,x)

z
, (7)

where ST=N-1Σ
N

i=1 STi with STi=(s2
eT

2)-1y'i MwL'LMwy i and

�
x=xm=

1

6
, z2

=z2
m=

1

45
when zt=z

m
t=1,

x=xt=
1

15
, z2

=z2
t=

11

6300
when zt=z

t
t=[1, t]'.

Note that STi can also be expressed as

STi=
1

s2
eT

26
T

t=1

(Swit)
2 where Swit=6

t

s=1

X̂ is

with X̂ it obtained for each i by regressing yit on wt=[z't, ȳ t]' for t=1, �, T.

From (7), we can see that ST is the average of the KPSS test statistic across i and ZA
corresponds to its normalized version. We call ZA the augmented KPSS test statistic.

3. An LM Test for Panel Stationarity

Although the augmented KPSS test is easy to implement, we do not know whether it has
an optimal property. Since the LM test is known to be a locally best invariant test under the
assumption of normality as shown by Tanaka (1996), we derive the LM test, and then, in the
later section, compare it with the augmented KPSS test.

Under Assumption 1, the log-likelihood function of y, denoted by l, is expressed as

l=const,
1

2
logH`H,

1

2
{y,(IN�Z)d}' `

-1{y,(IN�Z)d},

where `=Var (y)=r(s2
e IN�LL' )+A�IT with A=s2

fgg'+s2
e IN . The partial derivative of l

with respect to r is given by

�l

�r
=const,

1

2
tr r`-1

�`

�r �+
1

2
{y,(IN�Z)d}' `

-1
�`

�r
`

-1{y,(IN�Z)d}. (8)

Noting that

`HH0=A�IT and
�`

�r 	H0

=s2
e IN�LL', (9)

the maximum likelihood estimator (MLE) of d under H0 is given by

d̂=
(IN�Z' )`-1HH0 (IN�Z)�
-1

(IN�Z' )`
-1HH0 y

=[IN�(Z'Z)-1Z' ]y. (10)

Thus, the MLE of d under H0 is the same as the OLS estimator. By evaluating (8) under the

null hypothesis using (9) and (10), the LM test statistic is given by
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LM=
1

NT2 {y,(IN�Z)d̂}' (A
-1
�IT)(s

2
e IN�LL' )(A

-1
�IT){y,(IN�Z)d̂}

=
1

NT2y'(s
2
e A

-2
�Mz LL'Mz)y.

Then, the normalized version of the LM test statistic is given by

ZLM=
� N (LM,x)

z
, (11)

where x and z are the same as in ZA.

III. Limiting Distributions of the Test Statistics

In this section, we compare the augmented KPSS test with the LM test. Note that the LM
test is known to be a locally best invariant test under Assumption 1. Because there is no one-
to-one transformation between ZA and ZLM, the augmented KPSS test does not have local

optimality in finite samples. As such, we now focus on whether the KPSS test is asymptotically
locally optimal or not.

In order to investigate the asymptotic local optimality of the augmented KPSS test, we
compare it with the LM test statistic under the null hypothesis, under the local alternative and
under the fixed alternative. We first give the limiting distributions of the two test statistics
under the null hypothesis.

Theorem 1. Suppose that Assumption 1 holds. Under H0, as N and T approach infinity
simultaneously with N/T � 0, the augmented KPSS and LM test statistics have a limiting

standard normal distribution for both cases of zt=1 and zt=[1, t]'. That is, ZA, ZLM
(N, T)

�� N(0,

1).

Note that the rejection regions of both ZA and ZLM are the right-hand tails as in Hadriʼs

(2000) test. Theorem 1 shows that Pesaranʼs (2007) method works well to eliminate cross-
sectional dependence for testing the null hypothesis of stationarity. We also note that the
condition that N/T � 0 as N and T approach infinity, means that the tests are suitable for
panels where T is larger than N.

We now investigate the asymptotic property of the test statistics under the local alternative,
which is expressed as

Hl
1：r=

c2

� NT2 , where c is some constant.

Note that for a single time series analysis, the local alternative is given by r=c2/T2. Since the

sum of STi is normalized by � N as in ZA, the local alternative for panel stationarity tests

becomes r=c2/(� NT2).

Theorem 2. Suppose that Assumption 1 holds. Under Hl
1, as N and T approach infinity

simultaneously with N/T � 0, the augmented KPSS and LM test statistics have the same
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limiting distribution given by

ZA, ZLM
(N, T)

�� N(0, 1)+
c2

z
E �@

1

0
Fv
i(r)

2dr�,

where Fv
i(r)=�

r

0B
v
i(s)ds,�

r

0 z(s)'ds q�1
0 z(s)z(s)'ds�

-1

�
1
0 z(s)B

v
i(s)ds with Bv

i(r) being independent

Brownian motions, z(r)=1 and E [�
1
0 F

v
i(r)

2dr]/z=� 1/180 when zt=1, and z(r)=[1, r]' and

E [�
1
0 F

v
i(r)

2dr]/z=� 11/25200 when zt=[1, t]'.

