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1 Introduction

The purpose of this paper is to develop a noncooperative game approach to

a general n-person cooperative game. Specifically, we present a noncooper-

ative foundation for the Nash bargaining solution in the game. A general

cooperative game describes an economic situation in which n individuals can

communicate and form coalitions, which are enforceable and within which co-

operation may have external effects on the utility of individuals outside the

coalition. Individuals’ utilities might not be transferable. The game covers a

wide range of multilateral cooperation problems, including the following: pro-

duction economy with externality, cartels by oligopolistic firms, public goods

provision, environmental pollution, and international alliances. In this paper,

a general cooperative game is described by an n-person game in strategic form.

In game theory, there have been two different approaches to the multi-

lateral cooperation problem. One is the cooperative game approach initiated

by the classic work of von Neumann and Morgenstern [33]. They reduce the

n-person game in strategic form to its coalitional form (also called the charac-

teristic function form), using as a basis the zero-sum two-person game played

by coalitions. The von Neumann-Morgenstern approach may be regarded as

a two-stage procedure. First, by using the minimax solution of a zero-sum

two-person game between one coalition and its complementary coalition, one

defines the characteristic function of a game that assigns to each coalition the

set of payoff vectors that the coalition can “ensure” its members. Once the

characteristic function has been constructed, cooperative solutions can be ap-

plied to investigate players’ bargaining behavior. The core of a cooperative

game is defined as the set of payoff allocations upon which no coalitions can

improve by themselves. Two well-known core concepts in cooperative games

with externality are the α-core and the β-core (Aumann [1]). The α-core cor-

responds to the characteristic function constructed by the maxmin value and

the β-core corresponds to that constructed by the minimax value.
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The von Neumann and Morgenstern theory (and thus the α-core and β-

core theory) assumes that when players form a coalition, they expect that

the complementary coalition will react by damaging them in the worst way

possible. This assumption about coalitional behavior has been often criticized

in the literature on the ground that it allows threats by the complementary

coalition that are not credible (Scarf [29], for example).1

The other approach is the noncooperative game approach initiated by Nash

[21, 22] and called the Nash program. Nash proposed to study cooperative

games on the basis of their reduction to noncooperative games by modelling

pre-play negotiations as moves in a noncooperative bargaining game. Ana-

lyzing an equilibrium point2 of the noncooperative bargaining game, one can

explain coalitional behavior as the result of individual players’ payoff maxi-

mization. Nash [22] presented a noncooperative foundation for his bargaining

solution of a two-person cooperative game, which was presented by a set of

axioms in his initial work (Nash [21]). An obvious restriction of Nash’s work

is that it covers only two-person games. To date, the noncooperative game

approach to general n-person cooperative games has not been developed fully

in the literature.

Given that individuals can form coalitions freely in a cooperative game,

the Nash bargaining solution should be immune to any coalitional deviation.

This claim may suggest that the Nash solution should satisfy a core stabil-

ity. A critical question then arises: how should one define the core without

allowing threats by players that are less than credible? Suppose that all n

players agree to the Nash bargaining solution in a game. If any coalition of

players deviates from the Nash solution, then all other players have their own

1von Neumann and Morgenstern themselves point out a difficulty in the characteristic
function approach. They write, “Now it would seem that the weakness of our present theory
lies in the necessity to proceed in two stages: To produce a solution of the zero-sum two-
person game first and then, by using this solution, to define a characteristic function in order
to be able to produce a solution of the general n-person game, based on the characteristic
function [33, p. 608].

2In what follows, a Nash equilibrium of a game will be simply called an equilibrium
whenever no confusion arises.
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bargaining problem of how to react to it. If one holds that the Nash bargain-

ing theory should be applied to every negotiation problem, it should be the

case that the remaining players react to the coalitional deviation according to

the Nash bargaining solution. In other words, the Nash bargaining solution of

a cooperative game must belong to a variant of the core of the game, in the

sense that no coalition can improve upon it, anticipating the Nash bargaining

solution behavior by the complementary coalition. We will call this new type

of core for a cooperative game in strategic form the Nash core.

The notion of the Nash core is supported by the following argument for

the consistency for a cooperative solution (the Nash bargaining solution in our

case). Suppose that a cooperative solution is accepted as the standard of be-

havior in a game. Given that any coalition of players can be formed freely, the

cooperative solution should be stable against any coalitional deviation. When

some coalition deviates from the solution, the behavior of other players out-

side the coalition should be governed by the same standard of behavior (with

no incentive to deviate). This argument for the consistency of standards of

behavior leads naturally to the requirement that the Nash bargaining solution

should belong to the Nash core. Given that the bargaining problem faced by

players outside a coalition may be modelled as a subgame in a whole process

of negotiations, it will be noted that the Nash core is closely linked to the no-

tion of a subgame perfect equilibrium, which imposes an equilibrium on every

subgame. Indeed, we will show that the reaction of the complementary coali-

tion according to the Nash bargaining solution is not an ad hoc assumption

but is a part of a subgame perfect equilibrium of the bargaining game in our

noncooperative approach.

In this paper, we present a noncooperative bargaining model for a general

n-person cooperative game that is based on a random-proposer model (Okada

[23]) that is a generalization of the Rubinstein’s [28] alternating offers model.

In the model, a proposer is selected according to some predetermined prob-

ability distribution among active players. A proposal is a pair composed of
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a coalition and a jointly mixed action for its members. The proposal is ac-

cepted by unanimous consent among the members. Once a coalition forms,

all members are bound to choose the agreed actions. If a proposal is rejected,

there is a small probability that negotiations end, in which case all individuals

play the game noncooperatively. Otherwise, the same process is repeated. We

characterize the stationary subgame perfect equilibrium (SSPE) of the bar-

gaining game when the probability of negotiation failure is sufficiently small.

In particular, we are mainly concerned with the conditions under which all

players agree to the Nash bargaining solution of the game. For this reason,

our analysis focuses on an SSPE with the efficiency property that all active

players cooperate in every round of the bargaining game. Such an equilibrium

is called totally efficient.

The main results of the paper are summarized as follows. We first prove

that if players form the largest coalition in an SSPE, their agreement should be

the generalized (asymmetric) Nash bargaining solution, regardless of who pro-

posed the agreement. The weights of players are determined by the probability

distribution by which the proposers are selected, and the disagreement point

is given by an equilibrium of the game. This result implies that, when one

subcoalition is formed (off the equilibrium path) in a totally efficient SSPE,

the complementary coalition reacts with the Nash bargaining solution for its

own negotiation problem. Given an equilibrium as the disagreement point, a

totally efficient SSPE exists uniquely, if at all, and all players agree to the

Nash bargaining solution. We then prove that a totally efficient SSPE exists if

and only if the Nash bargaining solution is in the Nash core of the game.3 In

this sense, we provide a bridge that connects the Nash equilibrium, the Nash

bargaining solution, and the core in classical game theory.

Recently, several authors have refined the core solution in a cooperative

game with externality so that it can eliminate incredible threats by players

3The if-part is proven using a technical condition that the interior of the (strict) Nash
core is nonempty.
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outside coalitions. Huang and Sjöström [14] and Kóczy [17] define the notion of

a recursive core (abbreviated by ’r-core’) by a theory of a solution’s consistency

that is similar to that of the Nash core. Roughly, the recursive core of a

cooperative game with externality4 is a variant of the core defined by the

assumption that when a coalition forms, its members predict an outcome in a

core of the “reduced game” composed of other players. Given that a solution’s

consistency requires that the same arguments be applied to the “core” of the

reduced game, its definition is recursive. Chander and Tulkens [6] present

another refinement of the core (called the γ-core) under the assumption that

when a coalition forms, players outside the coalition adopt only individually

best replies, which results in a Nash equilibrium among the coalition and the

remaining players. Their concept does not satisfy consistency.

Although the Nash core and the recursive core are based on a general idea

of consistency, it may be useful to make some remarks about differences in the

two approaches. First, the works of Huang and Sjöström [14] and Kóczy [17]

are motivated by a cooperative game approach with the aim of refining the

core solution in a consistent manner. In contrast, our approach is a noncoop-

erative one. The Nash core is a criterion for the Nash bargaining solution’s

being sustained as an SSPE of a noncooperative bargaining game. Huang and

Sjöström [15] and Kóczy [16] provide a noncooperative implementation of the

recursive core. Their bargaining models will be discussed in Section 6. Second,

the result of the random proposer model is not limited to the Nash bargaining

solution. It is well-known that a cooperative game does not always have a

core. This may be true in the cases of the recursive core and the Nash core, as

well. When the Nash core does not exist, the random proposer model yields

an equilibrium outcome other than the Nash bargaining solution. An example

of such a case is a majority voting game, which has been well-studied in the

literature on legislative bargaining. In their seminal paper, Baron and Fere-

4Huang and Sjöström [14] employ a strategic form game and Kóczy [17] uses a partition
function form game. The definition of the recursive core is essentially the same in either
form.
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john [2] characterize a unique SSPE of the majority voting game in which all

minimal winning coalitions have the same probability of forming. Third, the

core concept is a set-valued solution, unlike the Nash bargaining solution. To

define the recursive core, one needs to make a behavioral assumption about

how players outside a coalition react within the (recursive) core of the re-

duced game. Subject to the consistency constraint, Kóczy [17] presents the

pessimistic recursive core and the optimistic recursive core in the same manner

as the α-core and the β-core, respectively.5 In the pessimistic recursive core,

members in a coalition predict that other players will behave towards them

in the worst possible way under the constraint that their behavior is in the

core of the reduced game. In a noncooperative approach, such a behavioral

assumption is not needed. Any belief of the members, either pessimistic or

optimistic, should be a part of a noncooperative equilibrium of a bargaining

game.

