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1. Introduction

A well-known empirical fact that the variance or volatility of an underlying asset changes over time suggests

that market participants face uncertainty risk about return variance or volatility dynamics as well as that for

asset return fluctuations. The premium required for investors to accept the former risk is called the variance

risk premium (VRP), which can be defined as the difference between the risk neutral and physical expectations

of the forward asset return variation. The VRP is not directly observable, but the expectations in the VRP can

be estimated from model-free implied and realized variances which have grown dramatically in recent years.

The risk-neutral expectation can be approximated by variance swap rate or model-free option-implied mea-

sures such as the Chicago Board Options Exchange (CBOE) Volatility Index (VIX) and Volatility Index Japan

(VXJ). For a proxy of the physical expectation, there are some practical approaches using the model-free real-

ized variance. For instance, the current realized variance as a martingale measure, the ex-post realized variance,

and the model-based forecast of realized variance are often used in practice. An alternative way to estimate

VRP related to macro-finance variables is proposed by Bollerslev, Gibson and Zhou (2011). In addition, we can

distinguish between “market-level” and “firm-level” VRPs or between “country-specific” and “global” VRPs.

In this way, many different measures of VRP are now considered.

Some previous studies have provided interesting empirical findings regarding the VRP. Many authors find

that the VRP is significantly positive, that is, risk-neutral expectation of the forward return variation is larger

than physical expectation. For instance, Carr and Wu (2009) find that the VRP defined as the difference between

the variance swap rate and the realized variance is strongly positive. This positive VRP means that an option

or volatility seller, who is exposed to unlimited loss potential, requires a premium to a buyer. Moreover, the

existence of the VRP also implies that speculators may desire short volatility futures positions.

The VRP is a forward-looking variable that may provide information about future asset returns. Bollerslev,

Tauchen and Zhou (2009) point out that the degree of predictability of stock returns using a market-level VRP

in the US stock market is strong at the quarterly return horizon. It also outperforms all other countries’ VRPs

in predicting local and foreign stock returns as shown in Londono (2010). Zhou (2010) finds that it provides a

significant predictability of stock returns, bond returns and credit spreads. For the firm-level VRP, Wang, Zhou

and Zhou (2011) show that it has explanatory power for credit spreads. Bollerslev, Marrone, Xu and Zhou

(2011) define the global VRP as the capitalization weighted-average of country-specific VRPs and show that it

has stronger predictability of aggregate stock returns than country-specific ones.

However, there is little evidence of the predictive ability of the VRP in the Japanese stock market for some

asset returns. For the predictability of the Nikkei 225 returns, Londono (2010) and Bollerslev et al. (2011)

suggest that the market-level VRP in the US stock market and the global VRP have predictive power, whereas

the market-level VRP in Japan has no predictive ability. Regarding the VRP in Japan, Sugihara (2010) finds

that the VRP is positive and examines the interdependency among market-level VRPs in the US, Europe, and
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Japan. Oya (2011a) investigates the relationship between the market-level VRP in Japan and the composite

index of coincident indicators.

Following on from these previous studies, this article conducts a more inclusive empirical analysis of the

monthly market-level VRP in the Japanese stock market. First, we reexamine the predictive performance of the

VRP in Japan for the Nikkei 225 returns more carefully. We calculate the realized variance taking into account

microstructure noise using high-frequency data because the classical realized variance, which is the sum of the

squared high-frequency returns, is distorted by the microstructure noise induced by various market frictions

such as the bid-ask spread and non-synchronous trading. For estimating the model-free implied variance, we

rely on the squared VXJ obtained from the Center for the Study of Finance and Insurance at Osaka University

(CSFI). After that, we construct different kinds of VRPs in Japan such as expected and ex-post VRPs to examine

their predictive abilities based on multivariate forecasting regressions for the overlapping multiperiod returns

with control variables appropriate for the Japanese stock market. The empirical results show that the ex-post

VRP in Japan, which is defined as the difference between the implied and ex-post realized variances, is useful

in predicting the Nikkei 225 returns while the expected VRPs in Japan, which are the differences between the

implied and current or model-based realized variances, lose their predictive ability.

Second, this article investigates whether or not the VRP in Japan provide information about future credit

spreads across different investment grade ratings in Japan’s corporate bond market. Furthermore, we provide

empirical evidence on the predictive ability of the VRP in predicting a composite index of coincident indicators,

which is a measure of current economic conditions. We conclude that the expected and ex-post VRPs provide

significant predictability of credit spreads and the composite index of coincident indicators.

Third, Bollerslev et al. (2011) describe a direct relation between the VRP and a representative investor’s

relative risk aversion under the square-root stochastic volatility model and the power utility function. This is

based on the theoretical result that the VRP can be expressed as the covariance between the pricing kernel

and quadratic variation in the underlying asset returns. Thus, we estimate an alternative VRP associated with

Japanese macroeconomic variables based on the GMM procedure to capture the dynamics of relative risk

aversion. The results suggest that the VRP or relative risk aversion involving Japanese macroeconomic variables

contains plausible business cycle dynamics of the Japanese economy.