This result implies that both the augmented KPSS and extended LM test statistics have the
same asymptotic local distribution. Since the LM test is locally best invariant, we can see that
the augmented KPSS test has the same asymptotic local optimality.

We can also deduce from Theorem 2 that both tests are more powerful when only a
constant is included in the regression than in the trending case, much like the univariate KPSS
test, because 1/90>11/12600.

We finally investigate the asymptotic property of the test statistics under the fixed
alternative H1. The following theorem gives the difference in the powers of the two tests when

the alternative is not local but far away from r=0.

Theorem 3. Suppose that Assumption 1 holds. Under H1, as N and T approach infinity
simultaneously with N/T � 0,

1

� NT2ZA
(N, T)

��
r

z
Evi�@

1

0
Gv

i(r)
2dr�, and

1

� NT2ZLM
p (N, T)
��

r

z
E �@

1

0
Fv
i(r)

2dr�,
where Gv

i(r)=�
r

0B
v
i(s)ds,�

r

0 z'2(s)ds(�
1
0 z2(s)z'2(s)ds)

-1�
1
0 z2(s)B

v
i(s)ds with z2(r)=[z'(r), Bv(r)]',

Bv(r) is a standard Brownian motion independent of Bv
i(r), and Evi denotes the expectation

operator with respect to Bv
i(r).

Note that since Gv
i(r) depends on Bv

i(r) and Bv(r), which are independent, we can see that

Evi[�
1
0G

v
i(r)

2dr] still depends on Bv(�) and is thus stochastic, while E [�
1
0 F

v
i(r)

2dr] is determin-

istic. This is an interesting result because when the asymptotic local powers are the same for
the two tests, it is often the case that they also have the same limiting distribution under the
fixed alternative. In our situation, the two tests have the same local asymptotic power from
Theorem 2 but the powers are different under the fixed alternative from Theorem 3. This
implies that although the two tests are locally optimal, they are not equivalent in a wide range
under the alternative.

Finally, we discuss the case where the variances are unknown. In this case, we can

estimate s2
e consistently under H0 by (NT)-1Σ

N

i=1Σ
T

t=1ê
2
it, where ê2

it is the residual from the

augmented regression. Then, we can still construct ZA in practical analysis. However, the

construction of the LM test requires the knowledge of not only s2
e but also s2

fgg' as in the

definition of A, which can be obtained by the method in Bai (2003). However, since ZA is much

simpler than ZLM, and ZA is asymptotically locally optimal, the augmented KPSS test would be

convenient and useful in practical analysis.
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IV. Finite Sample Property

In this section, we investigate how accurately does the asymptotic theory approximate the
finite sample behavior of the augmented KPSS and LM tests. We consider the following data
generating process for finite sample simulations:

yit=z'td i+rit+f tg i+e it, f tpi.i.d.N(0, 1), e itpi.i.d.N(0, 1),

rit=rit-1+vit, vitpi.i.d.N(0, r), � H0：r=0,
H1：r=0.0001, 0.001, 0.01.

where d i=a i for the constant case while d i=[a i, b i]' for the trend case with a i and b i being

drawn from independent U(0, 0.02), g i are drawn from ,1+U (0, 4) for the strong cross-

sectional correlation case (SCC) and from U (0, 0.02) for the weak cross-sectional correlation
case (WCC), and a i, b i, and g i are fixed throughout the iterations. Since our purpose is to see if

the asymptotic theory obtained in the previous section can approximate the finite sample
behavior, we assume that the variances are known throughout the simulations. We consider all
the pairs of N=10, 20, 30, 50, and 100, and T=50, 100, and 200. The level of significance is
0.05 and the number of replications is 10,000 in all experiments.

Table 1 shows the sizes of the tests. We can observe that the empirical size of the
augmented KPSS test is close to the nominal one for any value of T for the SCC case while it
is slightly undersized for the WCC case. On the other hand, the size of the LM test is close to
the nominal one irrespective of N and T but it is slightly undersized for the SCC case while it
is slightly oversized for the WCC case. Overall, the null distributions of the two tests seem to
be well approximated by a standard normal distribution as suggested by Theorem 1 in view of
the size of the tests.

Table 2 reports the powers of the tests. For given N and T, the upper, middle, and lower
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100

20

30

50

trend case

N

ZLM ZA ZLM

10

SCC WCC SCC WCCT

constant case

50 0.049 0.033 0.026 0.061 0.040 0.022 0.018 0.062

ZA ZLM ZA

TABLE 1. SIZE OF THE TESTS

ZLM ZA

0.036 0.066 0.048 0.026 0.026 0.063

100 0.053 0.034 0.033 0.067 0.045 0.026 0.024 0.063

0.043 0.030 0.023 0.058

50 0.052 0.041 0.032 0.065 0.040 0.029 0.023 0.060

200 0.057 0.036

0.021 0.056

200 0.058 0.045 0.041 0.067 0.047 0.031 0.029 0.060

100 0.057 0.042 0.040 0.067

100 0.056 0.043 0.037 0.060 0.047 0.032 0.027 0.057

50 0.053 0.041 0.034 0.060 0.041 0.031

0.046 0.034 0.060 0.041 0.036 0.022 0.058

200 0.054 0.040 0.037 0.059 0.046 0.032 0.029 0.057

0.063 0.048 0.036 0.033 0.055

100 0.055 0.044 0.036 0.058 0.049 0.039 0.032 0.061

50 0.051

0.040 0.029 0.056

50 0.061 0.047 0.030 0.058 0.046 0.038 0.019 0.052

200 0.056 0.046 0.042

200 0.060 0.040 0.038 0.052 0.064 0.040 0.033 0.055

100 0.064 0.046 0.036 0.056 0.060
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1.0001.0001.0001.0001.0001.0001.0001.000

