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Abstract

This article evaluates the predictive performance of the market variance risk premium (VRP) in Japan on
the Nikkei 225 returns, credit spreads, and the composite index of coincident indicators. Different measures
such as expected and ex-post VRPs, which are constructed from model-free implied and realized variances,
are used to verify the predictability. Moreover, the VRP is estimated by the Bollerslev, Gibson and Zhou
(2011) method using Japanese macroeconomic variables to approximate the dynamics of the representative
investor’s relative risk aversion. The main empirical findings are: (i) the ex-post VRP, which is defined
as the difference between implied and ex-post realized variances, is useful in predicting the Nikkei 225
returns, whereas the expected VRPs, which are the differences between implied and current or model-
based realized variances, lose their predictive ability, (ii) the expected and ex-post VRPs provide significant
predictability of credit spreads and the composite index of coincident indicators, (iii) the VRP involving
Japanese macroeconomic variables contains plausible business cycle dynamics of the Japanese economy.
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1. Introduction

A well-known empirical fact that the variance or volatility of an underlying asset changes over time suggests
that market participants face uncertainty risk about return variance or volatility dynamics as well as that for
asset return fluctuations. The premium required for investors to accept the former risk is called the variance
risk premium (VRP), which can be defined as the difference between the risk neutral and physical expectations
of the forward asset return variation. The VRP is not directly observable, but the expectations in the VRP can
be estimated from model-free implied and realized variances which have grown dramatically in recent years.

The risk-neutral expectation can be approximated by variance swap rate or model-free option-implied mea-
sures such as the Chicago Board Options Exchange (CBOE) Volatility Index (VIX) and Volatility Index Japan
(VXJ). For a proxy of the physical expectation, there are some practical approaches using the model-free real-
ized variance. For instance, the current realized variance as a martingale measure, the ex-post realized variance
and the model-based forecast of realized variance are often used in practice. An alternative way to estimate
VRP related to macro-finance variables is proposed by Bollerslev, Gibson and Zhou (2011). In addition, we can
distinguish between “market-level” and “firm-level” VRPs or between “country-specific” and “global” VRPs.

In this way, many different measures of VRP are now considered.

Some previous studies have provided interesting empirical findings regarding the VRP. Many authors find
that the VRP is significantly positive, that is, risk-neutral expectation of the forward return variation is larger
than physical expectation. For instance, Carr and Wu (2009) find that the VRP defined as the difference between
the variance swap rate and the realized variance is strongly positive. This positive VRP means that an option
or volatility seller, who is exposed to unlimited loss potential, requires a premium to a buyer. Moreover, the
existence of the VRP also implies that speculators may desire short volatility futures positions.

The VRP is a forward-looking variable that may provide information about future asset returns. Bollerslev,
Tauchen and Zhou (2009) point out that the degree of predictability of stock returns using a market-level VRP
in the US stock market is strong at the quarterly return horizon. It also outperforms all other countries’ VRPs
in predicting local and foreign stock returns as shown in Londono (2010). Zhou (2010) finds that it provides a
significant predictability of stock returns, bond returns and credit spreads. For the firm-level VRP, Wang, Zhou
and Zhou (2011) show that it has explanatory power for credit spreads. Bollerslev, Marrone, Xu and Zhou
(2011) define the global VRP as the capitalization weighted-average of country-specific VRPs and show that it
has stronger predictability of aggregate stock returns than country-specific ones.

However, there is little evidence of the predictive ability of the VRP in the Japanese stock market for some
asset returns. For the predictability of the Nikkei 225 returns, Londono (2010) and Bollerslev et al. (2011)
suggest that the market-level VRP in the US stock market and the global VRP have predictive power, whereas
the market-level VRP in Japan has no predictive ability. Regarding the VRP in Japan, Sugihara (2010) finds

that the VRP is positive and examines the interdependency among market-level VRPs in the US, Europe, and



Japan. Oya (2011a) investigates the relationship between the market-level VRP in Japan and the composite
index of coincident indicators.

Following on from these previous studies, this article conducts a more inclusive empirical analysis of the
monthly market-level VRP in the Japanese stock market. First, we reexamine the predictive performance of the
VRP in Japan for the Nikkei 225 returns more carefully. We calculate the realized variance taking into account
microstructure noise using high-frequency data because the classical realized variance, which is the sum of the
squared high-frequency returns, is distorted by the microstructure noise induced by various market frictions
such as the bid-ask spread and non-synchronous trading. For estimating the model-free implied variance, we
rely on the squared VXJ obtained from the Center for the Study of Finance and Insurance at Osaka University
(CSFI). After that, we construct different kinds of VRPs in Japan such as expected and ex-post VRPs to examine
their predictive abilities based on multivariate forecasting regressions for the overlapping multiperiod returns
with control variables appropriate for the Japanese stock market. The empirical results show that the ex-post
VRP in Japan, which is defined as the difference between the implied and ex-post realized variances, is useful
in predicting the Nikkei 225 returns while the expected VRPs in Japan, which are the differences between the
implied and current or model-based realized variances, lose their predictive ability.

Second, this article investigates whether or not the VRP in Japan provide information about future credit
spreads across different investment grade ratings in Japan’s corporate bond market. Furthermore, we provide
empirical evidence on the predictive ability of the VRP in predicting a composite index of coincident indicators,
which is a measure of current economic conditions. We conclude that the expected and ex-post VRPs provide
significant predictability of credit spreads and the composite index of coincident indicators.

