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Abstract. We investigate how an increase in transaction costs affect the equilibrium asset

prices and allocations. We find a sufficient condition for an increase in transaction costs to

increase buying prices, decrease selling prices, decrease the trading volume, and make all active

traders worse off. The sufficient condition is met by a general class of utility functions, which

contains all CARA utility functions and even some non-HARA utility functions. As for CRRA

utility functions, the class contains all utility functions with CRRA coefficients less than or

equal to one. We show that whenever there is an agent with a CRRA coefficient greater than

one, an increase in transaction costs may well decrease buying prices and make buyers better

off.
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1. Introduction

In asset markets, the transaction cost is defined as the difference between the price that the
buyer must pay to obtain an asset and the price that the seller can receive by giving up the
asset. It can, thus, represent physical or technological costs, brokerage fees, and tax.

While the transaction cost is an impediment to straightforward applications of benchmark
results in finance, such as the characterization of optimal portfolios and the pricing of derivative
assets, these results have been extended to markets with transaction costs. To name just two
notable examples, Constantinides (1986) and Davis and Norman (1990) considered the optimal
consumption-investment problem of Merton (1973) when the decision maker incurs transaction
costs; and Bensaid et al (1992) considered derivative asset pricing when replicating them requires
transaction costs. These results are often stated in comparison with the benchmark results. For
example, while Merton’s rule of the optimal plan stipulates that, in the case of one risky and
one riskless asset, the ratio between the amounts invested in the two assets should be kept
constant throughout, Davis and Norman (1990) showed that with transaction costs, the ratio
should stay within a wedge, rather than remain constant. In the binomial model of Cox, Ross,
and Rubinstein (1979) but with transaction costs, Bensaid et al (1992) showed that it may be
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cheaper to form a portfolio whose payoff dominates that of a derivative asset than to form a
portfolio whose payoff perfectly replicates that of the derivative asset, and the optimal trading
strategy admits “no-rebalancing intervals” of the number of stocks held.

Although these undertakings are ambitious and important, they have a common drawback.
It is that in their models, the asset prices are exogenously specified. While this drawback
does not appear to be serious when one is confined to the portfolio choice problem or the
derivative asset pricing, it does in fact limit the applicability of the results when one would
like to see the consequences of transaction costs from an equilibrium perspective. For example,
the introduction of a transaction cost induces investors to shift from the Merton rule to the
Davis-Norman rule. In the language of equilibrium theory, this means that the investors change
the supply of and the demand for assets. The asset prices, exclusive of transaction costs, would
then need to be changed to sustain equilibrium, but these price changes cannot be analyzed
in the above-mentioned literature because the asset prices are fixed throughout the analysis.
In particular, it is not possible to predict trading volumes or welfare consequences that fully
incorporate the investors’ reactions to transaction costs in the framework of the above literature.

In this paper, we take up a general equilibrium model of asset markets in which multiple,
heterogeneous agents (investors) trade assets incurring, for each unit of assets they trade, trans-
action costs that are proportional to asset prices. We do not take asset prices as exogenously
given. Rather, we take the agents’ expected utility functions and initial risks as the primitive
data. Then, we determine, for each level of proportional transaction costs, the equilibrium as-
set prices, and investigate how they depend on the levels of proportional transaction costs. We
are interested in whether, as in the case of fixed asset prices, an increase in transaction costs
increases the buying price (the asset price plus the transaction cost), decreases the selling price
(the asset price minus the proportional transaction cost), and decrease the trading volume; and
whether the economic cost of transaction costs (the welfare loss arising from the discrepancy
between buying and selling prices) is borne by all actively trading agents.

All our results are concerned with the case of a single consumption period (just as in the
classical portfolio choice problem), one risk-free bond, and one risky asset. We assume, without
loss of generality, that the transaction costs are incurred on the transactions of the risky asset.
First, in Theorem 1, we classify the two “half aggregate” demand functions, one for the buy
side and the other for the sell side, according to the signs of their slopes at equilibrium, and
show that a small (infinitesimal) increase in proportional transaction costs increases the buying
price and decreases the selling price if and only if the two signs are equal. In particular, this
theorem is applicable if the two half aggregate demand functions are both downward-sloping.1

Next, in Theorem 2, we impose a more stringent condition that each individual agent’s demand
function is downward-sloping globally and show that an increase in proportional transaction
costs of arbitrary size increases the buying price, and decreases the selling price, the trading
volume, and all actively trading agents’ welfare. Theorem 2 builds on Theorem 1, but its proof
involves additional intricate arguments to deal with non-differentiability of demand functions,
which inevitably arises in the presence of proportional transaction costs.

1In the partial equilibrium analysis, the half aggregate demand function of the buyers is called the demand
function, and the the half aggregate demand function of the sellers, multiplied by −1, is called the supply function.
This case is, thus, nothing but the standard textbook case, where the demand function is downward-sloping and
the supply function is upward-sloping at equilibrium.
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The assumptions of Theorems 1 and 2 are given in terms of the agents’ demand functions.
Our third result, Proposition 1 and Theorem 3, gives a sufficient condition, in terms of their
Arrow-Pratt measures of absolute risk aversion, for the assumption of Theorem 2 to be met.
This condition is satisfied not only by all utility functions exhibiting constant absolute risk
aversion (CARA), but also by the utility functions having the coefficient of constant relative
risk aversion (CRRA) not exceeding one, and some utility functions that do not even exhibit
hyperbolic absolute risk aversion (HARA). Theorem 3, therefore, implies that an increase in
transaction costs increases the buying price, decreases the selling price, and decreases the trading
volume, even in markets where agents having CARA, CRRA, HARA, and non-HARA utility
functions coexist. This is in sharp contrast with Vayanos (1998), who assumed all agents are
assumed to have CARA utility functions. We prove this result by drawing much on the analysis
in expected utility theory, without deriving closed-form solutions for the equilibrium prices.

Our last result, Proposition 2, shows that the upper bound of the CRRA coefficient equal
to one for the applicability of Theorem 3 is in fact tight. Specifically, for any two agents who
exhibit CRRA and one of whom has a CRRA coefficient greater than one, there is a distribution
of initial risk for the two consumers such that the buying price is lower and the trading volume is
higher under a positive but sufficiently small transaction costs than under the zero transaction
cost. The crux of this result lies in the way the initial risks are distributed: the agent having
a CRRA coefficient greater than one turns out to be the seller of the risky asset. Then his
demand function may well be upward-sloping and Theorem 1 implies that both of the buying
and selling prices go down.

It is a conventional wisdom that an increase in transaction costs increases the buying price,
decreases the selling price, and decreases the trading volume, and hence the economic cost of
transaction costs (the welfare loss arising from the discrepancy between the buying and selling
prices) is borne by both buyers and sellers. The lesson from Proposition 2 is that it may well
be contradicted by a careful equilibrium consideration. It also poses a cautious note on Tobin
tax, which Tobin (1978) proposed to levy on currency transactions in order to curb speculative
ones, reduce exchange rate volatility, establish the autonomy of monetary policy, and raise the
tax revenue. The proponents of Tobin tax, such as Tobin (1978), Stiglitz (1989), Summers
and Summers (1989), Eichengreen, Tobin, and Wyplosz (1995), and Krugman (2009), seem to
presume that it necessarily increases the buying price, decrease the trading volume, and load the
tax burden on all active traders.2 Yet, Proposition 2 shows that the buying price can go down
and the trading volume can go up, and the tax burden can be loaded only on the seller, who is
more risk averse than the buyer and, as such, should not be the target of Tobin tax. Moreover,
this seemingly pathological phenomenon can arise in the simplest possible model: there are a
single consumption period; two states of the world; an Arrow security and a riskless bond; and
two fully rational agents having possibly identical CRRA coefficients, identical information, and
identical beliefs. Our results should, thus, be contrasted with those of Dow and Rahi (2000),
who also showed that the introduction of Tobin tax may make some (and, even, all) traders
better off, because the driving force behind their result is that traders, with CARA utility

2The opponents of Tobin tax tend to oppose to it for such reasons as the reduction of liquidity and the possibility
of tax evasion. McCulloch and Pacillo (2011), Matheson (2011), and Anthony, Bijlsma, Elbourne, Lever, and
Zwart (2012) surveyed the literature on the feasibility and revenue forecasts of Tobin tax, and its impact on
trading volumes, price volatility, and economic welfare.
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functions are asymmetrically informed and Tobin tax may reduce the informativeness of the
equilibrium asset prices. The common drawback of our and their models is that they cannot
deal with asset price volatilities, excessive or not, because transactions take place just once.
Buss, Uppal and Vikov (2011) investigated a model in which transactions take place more than
once and the agents’ utility functions are recursive ones of Epstein and Zin (1989), including
standard time-additive CRRA utility functions. Their analysis is mostly numerical and the
pathological phenomenon does not emerge3 in their example of one bond, one stock, and two
consumers with time-additive CRRA utility functions, though both coefficients are greater than
one.