The remainder of this article is organized as follows. Section2 explains the model-free realized and implied

variances used to measure the VRP and construct four types of VRPs in Japan. Section3 presents the data and

empirical results related to the dynamics of relative risk aversion estimated using Japanese macroeconomic

variables and the predictive ability of the VRPs on the Nikkei 225 returns, credit spreads, and the composite

index of coincident indicators. Section4 concludes. Appendix provides a detailed description of the realized

variance measure employed in this article.
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2. Variance risk premium

VRP, which is defined as the difference between the risk-neutral and physical expectations of the short-term

future return variation, is not directly observable. In order to measure the VRP, the risk-neutral and physical

expectations are estimated from model-free implied and realized variances. In this section, we start with a

brief explanation about realized and implied variance. After that, we construct three types of Japanese VRP

measures to analyze whether or not their predictive power on the Nikkei 225 returns, credit spreads, and the

composite index of coincident indicators is significant, and present a method of constructing an alternate VRP

related to Japanese macroeconomic variables that captures the dynamics of investor’s risk aversion.

2.1. Realized and implied variances

Consider the following continuous-time stochastic volatility model for the logarithmic pricept:

dpt = µt(·)dt +
√

VtdW1t,

dVt = κ(θ − Vt)dt + σt(·)dW2t, (1)

whereW1t andW2t are two Brownian motions that have a correlation coefficientcorr(dW1t, dW2t) = ρ, and

κ andθ are the rate at mean reversion for varianceVt and the long-term mean variance. The functionsµt(·) and

σt(·) satisfy the regularity conditions. Whenρ < 0, we have a leverage effect. Then the quadratic variation for

an asset return from timet to t + 1 is defined as the integral ofVs over the[t, t + 1] time interval, i.e.:

Vt,t+1 =
∫ t+1

t
Vsds. (2)

The realized variance is well known as an accurate estimate of the quadratic variationVt,t+1 if prices do

not include any noise. If we have high-frequency return data
(
rt+1/n rt+2/n, . . . , rt+1), the realized variance

over the[t, t + 1] time interval is computed as the sum of the squared returns, as follows:

RVt,t+1 =
n∑

i=1

r2
t+i/n, plim

n→∞
RVt,t+1 = Vt,t+1, (3)

wheren is the number of observed returns.RVt,t+1 is usually found to provide more accurate variance estimates

than those derived from lower-frequency data.

However, it fails to satisfy the consistency condition when there is microstructure noise induced by various

market frictions such as the bid-ask bounces and non-synchronous trading (Campbell, Lo and MacKinlay 1997),

as often exists in real high-frequency data. The literature on market microstructure provides some insights from

early studies including Roll (1984), who derives a simple estimator of the bid-ask spread based on the negative

autocovariance of returns. In the literature on microstructure noise, Hansen and Lunde (2006) examine the

variance of microstructure noise as well as the correlation between the microstructure noise and frictionless
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equilibrium price. Ubukata and Oya (2009) propose test statistics for the dependence of macrostructure noise

processes and capture the various dependence patterns.

There are some methods available for mitigating the effect of microstructure noise on realized variance

(Bandi and Russell 2008, 2011; Barndorff-Nielsen, Hansen, Lunde and Shephard 2008; Kunitomo and Sato

2008; Oya 2011b; Zhang, Mykland and Aı̈t-Sahalia 2005, inter alia). In order to take into account microstruc-

ture noise, we employ a modified Tukey-Hanning kernel-based estimator by Barndorff-Nielsen et al. (2008)

with a finite sample optimal number of autocovariances by Bandi and Russell (2011), instead of the classical

realized variance in (3). The Appendix provides a detailed description of the kernel-based realized variance.

Model-free option-implied variance is employed for approximating the risk-neutral expectation of the for-

ward quadratic variation of an asset based on its option prices. It is model-free in the sense that it does not

rely on a particular option pricing model such as the Black-Scholes model. LetPt(t + 1,K) andCt(t + 1,K)

denote the European put and call option prices at timet with strikeK and maturityt + 1, andB(t, t + 1) and

F (t, t + 1) denote risk-free zero-coupon bond and forward prices at timet with maturity t + 1. As shown

by Demeterfi, Derman, Kamal and Zou (1999), Britten-Jones and Neuberger (2000) and Jian and Tian (2005,

2007), the model-free implied variance, termedIVt,t+1, is constructed from the portfolio of European options

and equal to the expectation ofVt,t+1 conditional on timet information under the risk-neutral measureQ, i.e.:

IVt,t+1 =
2

B(t, t + 1)

[ ∫ F (t,t+1)

0

Pt

(
t + 1,K

)

K2
dK +

∫ ∞

F (t,t+1)

Ct

(
t + 1,K

)

K2
dK

]
(4)

= EQ
t [Vt,t+1], (5)

whereK represents the strike price.

However, the number of available strike prices is finite in practice. Thus, many authors propose the implied

variance calculation methods to approximate the integrals on the right-hand side of (4) (See CBOE 2009,

Fukasawa, Ishida, Maghrebi, Oya, Ubukata and Yamazaki 2011 and Jiang and Tian 2007, for details). For

example, the VIX index in the US and VXJ have attracted much attention as a model-free option-implied

variance measure in each financial market. These indexes are usually measured as annualized 30-day square

roots of quadratic variation in percentage points. This article depends on the squared VXJ computed following

the Fukasawa et al. (2011) approach, which is based on a formula induced by the model-free link introduced in

the context of pricing variance swaps in order to reduce approximation errors.

2.2. Measurement of variance risk premium

Variance risk premium at timet, termedV RPt, can be defined as the difference between the expectations of

Vt,t+1 under the risk neutral measureQ and the physical measureP , i.e.:

V RPt ≡ EQ
t [Vt,t+1]− EP

t [Vt,t+1]. (6)
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EQ
t [Vt,t+1] can be replaced by the model-free option-implied variance where we use the squares of VXJ. For

a proxy ofEP
t [Vt,t+1], some practical approaches are possibly considered. For investigating the predictability

of the Nikkei 225 returns, credit spreads, and the composite index of coincident indicators, we construct three

types of monthly VRPs, which are distinguished by the methods to approximate the quantity ofEP
t [Vt,t+1] as

explained below.