0.0590.0710.2870.1810.2260.254

0.0570.0210.0330.0410.076

0.1060.0550.0590.087

100

100

0.7790.5890.6920.7130.9990.9880.9990.999

0.0990.039

0.0970.143

trend case

0.5880.4340.4620.520

0.0700.025

N

0.0280.049

0.8410.8700.888

0.0750.0380.0450.0620.1350.0880.0990.126

ZLM ZA ZLM

1.000

10

SCC WCC SCC WCC

0.193

T

constant case

0.086

1.0001.0001.0001.0001.0001.000

0.3210.2010.2310.2760.908

50

0.055 0.038 0.034 0.069 0.045 0.025 0.019 0.066

1.000

ZA ZLM ZA

TABLE 2. POWER OF THE TESTS

ZLM ZA

0.1400.0790.0870.1220.4620.3760.3920.434

200

1.0001.000

0.796 0.923 0.356 0.297 0.243 0.453

0.145 0.109 0.092 0.181 0.061 0.037 0.030

0.997

0.088

1.0001.0001.000

0.9570.9120.9260.9431.0001.0001.0001.000

0.2700.1710.1780.224

200

0.9730.9040.9290.9481.000

0.882 0.862

0.0410.0440.0750.0440.0560.066

50

50

1.0001.0001.0001.0001.000

0.4880.5060.5820.9850.9550.9620.970

0.1030.0430.0440.073

0.1140.0510.0810.0840.3730.2530.3180.342

0.0630.026

50

20

1.0001.0001.0001.0001.0001.0001.0001.000

0.670

0.1050.1210.141

100

0.9130.7870.8770.8781.0000.9981.0001.000

0.2380.1480.1780.202

0.0630.0250.0320.0420.0770.0390.0490.062

0.3430.3730.9800.9580.9710.975

0.0810.0440.0540.0660.151

0.4470.5260.5590.9940.9630.9880.989

0.0960.0390.0530.066

200

1.0001.0001.0001.0001.0001.0001.0001.000

0.4190.292

1.000 1.000 1.000200

0.832 0.803 0.780 0.827 0.237 0.179 0.158 0.223

100

0.646

1.0001.0001.000

0.1640.1080.1180.1430.6090.5300.5540.582

0.102

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000

1.0001.0001.0001.0001.0001.000

0.9940.9890.9910.9921.000

0.7290.759

0.0690.0320.0370.0530.1180.0720.081

0.0570.0230.0420.0540.0800.0440.0660.085

50

100

1.0001.000

1.0001.0001.0001.000

0.2550.1450.1640.2040.8000.695

1.0001.0001.000

0.1380.0610.1080.1240.5410.3910.4990.539

0.0710.0970.3880.2910.3030.341

200

1.0000.9960.9990.999

0.0660.0900.2000.1460.1740.218

100

0.9940.9600.9910.9911.000

0.8760.7810.8010.8341.0000.9990.9991.000

0.1220.063

0.6260.5010.5730.6291.0000.9991.0001.000

0.0850.050

0.0410.0540.067

50

30

1.0001.0001.0001.0001.0001.0001.0001.000



entries are the powers of the tests for r=0.0001, 0.001, and 0.01, respectively. From the table,
the powers of the tests become higher for larger r and T, although the tests have low power
when T is small. We can also observe that the powers become higher for larger N. For
example, the size of the augmented KPSS test for T=50, SCC, and the constant case is
relatively close to 0.05 for all the values of N while the empirical power when r=0.001 is
0.145, 0.202, 0.254, 0.342, and 0.539 for N=10, 20, 30, 50, and 100, respectively. Table 2
implies that the tests are consistent as proved by Theorem 3.

In order to see if the augmented KPSS test can be seen as the asymptotically locally best
test indicated by Theorem 2, we calculated the size adjusted power of the tests. Figure 1 draws
the power curves for selected cases. From the figure, we observe that the power of the
augmented KPSS test is almost the same as that of the LM test for the constant case. When a
linear trend is included, the augmented KPSS test is as powerful as the LM test when r is
small while the former is slightly less powerful than the latter for the trend case.

As a whole, the finite sample behavior of the augmented KPSS and LM tests is well
approximated by the asymptotic theory established in the previous section when N and T are of
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FIG. 1. FINITE SAMPLE POWER UNDER RESTRICTIVE ASSUMPTIONS
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moderate size.