The remainder of the paper is organized as follows. Section 2 provides def-

initions and notations. Section 3 presents a noncooperative bargaining model

for an n-person cooperative game in strategic form. Section 4 states the main

theorems. The proofs are given in Section 5. Section 6 discusses the results.

Section 7 concludes.

2 Definitions and Notations

For a finite set N with n elements, let RN denote the n-dimensional Euclidean

space with coordinates indexed by the elements of N . Any point in RN is

denoted by x = (xi)i∈N , and also by x = (x1, x2, · · · , xn) when N is indexed

as {1, 2, · · · , n}. For i ∈ N and x = (xi)i∈N ∈ Rn, x−i denotes the (n − 1)-

dimensional vector constructed from x by deleting the i-th coordinate xi. The

point x is sometimes written as (xi, x−i). For S ⊂ N , RS denotes the subspace

5Huang and Sjöström [14] consider the pessimistic recursive core. Shenoy [32] employs
the optimistic approach in his core stability.
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of RN spanned by the axes corresponding to elements in S. For a finite set T ,

the notation ∆(T ) denotes the set of all probability distributions on T .

An n-person cooperative game in strategic form is defined by a triplet G =

(N, {Ai}i∈N , {ui}i∈N) where N = {1, 2, · · · , n} is the set of players and each Ai

(i ∈ N) is a finite set of player i’s actions.6 The Cartesian product A = Πi∈NAi

is the set of all action profiles a = (a1, · · · , an). Player i’s payoff function ui

is a real-valued function on A. A probability distribution on Ai is called a

mixed action for player i. A subset S of N is called a coalition. For a coalition

S, let AS = Πi∈SAi be the set of action profiles aS = (ai)i∈S for all members

of S. A correlated action pS of coalition S is a probability distribution on

AS. The set of all correlated actions for the coalition S is given by ∆(AS).

The idea of a correlated action is that all members in a coalition choose their

actions jointly according to the corresponding probability distribution. In the

cooperative game G, it is assumed that any coalition S can make an enforceable

agreement to employ any correlated action if all members agree to it.7

A coalition structure π = [S1, · · · , Sm] on N is defined by a partition of N ,

that is, a class of subsets of N such that N = S1∪· · ·∪Sm and every two Si and

Sj are disjoint. For a coalition structure π = [S1, · · · , Sm] on N , an element

pπ = [pS1 , · · · , pSm ] in Πm
j=1∆(ASj

) is called a correlated action profile for the

coalition structure π. When a correlated action profile pπ for π = [S1, · · · , Sm]

is employed, each player i ∈ N obtains the expected payoff

ui(p
π) =

∑
aS1
∈AS1

· · ·
∑

aSm∈ASm

Πm
j=1pSj

(aSj
) · ui(aS1 , · · · , aSm) (1)

where pSj
(aSj

) (j = 1, · · · ,m) is the probability that the correlated action

pSj
of coalition Sj assigns to an action profile aSj

∈ ASj
. Given a coalition

6In this paper, we distinguish between “action” and “strategy”, because we consider a
sequential bargaining game in extensive form based on the game G in strategic form.

7It suffices to assume the enforceability of pure actions only when the set Ai of ev-
ery player i’s pure actions is an infinite set and the set of all feasible payoff vectors,
FS = {(ui(aS , aN−S))i∈S |aS ∈ AS}, for coalition S given an action profile aN−S for the
complementary coalition N − S is a compact and convex set.
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structure π = [S1, . . . , Sm] on N , we define

F (G, π) = {(u1(p
π), · · · , un(pπ)) ∈ RN | pπ ∈ Πm

j=1∆(ASj
)}. (2)

The set F (G, π) consists of all expected payoff vectors for n players attained

by correlated action profiles for π. When π consists only of the grand coalition

N , that is, π = [N ], F (G, [N ]) is simply denoted by F (G). We call F (G)

the feasible set of the cooperative game G. The feasible set F (G) represents

the set of all expected payoff vectors of n players when they form the grand

coalition N . The set F (G) is a polyhedral compact convex subset of RN and

F (G) ⊃ F (G, π) for every coalition structure π on N . The set F (G, π) is not

necessarily convex.

We define the Pareto frontier of the feasible set F (G), following Harsanyi

[11]. The upper-right boundary H of F (G) is defined as the set of points in

F (G) undominated (in the weak sense of Pareto) by any point in F (G). With

abuse of notation, we denote the equation of H as@

H(x1, · · · , xn) = 0

where H is a function on the feasible set F (G). With no loss of generality,

we assume that H(x) ≥ 0 for all x ∈ F (G). In addition, for simplicity of the

analysis, we assume:

Assumption 1.

(i) H is a concave and differentiable function and the first derivatives of H

with respect to x1, · · · , xn satisfy

∂H

∂x1

≤ 0, · · · , ∂H
∂xn
≤ 0

(the equality may hold at most at the end points of the upper-right bound-

ary H).
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(ii) F (G) has the full dimension n.

(iii) The strategic-form game G has an equilibrium (in mixed actions) whose

payoff vector d = (d1, · · · , dn) ∈ F (G) has the property that the boundary

of the set Fd(G) ≡ {x ∈ F (G) | xi ≥ di for all i ∈ N}, other than n

hyperplanes xi = di (i ∈ N), is a subset of H.

Differentiability assumption (i) causes no loss of generality. We can easily ex-

tend our results to the non-differentiable case, given that the piecewise linear

function of the upper-right boundary H can constitute the limit of differen-

tiable functions. The fact that all the first derivatives ∂H
∂xi

have the same sign

implies that the variables xi and xj are mutually strictly decreasing functions

of each other on the upper-right boundary H. For each i ∈ N , let F−i(G)

denote the projection of F (G) over RN−{i}. For every x−i ∈ F−i(G), we define

hi(x−i) = max{xi | (xi, x−i) ∈ F (G)}. By assumption (i) and the convex-

ity of F (G), hi is a differential concave function over F−i(G). hi(x−i) is the

maximum payoff that player i can receive in the feasible set F (G) while all

other players’ payoffs are fixed at x−i. Assumptions (ii) and (iii) are technical.

Assumption (iii) guarantees that for all x ∈ Fd(G) the point (hi(x−i), x−i) is

located on the upper-right boundary H of F (G).

In the rest of this section, we introduce several notions of cooperative game

theory. Since the classic work of von Neumann and Morgenstern [33], the char-

acteristic function approach has been employed in cooperative game theory to

study the problem of coalition formation and payoff distributions. The char-

acteristic function of a cooperative game assigns to each coalition the set of

payoff vectors that the coalition can “ensure” its members. For a strategic-

form game, primarily the following two kinds of characteristic function have

been studied (Aumann [1]). A coalition S is said to be α-effective for a payoff

vector x ∈ RN if there exists pS ∈ ∆(AS) such that for any pN−S ∈ ∆(AN−S),

we have ui(pS, pN−S) ≥ xi for all i ∈ S. Let vα(S) be the set of all pay-

off vectors for which S is α-effective. A coalition S is said to be β-effective

for x ∈ RN if for any pN−S ∈ ∆(AN−S) there exists pS ∈ ∆(AS) such that
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ui(pS, pN−S) ≥ xi for all i ∈ S. Similarly to vα(S), let vβ(S) be the set of all

payoff vectors for which S is β-effective. It is easily shown that vα(S) ⊂ vβ(S)

for every S ⊂ N . The functions vα and vβ are called the α-characteristic

function and the β-characteristic function, respectively.

Intuitively, vα(S) is the set of all payoff vectors x ∈ RS such that coalition

S can guarantee all of its members at least the payoff x, independently of what

the players in the complementary coalition N−S do. On the other hand, vβ(S)

is the set of all payoff vectors x ∈ RS such that N − S cannot prevent S from

getting at least x. In general, these two sets are different except for two-person

games and for n-person games with transferable utility.

We now introduce two standard cooperative solution concepts: the core

and the Nash bargaining solution.

Definition 1.