The rest of this paper is organized as follows. In Section 2, we give the model of this paper
and preliminary results. In Section 3, we present the first two main results, Theorems 1 and
2, on the impact of an increase in proportional transaction costs on asset prices. The sufficient
condition of Theorem 2 is implied by a condition presented in stated in Section 4 in terms of
the Arrow-Pratt measure of absolute risk aversion. In Section 5, we give a class of examples
of CRRA utility functions in which an increase in proportional transaction costs decreases the
buying price and increases the trading volume. In Section 6, we summarize our results and
suggest directions of future research. All proofs are gathered in the Appendix.

2. Model and preliminary Results

The risk is represented by a standard probability space (Ω,F , P ).
There are I agents i = 1, 2, . . . , I, each characterized by a utility function ui defined on some

open interval (di, di), where di ∈ {−∞} ∪R, di ∈ {+∞} ∪R, and di < di, and an initial risk
Ai, a random variable defined on Ω. Assume that ui is twice continuously differentiable and
satisfies u′i(xi) > 0 > u′′i (xi) for every xi ∈ (di, di), and the so-called Inada condition, that is,
u′i(xi) ↑ ∞ as xi ↓ di, and u′i(xi) ↓ 0 as xi ↑ di.

Two types of assets, a risky asset and a riskless bond, are traded. The future dividend (value)
of the risky asset is denoted by a random variable S defined on Ω. We assume S is not constant,
that is, essinf S < esssupS. We allow S to be correlated with the Ai. The future dividend of
the riskless bond is equal to 1.

The relative price of the risky asset with respect to the riskless bond, to be determined at
equilibrium, is denoted by π. The non-standard aspect of this model is that agents must incur
transaction costs to trade the risky asset, in exogenously specified proportions c1 and c0, lying
between 0 and 1, to the prices π. To be precise, denote by yi the number of the risky asset
traded by agent i. Of course, if yi > 0, then agent i buys the risky asset, whereas if yi = 0 or if
yi < 0, then he does not trade trade or sell it, respectively. If π > 0 and if yi 6= 0, then agent i
must pay the transaction cost c|yi|π > 0. Throughout, we shall denote

sgn(yi) ≡





+1 if yi > 0,
0 if yi = 0,
−1 if yi < 0.

Then, the total cost (including transaction costs) or the net revenue (transaction costs sub-
tracted), in terms of the riskless bond, for agent i is equal to (1 + c sgn(yi))πyi. This is the

3That is, the buying price of the stock with respect to the bond, when the latter incurs no transaction cost, goes
up, the selling price and the trading volume got down.
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amount that must be financed by the sales of the riskless bond or can be spent on the purchase
on the riskless bond. The maximization problem of agent i can, therefore, be formulated as

(2.1) max
yi

E [ui (Ai + yi (S − (1 + c sgn(yi))π))] .

Whenever there is a unique solution to this problem, we denote it by fi(c, π).

Remark 1. Although we have just formulated the transaction costs as if they were imposed
on the risky asset, our formulation can, in fact, accommodates the case where the transaction
costs are imposed also on the riskless bond. To see this point, suppose now that the prices of
the riskless bond and the risky asset are π0 and π1, and the proportional transaction costs of
the riskless bond and the risky asset are c0 and c1. Then the total cost necessary to form a
portfolio (y0

i , yi) of the riskless bond and the risky asset is equal to
(
1 + c0 sgn(y0

i )
)
π0y0

i +
(
1 + c1 sgn(yi)

)
π1yi.

The budget constraint stipulates that this value must not exceed zero. Now define

c =
c0 + c1

1 + c0c1
and π =

1 + c0c1

1− (c0)2

π1

π0
.

A straightforward calculation shows that the budget constraint is equivalent to requiring that

y0
i + (1 + c sgn (yi))πyi

must not exceed zero. Thus, even if the transaction costs are imposed on the riskless bond, we
can assume without loss of generality that the riskfree bond requires no transaction costs and
its price is equal to one.

We say that a price π for the risky asset is an equilibrium price under the proportional
transaction cost c if

∑
i fi(c, π) = 0. The consumption that agent i receives at equilibrium is

Ai + fi(c, π) (S − (1 + c sgn(fi(c, π)))π) .

The sum of these over all agents i is equal to
I∑

i=1

Ai − cπ
I∑

i=1

|fi(c, π)|.

That is, by trading assets, the agents give up cπ
∑I

i=1 |fi(c, π)| units of the riskfree discount
bond in the aggregate. In this paper, we assume that the transaction costs are taken away from
the model (to be paid as tax to the government or as commissions to the intermediary that are
not modeled here).4

In the rest of this section, we explore some useful properties of the demand functions fi.
Define a functions gi and hi by

gi(yi; c, π) =E
[
(S − (1 + c)π)u′i(Ai + yi(S − (1 + c)π))

]
,(2.2)

hi(yi; c, π) =E
[
(S − (1− c)π)u′i(Ai + yi(S − (1− c)π))

]
.(2.3)

4If an agent were a recipient of government subsidies or a shareholder of the intermediary, and thus got back part
of cπ

∑I
i=1 |fi(c, π)|, then the objective function of the maximization problem (2.1) should include the transfer

that agent i receives from the government or the intermediary. Although the equilibrium price would in general
be different from those analyzed here, it would be the same if all agents have CARA utility functions.
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Then, yi is a solution to the utility maximization problem (2.1) if and only if

(2.4)





gi(yi; c, π) = 0, if yi > 0,
hi(yi; c, π) = 0, if yi < 0,
gi(0; c, π) ≤ 0 ≤ hi(0; c, π), if yi = 0.

Remark 2. Suppose that fi(c, π) is well defined (exists). If it is strictly positive, then

1
1 + c

essinf S < π <
1

1 + c
esssupS.

If it is strictly negative, then

1
1− c essinf S < π <

1
1− c esssupS.

If it is zero, then
1

1 + c
essinf S < π <

1
1− c esssupS.

If c = 0, then each of these three restrictions can be rewritten as essinf S < π < esssupS. In
the subsequent analysis, we assume that fi(0, π) is well defined (exists) whenever essinf S <

π < esssupS. Since, then, E [(S − π)u′i(Ai + fi(0, π)(S − π))] = 0 by (2.2), (2.3), and (2.4),
P ({ω ∈ Ω : S(ω) > π}) > 0 and P ({ω ∈ Ω : S(ω) < π}) > 0.

Note that gi and hi are continuously differentiable and

g′i(yi; c, π) = E
[
(S − (1 + c)π)2u′′i (Ai + yi(S − (1 + c)π))

]
< 0,(2.5)

h′i(yi; c, π) = E
[
(S − (1− c)π)2u′′i (Ai + yi(S − (1− c)π))

]
< 0.(2.6)

Thus gi(yi; c, π) and hi(yi; c, π) are strictly decreasing function of y. Consulting (2.2) and (2.3),
we know that if fi(c, π) > 0, then gi(0; c, π) > 0; if fi(c, π) < 0, then hi(0; c, π) < 0; and if
fi(c, π) = 0, then gi(0; c, π) ≤ 0 ≤ hi(0; c, π). Since

(2.7) gi(0; c, π)− hi(0; c, π) = −2cπ E
[
u′i(Ai)

] ≤ 0,

the converse also holds:

Lemma 1. If gi(0; c, π) > 0, then fi(c, π) > 0 and gi(fi(c, π); c, π) = 0. If hi(0; c, π) < 0,
then fi(c, π) < 0 and hi(fi(c, π); c, π) = 0. Otherwise, fi(c, π) = 0. The solution fi(c, π) to the
maximization problem (2.1) is unique in all three cases.