The first VRP involves using the lagged realized variance over the[t− 1, t] time period, that is:

V RP
(1)
t = IVt,t+1 −RVt−1,t, (7)

which is based on the assumption thatRVt,t+1 follows a martingale difference sequenceEt[RVt,t+1] = RVt−1,t.

The second VRP is to use ex-post realized variance estimates of the true quadratic variationVt,t+1 over the

[t, t + 1] time interval.

V RP
(2)
t = IVt,t+1 −RVt,t+1. (8)

RVt,t+1 is not observed at timet and soV RP
(2)
t is called the ex-post VRP. It is not available for the one-period-

ahead forecast of some asset returns, but may be useful for their predictability over multiple periods.

The third VRP uses a one-period-ahead forecast of realized variance based on its time-series model. We

employ the heterogeneous interval autoregressive (HAR) model of Corsi (2009) to describe the dynamics of

realized variance. Then the third VRP is measured by:

V RP
(3)
t = IVt,t+1 − R̃V t,t+1, (9)

whereR̃V t,t+1 is the one-period-ahead forecast of realized variance from the HAR model.

The HAR model is well-known as a simple approximate long-memory model of daily realized variance.

Let ln(RVτ−1,τ ) denote the logarithmic realized variance at dayτ over the[τ − 1, τ ] time period. Then, the

HAR model consists of three realized variance components defined over different time periods as follows:

ln(RVτ−1,τ ) = α0 + α1 ln(RVτ−2,τ−1) + α2 ln(RV w
τ−2,τ−1) + α3 ln(RV m

τ−2,τ−1) + vτ , (10)

vτ ∼ NID(0, σ2
v),

whereRVτ−2,τ−1 is one-day lagged realized variance andRV w
τ−2,τ−1 = 1

5

∑5
i=1 RVτ−i−1,τ−i andRV m

τ−2,τ−1 =
1
22

∑22
i=1 RVτ−i−1,τ−i are the average of the past realized volatilities corresponding to time horizons of five

trading days (one week) and 22 trading days (one month), respectively. We can estimate parametersα0, α1, α2,

α3, andσ2
v by applying simple linear regression. To obtain a time series of monthlyV RP

(3)
t , we estimate the

HAR model using the past 350 daily realized variances up to a timet. Given the estimated parameters,̃RV t,t+1

is computed as the sum of one day to 22 days ahead forecasts. We repeat this procedure for each month.

An alternative way to estimate a time-varying VRP is proposed by Bollerslev et al. (2011) which is based

on the moment restrictions ofVt,t+1. This VRP is more suitable for estimating a proxy of the representative
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investor’s relative risk aversion because the VRP is allowed to be related to a set of macroeconomic variables.

The risk neutral expression of (1) under the assumption of no arbitrage and the linearity of VRP is as follows:

dpt = r∗t dt +
√

VtdW ∗
1t,

dVt = κ∗(θ∗ − Vt)dt + σt(·)dW ∗
2t, (11)

wherecorr(dW ∗
1t, dW ∗

2t) = ρ andr∗t is a risk-free rate. The risk neutral parameters are related to the parameters

in (1), κ∗ = κ + λ andθ∗ = κθ/(κ + λ) whereλ is a constant VRP parameter. To estimate a time-varying

VRP, Bollerslev et al. (2011) modify the risk neutral distribution for the variance in (11) as follows:

dVt = κ∗t (θ
∗
t − Vt)dt + σt(·)dW ∗

2t, (12)

whereκ∗t = κ + λt andθ∗t = κθ/(κ + λt). λt is the time-varying VRP parameter of interest which is defined

asV RP
(4)
t = −λt. Moreover,λt is allowed to depend on some macroeconomic variables using the following

augmented AR(1) model, i.e.:

λt = a + bλt−1 +
J∑

j=1

cjmacrot−1,j , (13)

wheremacrot−1,j is thej-th macroeconomic variable. Bollerslev and Zhou (2002, 2006) derive the expression

for the conditional moments among the physical and risk-neutral expectations ofVt,t+∆ over the[t, t+∆] time

interval as follows:

EP
t [Vt+∆,t+2∆] = α∆EP

t [Vt,t+∆] + β∆, (14)

EP
t [Vt,t+∆] = At,∆EQ

t [Vt,t+∆] + Bt,∆, (15)

where

α∆ = e−κ∆, β∆ = θ(1− α∆), At,∆ =
(1− α∆)/κ

(1− e−κ∗t ∆)/κ∗t
,

Bt,∆ = θ[∆− (1− α∆)/κ]−At,∆θ∗t [∆− (1− e−κ∗t ∆)/κ∗t ].

For estimatingV RP
(4)
t = −λt, we employ a GMM estimator using the sample analogues of the following

moment conditions:

E[ft] = 0, ft =




Vt+∆,t+2∆ − α∆Vt,t+∆ + β∆

(Vt+∆,t+2∆ − α∆Vt,t+∆ + β∆)Vt−∆,t

Vt,t+∆ −At,∆IVt,t+∆ + Bt,∆

(Vt,t+∆ −At,∆IVt,t+∆ + Bt,∆)Vt−∆,t

(Vt,t+∆ −At,∆IVt,t+∆ + Bt,∆)V2
t−∆,t

(Vt,t+∆ −At,∆IVt,t+∆ + Bt,∆)IVt−∆,t
...