Third, Bollerslev et al. (2011) describe a direct relation between the VRP and a representative investor’'s
relative risk aversion under the square-root stochastic volatility model and the power utility function. This is
based on the theoretical result that the VRP can be expressed as the covariance between the pricing kerne
and quadratic variation in the underlying asset returns. Thus, we estimate an alternative VRP associated with
Japanese macroeconomic variables based on the GMM procedure to capture the dynamics of relative risk
aversion. The results suggest that the VRP or relative risk aversion involving Japanese macroeconomic variables
contains plausible business cycle dynamics of the Japanese economy.

The remainder of this article is organized as follows. Secierplains the model-free realized and implied
variances used to measure the VRP and construct four types of VRPs in Japan. Spitgents the data and
empirical results related to the dynamics of relative risk aversion estimated using Japanese macroeconomic
variables and the predictive ability of the VRPs on the Nikkei 225 returns, credit spreads, and the composite
index of coincident indicators. Sectidnconcludes. Appendix provides a detailed description of the realized

variance measure employed in this article.



2. Variance risk premium

VRP, which is defined as the difference between the risk-neutral and physical expectations of the short-term
future return variation, is not directly observable. In order to measure the VRP, the risk-neutral and physical

expectations are estimated from model-free implied and realized variances. In this section, we start with a
brief explanation about realized and implied variance. After that, we construct three types of Japanese VRP
measures to analyze whether or not their predictive power on the Nikkei 225 returns, credit spreads, and the
composite index of coincident indicators is significant, and present a method of constructing an alternate VRP

related to Japanese macroeconomic variables that captures the dynamics of investor’s risk aversion.

2.1. Realized and implied variances

Consider the following continuous-time stochastic volatility model for the logarithmic pyice

dpt = ,U/t()dt + \/thW].t’
dVi; = k(0 —Vy)dt + oy(-)dWay, )

wherelVy; andWs, are two Brownian motions that have a correlation coeffictent(dW,;, dWs;) = p, and
x andd are the rate at mean reversion for varialgand the long-term mean variance. The functipps) and
o4(+) satisfy the regularity conditions. When< 0, we have a leverage effect. Then the quadratic variation for

an asset return from timeto ¢ + 1 is defined as the integral &, over the[t, ¢ + 1] time interval, i.e.:

t+1
Vt,t+1 = / Vsds. 2
t

The realized variance is well known as an accurate estimate of the quadratic vaviatjqrif prices do
not include any noise. If we have high-frequency return c@a;gl/n Teya/ms - - -5 Tt+1), the realized variance

over the[t, ¢ + 1] time interval is computed as the sum of the squared returns, as follows:

RV = Z 7"t2+i/n, plim RV; 111 = Vi1, 3

=1
wheren is the number of observed returigV; . is usually found to provide more accurate variance estimates
than those derived from lower-frequency data.

However, it fails to satisfy the consistency condition when there is microstructure noise induced by various
market frictions such as the bid-ask bounces and non-synchronous trading (Campbell, Lo and MacKinlay 1997),
as often exists in real high-frequency data. The literature on market microstructure provides some insights from
early studies including Roll (1984), who derives a simple estimator of the bid-ask spread based on the negative
autocovariance of returns. In the literature on microstructure noise, Hansen and Lunde (2006) examine the

variance of microstructure noise as well as the correlation between the microstructure noise and frictionless



equilibrium price. Ubukata and Oya (2009) propose test statistics for the dependence of macrostructure noise
processes and capture the various dependence patterns.

There are some methods available for mitigating the effect of microstructure noise on realized variance
(Bandi and Russell 2008, 2011; Barndorff-Nielsen, Hansen, Lunde and Shephard 2008; Kunitomo and Sato
2008; Oya 2011b; Zhang, Mykland andtAahalia 2005, inter alia). In order to take into account microstruc-
ture noise, we employ a modified Tukey-Hanning kernel-based estimator by Barndorff-Nielsen et al. (2008)
with a finite sample optimal number of autocovariances by Bandi and Russell (2011), instead of the classical
realized variance in (3). The Appendix provides a detailed description of the kernel-based realized variance.

Model-free option-implied variance is employed for approximating the risk-neutral expectation of the for-
ward quadratic variation of an asset based on its option prices. It is model-free in the sense that it does not
rely on a particular option pricing model such as the Black-Scholes modeP; et 1, K) andCy(t + 1, K)
denote the European put and call option prices at tinvéh strike X' and maturityt + 1, andB(¢,t + 1) and
F(t,t + 1) denote risk-free zero-coupon bond and forward prices at tinvégh maturity ¢ + 1. As shown
by Demeterfi, Derman, Kamal and Zou (1999), Britten-Jones and Neuberger (2000) and Jian and Tian (2005,
2007), the model-free implied variance, term@d .1, is constructed from the portfolio of European options

and equal to the expectationdf;; conditional on time& information under the risk-neutral measipei.e.:

2 Ft+) Pt + 1, K) ©  Cy(t+ 1K)
I S K = K 4
Vi B(t,t+1) [/0 K2 + Flt1) K2 } ()
= EtQ [Vt,t—i—l}v (5)

whereK represents the strike price.