The following lemma establishes the continuity and continuous differentiability of the demand
functions fi.

Lemma 2. (1) The function fi is continuous.
(2) The (partial) function fi(0, ·) is continuously differentiable and

(2.8)
∂fi
∂π

(0, π) =
E[u′i(Pi) + fi(0, π)(S − π)u′′i (Pi)]

E[(S − π)2u′′i (Pi)]
,

where Pi = Ai + fi(0, π)(S − π).
(3) For every (c, π), if fi(c, π) > 0 or fi(0, (1 + c)π) > 0, then fi(c, π) = fi(0, (1 + c)π).

Moreover, fi is continuously differentiable at (c, π) and

∂fi
∂c

(c, π) = π
∂fi
∂π

(0, (1 + c)π) and
∂fi
∂π

(c, π) = (1 + c)
∂fi
∂π

(0, (1 + c)π).
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(4) For every (c, π), if fi(c, π) < 0 or fi(0, (1 − c)π) < 0, then fi(c, π) = fi(0, (1 − c)π).
Moreover, fi is continuously differentiable at (c, π) and

∂fi
∂c

(c, π) = −π∂fi
∂π

(0, (1 + c)π) and
∂fi
∂π

(c, π) = (1− c)∂fi
∂π

(0, (1− c)π).

(5) For every (c, π), if gi(0; c, π) < 0 < hi(0; c, π), then fi is continuously differentiable at
(c, π) and

∂fi
∂c

(c, π) =
∂fi
∂π

(c, π) = 0.

Part (1) of this lemma guarantees that fi is continuous on the entire domain, but part (5)
guarantees, when fi(c, π) = 0, that it is continuously differentiable only on the set of those (c, π)
on which gi(0; c, π) < 0 < hi(0; c, π). If gi(0; c, π) = 0 or hi(0; c, π) = 0, then a small change in
(c, π) will induce agent i to remain inactive, while another small change will induce him to trade
the risky asset. At such (c, π), fi is, in general, not differentiable. It is this non-differentiability
that calls for an intricate proof for Theorem 2.

3. Impact of transaction costs

In this section, we assess the impact of increasing the proportional transaction cost c on the
equilibrium price π for the risky asset. Specifically, we first provide a taxonomy on the impact
of a small (infinitesimal) increase in the proportional transaction cost c on the buying price,
the selling price, the trading volume, and the agents’ welfare. We then find a condition on
the individual agents’ demand functions for an increase in the proportional transaction cost
to always increase the buying price and decrease the selling price, the trading volume, and all
agents’ welfare.

To start, we say that an equilibrium price π∗ of the risky asset under the proportional
transaction cost c∗ ∈ [0, 1) is normal if fi(c∗, π∗) 6= 0 or gi(0; c∗, π∗) < 0 < hi(0; c∗, π∗) for every
i. Since gi and hi are continuous, this definition implies that every agent who does not trade at
a normal equilibrium price π∗ under the proportional transaction cost c∗ remains not to trade
even when c∗ and π∗ are slightly changed. By Lemma 2, if π∗ is a normal equilibrium price
under c∗, then fi is continuously differentiable at (c∗, π∗) for every i.

By an equilibrium price function around (c∗, π∗), we mean a function e defined on some open
interval V of c∗ in [0, 1) and taking values in some open interval W of π∗ in R++ such that for
every (c, π) ∈ V ×W , π is an equilibrium price under c if and only if π = e(c). The existence of
an equilibrium price function around (c∗, π∗) means that there is a locally unique equilibrium
price π near π∗ under a proportional transaction cost c whenever c is close to c∗.

Theorem 1. Let π∗ > 0 be a normal equilibrium price of the risky asset under the proportional
transaction cost c∗ ∈ [0, 1). Write B = {i : fi(c∗, π∗) > 0}, S = {i : fi(c∗, π∗) < 0}, and

DB =
∑

i∈B

∂fi
∂π

(c∗, π∗),

DS =
∑

i∈S

∂fi
∂π

(c∗, π∗).
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Suppose that DB 6= 0, DS 6= 0, and DB +DS 6= 0. Then there is a continuously differentiable
equilibrium price function e around (c∗, π∗). Write

QB =
d
dc

((1 + c)e(c))
∣∣∣∣
c=c∗

,

QS =
d
dc

((1− c)e(c))
∣∣∣∣
c=c∗

,

Ui =
d
dc
E [ui (Ai + fi(c, e(c))S − (1 + sgn(fi(c, e(c)))c)πfi(c, e(c)))]

∣∣∣∣
c=c∗

,

T =
d
dc

(∑

i∈B

fi(c, e(c))

)∣∣∣∣∣
c=c∗

.

Then, depending on the signs of DB, DS , and DB +DS , we obtain the signs for QB, QS , Ui,
and T as in Table 1.

sgnDB sgnDS sgn (DB +DS ) sgnQB sgnQS sgnUi (i ∈ B) sgnUi (i ∈ S ) sgnT
−1 −1 −1 +1 −1 −1 −1 −1
+1 +1 +1 +1 −1 −1 −1 +1
−1 +1 −1 −1 −1 +1 −1 +1
−1 +1 +1 +1 +1 −1 +1 −1
+1 −1 −1 +1 +1 −1 +1 +1
+1 −1 +1 −1 −1 +1 −1 −1

Table 1: Sign patterns of changes in buying prices, selling prices, utility levels, and trading volumes

The common characteristic of these sign patterns is that sgn (DBDS ) + sgn (QBQS ) = 1.
That is, the buying price goes up and the selling price goes down if and only if the two “half
aggregate” demand functions,

∑
i∈B fi(c∗, ·) and

∑
i∈S fi(c∗, ·), are both downward-sloping or

both upward-sloping at equilibrium. Of particular interest among these six combinations are
the cases where sgnDB = sgn (DB +DS ) = −1, that is, the aggregate demand function of the
buyers and thee aggregate demand function are downward-sloping. The reason is that while it
is common to assume that the agents’ utility functions exhibit constant or decreasing absolute
risk aversion, the aggregate demand for the buyers is downward-sloping whenever it is the case;5

and if the aggregate demand function
∑

i∈B∪S fi(c∗, ·) is upward-sloping, there must be other
asset market equilibria for which the sign patterns for QB, QS , Ui, and T are different. The
first and third rows of Table 1 correspond to these cases. The first row is the textbook case,
for which the conventional wisdom is valid. The third row is the case we deal with in Section 5
and for which it is invalid.

The most common way to apply Theorem 1 is to show that ∂fi(c, π)/∂π < 0 for every (c, π)
and for every i. In such a case, we can derive the following, stronger result. We say that an
equilibrium price π under the proportional transaction cost c is trivial if fi(c, π) = 0 for every
i.

5This is proved in Kijima and Tamura (2012).
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Theorem 2. Suppose that S ≥ 0 almost surely and that

(3.9)
∂fi
∂π

(0, π) < 0

for every i and every π ∈ (essinf S, esssupS).

(1) For every c ∈ [0, 1), either there exists a nonempty and compact interval of trivial
equilibrium prices (which may be a singleton), or there is a unique equilibrium, which is
not trivial, under the proportional transaction cost c.

(2) Let c1 and c2 be proportional transaction costs with c1 ≤ c2. If there is no nontriv-
ial equilibrium under the proportional transaction cost c1, then there is no nontrivial
equilibrium under the proportional transaction cost c2.

(3) Let V be the set of all proportional transaction costs under which there is a nontrivial
equilibrium. For every c ∈ V , let e(c) be a (unique) nontrivial equilibrium price. Then
e(c) is a continuous function of c on V , (1+c)e(c) is a continuous and strictly increasing
function of c on V , and (1− c)e(c) is a continuous and strictly decreasing function of c
on V .

(4) Let c1 and c2 be proportional transaction costs with c1 ≤ c2. Let i ∈ {1, . . . , I}. If
fi(c1, e(c1)) = 0, then fi(c2, e(c2)) = 0. Moreover, |fi(c, e(c))| and

E [ui (Ai + fi(c, e(c))(S − (1 + sgn(fi(c, e(c)) c)e(c))))]

are strictly decreasing function of c on {c ∈ V : fi(c, e(c)) 6= 0}.