V. Conclusion

In this paper we extended Hadriʼs (2000) test to correct for cross-sectional dependence à la
Pesaran (2007). We showed that the limiting null distribution of the augmented KPSS test is
the same as that of Hadriʼs test that assumes cross-sectional dependence. We also derived the
LM test under the assumption of cross-sectional dependence. Then, we compared these two
tests and found that the augmented KPSS test is asymptotically locally optimal but it is not
asymptotically equivalent to the LM test underthe fixed alternative.

Although the augmented KPSS test has a local optimal property, we do not know the
theoretical and finite sample property of the test when the idiosyncratic errors are serially
correlated. In addition, we assumed a one-dimensional common factor in this paper but it would
be worth considering multi-dimensional common factors. The modification of our test to such a
general case is our ongoing research.

APPENDIX

In this appendix, we denote some constants independent of N, T, and the subscripts i and t as C, C1,

C2, �. To save space, we give the outline of the proof of the theorems only for the case where zt=[1, t].

Details are available upon request. The proof for the level case with zt=1 proceeds in exactly the same

way, and is thus omitted. We also assume that s2e=1 in this appendix without loss of generality because

we know s2e under Assumption 1(i).

We first express ȳ t in matrix form. Since ȳ t=z'td̄+r̄ t+f tḡ+ē t, we have

ȳ=Zd̄+r̄+fḡ+h̄, (12)

where, for example, ȳ=[ ȳ'1, ȳ'2, �, ȳ'T]' and the other vectors and matrices are defined similarly. Since

ḡ40, we have f=(ȳ,Zd̄,r̄,h̄)C ḡ. By inserting this into (2), the model becomes

y i=Z(d i,g
~

id̄)+g
~

iȳ+(r i,g
~

ir̄)+(h i,g
~

ih̄), (13)

where g
~

i=g iC ḡ.

Let W=[z, d, ȳ]=[Z, ȳ] and W*
=WQ=[Z, ȳ* ], where ȳ*=ȳ,Zd̄=r̄+fḡ+h̄,

Q=�
I2

0

,d̄

1 �, D=�
Dt

0

0

� T � and Dt=�
� T

0

0

T� T �.
Because Mw=Mw*, STi in the augmented KPSS test statistic can be expressed in matrix form as

STi=
1

T2
y'i Mw* L'LM* y i.

Before proceeding with the proof of the theorems, we state two lemmas, which will be used in the

proof repeatedly.

Lemma A.1. Let vitpi.i.d.N(0, s2v) for i=1, �, N and t=1, �, T, rit=Σ
t

s=1vis, and r̄ t=N-1Σ
N

i=1rit .
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Then,

E [ris r it] = s2v min(s, t), (14)

E �r6
t

s=1

ris�
2

� =
s2v

6
t (t+1)(2t+1), (15)

E �r6
t

s=1

sris�
2

� =
s2v

30
t (t+1)(2t+1)(2t2+2t+1), (16)

E [ r̄ sr̄ t] =
s2v

N
min(s, t), (17)

E �r6
t

s=1

r̄ s�
2

� =
s2v

6N
t (t+1)(2t+1), (18)

E �r6
t

s=1

sr̄ s�
2

� =
s2v

30N
t (t+1)(2t+1)(2t2+2t+1), (19)

E �r6
t

s=1

ris� r6
T

t=1

rit�� =
s2v

6
t (t+1)(3T,t+1), (20)

E �r6
t

s=1

ris� r6
T

t=1

tr it�� =
s2v

24
t (t+1)(6T2+6T,t2,t+2), (21)

E �r6
T

t=1

rit� r6
T

t=1

tr it�� =
s2v

24
T (T+1)(5T2+5T+2), (22)

E[ris r it r iu r iv] = s4v (2st+su) for sCtCuCv. (23)

The next lemma gives the sufficient conditions on the equivalence of the sequential limit to the joint

limit. Notice that when the statistic SiT weakly converges to Si� as T � �, we can construct the

probability space on which both SiT and Si� exist, as discussed in Phillips and Moon (1999).

Lemma A.2. Let SiT and Si� be i. i. d. sequences across i (i=1, �, N) on the same probability space.

Assume that Si� does not depend on N, SiT is independent of Sj� for i4j, and SiT
T

�� Si� as T � �.

(i) If (a) E[SiT] � m16E[Si�]<� as both N and T approach infinity, and (b) supN, T E[S2iT]<�, then,

1

N6
N

i=1

SiT
p (N, T)
�� m1.

(ii) If (a) N-1/2Σ
N

i=1Si�
T

�� S as N � �, (b) SiT does not depend on N and supT E[S2+k1
iT ]<� for some

k1>0 or E[S2iT] � m26E[S2i�]<� as T � �, (c) supT E[S
2
iT]<� and E[S2+k2

i� ]<� for some k2>0,

then,

1

� N6
N

i=1

SiT

(N, T)

�� S.

Proof of Lemma A.2: (i) Since SiT is an i.i.d. sequence, we have for any arbitrary e>0,

Pr	
1

N6
N

i=1

SiT,E[SiT]	Be�C
1

e2N
E[(SiT,E[SiT])

2]C
1

e2N N, T

sup E[S2iT] � 0
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by condition (b) as both N and T approach infinity. Because E[SiT] � m1 by condition (a), we can see that

N-1Σ
N

i=1SiT
p (N, T)
�� m1.