(Vt,t+∆ −At,∆IVt,t+∆ + Bt,∆)macrot−∆,j
...




(16)
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where the lagged realized variance, which is estimates ofVt−∆,t, is used as an instrument for the moment in

(14) and (15), and the lagged squared realized variance, lagged implied variance, and other macroeconomic

variables are added as additional instruments for the cross-moment in (15).

3. Empirical analysis

3.1. Data and descriptive statistics

We analyze monthly market-level VRPs on the Nikkei 225 stock index which is the average of the prices of

225 representative stocks traded on the Tokyo Stock Exchange (TSE). The sample period is from February

1998 to July 2009 (138 months). To estimate actual market variation, we calculate realized variance using the

Nikkei NEEDS-TICK data. This dataset includes the Nikkei 225 stock index for every minute from 9:01 to

11:00 in the morning session and from 12:31 to 15:00 in the afternoon session, when the TSE is open, while

it is impossible to obtain high-frequency returns for 15:00-9:00 (overnight) and 11:00-12:30 (lunch-time). For

estimating market realized variation over a month, our realized variance is computed as the sum of daily kernel-

based realized variance within a month adding the sum of the squares of the overnight and lunch-time returns.

For estimating implied variance based on the Nikkei 225 options, we rely on the squared VXJ at the end of the

month while the volatility index usually refers to its square root in annualized percentage points provided by

CSFI on its Website.1

Table 1 summarizes the descriptive statistics of the monthly implied and realized variances in percentage

points (non-annualized). The mean of realized variance is much lower than that of implied variance. The values

of skewness and kurtosis indicate that the distributions of implied and realized variances are nonnormal. LB(10)

is the Ljung-Box statistic adjusted for heteroskedasticity following Diebold (1988) to test the null hypothesis

of no autocorrelations up to 10 lags. According to this statistic, the null hypothesis is rejected at the 1%

significance level. The first-order autocorrelation coefficientρ(1) of realized variance equals0.58 which is the

same as that of implied variance,0.57. Figure 1 plots the monthly realized and implied variances. We find that

the realized variance is generally lower than the implied variance over the whole period and there are sudden

surges of these variance measures associated with economic and financial shocks such as the US housing and

credit crisis in 2008.

Table 2 summarizes the descriptive statistics of monthlyV RP
(1)
t , V RP

(2)
t , V RP

(3)
t andV RP

(4)
t , defined

in Section 2.2. The means of the VRPs are positive which is consistent with the lower mean of realized variance

relative to implied variance. The positive VRP indicates that the risk neutral expectation is larger than the

physical one. In such a case, we interpret that the volatility or option sellers, which are exposed to an unlimited

loss potential, require a premium to the buyer.V RP
(2)
t , which is the ex-post VRP, has the largest standard

deviation. From the values of skewness and kurtosis, the distributions ofV RP
(1)
t , V RP

(2)
t andV RP

(3)
t are

1http://www-csfi.sigmath.es.osaka-u.ac.jp/structure/activity/vxj.php
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nonnormal while that ofV RP
(4)
t is closer to normal. LB(10) forV RP

(1)
t , V RP

(3)
t andV RP

(4)
t indicates that

the null hypothesis of no autocorrelation is rejected at the 1% significance level. In particular,V RP
(4)
t has the

highest first-order autocorrelation coefficient0.87 of all and its autocorrelation coefficient decays more slowly

than the others. On the other hand, LB(10) forV RP
(2)
t is so low that the null hypothesis is not rejected even

at the 10% significance level, where the first-order autocorrelation coefficient0.25 is the lowest of all. Figure

2 also plots the monthly VRPs. We can see thatV RP
(2)
t takes negative values more frequently relative to the

others andV RP
(4)
t has a high degree of its persistence. These results imply that the statistical property of VRP

varies substantially according to its specification.

3.2. Variance risk premium as a measure for relative risk aversion

The VRP is associated with the covariance between the pricing kernel and the quadratic variation as shown by

Bakshi and Kapadia (2003) and Carr and Wu (2006, 2009). Bollerslev et al. (2011) also describe a direct link to

VRP and relative risk aversion under the square-root stochastic volatility model corresponding toσt(·) = σ
√

Vt

in (1) and power utility function as follows:

−λtVt = Covt

(dmt

mt
, dVt

)
= −γtρσVt, γt = λt/(ρσ), (17)

whereγt andmt represent a relative risk aversion and pricing kernel which is an investor’s marginal utility

of wealth. The expression indicates that VRP is interpreted as an indicator of the representative investor’s

risk aversion as well as the volatility uncertainty risk. Following the result that the relative risk aversion is

proportional toV RP
(4)
t because the leverage effectρ is usually negative, we adopt it to capture dynamics of

relative risk aversion.

On the result of the GMM estimation forV RP
(4)
t = −λt, we examine the 30 kinds of Japanese macroeco-

nomic variables listed in Table 3 to specify the augmented AR(1) model in (13). If the non-stationarity hypoth-

esis for the time-series of the macroeconomic data is not rejected, we convert the non-stationary time series

into stationary series. Following Bollerslev et al. (2011), all of the macroeconomic variables are standardized

to mean zero and variance one. Furthermore, we employ the Newey and West (1987) heteroskedasticity and

autocorrelation consistent robust covariance matrix with Bartlett kernel and a lag length of 25.