However, the number of available strike prices is finite in practice. Thus, many authors propose the implied
variance calculation methods to approximate the integrals on the right-hand side of (4) (See CBOE 2009,
Fukasawa, Ishida, Maghrebi, Oya, Ubukata and Yamazaki 2011 and Jiang and Tian 2007, for details). For
example, the VIX index in the US and VXJ have attracted much attention as a model-free option-implied
variance measure in each financial market. These indexes are usually measured as annualized 30-day squal
roots of quadratic variation in percentage points. This article depends on the squared VXJ computed following
the Fukasawa et al. (2011) approach, which is based on a formula induced by the model-free link introduced in

the context of pricing variance swaps in order to reduce approximation errors.

2.2. Measurement of variance risk premium

Variance risk premium at timg termedV RP;, can be defined as the difference between the expectations of

Vi 1+1 under the risk neutral measugeand the physical measurg i.e.:

VRP, = E?[Viii1] — EF Vi) (6)



EtQ [Vt,++1) can be replaced by the model-free option-implied variance where we use the squares of VXJ. For
a proxy of EF [V, 111], some practical approaches are possibly considered. For investigating the predictability
of the Nikkei 225 returns, credit spreads, and the composite index of coincident indicators, we construct three
types of monthly VRPs, which are distinguished by the methods to approximate the quaffiy)of; 1] as
explained below.

The first VRP involves using the lagged realized variance oveltthel, ¢] time period, that is:
VRPY = Vi1 — RVioy, )

which is based on the assumption tfaf, ; ; follows a martingale difference sequen€gRV; ;1] = RV;—1 .
The second VRP is to use ex-post realized variance estimates of the true quadratic Viiatiaver the

[t,t + 1] time interval.
VRP? = IViyi1 — RV 8)

RV, 141 is not observed at timeand soVRPt(2) is called the ex-post VRP. Itis not available for the one-period-
ahead forecast of some asset returns, but may be useful for their predictability over multiple periods.

The third VRP uses a one-period-ahead forecast of realized variance based on its time-series model. We
employ the heterogeneous interval autoregressive (HAR) model of Corsi (2009) to describe the dynamics of

realized variance. Then the third VRP is measured by:
VRP® = IV — RV, )

Wherel/ﬁ//t,tﬂ is the one-period-ahead forecast of realized variance from the HAR model.
The HAR model is well-known as a simple approximate long-memory model of daily realized variance.
LetIn(RV,-_1 ) denote the logarithmic realized variance at dagver the[r — 1, 7] time period. Then, the

HAR model consists of three realized variance components defined over different time periods as follows:

In(RVr—17) = ap+ a1t n(RVr—2,-1) + aaIn(RV 5 1) + azIn(RV2y ) + vr, (10)

vy ~ NID(0, 02),

whereRV,_» - is one-day lagged realized variance amd;‘ih_l = % Z?Zl RV _i 1. andRVT”_LQ’T_1 =

i Zfil RV, _;_1,—; are the average of the past realized volatilities corresponding to time horizons of five

trading days (one week) and 22 trading days (one month), respectively. We can estimate patgmeters,

as, ando? by applying simple linear regression. To obtain a time series of mommat(?’), we estimate the

HAR model using the past 350 daily realized variances up to atit@é/en the estimated paramete]%/,/ ti+1

is computed as the sum of one day to 22 days ahead forecasts. We repeat this procedure for each month.
An alternative way to estimate a time-varying VRP is proposed by Bollerslev et al. (2011) which is based

on the moment restrictions of; ;1. This VRP is more suitable for estimating a proxy of the representative
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investor’s relative risk aversion because the VRP is allowed to be related to a set of macroeconomic variables.

The risk neutral expression of (1) under the assumption of no arbitrage and the linearity of VRP is as follows:

dpt = r;ﬁkdt + V ‘/tdwl*b
dVi = wk*0F = V)dt + oy (-)dWs,, (11)

wherecorr (dW7,, dW3,) = p andr; is arisk-free rate. The risk neutral parameters are related to the parameters
in (1), k* = k+ A andf* = k0/(k + A) where)\ is a constant VRP parameter. To estimate a time-varying

VRP, Bollerslev et al. (2011) modify the risk neutral distribution for the variance in (11) as follows:
dVi = KL 0F = Vi)dt + oy(-)dWS,, 12)

wherex; = k + A\ andf; = k0/(x + A). A is the time-varying VRP parameter of interest which is defined
asVRPt(4) = —)\;. Moreover,); is allowed to depend on some macroeconomic variables using the following

augmented AR(1) model, i.e.:

J
At =a+b\_1+ Z ¢jMacro;—1,5, (13)
j=1

wheremacro;_1 ; is thej-th macroeconomic variable. Bollerslev and Zhou (2002, 2006) derive the expression
for the conditional moments among the physical and risk-neutral expectatidhg,of over thejt, ¢ + A] time

interval as follows:

E Virastoa] = aaB Vieral + Ba, (14)
E Viral = AaERVieral + Bia, (15)
where
an =e " Ba =0(1—an), Aa= (l(i e—i?ﬁgjni’
Bia =0[A —(1—aa)/k] — Aabf[A — (1 — e "2) /7).
For estimatingVRPt(4) = —)\, we employ a GMM estimator using the sample analogues of the following

moment conditions:

Vieai42a — oAV + Ba
(Vitat+2a — aaViiea + Ba)Vieay
Viten — AealVigen + Bia
Vetea — AnIVigen + Bia)Vieay
E[ft] _ 0, ft _ (Vt,t-l-A - At,AIV;fJ-&-A + Bt,A)VE,Aﬂg (16)
Vetea — A alVigpa + Bea)IVieay

Viira — A alVi g n + By a)macros_a




where the lagged realized variance, which is estimatég of ;, is used as an instrument for the moment in
(14) and (15), and the lagged squared realized variance, lagged implied variance, and other macroeconomic

variables are added as additional instruments for the cross-moment in (15).