(ii) Since SiT and Si� are i.i.d. sequences, we have for any arbitrary e>0,

Pr	
1

� N6
N

i=1

(SiT,Si�)	Be�C
1

e2
(E[S2iT]+E[S2i�],2E[SiTSi�]). (24)

If supT E[S2+k1
it ]<�, then we can replace the limit and the expectation by Theorem 4.5.2. of Chung

(1974), and thus, limT E[S2iT]=E[S2i�] under condition (b). On the other hand, by Hölderʼs inequality, we

have for any arbitrary 0<d<1,

E 
HSiT Si�H1+d�C(E[S2iT]) (1+d)/2 qE 
HSi�H2(1+d)/(1-d)��
(1-d)/2

.

The right-hand side of the above inequality with d=k2/(4+k2) is bounded above uniformly over T by

condition (c). This implies that supT E[HSiT Si�H1+k2/(4+k2)]<�, and again, we can replace the limit and the

expectation, so that limT E[SiT Si�]=E[S2i�] . As a result, the right-hand side of (24) approaches zero as

both N and T approach infinity. Combining this result with condition (a), we obtain (ii).�

Proof of Theorem 1

Because r i and r̄ disappear under the null hypothesis, STi can be expressed in matrix form under H0

as

STi =
1

T2
y'i Mw* L'L Mw* y i

=
1

T2
h'i Mw* L'L Mw* h i,

2g
~

i

T2
h̄' Mw* L'L Mw* h i+

g
~2

i

T2
h̄' Mw* L'L Mw* h̄

= ST1i,2g
~

iST2i+g
~2

i ST3i, say.

Let ST01i=T-2e'i Mz L'L Mze i. Since Shin and Snell (2006) showed that

1

� NΣ
N

i=1(ST
0
1i,x)

z

(N, T)

�� N(0, 1),

it is sufficient for us to prove that

1

� N6
N

i=1

(ST1i,ST01i)
p (N, T)
�� 0, (25)

1

� N6
N

i=1

ST2i
p (N, T)
�� 0, (26)

1

� N6
N

i=1

ST3i
p (N, T)
�� 0. (27)

Let J0i=T-1Lh i, [J1, J2]=T-1LW*D-1
= [T-1LZD-1

t , T
-3/2Lȳ* ], [J'3i, J'4i]'=D-1W*'h i= [(D

-1
t Z'h i)',

(T-1/2 ȳ*'h i)' ]', K=[[Kij]]=D-1W*' W*D-1, and K-1
=[[Kij]] for i, j=1, 2. Then, we have

1

T
LMw* h i =

1

T
Lh i,

1

T
LW*D-1(D-1W*'W*D-1)-1D-1W*' h i
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= (J0i,J1K
11J3i),{J2K

21J3i+(J1K
12
+J2K

22)J4i}. (28)

Similarly, by letting J̄ 0=N-1Σ
N

i=1 J0i, J̄ 3=N-1Σ
N

i=1 J3i, and J̄ 4=N-1Σ
N

i=1 J4i, we can see that

1

T
LMw* h̄ i=J̄ 0,(J1K

11
+J2K

21) J̄ 3,(J1K
12
+J2K

22) J̄ 4. (29)

We first prove (25). Using expression (28), ST1i can be decomposed into

ST1i = (J0i,J1K
11J3i)' (J0i,J1K

11J3i)

,2(J0i,J1K
11J3i)'{J2K

21J3i+(J1K
12
+J2K

22)J4i}

+{J2K
21J3i+(J1K

12
+J2K

22)J4i}'{J2K
21J3i+(J1K

12
+J2K

22)J4i}

= STa
1i+STb

1i+STc
1i, say. (30)

In order to evaluate each term, we use the following lemma.

Lemma A.3. Under the null hypothesis, as both N and T approach infinity simultaneously, (i) E +J0i+2CC,

1

� NΣ
N

i=1 +J0i+
2
=Op(� N ), and + J̄ 0 +=Opr

1

� N �; (ii) +J1+=O(1); (iii) E +J2+2C
C

T
and +J2+=Opr

1

� T �; (iv)

K11=O(1), K12=K'21=Opr
1

� T �, K22=Op(1), K
11
=K-1

11 +Opr
1

T �, K21=K'21=Opr
1

� T �, and K22=Op(1); (v)

E +J3i+2CC,
1

� NΣ
N

i=1+J3i+
2
=Op(� N ), and + J̄ 3+=Opr

1

� N �; (vi) E +J4i+2CC,
1

� NΣ
N

i=1+J4i+
2
=Op(� N ), and

J̄ 4=Opr
� T

N �; and (vii)
1

� NΣ
N

i=1+J0i+ +Jli+=Op(� N ) for l, m=3, 4 and
1

� NΣ
N

i=1+J3i+ +J4i+=Op(� N ).