Table 4 reports the estimation results. The estimate of the long-term mean level of the varianceθ = 0.31%

is almost the same as the sample mean of the realized variance,0.34%, reported in Table 1. The average VRP

is−a/(1− b) = 1.27 and VRP has a degree of own persistenceb = 0.63. The realized variance has the biggest

contributionc1 = −0.21 which has a positive impact on−λt. This means that a higher realized variance leads

to a higher VRP or relative risk aversion. The price-earnings (P/E) ratio, retail sale value and price-to-book

value ratio are significant at the 5% or 10% level. The test of overidentifying restrictions does not reject the

null hypothesis that the model is correctly specified at the 1% significance level.
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In Figure 3, the solid and dashed lines representV RP
(4)
t or relative risk aversion when we use macroeco-

nomic variables and only lagged realized variance, respectively. They tended to rise during the three macroe-

conomic recessions in the shaded areas. They rose sharply in the periods of the Asian currency crisis, dot-com

bubble burst, September 11 attacks, subprime mortgage crisis and Lehman shock. In March 1998 in Japan,

retail sales have decreased substantially by 15% over a one-year period, the highest ever recorded, because the

consumption tax rate increased from 3% to 5% in the previous 12 months. The first sharp increase in the solid

line also captures this temporal macroeconomic shock. This result suggests that VRP or relative risk aversion

involving macroeconomic variables contains plausible business cycle dynamics of the Japanese economy.

3.3. Stock return predictability

The VRP as a forward-looking variable could possibly provide information about future asset returns. In this

subsection we provide empirical results for the predictive ability of theV RP (1), V RP (2) andV RP (3) on the

Nikkei 225 returns. We do not examine the predictive ability ofV RP (4) because the two-period-ahead realized

variance is required to implement the GMM procedure and therefore theV RP
(4)
t may not be suitable to be

used as the predictor variable for the purpose of forecasting asset returns.

In previous studies that examine the predictive ability of some standard predictor variables in the Japanese

stock market, Aono and Iwaisako (2010, 2011) find that (i) an interest rate loses its predictive ability in recent

samples from 1991 to 2009 because of its limited variability related to the Bank of Japan’s zero interest policy,

(ii) one-month-ahead performances of the P/E ratio and dividend yield (DY) are very weak, (iii) however

the importance of lagged returns increases in recent samples. Taking into consideration that, we employ the

following multivariate forecasting regressions for overlapping multiperiod returns.

1
h

ERt+h = β0(h) + β1(h)V RP
(i)
t + β2(h)Rt + β3(h)(P/E)t + β4(h)DYt + ut+h, (18)

wherei = 1, 2, 3 andβ1(h) is the parameter of interest.1hERt+h represents excess market returns, which

is the difference between the Nikkei 225 returns and unsecured overnight call rates, scaled by the horizon

h = 1, 2, · · · , 12 months.Rt represents the lagged Nikkei 225 returns.(P/E)t andDYt are the P/E ratio and

weighted average yield for TSE 1st section-listed stocks obtained from the TSE’s website.2

In the existing literature investigating the finite sample properties of regressions of stock returns on lagged

financial variables, Boudoukh, Richardson and Whitelaw (2008) show that the coefficient of determinationR2,

including highly persistent predictor variables and overlapping multi-period returns, increases proportionally

to the return horizon even in no predictability. Thus, we should give attention to this issue regardingR2.

Furthermore, some previous studies indicate that standard statistical inference in the overlapping multiperiod

return regression on highly-persistent predictor variables is inappropriate. However, we can reasonably use the

Newey and West (1987) and Hodrick (1992) typet-statistics in such cases. This is because Bollerslev et al.
2http://www.tse.or.jp/english/market/topix/data/index.html
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(2011) investigate their finite sample properties and show that they are reasonably well behaved while there are

some size distortions. Second, the monthly expected and ex-post VRPs have low persistence as shown in Table

2 and so we can partly avoid this problem in our empirical analysis. The Bollerslev et al. (2011) simulation

result also shows that the Newey-West basedt-statistic is marginally more powerful than the Hodrick (1992)

typet-statistic. Thus, this article employs the Newey and West (1987)t-statistic for the overlapping multiperiod

return regression.

Table 5 summarizes the estimation results in (18). Thet-statistics reported in parentheses are based on het-

eroskedasticity and serial correlation consistent standard errors proposed by Newey and West (1987).3 Figure

4 also plots predictability patterns in the coefficient parametersβ1(h) for V RP
(i)
t , i = 1, 2, 3 and adjustedR2

in percentage points where the x-axis represents theh month-horizon and the dashed and dotted lines represent

the 90% and 95 % confidence intervals of coefficient parametersβ1(h) using the Newey-West standard errors.

TheV RP
(1)
t andV RP

(3)
t , which are the expected VRPs, have no statistical significance over the whole period.

On the other hand, theV RP
(2)
t , which is the ex-post VRP, can significantly forecast the Nikkei 225 returns

over two-, seven-, and eight-month horizons. The positive slope coefficient forV RP
(2)
t indicates that higher

values of the VRP lead to higher future returns. This result may reflect that when the market anticipates high

fluctuations in the return variance, there is a premium incorporated into prices, resulting in high future returns.

The adjustedR2 for V RP
(2)
t peaks around 6.2% at two months and gradually decreases toward zero as the

horizon is extended.Rt has a significant positive slope coefficient, which implies momentum in stock returns.

(P/E)t has a significant positive slope coefficient whileDYt has no statistical significance over the whole

period. These empirical results provide new evidence that the ex-post VRP in Japan is useful in predicting the

Nikkei 225 returns while the expected VRPs lose their predictive ability.