3. Empirical analysis

3.1. Data and descriptive statistics

We analyze monthly market-level VRPs on the Nikkei 225 stock index which is the average of the prices of
225 representative stocks traded on the Tokyo Stock Exchange (TSE). The sample period is from February
1998 to July 2009 (138 months). To estimate actual market variation, we calculate realized variance using the
Nikkei NEEDS-TICK data. This dataset includes the Nikkei 225 stock index for every minute from 9:01 to
11.00 in the morning session and from 12:31 to 15:00 in the afternoon session, when the TSE is open, while
it is impossible to obtain high-frequency returns for 15:00-9:00 (overnight) and 11:00-12:30 (lunch-time). For
estimating market realized variation over a month, our realized variance is computed as the sum of daily kernel-
based realized variance within a month adding the sum of the squares of the overnight and lunch-time returns.
For estimating implied variance based on the Nikkei 225 options, we rely on the squared VXJ at the end of the
month while the volatility index usually refers to its square root in annualized percentage points provided by
CSFl on its Websité.

Table 1 summarizes the descriptive statistics of the monthly implied and realized variances in percentage
points (non-annualized). The mean of realized variance is much lower than that of implied variance. The values
of skewness and kurtosis indicate that the distributions of implied and realized variances are nonnormal. LB(10)
is the Ljung-Box statistic adjusted for heteroskedasticity following Diebold (1988) to test the null hypothesis
of no autocorrelations up to 10 lags. According to this statistic, the null hypothesis is rejected at the 1%
significance level. The first-order autocorrelation coefficigiy of realized variance equals8 which is the
same as that of implied variande)7. Figure 1 plots the monthly realized and implied variances. We find that
the realized variance is generally lower than the implied variance over the whole period and there are sudden
surges of these variance measures associated with economic and financial shocks such as the US housing ar
credit crisis in 2008.

Table 2 summarizes the descriptive statistics of mon\t/hR/Pt(l), VRPt(Q), VRPt(?’) andVRPt(4), defined
in Section 2.2. The means of the VRPs are positive which is consistent with the lower mean of realized variance
relative to implied variance. The positive VRP indicates that the risk neutral expectation is larger than the
physical one. In such a case, we interpret that the volatility or option sellers, which are exposed to an unlimited
loss potential, require a premium to the buyéerPt(Z), which is the ex-post VRP, has the largest standard

deviation. From the values of skewness and kurtosis, the distributiowm(l), VRPt(z) and VRPt(?’) are

http://www-csfi.sigmath.es.osaka-u.ac.jp/structure/activity/vxj.php



nonnormal while that oVRPt(4) is closer to normal. LB(10) on/RPt(l), VRPt(g) andVRPt(4) indicates that

the null hypothesis of no autocorrelation is rejected at the 1% significance level. In parﬁtBIBffl) has the
highest first-order autocorrelation coefficié7 of all and its autocorrelation coefficient decays more slowly
than the others. On the other hand, LB(10) %RPF) is so low that the null hypothesis is not rejected even

at the 10% significance level, where the first-order autocorrelation coeffici#nts the lowest of all. Figure

2 also plots the monthly VRPs. We can see ﬂlmet@) takes negative values more frequently relative to the
others and/RPt(4) has a high degree of its persistence. These results imply that the statistical property of VRP

varies substantially according to its specification.

3.2. Variance risk premium as a measure for relative risk aversion

The VRP is associated with the covariance between the pricing kernel and the quadratic variation as shown by
Bakshi and Kapadia (2003) and Carr and Wu (2006, 2009). Bollerslev et al. (2011) also describe a direct link to
VRP and relative risk aversion under the square-root stochastic volatility model corresponging to o/V;

in (1) and power utility function as follows:
dm
“MVi = Covy (Vi) = —wpoVie =M/ (po), (17)

where~; andm; represent a relative risk aversion and pricing kernel which is an investor’'s marginal utility
of wealth. The expression indicates that VRP is interpreted as an indicator of the representative investor's
risk aversion as well as the volatility uncertainty risk. Following the result that the relative risk aversion is
proportional toVRPt(4) because the leverage effects usually negative, we adopt it to capture dynamics of
relative risk aversion.

On the result of the GMM estimation fdvaPt(4) = — )¢, we examine the 30 kinds of Japanese macroeco-
nomic variables listed in Table 3 to specify the augmented AR(1) model in (13). If the non-stationarity hypoth-
esis for the time-series of the macroeconomic data is not rejected, we convert the non-stationary time series
into stationary series. Following Bollerslev et al. (2011), all of the macroeconomic variables are standardized
to mean zero and variance one. Furthermore, we employ the Newey and West (1987) heteroskedasticity and
autocorrelation consistent robust covariance matrix with Bartlett kernel and a lag length of 25.