Since ST01i=(J0i,J1K
-1
11 J3i)'(J0i,J1K

-1
11 J3i), we have using Lemma A.3,

	
1

� N6
N

i=1

(STa
1i,ST01i)	 =

1

� N6
N

i=1

+J1(K11,K-1
11 )J3i+2

+
2

� N6
N

i=1

+(J0i,J1K
-1
11 J3i)'{J1(K

11
,K-1

11 )J3i+

= Opr
� N

T2 �+Opr
� N

T �,

which converges to 0 in probability when both N and T approach infinity because N/T � 0 by

Assumption 1(iii).

In exactly the same manner, we have

1

� N6
N

i=1

+STb
1i+=Opr

� N

T � and
1

� N6
N

i=1

+STc
1i+=Opr

� N

T �.

Therefore, we obtained (25).

To prove (26) and (27), note that

	
1

� N6
N

i=1

ST2i	CC
� N

T2
h̄' Mw*L'L Mw* h̄ and 	

1

� N6
N

i=1

ST3i	CC
� N

T2
h̄' Mw* L'L Mw* h̄.

Then, it is sufficient to show that
� N

T2
h̄' Mw* L'L Mw* h̄

p (N, T)
�� 0, which can be proved by noting that
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D
1

T
LMw* h̄D=Opr

1

� N �, using expression (29) and Lemma A.3. We thus obtain the result for the
augmented KPSS test statistic.

To derive the limiting distribution of the LM test statistic, we first note that under H0,

(IN�Mz)y = (g�Mzf )+(IN�Mz)h

p N(0, A�Mz)=(A
1/2
�Mz)k,

where k=[k'1, �, k'N]' p N(0, IN�IT). Then, LM can be expressed as

LM=
1

NT2
k' (IN�MzL)(A

-1
�IT)(IN�L'Mz)k. (31)

We first investigate the matrix A. Note that A-1 can be expressed as

A-1
=(s2fgg'+IN)

-1
=rIN,

1

1+s2fg'g
s2fgg'�.

Since rk(gg')=1 and (gg')g=(g'g)g, the (N,1) eigenvalues of gg' are 0 and the non-zero eigenvalue is

g'g, for which the corresponding eigenvector is g. Then, there exists an N-N orthonormal matrix P such

that P'P=PP'=IN and P'gg'P=diag{g'g, 0, �, 0}6Λg. This implies that

P'A-1P=IN,
1

1+s2fg'g
s2fΛg=diag �

1

1+s2fg'g
, 1, �, 1 �6Λ

-1
A . (32)

By inserting (32) into (31), we obtain

LM =
1

NT2
k' (IN�MzL)(PP's

2
e A

-1PP'�IT)(IN�L' Mz)k

=
1

NT2
k
*' (IN�Mz L)(Λ

-1
A �IT)(IN�L' Mz)k

*

=
1

1+s2fg'g

1

NT2
k
*
1' Mz LL' Mzk

*
1+

1

NT2
6

N

i=2

k
*
i ' MzLL'Mzk

*
i ,

where k
*
=[k*1', �, k

*
N' ]'=(P�IT)k p N(0, IN�IT). Note that the first term converges to zero in

probability as both N and T approach infinity, while the second term has the same structure as ST01i. We

then obtain the result for the LM test statistic.■

Proof of Theorem 2

We first note that Lemma A.3 still holds under Hl
1 using the fact that ȳ *t=r̄ t+ḡf t+ē t . Let

Jr
0i=T-1Lr i, [J

r
3i', J

r
4i' ]'=D-1W*' r i=[(D

-1
t Z' r i)', (T

-1/2 ȳ*'r i)' ]', J̄ r
0=N-1Σ

N

i=1 J
r
0i, J̄ r

3=N-1Σ
N

i=1 J
r
3i, and

J̄ r
4=N-1Σ

N

i=1 J
r
4i. Under H

l
1, we have the following lemma.

Lemma A.4. Under the local alternative Hl
1, as both N and T approach infinity simultaneously, (i)

E +Jr
0i+2C

C

� N
,
1

� NΣ
N

i=1+J
r
0i+2=Op(1), and + J̄ r

0+=Opr
1

N3/4 �; (ii) E +Jr
3i+2C

C

� N
,
1

� NΣ
N

i=1+J
r
3i+2=Op(1), and

+ J̄ r
3+=Opr

1

N3/4 �; (iii) E +Jr
4i+2C

C

� NT
,
1

� NΣ
N

i=1+J
r
4i+2=Opr

1

T �, and + J̄ r
4+=Opr

1

N3/4� T �; and (iv)
1

� N Σ
N

i=1

+Jr
0i+ +Jr

3i+=Op(1),
1

� NΣ
N

i=1+J
r
0i+ +Jr

4i+=Opr
1

� T �, and
1

� NΣ
N

i=1+J
r
3i+ +Jr

4i+=Opr
1

� T �.
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Note that, under the local alternative,

1

T
LMw*y i=

1

T
LMw*h i,

g
~

i

T
LMw*h̄+

1

T
LMw*r i,

ḡ i

T
LMw*r̄.