3.4. Credit spreads predictability

The VRP could be one of influential determinants of credit spreads as shown by Zhou (2010) and Wang et al.

(2011). In this subsection, we provide empirical results for the predictive ability of the market-level VRP in

Japan on credit spreads. Credit spreads employed in our analysis are constructed from the difference between

the average corporate bond yield of firms with investment grade rating, which is obtained from Japan Credit

Rating Agency on its Website,4 and the Japanese government bond yield. The sample period is from August

2002 to July 2009 (84 months) corresponding to the average corporate bond yield data available. For inves-

tigating the relationship between VRP and credit spreads, we estimate the following overlapping multiperiod

forecasting regressions.

1
h

∆CSj,m,t+h = β0(h) + β1(h)V RP
(i)
t + β2(h)∆rf,m,t + β3(h)Rt + ut+h, (19)

3We use a covariance matrix with a Bartlett kernel and a lag length determined byh + 4((T − h)/100)2/9 whereT is the sample
size in the regression.

4http://www.jcr.co.jp/english/
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wherei = 1, 2, 3 and∆CSj,m,t+h is difference in the credit spread with investment grade ratingj and maturity

m overh = 1, 2, · · · , 12 months. We add∆rf,m,t andRt, which represent differences in the Japanese gov-

ernment bond yield in the corresponding maturitym and the lagged Nikkei 225 returns, as standard predictor

variables.

Tables 6 and 7 summarize the estimation results for the credit spread of firms with an investment grade AAA

rating andm = 1, 3 year maturities. The AAA long-term rating is defined as firms having the highest level of

capacity of the obligor to honor its financial commitment on the obligation. Figures 5 plots the corresponding

predictability patterns in coefficient parametersβ1(h) for V RP
(i)
t , i = 1, 2, 3 and adjustedR2 in percentage

points. In the cases of AAA long-term rating firms with one- and three-year maturities, all VRPs have no

statistical significance until around the quarterly return horizon, but they can significantly forecast the credit

spreads with longer horizons. The negative slope coefficient indicates that a higher VRP lowers the future

credit spread of the AAA long-term rating firms having extremely strong capacity. The adjustedR2 gradually

increases at longer monthly horizons.∆rf,m,t andRt have significant positive and negative slope coefficients

and theirt-values with one-year maturity are larger than those with three-year maturity.

Tables 8 and 9 represent the results for the A long-term rating firms, which have a high level of capacity

but are more susceptible to the negative effects of changes in economic conditions than higher-rated categories.

Figure 6 also plots the predictability patterns and adjustedR2. In contrast to the result for AAA long-term

rating firms, the significance of the VRPs extends to around the six-month horizon and the slope coefficient

of the VRP becomes insignificant at longer monthly horizons. The positive slope coefficients show that rising

VRP leads to larger future credit spreads for A rating firms having less capacity than AAA long-term rating

firms. AdjustedR2 peaks at two months and gradually decreases toward zero after the six-month horizon. The

estimated coefficients of∆rf,m,t andRt are significantly positive and negative, respectively, however they have

smallert-values than those for the VRP.

The predictability patterns for the AAA and A long-term rating firms are considerably different. For the

predictability of the credit spreads of AAA long-term rated firms, all VRPs have no statistical significance until

around the quarterly return horizon and have a negative slope coefficient. This may reflect that the AAA long-

term rated firms are less susceptible to the effect of fluctuations in the VRP than the A long-term rated firms,

and even when the VRP becomes high, market participants are likely to invest in AAA corporate bonds with

their lower yields because AAA firms are more secure. In the case of the A long-term rated firms, the VRP in

Japan provides a positive impact which is consistent with the intuitive idea that an increase in the uncertainty

risk in the stock market leads to higher corporate bond yields. These results provide evidence that the market

VRPs provide significant predictability of credit spreads and the direction of their effect depends on firms’

investment grades.
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3.5. Predictability of composite index of coincident indicators

Some previous studies examine the predictive abilities of market excess returns and their volatility on future

output growth. As the VRP can be regarded as a forward-looking variable, it is important to investigate whether

the VRP provides information about future output growth. However, GDP data are available mainly on only a

quarterly or annually basis. Instead of GDP, we examine the predictability of the composite index of coincident

indicators which is a measure of current economic conditions. A recent study by Oya (2011a) investigates the

relationship between the VRP and the composite index of coincident indicators, but they examine the ex-post

VRP only and do not use the realized variance constructed from high-frequency return data. We estimate the

following overlapping multi-period return regressions.

1
h

CIt+h = β0(h) + β1(h)V RP
(i)
t + β2(h)SPRDt + ut+h, (20)

wherei = 1, 2, 3, 1
hCIt+h = 1

h
CIt+h−CIt

CIt
× 100 is the future change rate in the coincident composite index

over the nexth = 1, 2, · · · , 12 months scaled by the horizons andSPRDt is the interest rate spread which

is the difference between newly issued 10-year government bond yields and the three-month Tokyo Interbank

Offered Rate.

Table 10 summarizes the estimation results and Figure 7 plots predictability patterns in the coefficient

parametersβ1(h) for V RP
(i)
t , i = 1, 2, 3 and adjustedR2 in percentage points. The significance of all VRPs

extends to around the six-month horizon. The negative slope coefficient means that a rising VRP lowers the

future rate of change in the coincident composite index. This may imply that when the market anticipates

greater volatility in the forward return variance, the short-term interest rate may be higher, leading to lower

economic activity. AdjustedR2 peaks at around 25 % at two months and gradually decreases toward zero.

