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Abstract

We provide a theoretical and numerical framework to study optimal insurance prop-

erties for players’ general utility forms. We consider a continuous-time model where

neither the efforts nor the outcome of an insured firm are observable to an insurer. The

insured may then cause two interconnected information problems: moral hazard and

exaggerated claims. We show that, when costly monitoring is available, an optimal

insurance contract distinguishes between the two information problems. Furthermore,

if the insured’s downward-risk aversion is weak and if the participation constraint is not

too tight, then a higher level of the monitoring technology can mitigate both problems.
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1 Introduction

As it is well known, insurers are often exposed to information problems in corporate insurance

practices; see e.g. MacMinn and Garven [9]. Specifically, neither the efforts nor the outcome of

insured firms are observable to insurers directly without a cost. The insureds may then cause

purposely losses and/or exaggerate claims. Call the former the problem of moral hazard and the

latter the problem of ex-post informational asymmetry (typically, insurance frauds).

The ex-post informational asymmetry problem distorts the insured’s effort incentives in the

moral hazard problem. In standard moral hazard models, it is often assumed that the insurer can

observe the insured’s outcome ex post; e.g., see Rogerson [14]. The insurer then faces only the

incentive problem of inducing the insured to make desired efforts. By contrast, when there exists

the ex-post informational asymmetry problem as well, the insurer needs to provide additionally the

insured with an incentive to tell the truth ex post. When a claim is filed, the insurer does not find

directly whether it is due to the insured’s laziness, to the exaggeration, or neither. Much worse,

when the insured has a chance to tell a lie about the ex-post outcome, he may have an incentive to

be lazy in order to minimize his effort cost. Since the two information problems are interconnected

in this way, it is very difficult to distinguish one from another directly. In practice, to overcome this

difficulty, the insurer routinely investigates claims via a costly monitoring technology after they are

filed (Harrington and Niehaus [6]).

The purpose of this paper is to provide a theoretical and numerical framework to study optimal

insurance properties when the costly monitoring is available under the problems of moral hazard

and ex-post informational asymmetry in an optimal contracting model with two players: an insurer

(i.e., insurance company) and an insured (i.e., firm). We consider an environment in which neither

the efforts nor the outcome of an insured firm are observable to an insurer, but the insurer can

monitor the outcome by using a costly monitoring technology. The insurer writes an optimal

contract to maximize her own expected utility, inducing the insured to make his optimal efforts

and to report the truth while, at the same time, trying to reduce the expected monitoring cost.

We solve the insurer’s optimization problem with respect to the design of the optimal contract

and the monitoring decision, subject to the insured’s optimization with respect to the efforts and

the reports. We then make clear the optimal insurance properties, especially dynamic equilibrium

interaction between the two information problems.
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In previous literatures, the paper of Cvitanić and Zhang [3] is related closely to our paper. Sim-

ilarly to theirs, our paper looks at the optimal contracting problem in a continuous-time principal-

agent model in which hidden actions and hidden information coexist. The continuous-time model

is useful for studying dynamic, complex information problems due to its mathematical tractabil-

ity. Specifically, fix a filtered probability space (Ω,F ,F,P) on a time interval [0, T ] for a finite

time T > 0. Let W = {Wt}0≤t≤T be a one-dimensional standard F-Brownian motion on the prob-

ability space. Define FW := {FWt }0≤t≤T as the filtration generated by W up to T . Note that

F ⊇ FW . The insured produces the wealth Xu that is characterized by the stochastic differential

equation: dXu
t = v(ut dt + dWt), X

u
0 = 0 where v is a positive constant. The insured controls u

– call it effort – with a utility cost, i.e., a higher (lower) level of the costly effort leads to a higher

(lower) level of the expected return of the wealth. The efforts u and some part of the wealth

information Xu are hidden from the insurer.

Still, our paper departs from Cvitanić and Zhang [3] mainly in three respects. First, with

regard to the problem of the hidden wealth information, our paper looks at ex-post informational

asymmetry in an environment where the insurer cannot observe ex post the time path of the

insured’s outcome Xu
· except for its initial value Xu

0 , whereas their paper looks at ex-ante adverse

selection in an environment where the principal cannot observe the initial value Xu
0 (i.e., the agent’s

ex-ante production ability) but can observe the ex-post trajectory Xu
· .