Table 4 reports the estimation results. The estimate of the long-term mean level of the varanc %
is almost the same as the sample mean of the realized variaB¢#, reported in Table 1. The average VRP
is—a/(1—-b) = 1.27 and VRP has a degree of own persistelhee0.63. The realized variance has the biggest
contributionc; = —0.21 which has a positive impact on);. This means that a higher realized variance leads
to a higher VRP or relative risk aversion. The price-earnings (P/E) ratio, retail sale value and price-to-book
value ratio are significant at the 5% or 10% level. The test of overidentifying restrictions does not reject the

null hypothesis that the model is correctly specified at the 1% significance level.



In Figure 3, the solid and dashed lines repreSéRtPt(‘l) or relative risk aversion when we use macroeco-
nomic variables and only lagged realized variance, respectively. They tended to rise during the three macroe-
conomic recessions in the shaded areas. They rose sharply in the periods of the Asian currency crisis, dot-com
bubble burst, September 11 attacks, subprime mortgage crisis and Lehman shock. In March 1998 in Japan,
retail sales have decreased substantially by 15% over a one-year period, the highest ever recorded, because tf
consumption tax rate increased from 3% to 5% in the previous 12 months. The first sharp increase in the solid
line also captures this temporal macroeconomic shock. This result suggests that VRP or relative risk aversion

involving macroeconomic variables contains plausible business cycle dynamics of the Japanese economy.

3.3. Stock return predictability

The VRP as a forward-looking variable could possibly provide information about future asset returns. In this
subsection we provide empirical results for the predictive ability ofitieP"), VRP?) andV RP®) on the

Nikkei 225 returns. We do not examine the predictive ability’dt P(*) because the two-period-ahead realized
variance is required to implement the GMM procedure and thereforéffhé?t(4) may not be suitable to be
used as the predictor variable for the purpose of forecasting asset returns.

In previous studies that examine the predictive ability of some standard predictor variables in the Japanese
stock market, Aono and lwaisako (2010, 2011) find that (i) an interest rate loses its predictive ability in recent
samples from 1991 to 2009 because of its limited variability related to the Bank of Japan’s zero interest policy,
(i) one-month-ahead performances of the P/E ratio and dividend yield (DY) are very weak, (iii) however
the importance of lagged returns increases in recent samples. Taking into consideration that, we employ the
following multivariate forecasting regressions for overlapping multiperiod returns.

%ERHh = fBo(h) + Bl(h)VRPt(i) + Bo(h)Ry + PB3(h)(P/E)¢ + Ba(h)DY: + ugip, (18)
wherei = 1,2,3 and 3 (h) is the parameter of interest}iERHh represents excess market returns, which
is the difference between the Nikkei 225 returns and unsecured overnight call rates, scaled by the horizon
h=1,2,---,12 months.R, represents the lagged Nikkei 225 returB/ E); and DY; are the P/E ratio and
weighted average yield for TSE 1st section-listed stocks obtained from the TSE'’s website.

In the existing literature investigating the finite sample properties of regressions of stock returns on lagged
financial variables, Boudoukh, Richardson and Whitelaw (2008) show that the coefficient of determittation
including highly persistent predictor variables and overlapping multi-period returns, increases proportionally
to the return horizon even in no predictability. Thus, we should give attention to this issue regRfding
Furthermore, some previous studies indicate that standard statistical inference in the overlapping multiperiod
return regression on highly-persistent predictor variables is inappropriate. However, we can reasonably use the

Newey and West (1987) and Hodrick (1992) typstatistics in such cases. This is because Bollerslev et al.

2http:/iwww.tse.or.jp/english/market/topix/data/index.html



(2011) investigate their finite sample properties and show that they are reasonably well behaved while there are
some size distortions. Second, the monthly expected and ex-post VRPs have low persistence as shown in Table
2 and so we can partly avoid this problem in our empirical analysis. The Bollerslev et al. (2011) simulation
result also shows that the Newey-West bassthtistic is marginally more powerful than the Hodrick (1992)
typet-statistic. Thus, this article employs the Newey and West (188%tistic for the overlapping multiperiod
return regression.

Table 5 summarizes the estimation results in (18). {Fkatistics reported in parentheses are based on het-
eroskedasticity and serial correlation consistent standard errors proposed by Newey and WestFifi8@).
4 also plots predictability patterns in the coefficient parametefs) for VRPt(i), i = 1,2, 3 and adjustedz?
in percentage points where the x-axis represents thenth-horizon and the dashed and dotted lines represent
the 90% and 95 % confidence intervals of coefficient paramgigrs using the Newey-West standard errors.
TheVRPt(l) andVRPt(?’), which are the expected VRPs, have no statistical significance over the whole period.
On the other hand, thE?RPt(Q), which is the ex-post VRP, can significantly forecast the Nikkei 225 returns
over two-, seven-, and eight-month horizons. The positive slope coefﬁciem}?d?t(z) indicates that higher
values of the VRP lead to higher future returns. This result may reflect that when the market anticipates high
fluctuations in the return variance, there is a premium incorporated into prices, resulting in high future returns.
The adjusted?? for VRPt@) peaks around 6.2% at two months and gradually decreases toward zero as the
horizon is extendedR; has a significant positive slope coefficient, which implies momentum in stock returns.
(P/E); has a significant positive slope coefficient whil&; has no statistical significance over the whole
period. These empirical results provide new evidence that the ex-post VRP in Japan is useful in predicting the

Nikkei 225 returns while the expected VRPs lose their predictive ability.