(1) Let v = vα or vβ. A payoff vector x ∈ RN is said to dominate a payoff

vector y ∈ RN with respect to v if there exists some coalition S of N such

that x ∈ v(S) and xi > yi for all i ∈ S

(2) The α-core of a cooperative game G is the set of payoff vectors x ∈ F (G)

that are not dominated by any other payoff vector in F (G) with respect

to vα. The β-core of G is the set of payoff vectors x ∈ F (G) that are not

dominated by any other payoff vector in F (G) with respect to vβ.

Definition 2. Let θN = (θNi )i∈N ∈ ∆(N), and dN = (dNi )i∈N ∈ F (G). A

correlated action b∗ ∈ ∆(AN) of N is called the (generalized) Nash bargaining

solution of G if b∗ solves the maximization problem

max
n∑
i=1

θNi · log[ui(p)− dNi ]

subject to (1) p ∈ ∆(AN)

(2) ui(p) ≥ dNi for all i = 1, · · · , n.
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Here, θN is called a weight vector, and dN the disagreement point. The Nash

bargaining solution b∗ of G with weight vector θN and disagreement point dN

is denoted by b∗(G, θN , dN) whenever the dependency on G, θN and dN should

be emphasized. The payoff vector u(b∗) = (ui(b
∗))i∈N generated by the Nash

bargaining solution b∗ is called the Nash bargaining payoff.

In negotiations, the grand coalition N is not always formed. If the mem-

bers of a coalition S ⊂ N agree to choose a correlated action pS ∈ ∆(AS),

all remaining players may continue their negotiations, given the agreement of

the correlated action pS by S. The following game describes negotiations after

some coalition has been formed.

Definition 3. Let G be an n-person cooperative game in strategic form.

For every coalition S and every correlated action pS ∈ ∆(AS) of S, a subgame

G(pS) of G is defined to be the same game as G except that all players in S

follow the correlated action pS.8

The feasible set F (G(pS)) of a subgame G(pS) can be defined in the same

manner as the feasible set F (G) of G. Note that the set of “active” players is

N−S in the subgame G(pS). The model of a subgame G(pS) of G can describe

a general situation in which several coalitions have formed, by considering S

as the union of these coalitions and pS as the correlated action of S generated

by the correlated actions that have been agreed in subcoalitions.

Our cooperative solution for a strategic-form game G does not simply spec-

ify a feasible payoff (or a correlated action) for the grand coalition N . Rather,

it is a payoff configuration, which specifies for every coalition S of N a feasible

8Here we should not confuse a subgame of G with the standard notion of a subgame in an
extensive-form game, although it turns out that every subgame of G naturally corresponds
to a subgame of a noncooperative bargaining game in extensive form introduced in Section
3.
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payoff of S.9 Given that the feasible payoff for the coalition S depends on a

correlated action of the complementary coalition N −S in our set-up, a payoff

configuration specifies a feasible payoff of S for every correlated action pN−S

of N−S. Formally, a payoff configuration for G is defined as a function φ that

assigns for every coalition T and every correlated action pT of T an element

φ(pT ) in the feasible set F (G(pT )) of the subgame G(pT ). (Put S = N − T

in the discussion above). The vector φ(pT ) indicates the payoffs other players

receive when coalition T forms by agreeing to choose pT . In the next section,

we will see that a payoff configuration for G can be derived naturally by a

strategy profile for a noncooperative bargaining game of G.

We extend the Nash bargaining solution of G to a solution configuration of

G. Let θ be a function that assigns to each S ⊂ N a weight vector θS ∈ ∆(S)

of its members. We call θ the weight configuration of N . Let d be a func-

tion that assigns to every correlated action pS ∈ ∆(AS) of every coalition S a

payoff vector d(pS) in the feasible set F (G(pS)) of the subgame G(pS). The

vector d(pS) is interpreted as a disagreement point for negotiations within the

complementary coalition N − S, given that S employs the correlated action

pS. We call d the disagreement configuration of G.

Definition 4. The Nash bargaining solution configuration b∗ of G with weight

configuration θ of N and disagreement configuration d is the function that

assigns to every correlated action pS of every coalition S the Nash bargaining

solution b∗(pS) = b∗(G(pS), θN−S, d(pS)) of the subgame G(pS).10 The payoff

configuration of G generated by b∗ is called the Nash bargaining payoff config-

uration.

9The formulation of a cooperative solution as a payoff configuration is employed in Hart’s
[13] axiomatization of the Harsanyi value for a cooperative game with non-transferable
utility.

10For notational simplicity, we use the same symbol b∗ for the Nash bargaining solution
configuration as for the Nash bargaining solution in Definition 2.
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The characteristic function, which prescribes what a coalition can achieve

by itself, has played a central role in cooperative game theory since von Neu-

mann and Morgenstern [33]. A characteristic function of a strategic-form game

assumes a certain behavior of a coalition S and the complementary coalition

N − S. In the α-characteristic function, a coalition S, in attempting to im-

prove its position, takes into account all strategic possibilities that are open to

the complementary coalition N − S. The α-characteristic function has been

criticized (Scarf [29], for example) on the grounds that a coalition S pays too

much attention to threats by members of N−S that may be harmful to them-

selves. Alternatively, one can argue that a counter-action of N − S should be

consistent with the members’ utility maximization. From this point of view,

by using the Nash bargaining solution configuration, we define a new notion

of effectiveness for a cooperative game in strategic form that is weaker than

α-effectiveness.

Definition 5. Let b∗ be the Nash bargaining solution configuration of a co-

operative game G with weight configuration θ and disagreement configuration

d.

(i) A coalition S ⊂ N is said to be Nash-effective for a payoff vector x ∈ Rn

if there exists pS ∈ ∆(AS) such that

ui(pS, b
∗(pS)) ≥ xi for all i ∈ S (3)

where b∗(pS) = b∗(G(pS), θN−S, d(pS)) is the Nash bargaining solution of

the subgame G(pS) of G assigned by b∗ under θ and d.

(ii) The Nash characteristic function vNash of G is the function that assigns

to each coalition S ⊂ N the set, denoted by vNash(S), of all payoff vectors

in Rn for which S is Nash-effective.

(iii) The Nash core of G is the core of G with respect to the Nash character-

istic function vNash.
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Nash effectiveness is based on the following idea. When a coalition S chooses a

correlated action pS, it should consider a counter-action of the complementary

coalition N − S that is consistent with its members’ payoff maximization. In

other words, the coalition S should consider only credible threats by N − S.

A question remains: what is the outcome of the payoff-maximizing behavior

of N − S? Given that the members of N − S can negotiate their reaction to

S, it is reasonable to assume that they agree to choose the Nash bargaining

solution of their negotiation problem described by the subgame G(pS), because

S chooses a correlated action pS. It is easily seen that Nash effectiveness is

weaker than α-effectiveness. Thus, the Nash core is a refinement of the α-core,

and it requires that a threat of the complementary coalition N − S against S

be credible in the sense that the threat is consistent with the Nash bargaining

theory.11 As we remarked in the introduction, the Nash core may be empty,

just like other solution concepts in the core family. The next example considers

the possibility of emptiness.

Before we present a noncooperative bargaining model for the Nash bar-

gaining solution in a general cooperative game, we illustrate the idea of the

Nash core with the help of a three-person game.

Example 1. (a three-person prisoner’s dilemma)

Consider the three-person game G in strategic form that is given in Fig.1.

The game can be interpreted as a prisoner’s dilemma. Every player i (=1,

2, 3) has two actions, Ci (cooperate) and Di (defect). Every player i has

the dominant action Di, and thus the game has a unique Nash equilibrium

(D1, D2, D3). It can be seen that the action profile (C1, C2, C3) is the (sym-

metric) Nash bargaining solution of the cooperative game G with disagreement

point (D1, D2, D3).

11Chakrabarti [5] considers a refinement of the β-core that requires that a threat used by
N − S to all possible deviations by S be a Pareto-undominated action of N − S.
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C2 D2 C2 D2

C1 2,2,2 0,6,0 C1 0,0,6 -2,3,3

D1 6,0,0 3,3,-2 D1 3,-2,3 1,1,1

C3 D3

Fig.1. A three-person prisoner’s dilemma game

We will show that the Nash bargaining solution (C1, C2, C3) is in the Nash

core of the cooperative game G. Before we construct the Nash characteristic

function, we explain the basic idea of the Nash core. Suppose that a single

player i, say i = 3, defects from the Nash bargaining solution. Then, players

1 and 2 negotiate about how to react to player 3’s defection. Their strategic

possibilities are described by the two-person game G{1,2} in Fig.2. In the game

G{1,2}, (D1, D2) is a dominant equilibrium, and thus is the unique disagreement

point. Given that (D1, D2) is Pareto efficient in the game G{1,2}, it is trivially

the Nash bargaining solution of G{1,2}. That is, players 1 and 2 agree to react

to player 3’s defection by playing (D1, D2). Then, player 3’s payoff decreases

from 2 to 1. Player 3 is worse off by defecting. Next, suppose that any two

players, say 1 and 2, defect jointly. Then, player 3 reacts to this coalitional

defection by defecting herself, because D3 is her optimal action to (D1, D2).