SPRDt has a significant positive slope coefficient but VRP has largert-values than that forSPRDt. Thus, the

result is suggestive of a significant relationship between VRP and the composite index of coincident indicators.

4. Conclusion

This article constructs different types of VRP for the Japanese stock market such as expected and ex-post

VRPs, which are estimated from model-free implied and realized variances. Their predictive performance on

the Nikkei 225 returns, credit spreads, and the composite index of coincident indicators are investigated based

on multivariate forecasting regressions for overlapping multi-period returns. We also estimate an additional

VRP involving Japanese macroeconomic variables in order to approximate the dynamics of the representative

investor’s relative risk aversion. The following are the main findings from our empirical analysis. First, the

ex-post VRP, which is defined as the difference between implied and ex-post realized variances, is useful in

predicting the Nikkei 225 returns while the expected VRPs, which are the differences between implied and

current or model-based realized variances, lose their predictive ability. Second, the expected and ex-post VRPs

12



provide significant predictability of credit spreads and the composite index of coincident indicators. Third, the

VRP constructed using Japanese macroeconomic variables contains business cycle dynamics of the Japanese

economy.

Several extensions are possible. We do not consider the Hansen and Lunde (2005) adjustment method or

jumps in returns in calculating realized variance. Some previous empirical studies point out the importance

of the Hansen and Lunde (2005) adjustment method, which scales the intraday realized variance using low-

frequency stock returns to take into account nontrading hours in the stock market. In the latter case, for instance,

Barndorff-Nielsen and Shephard (2004) propose a method for calculating realized volatility taking account of

jumps. Andersen, Bollerslev, and Diebold (2007) also show that the performance of forecasting future volatility

is improved by removing significant jumps from realized variance and adding significant jumps to the HAR

model as an explanatory variable. It would be interesting to investigate whether the predictive performance of

the VRP would also improve through these changes.

Appendix. Kernel-based realized variance

In this Appendix, we explain the flat-top modified Tukey-Hanning kernel estimator of quadratic variationVt,t+1

to take into account microstructure noise. Barndorff-Nielsen et al. (2008) propose the following unbiased flat-

top kernel type estimator (called realized kernel):

RK = γ0 +
H∑

h=1

k (x) (γh + γ−h), (A.1)

whereγh =
∑n

i=1+h rt+i/nrt+(i−h)/n, γ−h =
∑n−h

i=1 rt+i/nrt+(i+h)/n and the non-stochastick(x) ∈ [0, 1] for

x = h−1
H is a weight function. The flat-top modified Tukey-Hanning kernel is equivalent toRK in the case

wherek(x) = {1−cosπ(1−x)2}/2. Barndorff-Nielsen et al. (2008) show the asymptotically optimal number

of autocovariancesH that minimizes the asymptotic variance. Meanwhile, Bandi and Russell (2011) provide

an alternative way to choose the number of autocovariances in finite samples. DenoteH asδn with 0 < δ ≤ 1.

The optimal value ofδ is defined in Theorem 3 of Bandi and Russell (2011) as follows:

δ∗ = arg min
0<δ≤1

[
(bias(RK))2 + Var(RK)

]
, (A.2)

where bias(RK) = 0 and

Var(RK) =
IQ

n
ωTΩ1ω + 4σ4

ηn(ωTΩ2ω) + 4σ4
η(ω

TΩ3ω) + (2σ2
ηIV )4(ωTΩ4ω), (A.3)

with ω =
(
1, 1, k

(
1
δn

)
, · · · , k

(
δn−1

δn

))T
andΩa a = 1, · · · , 4 are (δn + 1, δn + 1) square matrices.IQ is an

integrated quarticity of a continuous-time stochastic volatility process (IQ =
∫ t+1
t V 2

s ds). It is estimated by

ˆIQ = n
3

∑n
i=1 r4

t+i/n (realized quarticity) with low frequency returns such as 15-minute returns.σ2
η represents
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the variance of microstructure noise which is estimated byσ̂2
η = 1

2n

∑n
i=1 r2

t−1+i/n at the highest frequencies.

For j ≤ δn, the matricesΩ1 andΩ4 are defined as:

Ω1[1, 1] = 2, Ω1[1 + j, 1 + j] = 4,

Ω4[1, 1] = 1, Ω4[2, 1] = −1, Ω4[1, 2] = −1, Ω4[2, 2] = 2,

Ω4[1 + j, 1 + j] = 2, Ω4[1 + j, j] = −1, Ω4[j, j + 1] = −1, (A.4)

and zeros everywhere else. Forj ≤ δn− 1, the matricesΩ2 andΩ3 are defined as:

Ω2[1, 1] = 3, Ω2[1, 2] = −4, Ω2[2, 1] = −4, Ω2[2, 2] = 7,

Ω2[2 + j, 2 + j] = 6, Ω2[2 + j, 1 + j] = −4, Ω2[1 + j, 2 + j] = −4, Ω2[2 + j, j] = 1,

Ω2[j, 2 + j] = 1, Ω3[1, 1] = −1, Ω3[1, 2] = 2, Ω3[2, 1] = 2, Ω3[2, 2] = −4.5,

Ω3[j + 2, j + 2] = −3(j + 1)− 1, Ω3[2 + j, 1 + j] = 2(j + 1), Ω3[1 + j, 2 + j] = 2(j + 1),