3.4. Credit spreads predictability

The VRP could be one of influential determinants of credit spreads as shown by Zhou (2010) and Wang et al.
(2011). In this subsection, we provide empirical results for the predictive ability of the market-level VRP in
Japan on credit spreads. Credit spreads employed in our analysis are constructed from the difference betweelr
the average corporate bond yield of firms with investment grade rating, which is obtained from Japan Credit
Rating Agency on its Websiteand the Japanese government bond yield. The sample period is from August
2002 to July 2009 (84 months) corresponding to the average corporate bond yield data available. For inves-
tigating the relationship between VRP and credit spreads, we estimate the following overlapping multiperiod
forecasting regressions.

1

h

3We use a covariance matrix with a Bartlett kernel and a lag length determinkd-by((T' — h)/100)
size in the regression.
“http://www.jcr.co.jp/english/

ACS;miin = Bo(h) + Bu(W)VRPY + By(h)Arf s + Ba(h) Ry + iy, (19)

2/9 whereT is the sample
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wherei = 1, 2,3 andAC'S; 11 is difference in the credit spread with investment grade ratiaigd maturity

m overh = 1,2,---,12 months. We add\r ., ; and R;, which represent differences in the Japanese gov-
ernment bond yield in the corresponding maturityand the lagged Nikkei 225 returns, as standard predictor
variables.

Tables 6 and 7 summarize the estimation results for the credit spread of firms with an investment grade AAA
rating andm = 1, 3 year maturities. The AAA long-term rating is defined as firms having the highest level of
capacity of the obligor to honor its financial commitment on the obligation. Figures 5 plots the corresponding
predictability patterns in coefficient parametgigh) for VRPt(i), i = 1,2,3 and adjusted?? in percentage
points. In the cases of AAA long-term rating firms with one- and three-year maturities, all VRPs have no
statistical significance until around the quarterly return horizon, but they can significantly forecast the credit
spreads with longer horizons. The negative slope coefficient indicates that a higher VRP lowers the future
credit spread of the AAA long-term rating firms having extremely strong capacity. The adj@éigchdually
increases at longer monthly horizonsr ,,, , and R; have significant positive and negative slope coefficients
and theirt-values with one-year maturity are larger than those with three-year maturity.

Tables 8 and 9 represent the results for the A long-term rating firms, which have a high level of capacity
but are more susceptible to the negative effects of changes in economic conditions than higher-rated categories
Figure 6 also plots the predictability patterns and adjugtéd In contrast to the result for AAA long-term
rating firms, the significance of the VRPs extends to around the six-month horizon and the slope coefficient
of the VRP becomes insignificant at longer monthly horizons. The positive slope coefficients show that rising
VRP leads to larger future credit spreads for A rating firms having less capacity than AAA long-term rating
firms. AdjustedR? peaks at two months and gradually decreases toward zero after the six-month horizon. The
estimated coefficients akr ,,, ; andR; are significantly positive and negative, respectively, however they have
smallert-values than those for the VRP.

The predictability patterns for the AAA and A long-term rating firms are considerably different. For the
predictability of the credit spreads of AAA long-term rated firms, all VRPs have no statistical significance until
around the quarterly return horizon and have a negative slope coefficient. This may reflect that the AAA long-
term rated firms are less susceptible to the effect of fluctuations in the VRP than the A long-term rated firms,
and even when the VRP becomes high, market participants are likely to invest in AAA corporate bonds with
their lower yields because AAA firms are more secure. In the case of the A long-term rated firms, the VRP in
Japan provides a positive impact which is consistent with the intuitive idea that an increase in the uncertainty
risk in the stock market leads to higher corporate bond yields. These results provide evidence that the market
VRPs provide significant predictability of credit spreads and the direction of their effect depends on firms’

investment grades.
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3.5. Predictability of composite index of coincident indicators

Some previous studies examine the predictive abilities of market excess returns and their volatility on future
output growth. As the VRP can be regarded as a forward-looking variable, it is important to investigate whether
the VRP provides information about future output growth. However, GDP data are available mainly on only a
quarterly or annually basis. Instead of GDP, we examine the predictability of the composite index of coincident
indicators which is a measure of current economic conditions. A recent study by Oya (2011a) investigates the
relationship between the VRP and the composite index of coincident indicators, but they examine the ex-post
VRP only and do not use the realized variance constructed from high-frequency return data. We estimate the

following overlapping multi-period return regressions.

1

5 Clien = Bo(h) + 51 (M)VRP + Bo()SPRD, + s ch, (20)
wherei = 1,2,3, L1CI,), = %%ﬁch x 100 is the future change rate in the coincident composite index
over the nexth = 1,2,---,12 months scaled by the horizons af® R D, is the interest rate spread which

is the difference between newly issued 10-year government bond yields and the three-month Tokyo Interbank
Offered Rate.