Second, our model assumes that a costly monitoring technology is available. Cvitanić and

Zhang [3] assume only costless reporting as a communication method, as usual in contract theory.1

Their paper then shows that, in general, it is very hard to distinguish between the moral hazard

problem and the hidden information problem not only statically but also dynamically, because, with

only costless reporting, it is generally difficult to compute the Lagrangian multipliers associated

with the two information problems.2 On the other hand, in insurance practices, as it was mentioned

1In much of the literature on contract theory, communication games with costless reporting have
been studied a lot in finite-horizon (typically, two or three period) discrete-time models. There are
a few exceptions in a literature on insurance frauds; e.g., see Dionne, Giuliano and Picard [4].

2In each of the information problems, more comprehensive coverage is associated with high risk
(Chiappori [2]). Accordingly, it is difficult to identify whether it is due to their ability, to their
laziness, or neither. Much empirical insurance literature has differentiated moral hazard from ex-
ante adverse selection by making use of some different dynamic properties of the incentive structures
between the two information problems in insurance contracts for various exogenous cases (typically,
a reform of regulatory framework); e.g., see Abbring et al. [1]. However, that has not used any
dynamic optimal (i.e., endogenous) insurance properties.
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above, insurance companies routinely verify the reports of insured firms via costly monitoring. In

other words, the monitoring is another crucial communication method in insurance contracts. In

contrast to the previous literature, in this paper, we examine the crucial role of monitoring to

distinguish between the two information problems.

Third, technically, we solve the optimal contracting problem by using the standard method of

stochastic optimal controls adapted to F. On the other hand, by contrast, Cvitanić and Zhang [3]

solve it by using the method of backward stochastic differential equations defined on the path

space of Xu, in which all controls are adapted to FXu
. The information set generated by observing

only Xu loses the information of the efforts u as compared to the information set generated by

observing the true uncertainty W (and thus the efforts u as well). FXu
is generally smaller than

FW . The optimal control adapted to FW is not necessarily in the set of the controls adapted to

FXu
. Accordingly, our formulation defined on FW is very natural and thus applicable to financial

practices. In addition, we show that FXu
= FW holds in equilibrium.3

Our main results are as follows. If optimal efforts are attained, the insurer can write the

optimal insurance contract that distinguishes between the two information problems, by using the

costly monitoring technology effectively. Specifically, when the monitoring technology is available,

the ex-post informational asymmetry problem is reduced, although the insured can still enjoy an

information advantage while in good shape. Meanwhile, if the insured’s downward-risk aversion is

weak and if the participation constraint of the insured is not too tight with respect to the monitoring

cost, then a higher level of the monitoring technology (i.e., a smaller monitoring cost) can mitigate

the problem of moral hazard.

Based on the theoretical results, our model is tractable for numerical work. As a numerical

example, we consider the case that the insured has a log utility and the insurer is risk-neutral.

When the monitoring cost is an immediate level, the monitoring action is undertaken only for low

wealth levels while the contract is deductible for very low wealth levels. Furthermore, the insurance

premium is increasing in the monitoring cost. For very small monitoring costs, the monitoring

action is undertaken for all nondeductible wealth levels (i.e., unless the contact is deductible for the

wealth levels). The allocations are state-dependent. On the other hand, for very large monitoring

costs, the monitoring action is necessarily avoided in equilibrium. The optimal contract is then of

3Note that our paper is not a generalization of Cvitanić and Zhang [3]. They assume that the
contract can depend on the whole path of the wealth Xu

· whereas we assume that it depends only
on its time-T value. Still, they show that the optimal contract depends only on the time-T value.
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a state-independent debt type for all nondeductible wealth levels.

This paper is organized as follows. Next section defines an environment. Section 3 studies

optimal insurance properties. Section 4 obtains numerical results. Final section concludes.