Ω3[2 + j, j] = −(j + 1)/2, Ω3[j, 2 + j] = −(j + 1)/2, (A.5)

and zeros everywhere else. The estimatorRK with H = δ∗n for the modified Tukey-Hanning kernel is

employed in our empirical analysis.
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Table 1: Descriptive statistics of monthly implied and realized variances

IVt,t+1(%) RVt−1,t(%)
Sample size 138 138
Mean 0.67 0.34
Std.dev. 0.77 0.31
Skewness 6.14 5.45
Kurtosis 52.03 43.80
Minimum 0.12 0.05
Maximum 7.68 2.99
LB(10) 59.40 49.59
ρ(1) 0.57 0.58

The sample period is from February 1998 to July 2009. All variables are reported in percentage points (non-annualized). LB(10) is the

Ljung-Box statistic adjusted for heteroskedasticity following Diebold (1988) to test the null hypothesis of no autocorrelations up to10

lags.
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Table 2: Descriptive statistics for monthly variance risk premiums

V RP
(1)
t (%) V RP

(2)
t (%) V RP

(3)
t (%) V RP

(4)
t

Sample size 138 138 138 138
Mean 0.33 0.33 0.42 1.27
Std.dev. 0.49 0.63 0.55 0.48
Skewness 5.86 5.64 5.20 1.38
Kurtosis 48.01 48.62 38.49 4.87
Minimum -0.07 -1.46 0.04 0.41
Maximum 4.69 5.99 5.01 3.05
LB(10) 48.09 14.56 56.89 185.75
ρ(1) 0.53 0.25 0.63 0.87
ρ(2) 0.30 0.10 0.38 0.73
ρ(3) 0.31 0.18 0.32 0.63
ρ(4) 0.27 0.14 0.27 0.57
ρ(5) 0.24 0.13 0.24 0.52
ρ(6) 0.11 0.05 0.14 0.45
ρ(7) 0.11 0.08 0.14 0.36
ρ(8) 0.12 0.04 0.13 0.29
ρ(9) 0.08 0.10 0.13 0.22
ρ(10) 0.05 0.01 0.09 0.15

The sample period is from February 1998 to July 2009. LB(10) is the Ljung-Box statistic adjusted for heteroskedasticity following

Diebold (1988) to test the null hypothesis of no autocorrelations up to10 lags.
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Table 3: List of Japanese macroeconomic variables

Macroeconomic variables
1 Nikkei225 index realized variance
2 Nikkei225 implied variance
3 Trading volume for TSE 1st section-listed stocks
4 Market capitalization for TSE 1st section-listed stocks
5 Weighted average of yield for TSE 1st section-listed stocks
6 Price-to-book value ratio for TSE 1st section-listed stocks
7 Price-earnings (P/E) ratio for TSE 1st section-listed stocks
8 Unemployment rate
9 Effective job offer rate (Excluding new school graduates)

10 Index of non-scheduled worked hours (Manufacturing)
11 Index of regular workers employment
12 Consumer price index
13 Domestic corporate goods price index
14 Index of industrial production (Mining and manufacturing)
15 Index of capacity utilization ratio (Manufacturing)
16 Index of Producer’s Inventory Ratio
17 Index of producer’s shipment of durable consumer goods
18 Building floor area
19 Housing start number
20 Total floor area of new housing construction started
21 Machinery order
22 Business expenditures for new plant and equipment at constant prices (All industries)
23 Large industrial power consumption
24 Retail sales value
25 Wholesale sales value
26 Operating profits (All industries)
27 Index of sales in small and medium sized enterprises (Manufacturing)
28 Consumer confidence index
29 Interest rate spread
30 Money stock (M2)
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Table 4: GMM estimation result for estimatingV RP
(4)
t

Estimates Std. error t-value
κ 0.64 0.10 6.51
θ(%) 0.31 0.05 6.45
a -0.50 0.12 -4.21
b 0.61 0.09 6.97
c1 Realized variance -0.21 0.02 -12.30
c2 P/E ratio -0.10 0.04 -2.16
c3 Retail sales value 0.13 0.07 2.00
c4 Price-to-book value ratio -0.07 0.04 -1.75

Test of overidentifying restrictions (p-values) 0.70 (0.94)

All of the macroeconomic variables are standardized to mean zero and variance one. For ensuring stationarity of macroeconomic

variables, we use the level of P/E ratio, the logarithmic difference for the past twelve months of retail sales value, and the difference for

the past month of price-to-book value ratio, respectively. The Newey-West weighting matrix with a Bartlett kernel lag length set to 25

is employed in the estimation.
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Figure 1: Plots of implied and realized variances
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Figure 2: Plots of monthly VRPs
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Figure 3: Plots ofV RP
(4)
t as a proxy of relative risk aversion
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(4)
t when we use macroeconomic variables and only lagged realized variance, respectively.
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Figure 4: Coefficient parameters forV RP
(i)
t and adjustedR2 on stock return predictability
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The dashed and dotted lines represent the 90 % and 95 % confidence intervals of the coefficient parameters.
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Figure 5: Coefficient parameters forV RP
(i)
t and adj.R2 on credit spreads with AAA rating
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The dashed and dotted lines represent the 90% and 95% confidence intervals of the coefficient parameters.
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Figure 6: Coefficient parameters forV RP
(i)
t and adj.R2 on credit spreads with A rating
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The dashed and dotted lines represent the 90% and 95% confidence intervals of the coefficient parameters.
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Figure 7: Coefficient parameters forV RP
(i)
t and adj.R2 on composite index of coincident indicators
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The dashed and dotted lines represent the 90% and 95% confidence intervals of the coefficient parameters.
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