Table 10 summarizes the estimation results and Figure 7 plots predictability patterns in the coefficient
parameterss; (h) for VRPt(i), i = 1,2,3 and adjusted?? in percentage points. The significance of all VRPs
extends to around the six-month horizon. The negative slope coefficient means that a rising VRP lowers the
future rate of change in the coincident composite index. This may imply that when the market anticipates
greater volatility in the forward return variance, the short-term interest rate may be higher, leading to lower
economic activity. Adjusted?? peaks at around 25 % at two months and gradually decreases toward zero.
SPRD; has a significant positive slope coefficient but VRP has largatues than that fof P R D;. Thus, the

result is suggestive of a significant relationship between VRP and the composite index of coincident indicators.

4. Conclusion

This article constructs different types of VRP for the Japanese stock market such as expected and ex-post
VRPs, which are estimated from model-free implied and realized variances. Their predictive performance on
the Nikkei 225 returns, credit spreads, and the composite index of coincident indicators are investigated based
on multivariate forecasting regressions for overlapping multi-period returns. We also estimate an additional
VRP involving Japanese macroeconomic variables in order to approximate the dynamics of the representative
investor’s relative risk aversion. The following are the main findings from our empirical analysis. First, the
ex-post VRP, which is defined as the difference between implied and ex-post realized variances, is useful in
predicting the Nikkei 225 returns while the expected VRPs, which are the differences between implied and

current or model-based realized variances, lose their predictive ability. Second, the expected and ex-post VRPS

12



provide significant predictability of credit spreads and the composite index of coincident indicators. Third, the
VRP constructed using Japanese macroeconomic variables contains business cycle dynamics of the Japane:s
economy.

Several extensions are possible. We do not consider the Hansen and Lunde (2005) adjustment method ol
jumps in returns in calculating realized variance. Some previous empirical studies point out the importance
of the Hansen and Lunde (2005) adjustment method, which scales the intraday realized variance using low-
frequency stock returns to take into account nontrading hours in the stock market. In the latter case, for instance,
Barndorff-Nielsen and Shephard (2004) propose a method for calculating realized volatility taking account of
jumps. Andersen, Bollerslev, and Diebold (2007) also show that the performance of forecasting future volatility
is improved by removing significant jumps from realized variance and adding significant jumps to the HAR
model as an explanatory variable. It would be interesting to investigate whether the predictive performance of

the VRP would also improve through these changes.

Appendix. Kernel-based realized variance

In this Appendix, we explain the flat-top modified Tukey-Hanning kernel estimator of quadratic vaiation
to take into account microstructure noise. Barndorff-Nielsen et al. (2008) propose the following unbiased flat-

top kernel type estimator (called realized kernel):

H

RK =0+ Y_ k(@) (v +7-n), (A1)

h=1

Wherey, = S0 1 Toi/mT et (ih) s Y—h = Soit Tevi/mTet(ishn)/m @nd the non-stochastiqz) € [0, 1] for
T = % is a weight function. The flat-top modified Tukey-Hanning kernel is equivalefioin the case
wherek(x) = {1 —cosr(1—z)2}/2. Barndorff-Nielsen et al. (2008) show the asymptotically optimal number
of autocovariance#! that minimizes the asymptotic variance. Meanwhile, Bandi and Russell (2011) provide
an alternative way to choose the number of autocovariances in finite samples. Heasde with 0 < 6 < 1.

The optimal value ob is defined in Theorem 3 of Bandi and Russell (2011) as follows:

§* = arg min [(biay RK))? + Var(RK)] (A.2)
0<6<1
where biagRK) = 0 and
I
Var(RK) = —QwTﬁlw + 403n(wTQQw) + 40$(wTng) + (20%]V)4(WTQ4W), (A.3)
n
withw = (L, 1L,k (%), -,k (5§;1))T andQ, a =1,--- .4 are ¢n + 1,6n + 1) square matrices.Q is an

integrated quarticity of a continuous-time stochastic volatility procégs£ ftt“ V2ds). Itis estimated by

IQ = 2y r;ﬂri In (realized quarticity) with low frequency returns such as 15-minute retuﬁmepresents
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the variance of microstructure noise which is estimated?py: ﬁ Yo Tt2—1+i/n at the highest frequencies.

Forj < én, the matrice$2; and()4 are defined as:
D[1,1] =2, Q[1+4,1+5]=4,
Q4(1,1] =1, W[2,1)= -1, Q41,2]=—-1, W[2,2]=2,
and zeros everywhere else. Fok n — 1, the matrice$2; and(23 are defined as:
Qo[1,1] =3, Q[l,2] = -4, 2,1]=-4, 20[2,2] =7,
Qg[j,2+j] =1, Qg[l, 1} =—1, 93[1,2] =2, 93[2, 1] =2, 93[2,2] = —4.5,
Wj+2,7+2=-3G+1)—-1, WR2+451+j]=2+1), W1+52+7=27+1),

W2+7,5]=-0G+1/2, Ql,2+j]=-(+1)/2 (A.5)

and zeros everywhere else. The estimdtdt with H = ¢*n for the modified Tukey-Hanning kernel is

employed in our empirical analysis.
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Table 1: Descriptive statistics of monthly implied and realized variances