Since
∂fi
∂π

(c, π) = (1 + sgn(fi(c, π))c)
∂fi
∂π

(0, (1 + sgn(fi(c, π))c)π),

whenever fi(c, π) 6= 0, inequality (3.9) implies that DB < 0 and DS < 0 in Theorem 1,
and the first row of Table 1 is applicable whenever π∗ is a normal equilibrium asset price.
Parts (1) and (2) of Theorem 2 that either there are trivial equilibria or there is a unique
nontrivial equilibrium, and the latter case applies if and only if the proportional transaction
cost is below some threshold. Thus, the set V defined in part (3) is an (possibly empty)
interval, and is nonempty if and only if 0 ∈ V . Part (3) shows that the (unique) nontrivial
equilibrium price depends continuously on proportional transaction costs, and the buying price
increases and the selling price decreases as the proportional transaction cost increases. Part (4)
shows that each agent’s trading volume decreases strictly to zero, after which it never exceeds
zero. Note that the domain V of the equilibrium price function e, obtained in part (3), may
contain proportional transaction costs under which equilibrium prices are not normal. For such
proportional transaction costs, while Theorem 1 is not applicable, Theorem 2 guarantees that
the equilibrium asset price depend continuously on proportional transaction costs on the interval
of proportional transaction costs under which there is a (unique) nontrivial equilibrium.

Although e(c) is not well defined for those c which have trivial equilibria, |fi(c, π)| is of course
well defined and equal to zero for any such c as long as π is a (trivial) equilibrium price of c.
By part (4), the trading volume function t : [0, 1)→ R+ defined by

t(c) =





I∑

i=1

|fi(c, e(c))| if c ∈ V,

0 if c 6∈ V,
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is continuous on V . In fact, t is continuous on the entire [0, 1). To show this, it suffices to show
that for every i, |fi(c, e(c))| → 0 as c ↑ supV , but if there were an i for whom |fi(c, e(c))| 6→ 0,
then, based on a method similar to the proof of the right-continuity of e in part (3) above, we
can show that there would exist a c > supV such that c ∈ V , a contradiction.

4. Monotonicity of asset demand

In this section, we provide a sufficient condition for an agent’s demand for the risky asset
to decrease as the asset price increases. When this condition is satisfied by every agent, the
inequality (3.9) holds. Hence it is also sufficient for the conclusion of Theorem 2 to hold.

Recall that the utility function ui is defined on an open interval (di, di) and di ∈ {−∞}∪R.
Denote the absolute risk aversion by Ri(x) = −u′′i (x)/u′i(x). The sufficient condition contains
the following condition on ui.

Assumption 1. There exists an αi ≥ 0 such that

(4.10) αi ≤ Ri(xi) ≤ αi +
1

xi − di
for every xi ∈ (di, di), where, by convention, 1/(xi − di) = 0 if di = −∞.

This assumption is met by a number of utility functions that are commonly used in finance
and economics. First, any utility function that ui exhibits constant absolute risk aversion
(CARA) satisfies this assumption, because αi can be to be equal to its CARA coefficient.
Second, when di = 0 and αi = 0, this assumption is met if and only if the Arrow-Pratt
measure of relative risk aversion never exceeds one. As explained in Example 17.F.2 of Mas-
Colell, Whinston, and Green (1995), this condition is sufficient for the gross substitute sign
pattern of the excess demand function for commodities. But the conclusion of Proposition 1
is not the same, because it is on (excess) demand for a risky asset with arbitrary payoffs, not
for commodities. Third, the assumption is satisfied when ui exhibits hyperbolic absolute risk
aversion (HARA) with its coefficient for the hyperbolic term not exceeding one, and it may
be met by a utility function ui that does not exhibit HARA. One such example is given when
di = 0, di =∞, and Ri(xi) = 1 + 1/xi.

Proposition 1. If ui satisfies Assumption 1 and Ai ≥ di almost surely, then ∂fi(0, π)/∂π < 0
for every π ∈ (essinf S, esssupS).

This proposition shows that all the conclusions of Theorems 1 and 2 hold if all agents satisfies
Assumption 1 and Ai > di almost surely. The special case for CARA utility functions was proved
by Kijima and Tanaka (2012).

Theorem 3. Suppose that for every i, ui satisfies Assumption 1 and Ai ≥ di almost surely.

(1) Either there exists a nonempty and compact interval of trivial equilibrium prices (which
may be a singleton), or there is a unique equilibrium, which is not trivial.

(2) Let c1 and c2 be proportional transaction costs with c1 ≤ c2. If there is no nontriv-
ial equilibrium under the proportional transaction cost c1, then there is no nontrivial
equilibrium under the proportional transaction cost c2.

(3) Let V be the set of all proportional transaction costs under which there is a nontrivial
equilibrium. For every c ∈ V , let e(c) be a (unique) nontrivial equilibrium price. Then
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e(c) is a continuous function of c on V , (1+c)e(c) is a continuous and strictly increasing
function of c on V , and (1− c)e(c) is a continuous and strictly decreasing function of c
on V .

(4) Let c1 and c2 be proportional transaction costs with c1 ≤ c2. Let i ∈ {1, . . . , I}. If
fi(c1, e(c1)) = 0, then fi(c2, e(c2)) = 0. Moreover, |fi(c, e(c))| and

E [ui (Ai + fi(c, e(c))(S − (1 + sgn(fi(c, e(c))) c)e(c)))]

are strictly decreasing function of c on {c ∈ V : fi(c, e(c)) 6= 0}.

5. CRRA utilities with decreased buying prices

Proposition 1 and Theorem 3 do not allow any agent to have a CRRA coefficient greater than
one. In this section, we give a class of examples in which an agent has a CRRA coefficient greater
than, but possibly arbitrarily close to, one and the buying price decreases as the proportional
transaction cost goes up from zero. In these examples, therefore, the buyer is better off at
equilibrium with positive (but small) proportional transaction costs than without transaction
costs, and the burden of transaction costs is borne solely by the sellers. They also show that
the upper bound of CRRA, which is equal to one, in Proposition 1 and Theorem 3 is tight.

We let Ω = {1, 2} and F = {∅, {1}, {2}, {1, 2}}. Let P be the probability measure defined
on F that satisfies P ({1}) = P ({2}) = 1/2. Asset 1 is a so-called Arrow security for state 1, of
which the time-1 value S satisfies S(1) = 1 and S(2) = 0. There are two agents i = 1, 2. Agent
i has a CRRA coefficient equal to γi. This means that u′i(x) = x−γi for every x > 0.

Proposition 2. Suppose that γ1 > 1. For each i = 1, 2 and each ai > 0, there exists an a3−i > 0
such that if A1(1) = a1, A1(2) = 0, A2(1) = 0, and A2(2) = a2, then there are an equilibrium
asset price π∗ under zero transaction costs and a continuously differentiable equilibrium price
function e around (0, π∗) such that

(5.11)
d
dc

((1 + c)e(c))
∣∣∣∣
c=0

< 0,

(5.12)
d
dc
|fi(c, e(c))|

∣∣∣∣
c=0

> 0

for each i, and

(5.13)
d
dc
E (u2 (A2 + f2(c, e(c))(S − (1 + c)e(c))))

∣∣∣∣
c=0

> 0.

The crucial aspect of the setting for this proposition is that agent 1 has a CRRA coefficient
greater than one and is the seller of the Arrow security. This means that if the selling price
were decreased, then, depending on the values a1 and a2 of initial risks, agent 1 may decrease
his demand for the Arrow security.6 With the notation of Theorem 1, DS > 0 and the third
row of Table 1 is applicable. The consequence is, therefore, that the buying price is decreased,
and the trading volume and the buyer’s welfare are increased.

The proposition shows that the conventional wisdom, that an increase in transaction costs
makes all agent worse off, can be easily invalidated in a two-state, two-agent model as long
as there is an agent who is the sole supplier of a risky asset and has a CRRA coefficient
6In other words, agent 1 may increase his supply of the Arrow security.
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greater than one. The proof, to be given in the Appendix, shows that the equilibrium under
the zero transaction cost is normal. By the implicit function theorem, therefore, for every
distribution (A′1, A

′
2) of initial risks sufficiently close to (A1, A2) in the proposition, an increase

in the proportional transaction cost decreases the buying price. In other words, the conventional
wisdom is robustly invalidated with respect to perturbations in initial risks.