2 Environment

We consider an optimal contracting problem between two players: an insurer (i.e., insurance com-

pany) and an insured (i.e., firm) on a time interval [0, T ] for a finite time T > 0. For convenience,

we will use female pronouns for the insurer, and male ones for the insured. Fix a filtered probability

space (Ω,F ,F,P). Let W = {Wt}0≤t≤T be a one-dimensional standard F-Brownian motion on the

probability space, i.e., for any t, s satisfying 0 ≤ t ≤ s, Ws − Wt is independent of Ft. Define

FW := {FWt }0≤t≤T as the filtration generated by W up to time T . Note that F ⊇ FW .

The insured produces the wealth process Xu that is characterized by the following stochastic

differential equation:4

dXu
t = v(ut dt+ dWt), Xu

0 = 0 (2.1)

where v is a positive constant and stands for riskiness of the wealth process. The insured can

control the real-valued instantaneous expected wealth return process u – call it the insured’s effort

– with a utility cost GT (u) :=
∫ T
0 g(ut) dt := 1

2

∫ T
0 (ut)

2 dt, i.e., a higher (lower) costly effort leads

to a higher (lower) expected return of the wealth. Assume that the insured’s effort process u is

F-adapted and bounded. For simplicity, assume v = 1 in the remainder of the theoretical sections.

Obviously, any deterministic diffusion coefficients, including non-unity constant ones, would not

change our theoretical results. Neither would do any non-zero initial value Xu
0 = x 6= 0.

Let Ui : R → R denote player i’s utility function of his or her own wealth, defined on R, at

time T (i = 1, 2) where the index i = 1 denotes the insured and i = 2 denotes the insurer. The

utility function Ui (i = 1, 2) is three times continuously differentiable. In particular, the utility

functions possess standard properties: U ′i > 0 for each i = 1, 2, and U ′′1 < 0 and U ′′2 ≤ 0. As usual

in finance, both players are downward-risk averse: U ′′′1 > 0 and U ′′′2 ≥ 0. Note that the insurer may

4Note that, in this model, the loss/gain process of the wealth is continuous. We may extend the
process to have jumps under appropriate mathematical regularities. That will be our future work.

5



be risk-neutral.5 In addition, we assume that the insured is risk-averse such that −U ′′1
U ′1
≥ U ′1.6 This

assumption is imposed for obtaining a necessary and sufficient condition for optimality below. The

insured is exogenously given a reservation utility, denoted by a constant r ∈ R, at time 0.

The information is asymmetric between the two players. We assume that {Xu, u}, except for

the initial wealth Xu
0 = 0, are the private information of the insured and are unobservable to the

insurer. The players communicate the information of Xu with each other in the following two ways.

First, the insured reports the trajectory of Xu at time T without a cost. The report may be a lie,

i.e., the report is not necessarily equal to the true trajectory of Xu. Let the report be denoted

by X̃u. The reports X̃u will be mathematically specified shortly below. Second, a monitoring

technology is available to the insurer at time T if she incurs a utility cost KM . The technology is

deterministic in the sense that, when demanded, it occurs with probability one, and delivers the

true information of the time path of the wealth to the insurer with perfect accuracy.

The insured enters into a contract with the insurer and shares the time-T outcome Xu
T with

the insurer according to terms of the contract for insuring against his wealth risk (typically, risk

of property and liability). Specifically, the insurer offers a menu of contract payoffs CT to the

insured, and the insured decides whether or not to accept it. We assume that the insured’s wealth

allocation CT takes the form of CT : R×R→ R as a functional of (Xu
T , X̃

u
T ), i.e., CT = CT (Xu

T , X̃
u
T ).

Call CT (Xu
T , X̃

u
T ) a contract.7

2.1 Sets of efforts and reports

Define the sets of the insured’s controls. First, with regard to the efforts u,

Definition 1 A1 is the set of the efforts u that are F-adapted and bounded.

For u ∈ A1, we define Pu as

dPu

dP
:= E

(
−
∫
udW

)
T

(2.2)

5Most continuous-time optimal contracting models assume exponential utility forms; e.g., see
Holmström and Milgrom [7], Schättler and Sung [15]. However, those forms are of limited use in
financial practices. By contrast, we assume general utility forms.