Then, the payoff of both players 1 and 2 decreases from 2 to 1. Players 1 and

2 are worse off by defecting jointly. Given that no coalition can improve upon

the Nash bargaining solution (C1, C2, C3), this solution belongs to the Nash

core.

C2 D2

C1 0, 0 -2, 3

D1 3, -2 1, 1

Fig.2. A two-person game G{1,2} between players 1 and 2

when player 3 defects.
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The Nash characteristic function of the cooperative game G is constructed

as follows. Suppose that player 3 employs a mixed action p3 = (p, 1 − p)

where p (0 ≤ p ≤ 1) is the probability of selecting C3. Then, by the same

argument as above, players 2 and 3 react to player 1 by employing the Nash

bargaining solution (D2, D3) of their own bargaining problem. Therefore, the

Nash characteristic function vNash({3}) for player 3 is given by

vNash({3}) = {w3 ∈ R| w3 ≤ 1− 3p for some p, 0 ≤ p ≤ 1}.

Given that 2 > 1 − 3p for any p (0 ≤ p ≤ 1), player 3 cannot improve upon

the Nash bargaining solution (C1, C2, C3). The same result holds for i = 1, 2.

Next, suppose that players 1 and 2 jointly employ a correlated action p12 =

(p, q, r, 1− p− q − r) where p is the probability for an action profile (C1, C2),

q the probability for (C1, D2), and r the probability for (D1, C2). Given that

player 3 chooses the dominant action D3, the Nash characteristic function

vNash({1, 2}) for players 1 and 2 is given by

vNash({1, 2}) = {(w1, w2) ∈ R2| w1 ≤ 1− p+ 2q − 3r, w2 ≤ 1− p− 3q + 2r

for some p, q, r with 0 ≤ p, q, r ≤ 1, 0 ≤ p+ q + r ≤ 1}.

It is impossible for both 1 − p + 2q − 3r > 2 and 1 − p − 3q + 2r > 2 to

hold simultaneously for some p, q and r with 0 ≤ p + q + r ≤ 1. Therefore,

coalition {1, 2} cannot improve upon the Nash bargaining solution (C1, C2, C3).

The same result holds for any other two-person coalition. Thus, (C1, C2, C3)

belongs to the Nash core.

Finally, we remark that the Nash solution (C1, C2, C3) does not belong to

the Nash core if the payoff vector for the action profile (D1, D2, D3) is changed

from (1, 1, 1) to (-1, -1, -1) in Fig.1. In the new game, if player 3 defects, then

players 1 and 2 agree to react with the Nash solution of their own negotiation

problem with disagreement point (-1, -1), which means that they play (C1, D2)

and (D1, C2) with equal probability. Then, player 3 receives payoff 3, higher
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than 2. Thus, player 3 can improve upon the Nash solution (C1, C2, C3) of G.

In this new game, the Nash solution (C1, C2, C3) does not belong to the Nash

core. In fact, since every player can guarantee payoff 3, the Nash core is empty.

3 A Noncooperative Bargaining Model

A bargaining model of an n-person cooperative game G in strategic form is

divided into two consecutive phases, (I) negotiation and (II) play. The nego-

tiation phase consists of a (possibly) infinite sequence of bargaining rounds.

In the second phase, all players who have agreed to form coalitions implement

their agreed-upon correlated actions, and the other players choose their ac-

tions independently. Let θ be a weight configuration of N . The precise rules

for bargaining are explained below.

(I) negotiation phase:

This phase has a (possibly) infinite number of bargaining rounds t (=

1, 2, · · · ). Let Nt be the set of all “active” players who do not belong to

any coalitions in round t. In the initial round, we put N1 = N . At the be-

ginning of each round t, a proposer is selected at random from the set Nt of

active players according to the probability distribution θ(Nt) ∈ ∆(Nt) that

the weight configuration θ assigns to Nt. The selected player i ∈ Nt proposes

a coalition S with i ∈ S ⊂ Nt and a correlated action pS ∈ ∆(AS) for S. All

other members in S either accept or reject the proposal sequentially according

to a predetermined order over Nt. The order of responders does not affect the

result in any critical way. If all responders accept the proposal (S, pS), then

it is binding. Then, negotiation goes to the round t + 1 with Nt+1 = Nt − S.

The process is repeated with the probability distribution θNt+1 ∈ ∆(Nt+1).

If any one responder rejects the proposal, with probability 1−ε (ε > 0), the

negotiations continue in the round t + 1 with Nt+1 = Nt. With probability ε,
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negotiations break down and the game goes to the next phase. The negotiation

process ends when every player in N joins some coalition.

(II) play phase:

In the second phase, all players actually play the game G. If players be-

long to coalitions, they are bound to implement their agreed-upon correlated

actions. If there remain any players outside coalitions when negotiation stops,

they may choose their individual (mixed) actions independently.12

The bargaining model above is denoted by Γε,θ. Formally, Γε,θ is repre-

sented as an infinite-length extensive game with perfect information (that is,

all players know all past actions when they make their choices). The rules

of the game are commonly known to players. We also use a notation Γθ to

describe the bargaining model where the probability ε that negotiations will

stop converges to 0.

A (behavior) strategy for player i in Γε,θ is defined according to the standard

theory of extensive games. Let hti be a history of the game Γε,θ when it is player

i’s turn to move in round t of the negotiation phase. The history hti consists

of the sequence of all past actions in Γε,θ before player i’s move in round

t. Specifically, it describes proposers, proposals, and responses in all past

rounds.13 Similarly, let h̄ be a whole history of the negotiation phase when

the play phase starts. Roughly, a strategy si of player i in Γε,θ is a function

that assigns her action si(h) to every possible history h = hti or h̄. Specifically,

player i’s action si(h), h = hti or h̄, is given as follows: (i) when player i is a

proposer in round t, si(h
t
i) is a probability distribution (with finite support14)

on the set of all possible proposals (S, pS) with i ∈ S ⊂ Nt and pS ∈ ∆(AS), (ii)

when a responder in round t, si(h
t
i) is a probability distribution over {accept,

12When negotiation continues forever (the probability of which event is 0 as long as the
stopping probability ε of negotiations is positive), it is assumed for completeness of the
model that all players who do not join any coalitions choose their actions independently.

13When player i is a responder in round t, ht
i includes the proposer, the proposal, and all

responses before player i in the current round t, too.
14The assumption of finite support does not affect the result at all because any probability

mixture, with finite or infinite support, of correlated actions pS ∈ ∆(AS) can be reduced to
a single correlated action in ∆(AS).
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reject}, and (iii) in the play phase, si(h̄) is player i’s mixed action in ∆(Ai) if

she does not belong to any coalition; otherwise, she follows the agreed-upon

correlated action.

Let P denote the set of all correlated action profiles pπ for all coalition

structures π of N . For a strategy profile s = (s1, · · · , sn) of players in Γε,θ,

a probability distribution µ on P (with finite support) is determined. Then,

player i’s expected payoff for a strategy profile s is given by

Eui(s) =

∫
P

ui(p
π)dµ, (4)

where ui(p
π) is the expected payoff of player i for the correlated action profile

pπ. In what follows, the expected payoff Eui(s) is denoted by ui(s), with

abuse of notation, and the expected payoff is simply called ’payoff’, whenever

no confusion arises.

For every correlated action pS of every coalition S, let Γε,θ(pS) be the

subgame of the extensive game Γε,θ that starts after the agreement (S, pS) has

been reached. In the same way as (4), a strategy profile s = (s1, · · · , sn) of

players in Γε,θ generates the expected payoff vector for players in the subgame

Γε,θ(pS), which is an element of the feasible set F (G(pS)) of the game G(pS).

In this way, a strategy profile s = (s1, · · · , sn) in Γε,θ naturally generates a

payoff configuration for the cooperative game G.

The solution concept that we apply to the bargaining game Γε,θ is a sta-

tionary subgame perfect equilibrium.

Definition 6. A strategy combination s∗ = (s∗1, · · · , s∗n) of the game Γε,θ

is called a stationary subgame perfect equilibrium (SSPE) if s∗ is a subgame

perfect equilibrium of Γε,θ where every player i’s strategy s∗i is stationary, i.e.,

satisfies the property that the action s∗i (h) prescribed by s∗i to any history h

depends only on the collection of agreements, (S1, pS1), · · · , (Sm, pSm) which
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have been reached on h.15 A payoff (configuration) generated by an SSPE is

called an SSPE payoff (configuration).