More can be said of the equilibria in Proposition 2 if γ1 = γ2 > 1, that is, the two agents
have the same CRRA coefficient. First, the equilibria are the unique ones when the proportional
transaction cost is zero or very low. This implies that there is no equilibrium at which an increase
in transaction costs increases the buying price and decreasing the selling price. Indeed, if γ1 =
γ2, then, under zero transaction cost, the aggregate demand function of the two agents coincides
with the demand function of the (representative) agent having the same CRRA coefficient and
an initial risk A1 + A2. Hence there is a unique equilibrium when the transaction cost is zero.
Moreover, by the implicit function theorem, there is a unique equilibrium under a proportional
transaction cost c > 0 whenever c is sufficiently close to 0.

Second, if γ1 = γ2, we can also show that an increase in transaction costs decreases the buying
price whenever a2/a1 is sufficiently close to zero. This condition means that the contingent
commodity is much more abundant in the first state than in the second, and clarifies when an
increase in transaction costs decreases the buying price. This claim is proved in the Appendix.

Table 2 gathers some numerical examples of the rate of change in the price for the risky asset
for various configurations of the CRRA coefficients, which are common for the two agents, and
the ratio of the endowments of the contingent commodity in the two states. In the table, the
first column lists the common coefficients γ of CRRA for the two agents, the second column
lists the ratios a2/a1 of the endowments for the contingent commodities in the two states,
the third column lists the equilibrium prices for the risky asset, with the riskless bond being
the numeraire, when there is no transaction cost, and the fourth column lists the first-order
approximations of rates of changes in the buying prices, which are mathematically defined as

1
π∗

d
dc

((1 + c)e(c))
∣∣∣∣
c=0

.

This value is equal to one if a2/a1 = 1, because, then, the two agents are endowed with equal
amounts of the contingent commodities. This means that an small increase in the proportional
transaction cost does not change the asset price, and hence increases the buying price by the
rate equal to the transaction cost itself. By (A.21) in the Appendix,

1
π∗

d
dc

((1 + c)e(c))
∣∣∣∣
c=0

→ 0

as a2/a1 → 0. For each fixed value γ > 1 of CRRA coefficients, therefore, we are interested
in the value of a2/a1 at which the rate of change in the buying price is equal to zero, and the
value that minimizes (that is, since the rates we are interested in are negative, maximize the
absolute value of) the rate of change in the buying price.

The results are listed in the first three groups of the table. In the first group, the common
CRRA coefficient is equal to 1.10, which is close to one, the threshold below which Theorem
3 is applicable. The range of the values of a2/a1 for which the proportional transaction cost
decreases the buying price is accordingly narrow: the endowment in the second state must be
less than 5.5% of the endowment in the first state. The impact on the buying price is also small:



MARKETS WITH TRANSACTION COSTS 13

a 1% transaction cost decreases the buying price by 0.068% at most. In the second group, we
set the common CRRA coefficient at 2.50. This is the value that Lucas (1994) suggested, in
the context of the equity premium of Mehra and Prescott (1985), as an upper bound of CRRA
coefficients that are judged as reasonable. The result is that the endowment ratio a2/a1 may
exceed a half only by a small amount in order for the proportional trasaction cost to decrease
the buying price. The common CRRA cofficient in the third group is equal to 10.00, which
is the upper bound of the CRRA coefficients used by Mehra and Prescott (1985).7 Then the
maximum endowment ratio is approximately equal to 0.8740, which means that in order for
the proportional transaction cost to decrease the buying price, the endowment in the bad state
must be less than 87.4% of the endowment in the good state. The impact is maximal when the
endowment ratio is equal to 0.770, where a 1% transaction cost decreases the buying price by
almost 0.2%.

In the last group, the value of the endowment ratio a2/a1 is fixed at 0.9317. The value was
choen to match the mean and standard deviation of the annual consumption growth rates in
the data set used by Mehra and Prescott (1985). Indeed, in the data set, the mean is 0.018 and
the standard deviation is 0.036. Thus, with the equal probability 1/2 for the two states, the
endowment ratio a2/a1 is given by

a2

a1
=

1 + 0.018− 0.036
1 + 0.018 + 0.036

=
0.982
1.054

≈ 0.9317.

By varying the common CRRA coefficients, we see that the threshold, above which an increase
in the proportional transaction cost decreases the buying price and makes the buyer better off, is
approximately equal to 18.57. This is somewhat disappointing, because tit is much higher than
ten, the upper bound of the CRRA coefficients used by Mehra and Prescott (1985). Yet, it might
be possible that if a kind of asymmetric information in Dow and Rahi (2000) is introduced into
the model, where the buyer is better informed, then an increase in the proportional transaction
cost makes the buyer better off even with lower CRRA coefficients.

CRRA Endowment Ratio Equilibrium Price Rate of change in the buying price
1.10 1.0000 0.50000 1.00000
1.10 0.0541 0.03884 −0.00006
1.10 0.0034 0.00192 −0.06809
2.50 1.0000 0.50000 1.00000
2.50 0.5215 0.16416 0.00007
2.50 0.2936 0.04462 −0.18864

10.00 1.0000 0.50000 1.00000
10.00 0.8740 0.20640 0.00003
10.00 0.7770 0.07425 −0.19919
10.00 0.9317 0.33014 0.37531
18.57 0.9317 0.21183 0.00008
30.00 0.9317 0.10691 −0.18906

Table 2: Rates of changes in the buying price

7Mehra and Prescott (1985) and Kocherlakota (1996) gave references that estimate agents’ CRRA coefficients.
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Remark 3. Although the economy of Proposition 2 consists of just two agents, it can be easily
modified to consists of many consumers. In fact, if the economy comprises two groups B and S ,
each agent in B has a CRRA coefficient γ1 ≥ 1 and an initial risk Ai with Ai(1) > 0 = Ai(2),
each agent in S has a CRRA coefficient γ2 and an initial risk Ai with Ai(1) = 0 < Ai(2),
and

∑
i∈B Ai(1) and

∑
i∈S Ai(1) satisfy the condition that a1 and a2 satisfy in the proposition,

then the conclusion of the proposition holds for this economy. This is because the aggregate
demand function of B coincides with the demand function of the (half representative) agent
having a CRRA coefficient γ1 and an initial risk

∑
i∈B Ai, and the aggregate demand function

of S coincides with the demand function of the (half representative) agent having a CRRA
coefficient γ2 and an initial risk

∑
i∈B Ai; and the proposition is applicable to this reduced two-

agent economy. However, the conclusion of the proposition would not hold if the distributions
of CRRA coefficients and initial risks were not perfectly correlated, that is, if there were agents
i with a CRRA coefficient γ1 and an initial risk Ai with Ai(1) = 0 < Ai(2), or agents i with a
CRRA coefficient γ2 and an initial risk Ai with Ai(1) > 0 = Ai(2). In such an economy, the
first row of Table 1 in Theorem 1 may be applicable and the selling price may decrease as the
proportional transaction cost increases.

6. Conclusion

In this paper, we investigated how an increase in transaction costs affects the equilibrium
asset prices and allocations. We found sufficient conditions for an increase in transaction costs
to increase the buying price and decrease the selling price, the trading volume, and all active
investors’ welfare. The sufficient condition is met by a general class of utility functions, which
contains some HARA and non-HARA utility functions. As for CRRA utility functions, the class
contains all utility functions with CRRA coefficients less than or equal to one, but does not
contain any utility function with CRRA coefficient greater than one. By constructing examples,
we also showed that whenever there is an agent with a CRRA coefficient greater than one, an
increase in transaction costs may well decrease buying prices and make buyers better off.

In the setup of this paper, there are only one consumption period and only one risky asset.
It is admittedly very restrictive. We should extend our analysis to the case of multiple (discrete
or continuous) trading periods and multiple risky assets, such as an underlying asset and a
derivative asset written on it. Developing an algorithm to obtain equilibrium asset prices is
also needed, especially in the case of multiple risky assets, to give a practical value to our
analysis. Finally, although the level of transaction costs are exogenously specified in our model,
it would be interesting to accommodate intermediaries who seek to maximize their own objective
functions by choosing a level of transaction costs.