IV}¢+1(%) R‘/}/fl,t(%)

Sample size 138 138
Mean 0.67 0.34
Std.dev. 0.77 0.31
Skewness 6.14 5.45
Kurtosis 52.03 43.80
Minimum 0.12 0.05
Maximum 7.68 2.99
LB(10) 59.40 49.59
p(1) 0.57 0.58

The sample period is from February 1998 to July 2009. All variables are reported in percentage points (non-annualized). LB(10) is the

Ljung-Box statistic adjusted for heteroskedasticity following Diebold (1988) to test the null hypothesis of no autocorrelatioh® up to
lags.
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Table 2: Descriptive statistics for monthly variance risk premiums

VRPM (%) VRPP (%) VRP® (%) VRPY

Sample size 138 138 138 138
Mean 0.33 0.33 0.42 1.27
Std.dev. 0.49 0.63 0.55 0.48
Skewness 5.86 5.64 5.20 1.38
Kurtosis 48.01 48.62 38.49 4.87
Minimum -0.07 -1.46 0.04 0.41
Maximum 4.69 5.99 5.01 3.05
LB(10) 48.09 14.56 56.89 185.75
p(1) 0.53 0.25 0.63 0.87
p(2) 0.30 0.10 0.38 0.73
p(3) 0.31 0.18 0.32 0.63
p(4) 0.27 0.14 0.27 0.57
o(5) 0.24 0.13 0.24 0.52
p(6) 0.11 0.05 0.14 0.45
o(7) 0.11 0.08 0.14 0.36
p(8) 0.12 0.04 0.13 0.29
0(9) 0.08 0.10 0.13 0.22
p(10) 0.05 0.01 0.09 0.15

The sample period is from February 1998 to July 2009. LB(10) is the Ljung-Box statistic adjusted for heteroskedasticity following
Diebold (1988) to test the null hypothesis of no autocorrelations up tags.
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Table 3: List of Japanese macroeconomic variables

Macroeconomic variables

O©CoOoO~NOOULDWNPE

WNDNNDNNNNNNNRPRPRPRPRPEPRPEPRPERPERPRPRRE
QWO ~NOUULRARWNPFPOOO~NOOOPMWNEO

Nikkei225 index realized variance

Nikkei225 implied variance

Trading volume for TSE 1st section-listed stocks

Market capitalization for TSE 1st section-listed stocks
Weighted average of yield for TSE 1st section-listed stocks
Price-to-book value ratio for TSE 1st section-listed stocks
Price-earnings (P/E) ratio for TSE 1st section-listed stocks
Unemployment rate

Effective job offer rate (Excluding new school graduates)
Index of non-scheduled worked hours (Manufacturing)
Index of regular workers employment

Consumer price index

Domestic corporate goods price index

Index of industrial production (Mining and manufacturing)
Index of capacity utilization ratio (Manufacturing)

Index of Producer’s Inventory Ratio

Index of producer’s shipment of durable consumer goods
Building floor area

Housing start number

Total floor area of new housing construction started
Machinery order

Business expenditures for new plant and equipment at constant prices (All industries)

Large industrial power consumption
Retail sales value

Wholesale sales value

Operating profits (All industries)

Index of sales in small and medium sized enterprises (Manufacturing)

Consumer confidence index
Interest rate spread
Money stock (M2)
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Table 4: GMM estimation result for estimatiﬂgRPt(4)

Estimates Std. error ¢t-value

K 0.64 0.10 6.51
0(%) 0.31 0.05 6.45
a -0.50 0.12 -4.21

b 0.61 0.09 6.97
c1 Realized variance -0.21 0.02 -12.30
co P/E ratio -0.10 0.04 -2.16
c3 Retail sales value 0.13 0.07 2.00
¢4 Price-to-book value ratio -0.07 0.04 -1.75
Test of overidentifying restrictiong{values) 0.70 (0.94)

All of the macroeconomic variables are standardized to mean zero and variance one. For ensuring stationarity of macroeconomic
variables, we use the level of P/E ratio, the logarithmic difference for the past twelve months of retail sales value, and the difference for
the past month of price-to-book value ratio, respectively. The Newey-West weighting matrix with a Bartlett kernel lag length set to 25
is employed in the estimation.
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Figure 1: Plots of implied and realized variances

— 1V, %,
R

iR

o TR RSN L T
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

28



Figure 2: Plots of monthly VRPs
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Figure 3: Plots o\VRPt(4) as a proxy of relative risk aversion
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Figure 4: Coefficient parameters fb’rRRt(i) and adjusted?? on stock return predictability
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The dashed and dotted lines represent the 90 % and 95 % confidence intervals of the coefficient parameters.

31



Figure 5:

(a) coefficient estimates

Coefficient parameters fb’rRPt(i) and adj.R? on credit spreads with AAA rating
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The dashed and dotted lines represent the 90% and 95% confidence intervals of the coefficient parameters.

32



Figure 6: Coefficient parameters fUrRPt(i) and adj.R? on credit spreads with A rating
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The dashed and dotted lines represent the 90% and 95% confidence intervals of the coefficient parameters.
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Figure 7: Coefficient parameters fb’rRPt(i) and adj.R? on composite index of coincident indicators
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The dashed and dotted lines represent the 90% and 95% confidence intervals of the coefficient parameters.
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