Agreements of coalitions constitute a payoff-relevant history of negotia-

tions. The SSPE requires that every player’s equilibrium action should de-

pend only on such payoff-relevant history. However, it should be emphasized

that deviations from the equilibrium are allowed to be nonstationary. In the

context of negotiations, this represents forgiveness - “let bygones be bygones.”

Players do not treat one another unfavourably even if they were treated so in

past rounds of negotiations.

It is well-known that in a broad class of Rubinstein-type sequential mul-

tilateral bargaining games, including our game Γε,θ, there are many subgame

perfect equilibria when the discount rate of future payoffs, or the probabil-

ity that negotiations will break down, is very small (Osborne and Rubinstein

[25]). Multiplicity of these equilibria holds even in the n-person pure bargain-

ing game where no subcoalitions are allowed. It is mainly for this reason that

the concept of an SSPE is employed in almost all studies of noncooperative

multilateral bargaining models (Selten [31], Baron and Ferejohn [2], Perry and

Reny [26] and Chatterjee et al. [7], among others). One possible justification

for an SSPE is a focal-point argument. It is the simplest type of subgame

perfect equilibrium, and thus it may be easier for players to coordinate their

expectations on it (Baron and Kalai [3]). The SSPE is a natural reference

point of the analysis in multilateral bargaining models.

In the literature on equilibrium selection in noncooperative games, SSPE is

equivalent to subgame perfect equilibrium satisfying the condition of subgame

consistency introduced by Harsanyi and Selten [12]. Subgame consistency in

general extensive games requires that every player behave in the same way

across “isomorphic” subgames. In the context of our bargaining game Γε,θ, all

15Precisely speaking, when player i is a responder, her response surely depends on a current
proposal and may depend on who a proposer is, and on how responders that preceded her
have behaved in the same round.
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subgames starting at the beginning of all rounds can be considered isomorphic

as long as the same collections of agreements have been reached before, because

if that is so, they will have identical game trees. In addition, an SSPE can

be reformulated as a Markov-perfect equilibrium (Maskin and Tirole [18]) of

Γε,θ by taking the collection of agreements reached in past negotiations as a

payoff-relevant state variable in each round.

The bargaining game Γε,θ may suffer from two kinds of inefficiency. First,

a proposal is rejected and negotiations break down with a positive probability.

Breakdown of negotiations typically results in an inefficient outcome. Second

is the failure of the grand coalition N to form. It is known that the first kind

of inefficiency may occur in the fixed-order model where an initial proposer is

determined according to a fixed order over the player set and the first rejector

becomes the next proposer (Chatterjee et al. [7]). Okada [23] proves that

when utility is transferable, this is not the case in the random proposer model

for a super-additive TU game. In the next section, it will be shown that this

result can be extended to a cooperative game in strategic form. Specifically,

we will prove that in every SSPE of Γε,θ, every player’s proposal is accepted in

the first round. This enables us to focus on the problem of inefficiency caused

by the formation of subcoalitions.

Definition 7.

(i) An SSPE s of Γε,θ is called efficient if the grand coalition N is formed

in the initial round of the negotiation phase, independently of who the

proposer is.

(ii) An SSPE s of Γε,θ is called totally efficient if the coalition of all active

players (if any) are formed in every round of the negotiation phase, inde-

pendently of history.

(iii) A limit efficient SSPE of Γθ is defined to be a limit of efficient SSPEs of

Γε,θ as ε goes to zero. A limit totally efficient SSPE of Γθ is defined to

be a limit of totally efficient SSPEs of Γε,θ as ε goes to zero.
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In an efficient SSPE, the grand coalition N is formed in the initial round of

negotiations on the equilibrium path. A totally efficient SSPE satisfies the

stronger property that the coalition of all active players is formed not only on

the equilibrium path but also off it. In other words, the totally efficient SSPE

of Γε,θ induces an efficient SSPE on every subgame Γε,θ(pS) of Γε,θ where pS is

a correlated action of a coalition S, independently of whether it is reached by

the equilibrium path or not. Obviously, a totally efficient SSPE of Γε,θ is an

efficient SSPE.

4 Theorems

The aim of our analysis is to characterize the limit-totally-efficient SSPE in

the bargaining game Γθ. In this section, we will state the main theorems. All

proofs are given in the next section. The following proposition is useful to our

analysis.

Proposition 1. (No delay) Let s∗ be an SSPE of Γε,θ. Then, for every i ∈ N ,

player i’s proposal is accepted in the initial round of the negotiation phase in s∗.

The proposition shows that there is no delay of agreement in the bargaining

game Γε,θ. That is, some agreement of coalition is reached immediately on the

equilibrium path. The bargaining rule of Γε,θ that a proposer is selected at

random in every round, is critical to this result. The theorem does not hold in

the fixed-order model. Montero [20] shows the no-delay result of the random

proposer model for a game in partition function form. In Proposition 1, we

remark that the grand coalition is not necessarily formed.

We are now ready to state the main theorems.
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Theorem 1. Let v = (v1, · · · , vn) be a limit-efficient SSPE payoff of Γθ.

Let θN be the weight vector for N assigned by the weight configuration θ.

Then, v is the Nash bargaining payoff of the cooperative game G with weight

vector θN and disagreement point d = (d1, · · · , dn). The disagreement point d

is given by an equilibrium payoff of G.

The theorem shows that when the probability ε that negotiations will stop

upon rejection is sufficiently small, players agree to the Nash bargaining so-

lution in an efficient SSPE of Γε,θ. Two remarks are in order. First, the dis-

agreement point of the Nash bargaining solution is given by a Nash equilibrium

in the strategic-form game G. Unlike Nash’s [22] optimal threat model, our

bargaining game Γε,θ (and Γθ) does not allow players to commit themselves to

incredible threats that will be implemented when negotiations fail. The SSPE

of Γε,θ prescribes that players should play an equilibrium of G when negoti-

ations break down. Secondly, the theorem shows that the weights of players

for the Nash bargaining solution are determined by the likelihood that they

will make proposals. The more likely it is that a player will be selected as a

proposer, the greater her bargaining power. In the context of a two-person

game, Binmore et al. [4] show other sources of asymmetry. They include dif-

ferent waiting times to make counter offers after rejection and different beliefs

concerning the probability of breakdown.

With the help of Theorem 1, we characterize a limit-totally-efficient SSPE

of Γθ. By definition, a totally efficient SSPE of Γθ induces a totally efficient

SSPE of every subgame Γθ(pS) of it that starts after a coalition S agrees to

play a correlated action pS. In other words, the members of the coalition S

should anticipate the totally efficient SSPE behavior of the complementary

coalition. This observation leads naturally to the notions of Nash effectiveness

and thus of the Nash core (Definition 5). A limit-totally-efficient SSPE payoff

of Γθ must be in the Nash core. If not, there exists some coalition S whose

members can improve upon their SSPE payoffs by employing some correlated
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action (that will be counteracted by the Nash bargaining solution behavior of

the complementary coalition N − S). Every member of S has an incentive

to propose such a coalitional deviation (when selected as a proposer) since all

other members of S accept it. This contradicts the SSPE property. The Nash

bargaining solution configuration that defines the Nash core has a disagree-

ment configuration d that satisfies the following property:

(A) For every correlated action pS ∈ ∆(AS) of every coalition S, the disagree-

ment configuration d of G assigns an equilibrium payoff of the subgame

G(pS) of G.

Theorem 2. Let φ∗ be the payoff configuration generated by a limit-totally-

efficient SSPE s∗ of Γθ. Then

(i) φ∗ is the Nash bargaining payoff configuration with weight configuration θ

and disagreement configuration d that satisfies (A), and

(ii) for every S ⊂ N and every pS ∈ ∆(AS), the payoff φ∗(pS) ∈ F (G(pS))

assigned by φ∗ belongs to the Nash core of the subgame G(pS) that is defined

by the Nash bargaining solution configuration associated with θ and d.16

It follows from Theorem 2 that when the probability ε that negotiations

break down is very small, a totally efficient SSPE payoff is the Nash bargaining

payoff with weight vector θN , and moreover that it belongs to the Nash core

of G. Given that the totally efficient SSPE of Γε,θ has the subgame property,

namely that it induces a totally efficient SSPE on every subgame Γε,θ(pS) of

Γε,θ, the property above of the totally efficient SSPE payoff should be true for

every subgame Γε,θ(pS).

To understand condition (ii) of Theorem 2, we discuss what it means in

a special case of a transferable utility game (N, v) in characteristic function

16When S is the empty set ∅, the subgame G(pS) means the whole game G.
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form where the characteristic function v assigns a real value v(S) to every

coalition S of N . For a coalition S, the restriction of v to S is denoted by vS.

A subgame G(pN−S) of G simply corresponds to a transferable utility game

(S, vS) with player set S. The (symmetric) Nash bargaining solution of (S, vS)

with disagreement point v({i}) = 0 for all i ∈ S is given by the equal pay-

off vector (1/|S|, · · · , 1/|S|) where |S| denotes the number of members in S.