Appendix A. Proofs

Proof of Lemma 2 By inequalities (2.5) and (2.6) and gi(y; 0, π) = hi(y; 0, π), we can apply
the implicit function theorem to prove part (2). Parts (3) and (4) follow easily from part (2).
As for part (5), if gi(0; c, π) < 0 < hi(0; c, π), then fi(c, π) = 0 by Proposition 1 and, since gi
and hi are continuously differentiable, gi(0; c′, π′) < 0 < hi(0; c′, π′) if (c′, π′) is sufficiently close
to (c, π). Again by Proposition 1, fi(c′, π′) = 0. Hence fi is constant around (c, π) and part (5)
follows.
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Now that parts (2) through (5) have been proven, it remains to prove that fi is continuous
at (c, π) where c > 0 and gi(0; c, π) = 0 or hi(0; c, π) = 0. Suppose that cπ > 0, gi(0; c, π) = 0,
((cn, πn))n is a sequence that converges to (c, π), but (fi(cn, πn))n does not converges to zero.
Since hi(0; c, π) > 0 by (2.7), hi(0; cn, πn) > 0, and, by Proposition 1, fi(0; cn, πn) ≥ 0, for every
sufficiently large n. Thus, by taking a subsequence if necessary, we can assume that there is
a δ > 0 such that fi(cn, πn) > δ for every n. Since gi (fi(cn, πn); cn, πn) = 0 and gi is strictly
decreasing, gi(δ; cn, πn) > 0. Since gi(δ; cn, πn) → gi(δ; c, π) as n → ∞, gi(δ; c, π) ≥ 0. On the
other hand, by assumption, gi(0; c, π) = 0 and, since gi is strictly decreasing, gi(δ; c, π) < 0.
This is a contradiction. Hence fi is continuous at (c, π) where gi(0; c, π) = 0. The continuity at
(c, π) where hi(0; c, π) = 0 can be analogously proved. ///

Proof of Theorem 1 (1) By (5) of Lemma 2,
∑I

i=1 ∂fi(c
∗, π∗)/∂π 6= 0.

By Lemma 2, we can apply the implicit function theorem to the equilibrium condition∑
i fi(c, π) = 0 at (c∗, π∗) to show that there is a continuously differentiable equilibrium price

function e : V → W around (c∗, π∗). By Proposition 1, gi(0; c∗, π∗) > 0 for every i ∈ B

and hi(0; c∗, π∗) < 0 for every i ∈ S . By normality, gi(0; c∗, π∗) < 0 < hi(0; c∗, π∗) for every
i 6∈ B ∪S . By continuity, for every c sufficiently close to c∗, gi(0; c, e(c)) > 0 for every i ∈ B,
hi(0; c, e(c)) < 0 for every i ∈ S , and gi(0; c, e(c)) < 0 < hi(0; c, e(c)) for every i 6∈ B ∪ S .
Again by Proposition 1, fi(c, e(c)) > 0 for every i ∈ B, fi(c, e(c)) < 0 for every i ∈ S , and
fi(c, e(c)) = 0 for every i 6∈ B∪S . Thus, if V is sufficiently small, then B = {i : fi(c, e(c)) > 0}
and S = {i : fi(c, e(c)) > 0} for every c ∈ V .

Since
∑I

i=1 fi(c, e(c)) = 0 for every c ∈ V , by the first claim and Lemma 2,

0 =
d
dc

(
I∑

i=1

fi(c, e(c))

)∣∣∣∣∣
c=c∗

=
I∑

i=1

(
∂fi
∂c

(c∗, π∗) +
∂fi
∂π

(c∗, π∗)e′(c∗)
)

=

(∑

i∈B

∂fi
∂π

(c∗, π∗)

)(
π∗

1 + c∗
+ e′(c∗)

)
+

(∑

i∈S

∂fi
∂π

(c∗, π∗)

)(
− π∗

1− c∗ + e′(c∗)
)

=DB
QB

1 + c∗
+DS

QS

1− c∗ .

Thus, sgn (DBDS ) + sgn (QBQS ) = 0. Note also that

QB

1 + c∗
>

QS

1− c∗ .

Thus, if DBDS > 0, then QB > 0 > QS . If DBDS < 0, consider, for example, the case where
DB < 0 < DS and DB +DS < 0. Then |DB| > DS and

DB
QB

1 + c∗
+DS

QS

1− c∗ =
QS

1− c∗DS − QB

1 + c∗
|DB|.

If QB > 0 and QS > 0, then this would be negative, a contradiction. Hence QB < 0 and
QS < 0. The other three cases can be analogously proved. This complete the proof of the signs
for QB and QS .
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The sign of T follows from T = QBDB/(1 + c∗). Finally, by the envelope theorem,

d
dc
E [ui (Ai + fi(c, e(c))(S − (1 + sgn(fi(c, e(c))) c)e(c)))]

∣∣∣∣
c=c∗

=
d
dc
E [ui (Ai + fi(c∗, π∗)(S − (1 + sgn(fi(c∗, π∗)) c)e(c)))]

∣∣∣∣
c=c∗

=− fi(c∗, π∗) d
dc

((1 + sgn(fi(c∗, π∗))c)e(c))
∣∣∣∣
c=c∗

× E [u′i (Ai + fi(c∗, π∗)(S − (1 + sgn(fi(c∗, π∗)) c∗)π∗))
]

=




−fi(c∗, π∗) QB

1 + c∗
E [u′i (Ai + fi(c∗, π∗)(S − (1 + sgn(fi(c∗, π∗)) c∗)π∗))] if i ∈ B,

−fi(c∗, π∗) QS

1− c∗E [u′i (Ai + fi(c∗, π∗)(S − (1 + sgn(fi(c∗, π∗)) c∗)π∗))] if i ∈ B.

Since u′i > 0, this implies the signs for the Ui. ///

Proof of Theorem 2 (1) For every i and c ∈ [0, 1), hi(0; c, π)→ E [(S − esssupS)u′i(Ai)] < 0
as π ↑ (1 − c)−1 esssupS. Thus hi(0; c, π) < 0 if π < (1 − c)−1 esssupS is sufficiently close to
(1 − c)−1 esssupS. By Proposition 1, fi(c, π) < 0 for every i and every π < (1 − c)−1 esssupS
sufficiently close to (1 − c)−1 esssupS. Thus

∑
i fi(c, π) < 0 for every π < (1 − c)−1 esssupS

sufficiently close to (1 − c)−1 esssupS. We can analogously show that
∑

i fi(c, π) > 0 for
every π sufficiently close to (1+c)−1 essinf S. By the intermediate value theorem, there is a π ∈(
(1 + c)−1 essinf S, (1− c)−1 esssupS

)
such that

∑
i fi(c, π) = 0, that is, there is an equilibrium.

There is no equilibrium price outside
(
(1 + c)−1 essinf S, (1− c)−1 esssupS

)
, because if π ≥

(1 − c)−1 esssupS, then 0 > hi(0; c, π) ≥ gi(0; c, π), implying that fi(c, π) < 0 for every i (if
well defined); and if π ≤ (1 + c)−1 essinf S, then 0 < gi(0; c, π) ≤ hi(0; c, π), implying that
fi(c, π) > 0 for every i (if well defined).

Let Ki(c) = {π : fi(c, π) = 0}, then, by (2.4),

Ki(c) =
[

E [Su′i(Ai)]
(1 + c)E [u′i(Ai)]

,
E [Su′i(Ai)]

(1− c)E [u′i(Ai)]

]
.

Thus the intersection
⋂I
i=1Ki(c) is a compact interval. If it is nonempty, then every π ∈⋂I

i=1Ki(c) is a trivial equilibrium, and there is no other equilibrium, because if π is to the
right of this intersection, then fi(c, π) ≤ 0 for every i and fi(c, π) < 0 for some i, resulting
in
∑

i fi(c, π) < 0; and if π is to the left of this intersection, then fi(c, π) ≥ 0 for every i and
fi(c, π) > 0 for some i, resulting in

∑
i fi(c, π) > 0. On the other hand, if

⋂I
i=1Ki(c) = ∅, then

any equilibrium is nontrivial. Moreover, since fi(c, π) is a strictly decreasing function of π on
the entire domain

(
(1 + c)−1 essinf S, (1− c)−1 esssupS

)
, the equilibrium is unique.