Using Lemmas A.3 and A.4, it can be shown that

D
1

T
LMw*h̄D=Opr

1

� N � and D
1

T
LMw*r̄D=Opr

1

N3/4 �,

and thus, since Hg~ iHCC, we can see that both

D
1

� NT2
6

N

i=1

g
~

ih'i Mw*L'L M2*r̄D and D
1

� NT2
6

N

i=1

g
~

ir'i Mw* L'L M2* h̄+

are Op(N
-3/4). Therefore, the cross products between the terms related with h i and r̄, r i and h̄, and h̄ and r̄

converge to zero inprobability as both N and T approach infinity.

In addition, using expression (28) and Lemmas A.3 and A.4, it is observed that both

D
1

T
LMw*h i,(J0i,J1K

-1
11 J3i)D and D

1

T
LMw*r i,(J

r
0i,J1K

-1
11 J

r
3i)D

are Op(T
-1/2), which implies that we only have to consider (J0i,J1K

-1
11 J3i) and (J

r
0i,J1K

-1
11 J

r
3i) in the limit.

Moreover, the cross product between these two terms can be seen to be negligible. Therefore, we have

ZA =
1

z� N6
N

i=1
�(J0i,J1K

-1
11 J3i)' (J0i,J1K

-1
11 J3i),x�

+
1

zN6
N

i=1

� N (Jr
0i,J1K

-1
11 J

r
3i)' (J0i,J1K

-1
11 J

r
3i)+op(1).

The first term weakly converges to a standard normal distribution as proved in Theorem 1, whereas the

probability limit of the second term is obtained by applying Lemma A.2 (i). To see this, we first note that,

using Lemma A.1,

E 
� N (Jr
0i,J1K

-1
11 J

r
3i)' (J

r
0i,J1K

-1
11 J

r
3i)�=

11

12600
c2+Or

1

T2 �,

while the second moment is bounded above uniformly over N and T using (23). On the other hand, since

N1/4Tri [Tr]
T

�� cBv
i(r), we can see that

� N (Jr
0i,J1K

-1
11 J

r
3i)'(J0i,J1K

-1
11 J

r
3i)

T
�� c2@

1

0
Fv

i(r)
2dr,

whose moment is 11c2/12600 by direct calculation. Then, by Lemma A.2 (i), we have

1

z� N6
N

i=1

(Jr
0i,J1K

-1
11 J

r
3i)' (J

r
0i,J1K

-1
11 J

r
3i)

p (N, T)
��

c2

z
E �@

1

0
Fv

i(r)
2dr�=

11

12600

c2

z
.

When zt=1, the above probability limit can be shown to be c
2/(90z) in exactly the same manner.

In order to derive the limiting distribution of the LM test statistic, note that (IN�Mz)y=(IN�Mz)r+

(A1/2�Mz)k. Then, the denominator of the LM test statistic can be expressed as
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� N (LM,x) =
1

� NT2
{k' (A-2

�MzLL'Mz)k,x} (33)

+
1

� NT2
r' (A-2

�MzLL'Mz)r+
2

� NT2
k' (A-2

�MzLL'Mz)h.

The first term on the right-hand side of (33) converges in distribution to a standard normal distribution as

proved in Theorem 1.

Since A-2
=PΛ-2

A P', the second term on the right-hand side of (33) is expressed as

1

� NT2
r' (A-2

�MzLL'Mz)r=
1

� NT2
r' (P�IT)(Λ

-2
A �MzLL'Mz)(P�IT)r.

Note that (P�IT)r=(P�IT)(IN�L)v=(IN�L)v*=r*, where v*6(P�IT)vpN(0, r(IN�IT)) and r* 6

(IN�L)v*. Using this expression, we have

1

� NT2
r' (A-2

�MzLL'Mz)r=
1

� NT2
r*' (Λ-2

A �MzLL'Mz)r
*

=
1

(1+s2fg'g)

1

� NT2
r*1'MzLL'Mzr

*
1+

1

� NT2
6

N

i=2

r*i 'MzLL'Mzr
*
i .

It is not difficult to see that the first term on the right-hand side converges to zero as both N and T

approach infinity, while

1

� NT2
6

N

i=2

r*i 'MzLL'Mzr
*
i=
1

� N6
N

i=2

(Jr*
0i,J1K

-1
11 J

r*
3i)' (J

r*
0i,J1K

-1
11 J

r*
3i), (34)

where Jr*
0i and Jr*

3i are defined in the same way as J
r
0i and Jr

3i with rt being replaced by r*t . Since r
* has the

same distribution as r, (34) converges in probabilityto 11c2/12600 as proved for the case of ZA.

Similarly, we can see that the third term on the right-hand side of (33) converges to zero in

probability as proved for the case of ZA.■

Proof of Theorem 3

Lemma A.5. Under the fixed alternative H1, as both N and T approach infinity simultaneously, (i)

E +J0i+2CC,
1

� NΣ
N

i=1+J0i+
2
=Opp� N �, and + J̄ 0+=Opr

1

� N �; (ii) +J1+=O(1); (iii) E +J2+2CC
T

N
and +J2+=

Opr
� T

� N �; (iv)K11=O(1), K12=K'21=Opr
� T

� N �, and K22=Opr
T

N �; (v) E +J3i+2CC,
1

� NΣ
N

i=1+J3i+
2
=Opp� N �,

and + J̄ 3+=Opr
1

� N �; (vi) E +J4i+2CC
T

N
,
1

� NΣ
N

i=1+J4i+
2
=Opr

T

� N �, and J̄ 4=Opr
� T

N �; and (vii)
1

� N Σ
N

i=1

+J0i+ +J3i+=Op(� N ),
1

� NΣ
N

i=1+J0i+ +J4i+=Op(� T ), and
1

� NΣ
N

i=1+J3i+ +J4i+=Op(� T ).