Given that the value v(S) of coalition S is independent of the action taken by

the complementary coalition N −S, the Nash core of the game (S, vS) is equal

to the usual core. The Nash bargaining solution (1/|S|, · · · , 1/|S|) belongs to

the core of (S, vS) if and only if v(S)/|S| ≥ v(T )/|T | for all subcoalitions T

of S. Therefore, for equal weights, the condition (ii) of Theorem 2 reduces to

a simple condition: v(S)/|S| ≥ v(T )/|T | for all coalitions S and T of N with

T ⊂ S. We proved in Okada [23, Theorem 3] that the converse of Theorem 2

holds true for a transferable utility game in characteristic function form. The

last theorem shows that this result can be extended to a general cooperative

game G in strategic form (under certain technical conditions).

Theorem 3. Let φ∗ be the Nash bargaining payoff configuration of a co-

operative game G with weight configuration θ and disagreement configuration

d that satisfies (A). If φ∗ satisfies

(B) for every S ⊂ N and every pS ∈ ∆(AS), the payoff φ∗(pS) ∈ F (G(pS))

assigned by φ∗ belongs to the interior of the strict Nash core17 of subgame

G(pS) relative to the upper-right boundary of the feasible set F (G(pS)),

then φ∗ is a payoff configuration generated by a limit-totally-efficient SSPE of

Γθ.

Theorems 2 and 3 virtually show that the Nash bargaining solution of the

17The strict core is defined in the same manner as the core, except that the domination
requires that no member of a coalition is ever worse off with at least one member being
better-off. When utility is transferable, the core and the strict core coincide.
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general cooperative game G can be supported by the totally efficient SSPE of

the bargaining model Γθ, where the probability that negotiations fail is very

small, if and only if the Nash bargaining payoff belongs to the Nash core. We

remark that when the feasible set F (G) (or vNash(N)) is large compared to

vNash(S) for all S 6= N , the Nash core becomes large, and thus condition (B)

in Theorem 3 is more likely to hold.

5 Proofs

In this section, we will prove the results with the help of several lemmas.

Lemma 1. Let s∗ = (s∗1, · · · , s∗n) be an SSPE of Γε,θ, and let q∗ = (q∗1, · · · , q∗n)

be a mixed action profile of G that is employed by s∗ in the play phase of Γε,θ

when no agreements have been reached in the negotiation phase. Then q∗ is

an equilibrium of G.

Proof. When no agreements have been reached in the negotiation phase,

all players select their actions independently in the play phase, and thereafter

the bargaining game Γε,θ ends. This rule of Γε,θ implies that the subgame

perfect equilibrium s∗ of Γε,θ prescribes an equilibrium of G in the play phase

when no agreements have been reached. �

In what follows, we fix an equilibrium q∗ = (q∗1, · · · , q∗n) of G given by an

SSPE s∗ in the case of no agreements, and assume that q∗ satisfies Assump-

tion 1.(iii). We denote the expected payoffs for q∗ by d = (d1, · · · , dn). We

show that d = (d1, · · · , dn) becomes the disagreement point of the Nash bar-

gaining solution when all players are active in negotiations. Note that the

expected payoff v = (v1, · · · , vn) of s∗ satisfies vi ≥ di for all i ∈ N (if vi < di

for some i, i will obtain the expected payoff (1− ε)vi + εdi higher than vi by
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rejecting all proposals). Given that negotiation is meaningless if the disagree-

ment point d is Pareto-efficient, we assume:

Assumption 2. The disagreement point d in an SSPE s∗ of Γε,θ is Pareto-

inefficient in the feasible set F (G) ofG, that is, there exists some y = (y1, · · · , yn) ∈

F (G) such that yi > di for all i ∈ N .

The following lemma proves Proposition 1, which shows no delay of agree-

ment in every SSPE of Γε,θ.

Lemma 2. In every SSPE s∗ = (s∗1, · · · , s∗n) of Γε,θ, every player’s proposal is

accepted in the initial round of the negotiation phase.

Proof. Let v = (v1, · · · , vn) be the expected payoffs of players for s∗, and

let F (G) be the feasible set of G. We note that v ∈ F (G), because F (G) is

convex and v is a convex combination of a finite number of points in F (G).

By Assumption 2, there exists y = (y1, · · · , yn) in F (G) such that yi > di

for all i ∈ N . Given that y and v are in the convex set F (G), we have

(1− ε)v+ εy ∈ F (G) for any ε with 0 < ε < 1. Then, select pN ∈ ∆(AN) such

that uj(p
N) = (1− ε)vj + εyj for all j ∈ N . Given that yj > dj for any j, we

have

uj(p
N) > (1− ε)vj + εdj for all j ∈ N. (5)

Suppose that every player i proposes (N, pN). Given that s∗ is an SSPE of

Γε,θ, the right-hand side of (5) is the expected payoff that player j ( 6= i) can

obtain by rejecting the proposal (N, pN). (5) implies that every player i’s pro-

posal (N, pN) is accepted by all other players. This fact implies that player

i’s equilibrium proposal (not necessarily equal to (N, pN)) is accepted on the

equilibrium play of the SSPE s∗. �
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Lemma 3. Let s∗ = (s∗1, · · · , s∗n) be an efficient SSPE of Γε,θ, v = (v1, · · · , vn)

the expected payoffs of players for s∗, and d = (d1, · · · , dn) the disagreement

payoff of s∗. In s∗, every player i ∈ N initially proposes a pair (N , pi) where

pi ∈ ∆(AN) is the optimal solution of the maximization problem

max ui(p) (6)

subject to (1) p ∈ ∆(AN)

(2) uj(p) ≥ (1− ε)vj + εdj for all j ∈ N, j 6= i.

Moreover, the proposal (N , pi) is accepted.

Proof. Let cεj ≡ (1 − ε)vj + εdj denote the RHS of the second constraint

in (6). If responder j is offered more than cεj , it is optimal for her to accept

the proposal. (6) can be reformulated as

max hi(x−i)

subject to (1) x−i ∈ F−i(G)

(2) xj ≥ cεj for all j ∈ N, j 6= i

Recall that hi(x−i) = max{xi | (xi, x−i) ∈ F (G)}. The function hi is contin-

uous from Assumption 1(i). Let x∗−i ∈ RN−{i} be the optimal solution of the

problem above. It holds from Assumptions 1.(ii) and 1.(iii) that x∗j = cεj for

all j 6= i. For any ε > 0, (cεj)j∈N is an interior point of the feasible set F (G)

(note that vj ≥ dj for all j ∈ N). Then, it holds from the continuity of hi

that for sufficiently small δi > 0, there exists δj > 0 for all j 6= i such that

hi(x
∗
−i + δ−i) ≥ hi(x

∗
−i) − δi where δ−i = (δj)j 6=i. This inequality means that

if player i proposes the grand coalition N and the correlated action attaining

payoffs (x∗−i + δ−i, hi(x
∗
−i + δ−i)), this proposal is accepted and thus player i

can obtain more than hi(x
∗
−i)− δi. Given that δi > 0 can be chosen arbitrarily
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small, we can show that player i proposes the optimal solution pi of (6) in the

efficient SSPE s∗ of Γε,θ. Lemma 1 shows that the proposal is accepted. �

Lemmas 2 and 3 characterize the equilibrium proposal of every player in an

efficient SSPE of Γε,θ. We note that the optimal solution of the maximization

problem in Lemma 3 gives only a necessary condition for the efficient SSPE

proposal for every player i, because the optimality of proposing the grand

coalition N has not been examined. Given that player i can propose any sub-

coalition S of N , we must guarantee that the grand coalition N is actually the

optimal proposal. This will be done in Theorem 2 where the Nash core plays

an important role. Before proving Theorem 2, we will prove that the maxi-

mization problem in Lemma 3 characterizes the asymmetric Nash bargaining

solution of G as the probability ε that negotiations will fail goes to zero.

Lemma 4. Let v = (v1, · · · , vn) be a limit of efficient SSPE payoffs vε =

(vε1, · · · , vεn) of Γε,θ as ε goes to zero. Then,

v1 − d1

θ1

· ∂H
∂x1

(v) = · · · = vn − dn
θn

· ∂H
∂xn

(v) (7)

H(v) = 0 (8)

where θ = (θ1, · · · , θn) is the probability distribution that selects a proposer

from the player set N , and d = (d1, · · · , dn) is the disagreement payoff of an

efficient SSPE in Γε,θ (independent of ε).