(2) If c1 ≤ c2, then Ki(c1) ⊆ Ki(c2) for every i. Hence
⋂I
i=1Ki(c1) ⊆ ⋂I

i=1Ki(c2). Thus, if
there is no nontrivial equilibrium under c1, then

⋂I
i=1Ki(c1) 6= ∅, and hence

⋂I
i=1Ki(c2) 6= ∅,

which implies that there is no nontrivial equilibrium under c2.

(3) First, we prove that e is right-continuous. Let c∗ ∈ V and π∗ be an equilibrium price under
c∗. Although π∗ need not be a normal equilibrium price for the entire economy of I agents, π∗

is a normal equilibrium price for the economy consisting only of agents i with fi(c∗, π∗) 6= 0.
By Lemma 1, if fi(c∗, π∗) 6= 0, then ∂fi(c∗, π∗)/∂π and ∂fi(0, (1 + sgn(fi(c∗, π∗))c)π∗)/∂π share
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the same sign. Thus, by Theorem 1, there is an equilibrium price function e around (c∗, π∗)
for this economy that satisfies DB < 0 and DS < 0. Thus (1 + c)e(c) > (1 + c∗)π∗ and
(1 − c)e(c) < (1 − c∗)π∗ for every c > c∗ sufficiently close to c∗. Since ∂gi(0; 0, π)/∂π < 0 for
every π,

gi(0; c∗, π∗) = gi(0; 0, (1 + c∗)π∗) > gi(0; 0, (1 + c)e(c)) = gi(0; c, e(c)).

Thus, if gi(0; c∗, π∗) ≤ 0, then gi(0; c, e(c)) < 0. Similarly, if hi(0; c∗, π∗) ≥ 0, then hi(0; c, e(c)) >
0. Hence, by Lemma 1, if fi(c∗, π∗) = 0, then fi(c, e(c)) = 0. Therefore, e(c) is, in fact, a
(unique) nontrivial equilibrium price under c for the entire economy of I agents, and c ∈ V for
every c > c∗ sufficiently close to c∗. Thus, e is right-continuous.

Next, we prove that e is left-continuous. To do so, we show that for every i, there is at
most one c ∈ [0, 1) such that c ∈ V and gi(0; c, e(c)) = 0. Suppose, on the contrary, that
there were two proportional transaction costs, c1 and c2 with c1 < c2, such that cn ∈ V

and gi(0; cn, e(cn)) = 0 for both n = 1, 2. Since gi(0; cn, e(cn)) = gi(0; 0, (1 + cn)e(cn)) and
∂gi/∂π < 0, this implies that (1 + c1)e(c1) = (1 + c2)e(c2).

Let B = {j : fj(c2, e(c2)) > 0}, S = {j : fj(c2, e(c2)) < 0}, and N = {j : fj(c2, e(c2)) = 0}.
Then B 6= ∅ and S 6= ∅, because c2 ∈ V .

For every j ∈ N , 0 ≥ gj(0; c1, e(c1)) = gj(0; c2, e(c2)) by Lemma 1. Thus fj(c1, e(c1)) ≤ 0
and hence

(A.14)
∑

j∈N

fj(c1, e(c1)) ≤ 0.

For every j ∈ B, 0 < fj(c2, e(c2)) = fj(0, (1 + c2)e(c2)) = fj(0, (1 + c1)e(c1)) = fj(c1, e(c1)).
Thus

(A.15)
∑

j∈B

fj(c1, e(c1)) =
∑

j∈B

fj(c2, e(c2)).

Since c1 < c2 and (1 + c1)e(c1) = (1 + c2)e(c2), e(c1) > e(c2) and hence (1 − c1)e(c1) >
(1 − c2)e(c2). For every j ∈ S , by (3.9), 0 > fj(c2, e(c2)) = fj(0, (1 − c2)e(c2)) > fj(0, (1 −
c1)e(c1)) = fj(c2, e(c2)). Thus

(A.16)
∑

j∈S

fj(c1, e(c1)) <
∑

j∈S

fj(c2, e(c2)).

By (A.14), (A.15), and (A.16),

0 =
I∑

j=1

fj(c1, e(c1)) =
∑

j∈B

fj(c1, e(c1)) +
∑

j∈S

fj(c1, e(c1)) +
∑

j∈N

fj(c1, e(c1))

<
∑

j∈B

fj(c2, e(c2)) +
∑

j∈S

fj(c2, e(c2)) +
∑

j∈N

fj(cc, e(cc))

=
I∑

j=1

fj(c2, e(c2)) = 0.

This is a contradiction. Thus, for every i, there is at most one c ∈ [0, 1) such that c ∈ V and
gi(0; c, e(c)) = 0.
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We can analogously show that for every i, there is at most one c ∈ [0, 1) such that c ∈ V
and hi(0; c, e(c)) = 0. Therefore, there are at most 2I c’s, for which e(c) is a nontrivial and
abnormal equilibrium price under c.

Let’s now prove that e is left-continuous. Let c∗ ∈ V and π∗ be an equilibrium price under
c∗. Since there are only finitely many c’s for which e(c) is not a normal equilibrium price, the
equilibrium price e(c) of the proportional transaction cost c is normal for every c ∈ (c∗ − ε, c∗)
with ε > 0 sufficiently small. By Theorem 1, (1− c)e(c) is a strictly decreasing function of c ∈
(c∗−ε, c∗). Since (1−c)e(c) ≥ 0, limc↑c∗(1−c)e(c) exists, and we write π∗ = (1−c∗)−1 limc↑c∗(1−
c)e(c). Then e(c) → π∗ as c ↑ c∗. Thus, by part (1) of Lemma 2, fi(c, e(c)) → fi(c∗, π∗).
Hence

∑I
i=1 fi(c, e(c)) →

∑I
i=1 fi(c

∗, π∗). Since
∑I

i=1 fi(c, e(c)) = 0 for every c ∈ (c∗ − ε, c∗),∑I
i=1 fi(c

∗, π∗) = 0. Since c∗ ∈ V , π∗ = e(c∗). The left continuity has thus been proved.
Therefore, (1 + c)e(c) is a continuous function of c on V . By Theorem 1, has strictly positive

derivatives at all but finitely many points. Thus (1 + c)e(c) is a strictly increasing function of
c on V . Analogously, (1− c)e(c) is a continuous and strictly decreasing function of c on V .

(4) Just as in the proof of Theorem 1, we can show that if c∗ ∈ V and e(c∗) is a normal
equilibrium price, then

d
dc
|fi(c, e(c))|

∣∣∣∣
c=c∗

=
∂fi
∂π

(c∗, e(c∗))
sgn(fi(c∗, e(c∗)))

1 + sgn(fi(c∗, e(c∗))) c∗
d
dc

((1 + sgn(fi(c∗, e(c∗))) c) e(c))
∣∣∣∣
c=c∗

=





∂fi
∂π

(c∗, e(c∗))
QB

1 + c∗
if i ∈ B,

∂fi
∂π

(c∗, e(c∗))
−QS

1− c∗ if i ∈ S

Thus,

(A.17)
d
dc
|fi(c, e(c))|

∣∣∣∣
c=c∗

< 0

whenever fi(c∗, e(c∗)) 6= 0.
Based on this result, we can prove the first claim of part (4) as follows. Suppose, on the

contrary, that there are c1 and c2 such that c1 ≤ c2, fi(c1, e(c1)) = 0, and fi(c2, e(c2)) 6= 0.
Then c1 < c2, |fi(c1, e(c1))| = 0, and |fi(c2, e(c2))| > 0. Let c3 be the largest c such that c < c2

and fi(c, e(c)) = 0. Since |fi(c, e(c))| > 0 for every c > c3 sufficiently close to c3, there are c4

and c5 such that c3 < c4 < c5, e(c) is a normal equilibrium price under c for every c ∈ [c4, c5],
and |fi(c4, e(c4))| < |fi(c5, e(c5))|. Since |fi(c, e(c))| is a continuously differentiable function of
c on [c4, c5], we can apply the average value theorem to show that there is a c6 ∈ [c4, c5] such
that

d
dc
|fi(c, e(c))|

∣∣∣∣
c=c6

> 0.