Lemma A.6. Under the fixed alternative H1, as both N and T approach infinity simultaneously, (i)

E +Jr
0i+2CCT2,

1

� NΣ
N

i=1+J
r
0i+2=Op(� NT2), and + J̄ r

0+=Opr
T

� N �; (ii) E +Jr
3i+2CCT2,

1

� N Σ
N

i=1 +J
r
3i+2= Op

(� NT2), and + J̄ r
3+=Opr

T

� N �; (iii) E +Jr
4i+2CC

T3

N
,
1

� NΣ
N

i=1+J
r
4i+2=Op(� NT3), and + J̄ r

4+=Opr
T� T

N �; and
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(iv)
1

� NΣ
N

i=1+J
r
0i+ +Jr

3i+=Op(� NT2),
1

� NΣ
N

i=1+J
r
0i+ +Jr

4i+=Op(T
2
� T ) and

1

� NΣ
N

i=1+J
r
3i+ +Jr

4i+=Op(T
2
� T ).

Using Lemmas A.5 and A.6, it can be shown that

D
1

T2
LMw* h iD=Opr

1

T �, D
1

T2
LMw* h̄D=Opr

1

� NT �, D
1

T2
LMw*r̄D=Opr

1

� N �,

which implies that

1

� NT2
ZA=

1

z

1

N6
N

i=1

1

T4
r'i Mw*L'LMw*r i+op(1).

We decompose the first term on the right-hand side such that

1

N6
N

i=1

1

T2
LMw*r i=

1

T
Jr
0i,�J1,

� N

� T
J2� �

K11

� N

� T
K21

� N

� T
K12

N

T
K22 �

-1

�
1

T
Jr
3i

� N

T� T
Jr
4i�.

Using this expression and letting K=D-1
2 KD-1

2 , where D2=diag{1, � T /� N }, we have

1

N6
N

i=1

1

T4
r iMw*L'LMw*r i

=
1

N6
N

i=1

1

T2
Jr
0i' J

r
0i,2trxK-1

1

N6
N

i=1 �
1

T
Jr
3i

� N

T� T
Jr
4i� �1T Jr

0i' J1,
� N

T� T
Jr
0i' J2� � (35)

+trxK-1�
J1' J1

� N

� T
J2' J1

� N

� T
J1' J2

N

T
J2' J2 � K-1

1

N6
N

i=1 �
1

T
Jr
3i

� N

T� T
Jr
4i� �1T Jr

3i'
� N

T� T
Jr
4i' ��.

By applying Lemmas A.1 and A.2, it can be shown that the joint limits of the three terms on the right-

hand side of (36) are the same as the sequential limits, which are given by

1

N6
N

i=1

1

T2
Jr
0i' J

r
0i

p (N, T)
�� s2v Evi �@

1

0 r@
r

0
Bv

i(s)ds�
2

dr�, (36)

2trxK-1
1

N6
N

i=1 �
1

T
Jr
3i

� N

T� T
Jr
4i� �1T Jr

0i' J1
� N

T� T
Jr
0i' J2�� (37)

(N, T)

�� 2s
2
v Evi�r@

1

0
z2(t)' B

v
i(t)dt� r@

1

0
z2(t)z2(t)' dt�

-1

@
1

0 @
r

0
zs(s)ds@

r

0
Bv

i(t)dtdr�,

trxK-1�
J1' J1

� N

� T
J2' J1

� N

� T
J1' J2

N

T
J2' J2 � K-1

1

N6
N

i=1 �
1

T
Jr
3i

� N

T� T
Jr
4i� �1T Jr

3i'
� N

T� T
Jr
4i' ��
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(N, T)

�� s2v Evi �@
1

0
z2(t)' B

v
i(t)dt r@

1

0
z2(t)z2(t)' dt�

-1

-@
1

0 @
r

0
z2(s)ds@

r

0
z2(s)' dsdr r@

1

0
z2(t)z2(t)' dt�

-1

@
1

0
z2(t)' B

v
i(t)dt�. (38)

Using these results, we obtain the joint weak limit of ZA under H1 because s
2
v=s2er=r.

For the LM test statistic, we can see using expression (33) and Lemmas A.5 and A.6 that

1

� NT2
ZLM =

1

zNT4
r' (A-2

�MzLL'Mz)r+op(1)

=
1

zNT2
6

N

i=2

(Jr*
0i,J1K

-1
11 J

r*
3i )' (J

r*
0i,J1K

-1
11 J

r*
3i )+op(1)

p (N, T)
��

s2v

z
E �@

1

0
Fv*

i (r)
2dr�.

Because Fv*
i (r) has the same distribution as F

v
i(r), we obtain the theorem.■
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