Proof. Let xεi denote the payoff that every player i ∈ N demands for herself

in the initial round of the negotiation phase when the efficient SSPE of Γε,θ is

played. By Lemma 3, we can show that for every i ∈ N

H((1− ε)vε1 + εd1, · · · , xεi , · · · , (1− ε)vεn + εdn) = 0. (9)
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In addition, by Lemma 3 and the definition of vε, we obtain

vεi = θix
ε
i + (1− θi)[(1− ε)vεi + εdi], for all i = 1, · · · , n. (10)

For each i ∈ N , define zε,i ∈ F (G) as

zε,i = ((1− ε)vε1 + εd1, · · · , xεi , · · · , (1− ε)vεn + εdn). (11)

zε,i is the payoff vector proposed by player i in the initial round of the negoti-

ation phase in the efficient SSPE sε of Γε,θ. For any i, j ∈ N(i 6= j), we have

from (9)

H(zε,i)−H(zε,j) = 0.

By Taylor’s theorem, there exists some λ, 0 < λ < 1, such that

0 = H(zε,i)−H(zε,j)

= [xεi − (1− ε)vεi − εdi] ·
∂H

∂xi
(λzε,i + (1− λ)zε,j)

+[(1− ε)vεj + εdj − xεj ] ·
∂H

∂xj
(λzε,i + (1− λ)zε,j). (12)

(10) yields

xεi − (1− ε)vεi − εdi =
1

θi
[vεi − (1− ε)vεi − εdi] =

ε

θi
(vεi − di). (13)

By substituting (13) into (12), we prove

vεi − di
θi

∂H

∂xi
(λzε,i + (1− λ)zε,j) =

vεj − dj
θj

∂H

∂xj
(λzε,i + (1− λ)zε,j). (14)

By assumption, we have limε→0 v
ε = v, which implies from (10) that limε→0 x

ε
i =

vi for all i . Thus, it follows from (11) that

lim
ε→0

vε = lim
ε→0

zε,1 = · · · = lim
ε→0

zε,n = v. (15)
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We prove (7) from (14) and (15), and prove (8) from (9) and (15). �

In view of (9) and (10), the efficient SSPE payoffs vε = (vε1, · · · , vεn) of Γε,θ

are characterized as a solution of

vεi = θi · hi((1− ε)vε−i + εd−i) + (1− θi) · {(1− ε)vεi + εdi} for all i ∈ N. (16)

(16) is called the equilibrium equation of the efficient SSPE payoffs of Γε,θ.

We are now ready to prove Theorems 1 and 2.

Proof of Theorem 1. The maximization problem in Definition 2 is reformu-

lated as

maxx
∑n

i=1 θi · log(xi − di)

subject to (1) H(x1, · · · , xn) ≥ 0

(2) xi ≥ di for all i ∈ N.

By Assumption 2, the optimal solution x∗ = (x∗1, · · · , x∗n) ∈ RN satisfies

H(x∗1, · · · , x∗n) = 0 and x∗i > di for all i ∈ N . Therefore, the Kuhn-Tucker

condition yields

θi
x∗i − di

− λ∂H
∂xi

(x∗) = 0, i = 1, · · · , n

H(x∗) = 0

where λ is the Lagrange multiplier. From the concavity of H(x1, · · · , xn) and

Assumption 2, x∗ is the optimal solution of the maximization problem if and

only if x∗ satisfies the Kuhn-Tucker condition. Together with this fact, Lemma

4 proves the theorem. �

Proof of Theorem 2. Let φ∗ be the payoff configuration for Γθ that is gener-

ated by a limit-totally-efficient SSPE s∗ = (s∗1, · · · , s∗n). Let sε = (sε1, · · · , sεn)
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be a totally efficient SSPE of Γε,θ that converges to s∗ = (s∗1, · · · , s∗n) as ε goes

to zero. By the same proof as Lemma 1, we can show that for every correlated

action pS ∈ ∆(AS) of every coalition S, sε induces an equilibrium of the sub-

game G(pS) of G when negotiations break down among all players in N − S.

Let d(pS) denote the payoffs of such an equilibrium, and let d denote the dis-

agreement configuration of G that assigns d(pS) to every subgame G(pS) of

G. Let Γε,θ(pS) denote a subgame of Γε,θ which starts after agreement (S, pS)

has been reached. By applying Theorem 1 to every subgame Γε,θ(pS), we show

that the payoff configuration φ∗ satisfies (i).

We will next prove (ii). Let x∗ = (x∗1, · · · , x∗n) ∈ RN be the payoff vector

that the payoff configuration φ∗ assigns to the game G. For notational sim-

plicity, we prove only that x∗ belongs to the Nash core of G defined by the

Nash bargaining solution configuration b∗ with θ and d. The same proof can

be applied easily to the payoff vector φ∗(pS), which the payoff configuration

φ∗ assigns to every correlated action pS of every S. Suppose that x∗ does not

belong to the Nash core of G. By the definition of the Nash core, there exists

some coalition T ⊂ N and some payoff vector y ∈ vNash(T ) such that

yi > x∗i for all i ∈ T, (17)

where vNash is the Nash characteristic function (see Definition 5). By the

definition of vNash, the fact that y ∈ vNash(T ) means that there exists some

correlated action pT ∈ ∆(AT ) of T such that

ui(pT , b
∗(pT )) ≥ yi for all i ∈ T (18)

where b∗(pT ) is the Nash bargaining solution of the subgame G(pT ). Let bε(pT )

be the correlated action employed by the complementary coalition N − T in

the totally efficient SSPE sε of Γε,θ after pT is agreed by the coalition T . By
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Theorem 1, we obtain

lim
ε→0

bε(pT ) = b∗(pT ). (19)

Let xε = (xε1, · · · , xεn) be the payoff vector of the totally efficient SSPE sε.

Then,

lim
ε→0

xε = x∗. (20)

In view of (17), (18), (19) and (20), it holds that for sufficiently small ε > 0

ui(pT , b
ε(pT )) > xεi for all i ∈ T. (21)

Now, suppose that player i ∈ T deviates from sε and proposes (T, pT ). If

this proposal is agreed upon, then all responders j in T receive the payoff

uj(pT , b
ε(pT )), because thereafter the complementary coalition N−T reacts to

T by choosing bε(pT ). If the proposal (T, pT ) is rejected, they receive the con-

tinuation payoff (1− ε)xεj + εdj, which is smaller than xεj (note that xεj > dj).

From (21), it is optimal for all responders in T to accept (T, pT ). Therefore,

on the equilibrium play of sε, the proposal (T, pT ) is agreed and the proposer

i is better-off. This contradicts the assumption that sε is an SSPE of Γε,θ. �

To prove Theorem 3, we first establish that there exists a solution for the

equilibrium equation (16) of the efficient SSPE of Γε,θ.

Lemma 5 Let v = (v1, · · · , vn) be the Nash bargaining payoffs of G with

weight vector θ = (θ1, · · · , θn) and disagreement point d = (d1, · · · , dn). For

any sufficiently small ε > 0, there exists a solution vε = (vεi )i∈N ∈ F (G) to the

equilibrium equation (16) such that vε converges to v as ε goes to zero.

Proof. Let F ∗ = {x ∈ F (G) | xi ≥ di for all i ∈ N}. For every x ∈ F ∗
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and every i ∈ N , define

gεi (x) = θi · hi((1− ε)x−i + εd−i) + (1− θi) · {(1− ε)xi + εdi}. (22)

It can be proved that gε(x) = (gε1(x), · · · , gεn(x)) is a continuous function from

the compact convex subset F ∗ of Rn to itself. Then, by Brouwer’s fixed point

theorem, there exists a fixed point vε ∈ F ∗ of gε that satisfies (16). Given

that F ∗ is a compact set, there exists some converging subsequence of {vε}.

Take any such subsequence of {vε}. Let v̄ denote its limit. By the same proof

as in Theorem 1 (and Lemma 4), we can prove v̄ = v. This implies that the

sequence {vε} itself has limit v. �

Let φ∗ be the Nash bargaining payoff configuration of G. By applying the

same proof as Lemma 5 to every subgame G(pS) of G, we can show that there

exists a solution to the equilibrium equation of an efficient SSPE of the sub-

game Γε,θ(pS) of Γε,θ. Let vε(pS) denote a solution. Lemma 5 also shows that

vε(pS) converges to the Nash bargaining solution payoff φ∗(pS) of G(pS) as ε

goes to zero.

Proof of Theorem 3. Let d be a disagreement configuration of G that

satisfies (A). For every correlated action pS ∈ ∆(AS) of every coalition S,

let d(pS) ∈ F (G(pS)) denote the disagreement point that the configuration d

assigns to the subgame G(pS) of G. With abuse of notation, we also denote

by d = (d1, · · · , dn) the disagreement point in G assigned by the disagreement

configuration d.

Define every player i’s strategy sεi in Γε,θ as follows.

(1) When no coalition forms,

(i) propose the grand coalition N and the correlated action yielding the
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payoff vector in (11)

zε,i = (hi((1− ε)vε−i + εd−i), (1− ε)vε−i + εd−i),

where vε = (vεi )i∈N ∈ F (G) is a solution to the equilibrium equation

(16) (the existence of which is proved in Lemma 5).