This contradicts (A.17). Hence if c1 ≤ c2 and fi(c1, e(c1)) = 0, then fi(c2, e(c2)) = 0.
Thus, the set {c ∈ V : fi(c, e(c)) 6= 0} is an interval, |fi(c, e(c))| is a continuous function of c

and continuously differentiable at all but finitely many points. Thus, by (A.17), |fi(c, e(c))| is
a strictly decreasing function on this set. Similarly,

E [ui (Ai + fi(c, e(c))(S − (1 + sgn(fi(c, e(c))) c)e(c)))]
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is a continuous function of c and continuously differentiable at all but finitely many points.
Thus, by Theorem 1, it is a strictly decreasing function on this set. ///

Proof of Proposition 1 By (2.8) and u′′i < 0, it suffices to prove that

B ≡ E [u′i(Pi) + fi(0, π)(S − π)u′′i (Pi)
]
> 0,

where Pi = Ai + fi(0, π)(S − π). Indeed, this follows immediately from the assumption that
u′i > 0 if fi(0, π) = 0. So suppose that fi(0, π) 6= 0. By Remark 2,

B =E
[
u′i(Pi) (1− fi(0, π)(S − π)Ri(Pi))

]

=E
[
u′i(Pi) (1− fi(0, π)(S − π) (Ri(Pi)− αi))

]− αifi(0, π)E
[
u′i(Pi)(S − π)

]

=E
[
u′i(Pi) (1− (Pi −Ai) (Ri(Pi)− αi))

]
.

Define Ω1 = {ω ∈ Ω : Pi(ω) > Ai(ω)} and Ω2 = {ω ∈ Ω : Pi(ω) ≤ Ai(ω)}. Again by Remark 2,
P (Ω2) > 0. Since (Pi(ω)−Ai(ω)) (Ri(Pi(ω))− αi) ≤ 0 for every ω ∈ Ω2,

∫

Ω2

u′i(Pi(ω)) (1− (Pi(ω)−Ai(ω)) (Ri(Pi(ω))− αi)) dP (ω)

≥
∫

Ω2

u′i(Pi(ω)) dP (ω) > 0.

Since u′(Pi) (Ri(Pi)− αi) ≥ 0 and Ri(Pi)− αi ≤ (Pi − di)−1 almost surely,

B =
∫

Ω1

u′i(Pi(ω)) (1− (Pi(ω)−Ai(ω)) (Ri(Pi(ω))− αi)) dP (ω)

+
∫

Ω2

u′i(Pi(ω)) (1− (Pi(ω)−Ai(ω)) (Ri(Pi(ω))− αi)) dP (ω)

>

∫

Ω1

u′i(Pi(ω)) (1− (Pi(ω)−Ai(ω)) (Ri(Pi(ω))− αi)) dP (ω)

≥
∫

Ω1

u′i(Pi(ω))
(

1− Pi(ω)−Ai(ω)
Pi(ω)− di

)
dP (ω)

=
∫

Ω1

u′i(Pi(ω))
Ai(ω)− di
Pi(ω)− di

dP (ω).

Since Ai ≥ di and Pi > di almost surely, the last integral is nonnegative. Thus the proof is
completed. ///

Proof of Proposition 2 and the Subsequent Claim To prove Proposition 2, by Theorem
1, it suffices to show that f1(0, π∗) < 0, f2(0, π∗) >, ∂f1(0, π∗)/∂π > 0, and ∂f1(0, π∗)/∂π +
∂f2(0, π∗)/∂π < 0.

For each i = 1, 2, define mi : (0, 1)→ R by

m1(π) =
(

1
γ1

1
1− π − 1

)
+
(

1
1− π − 1

)1/γ1

,

m2(π) =
(

1
γ2

1
π
− 1
)

+
(

1
π
− 1
)1/γ2

.

Then, m1 is continuous and strictly increasing, and m2 is continuous and strictly decreasing.
As π → 0, m1(π) → 1/γ1 − 1, and as π → 1, m2(π) → 1/γ2 − 1. Since γ1 > 1, 1/γ1 − 1 < 0.
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Thus, there is a π◦ ∈ (0, 1) such that m1(π) Q 0 if and only if π Q π◦. Since mi(1/2) = 2/γi for
each i, π◦ < 1/2 and m2(π) > 0 for every π ∈ (0, π◦]. Hence m2(π)/m1(π)→ −∞ as π ↑ π◦.

For each i = 1, 2, define ki : (0, 1)→ R by

k1(π) =
(1− π)−1/γ1

π1−1/γ1 + (1− π)1−1/γ1
,

k2(π) =
π−1/γ2

π1−1/γ2 + (1− π)1−1/γ2
.

Then, for each i, ki is continuously differentiable and strictly-positive-valued. Also, for each i,
define ti : (0, 1)→ R by

ti(π) =
(π(1− π))−1/γi

(
π1−1/γi + (1− π)1−1/γi

)2mi(π).

Then k′1(π) = t1(π) and k′2(π) = −t2(π) for every π. Moreover, as π ↑ π◦,
k1(π)
k2(π)

t2(π)
t1(π)

→ −∞.

Hence there is a π∗ ∈ (0, π◦) such that

(A.18)
k1(π∗)
k2(π∗)

t2(π∗)
t1(π∗)

< −1.

When either a1 or a2 is given, define the other via

(A.19) a1k1(π∗) = a2k2(π∗).

We shall prove that π∗ is an equilibrium price for the Arrow security if there is no transaction
cost. Note that

E[u1(A1 + y1(S − π))] =
1
2
u1(a1 + (1− π)y1) +

1
2
u1(−πy1)

and
E[u2(A2 + y2(S − π))] =

1
2
u1((1− π)y2) +

1
2
u2(a2 − πy2).

By the first-order conditions, the the solutions to these problems are given by f1(0, π) =
−a1k1(π) and f2(0, π) = a2k2(π). Hence f1(0, π∗) < 0 and f2(0, π∗) > 0. Moreover,

f1(0, π∗) + f2(0, π∗) = −a1k1(π∗) + a2k2(π∗) = 0.

Thus π∗ is an equilibrium price for the Arrow security in the absence of transaction costs.
Moreover,

∂f1

∂π
(0, π∗) = −a1k

′
1(π∗) = −a1t1(π∗) > 0,

∂f2

∂π
(0, π∗) = a2k

′
1(π∗) = −a2t2(π∗) < 0,

∂f1

∂π
(0, π∗) +

∂f2

∂π
(0, π∗) = −a1t1(π∗)

(
1 +

k1(π∗)
k2(π∗)

t2(π∗)
t1(π∗)

)
< 0.

This completes the proof of Proposition 2.
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To prove the subsequent claim on the case of common CRRA coefficients, it suffices to show
that

(A.20)
k1(π)
k2(π)

→ 0

and

(A.21)
k1(π)
k2(π)

t2(π)
t1(π)

→ −∞

as π ↓ 0 . Indeed, then, for all a1 and a2 with a2/a1 sufficiently close to zero, there is a
π∗ ∈ (0, 1) for which (A.18) and (A.19) hold. Then the argument in Steps 2 and 3 of the proof
of Proposition 2 is valid.

To prove (A.20) and (A.21), write γ = γ1 = γ2. Then

k1(π)
k2(π)

=
(1− π)−1/γ

π−1/γ
=
(

π

1− π
)1/γ

→ 0

as π ↓ 0. As for (A.21),

k1(π)
k2(π)

t2(π)
t1(π)

=
(

π

1− π
)1/γ m2(π)

m1(π)
=

(
1
γ

1
π
− 1
)

+
(

1
π
− 1
)1/γ

(
1
π
− 1
)1/γ

1
m1(π)

=




1
γ

1
π
− 1

(
1
π
− 1
)1/γ

+ 1




1
m1(π)

.

Write ρ = 1/π, then
1
γ

1
π
− 1

(
1
π
− 1
)1/γ

=

ρ

γ
− 1

(ρ− 1)1/γ

The derivative of the numerator with respect to ρ is equal to 1/γ and that of the denominator
is equal to (1/γ) (ρ− 1)1/γ−1. Since

1/γ

(1/γ) (ρ− 1)1/γ−1
= (ρ− 1)1−1/γ →∞

as ρ ↑ ∞, L’Hôpital’s rule implies that

1
γ

1
π
− 1

(
1
π
− 1
)1/γ

=

ρ

γ
− 1

(ρ− 1)1/γ
→∞

as ρ ↑ ∞. Since 1/m1(π)→ −γ/(γ − 1) < 0 as π ↓ 0, (A.21) follows from this. ///
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