(ii) accept any proposal that yields a payoff not less than (1−ε)vεi +εdi,

(iii) employ the Nash equilibrium of G given by the disagreement con-

figuration d when negotiations break down.

(2) When some coalition S forms and some correlated action pS ∈ ∆(AS) of

S is agreed upon, the strategy sεi is defined in the same way as above,

except that N and vε are replaced with N − S and vε(pS), respectively.

When more than one coalition forms, sεi is defined in a similar way by

taking S as the union of coalitions.

Let φε be the payoff configuration generated by the strategy profile sε =

(sε1, · · · , sεn) constructed above. Given that vε(pS) is a solution to the equi-

librium equation of an efficient SSPE of Γε,θ(pS) for every pS ∈ ∆(AS), we can

show that φε(pS) = vε(pS), and that φε(pS) converges to the Nash bargaining

solution payoff φ∗(pS) of G(pS) with θ and d when ε goes to zero.

It remains to be proved that the strategy profile sε = (sε1, · · · , sεn) is an

SSPE of Γε,θ(pS). For this purpose, it is sufficient to prove that player i’s

proposal zε,i is optimal given sε. For each j ∈ N , let zε,ij denote the j-th

component of player i’s proposal zε,i, that is,

zε,ii = hi((1− ε)vε−i + εd−i), zε,ij = (1− ε)vεj + εdj, j 6= i.

Given that the disagreement point d = (d1, · · · , dn) of G is an interior point of

F (G) from Assumption 2, (1−ε)vε+εd is also an interior point of F (G) (note

that F (G) is a convex set of RN). This implies that hi((1 − ε)vε−i + εd−i) >

(1−ε)vεi+εdi for every i ∈ N . Then, it follows from (16) that zε,ji < vεi < zε,ii for
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any j 6= i. In addition, we can see from Lemma 5 that vε and every zε,i converge

to the Nash bargaining solution payoffs v of G with the weights θ = (θ1, · · · , θn)

and the disagreement point d = (d1, · · · , dn) as ε goes to zero. Given that v

belongs to the interior (relative to the upper-right boundary H of the feasible

set F (G)) of the strict Nash core of G and zε,i belongs to the boundary H, we

can see that zε,i also belongs to the (relative) interior of the strict Nash core for

any sufficiently small ε. Take any coalition S and any correlated action pS of

S. By definition, the payoff vector u = (uj(pS, b
∗(pS)))j∈N is Nash-effective for

S, that is, u ∈ vNash(S). The fact that zε,i is in the strict Nash core implies

that if uj(pS, b
∗(pS)) ≥ zε,ij for all j ∈ S, j 6= i, then zε,ii ≥ ui(pS, b

∗(pS)).

Otherwise, u dominates zε,i via S in the strict sense with respect to vNash.

Therefore, zε,ii is the optimal value (attained by S = N) of the maximization

problem

max ui(pS, b
∗(pS))

subject to (1) S ⊂ N, pS ∈ ∆(AS)

(2) uj(pS, b
∗(pS)) ≥ zε,ij for all j ∈ S, j 6= i.

This means that the strategy sεi prescribes the optimal proposal of player i.

It is clear that sεi prescribes the optimal action for responders. By applying

the same proof to all subgames of Γε,θ starting after some agreement has been

reached, we can prove that sε = (sε1, · · · , sεn) is a totally efficient SSPE of Γε,θ.

�

6 Discussion

We discuss several issues that our noncooperative approach may raise. First,

how does the noncooperative model presented herein yield the Nash core?

The following properties of our model are crucial for any bargaining game

to yield the Nash core: (i) the Nash bargaining solution is implemented on
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the equilibrium path, (ii) any coalition of players is free to deviate from the

largest coalition, and (iii) the bargaining game has a recursive structure in

the sense that if any coalition deviates from the equilibrium agreement, then

other players play the same kind of a bargaining game among themselves as

the original one. As we argued in the introduction, subgame perfection and

properties (i) and (iii) imply that the other players employ the Nash bargaining

solution behavior in response to any deviation by a coalition. Then, property

(ii) yields that the Nash bargaining solution of the largest coalition belongs to

the Nash core. By replacing the Nash bargaining solution with the core, the

same arguments as above can be applied to noncooperative implementation of

the recursive core that are presented by Huang and Sjöström [14] and Kóczy

[17]. Indeed, by employing the bargaining model of Perry and Reny [26] for

the core, Huang and Sjöström [15] provide noncooperative implementation of

the recursive core for partition function form games. Kóczy [16] obtains the

same result by employing the bargaining model of Moldovanu and Winter [19].

Second, both our model and Huang and Sjöström’s [15] model assume that

members of any coalition can commit to their agreement. There, however, is

a slight difference between the two models regarding a form of agreements. In

Huang and Sjöström’s [15] framework of a partition function form game, the

members of a coalition need to commit to a division rule (or, in general, a com-

plete contingency plan regarding how to divide a coalitional surplus) for every

possible coalition structure because the value of a coalition is not well-defined

until a final coalition structure is determined. In our framework of a strategic

form game, given that the members of a coalition can anticipate rationally

that other players will form the complementary coalition, it is sufficient for

them to commit to a profile of actions against it.

Third, the noncooperative bargaining theory is often criticized on the ground

that the result is too sensitive to unimportant details of bargaining procedures.

For example, different orders of proposers may produce different bargaining

outcomes even if the fundamental parameters of the worth of a coalition re-
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main unchanged. In our model, the equilibrium outcome depends on the prob-

ability distribution for selecting a proposer in each bargaining round. In our

view, this random rule should not be regarded as an unimportant procedural

detail. The probability distribution turns out to induce weights of players in

the generalized Nash bargaining solution. The result supports nicely our in-

tuition that the likelihood that a player will become a proposer is a source of

her bargaining power.

Fourth, the probability distribution for selecting a proposer is predeter-

mined in our bargaining model. A natural question is how such a probability

distribution is determined in a real situation. This is an empirical matter that

lies beyond the scope of this paper. Social and political factors may determine

a probability distribution. For example, in local communities, a seniority rule

(older persons propose more often than younger ones) tends to prevail. In in-

ternational negotiations, “bigger” countries with large populations (or GDPs)

may be given more opportunities to make proposals than others.

Fifth, our analysis focuses on an efficient equilibrium in which the grand

coalition forms. We have proved that given a disagreement point, a (limit)

totally efficient SSPE exists uniquely if the Nash bargaining solution belongs

to the Nash core. The uniqueness of an SSPE is an open question in the

random proposer model for a general cooperative game. In a special class of

TU games without externality, Yan [34] proves that an efficient SSPE is a

unique SSPE when it belongs to the core. Eraslan [8] proves the uniqueness

of an SSPE in an n-person majority game. There is a further issue regarding

the uniqueness of an equilibrium in our bargaining model. The disagreement

point of the Nash bargaining solution is determined by a Nash equilibrium of

a strategic form game, which is a primitive of the analysis. Obviously, in order

to derive a unique SSPE of the model, we need an equilibrium selection theory

for a strategic form game.

Finally, note there is a noticeable difference between our model and Huang

and Sjöström’s [15] model when core solutions are empty. When the recursive
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core is empty, Huang and Sjöström’s model has no SSPE (in pure strategies).

When the Nash core is empty, our model does not have the (limit) totally

efficient SSPE, but another type of SSPE exists.18 For example, a majority

voting game has Baron-Ferejohn’s [2] equilibrium, in which all minimal winning

coalitions have the same probability of forming. In general, an SSPE of the

random proposer model is inefficient when the Nash core is empty. When

the resulting payoff allocation is inefficient, players may want to renegotiate

their on-going agreement to attain a Pareto-improving payoff allocation. This

problem of renegotiations in coalitional bargaining is analyzed by Okada [24]

and Seidmann and Winter [30] in a TU game in characteristic function form.

Gomes [9] and Gomes and Jehiel [10] extend the renegotiation analysis to

a general bargaining situation with externality. All these studies show that

successive renegotiations necessarily lead to an efficient allocation when the

grand coalition is efficient. We, however, show in Okada [24] a negative effect

of renegotiations such that they may distort the equity of a final allocation by

inducing the first-mover rent.

7 Conclusion

We have extended a noncooperative theory of the Nash bargaining solution

to a general n-person cooperative game. When a coalition forms, the reac-

tion by other players is crucial for determining a final outcome of the game.

The noncooperative approach yields a new core notion called the Nash core,

which requires that the complementary coalition should react according to the

Nash bargaining solution. We have proved that the Nash bargaining solution

needs to belong to the Nash core of the game in order to be supported by a

noncooperative equilibrium of the bargaining model.

18The existence of an SSPE in our model can be proved in a standard way by Kakutani’s
fixed-point theorem with induction on the number of players. See Ray and Vohra [27] and
Gomes [9] for the proof in related models.
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