6This is equivalent to the concavity of eU1(·) and is stronger than the concavity of U1.
7The assumption of the dependence on the time-T values might look restrictive. As it is shown

in Cvitanić and Zhang [3], it is not restrictive in equilibrium in Markovian settings.
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where, for any F-adapted real-valued processes θ,

E
(∫

θ dW

)
t

:= exp

(∫ t

0
θs dWs −

1

2

∫ t

0
(θs)

2 ds

)
.

Since u is bounded in A1, the Novikov condition is satisfied for u. Thus Pu is a probability measure.

Accordingly, Xu is a driftless Brownian motion under the probability measure Pu. Following

notational conventions, E and Eu denote the expectation operators under P and Pu, respectively.

Second, with regard to the reports X̃u, assume that there exist F-adapted real-valued processes

ũ ∈ A1 such that, for each ω ∈ Ω,

dX̃u
t = (ut − ũt) dt+ dWt, X̃u

0 = Xu
0 = 0.

Since the set A1 is a vector space, u− ũ is in A1. For u, ũ ∈ A1, X̃
u is a driftless Brownian motion

under the probability Pu−ũ defined by:

dPu−ũ

dP
:= E

(
−
∫

(u− ũ) dW

)
T

.

The term ũ stands for the reported twist of the instantaneous expected return as compared to

the truth, i.e., the insured could make the report that is lower than the truth Xu by
∫ T
0 ũt dt.

In addition, since u has been assumed to be unobservable to the insurer, she cannot distinguish

between u and ũ directly. This is why there exists dynamic interaction between the moral hazard

problem and the ex-post informational asymmetry problem. Still, the insurer may distinguish

between u and ũ by designing the contract properly.

2.2 Set of contracts

Define f as a mapping (functional) from R to R: for u ∈ A1,

f(Xu
T ) := U1 (CT (Xu

T , X
u
T )) .

In other words, f(Xu
T ) denotes the insured’s utility of the time-T wealth in case that the insured

chooses u ∈ A1 and reports the truth X̃u
T = Xu

T . Using this definition f(Xu
T ), define also F as a
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mapping (functional) from A1 to R: for u ∈ A1, noting Xu
T = WT +

∫ T
0 ut dt,

J(u) := E
[
f

(
WT +

∫ T

0
ut dt

)
−
∫ T

0
(ut)

2 dt

]
.

This represents the insured’s expected utility in case that the insured chooses u ∈ A1 and reports

the truth X̃u
T = Xu

T . Given the utility function U1, the properties of f are linked to the ones of CT .

Note that CT (and thus f) may not be differentiable everywhere.8 Now, define mathematical

regularities for the contracts CT :

Definition 2 Define the set A2 of the contracts CT (Xu
T , X̃

u
T ) such that, for any u, ũ ∈ A1,

(i) f(x) is continuous. In addition, f(x) is differentiable except at a finite number of the points,

say {x1, x2, · · · , xn}, and the derivative f ′(x), defined on R\{x1, x2, · · · , xn}, is bounded,

(ii) E [|U2(X
u
T − CT )|] <∞.

Since supx∈R\{x1,x2,··· ,xn} |f
′(x)| <∞, the linear growth condition is satisfied for f . Hence, for any

α > 0, E
[
eαf(Z)

]
<∞ where Z is a normal random variable with arbitrary parameters.

Next, as usual in financial contract theory, we restrict the contract space A2 to a further partic-

ular set, i.e., we impose the conditions of incentive compatibility and the insured’s participation on

the contract space. With regard to the incentive compatibility condition, we restrict the contracts

to the ones that induce the insured to tell the truth (i.e., ũ = 0). Following standard discussions

of costly monitoring, assume that CT (Xu
T , X̃

u
T ) takes the form:

CT (Xu
T , X̃

u
T ) =


Xu
T − F = (Xu

T − X̃u
T ) + (X̃u

T − F ) if X̃u
T ≥ b,

CM (Xu
T ) if X̃u

T < b and if Xu
T = X̃u

T ,

0 if X̃u
T < b and if Xu

T 6= X̃u
T

(2.3)

where F ∈ R and b ∈ R are constants and CM (Xu
T ) is a function R → R. We call this contract

an insurance contract characterized by a triplet {F, b, CM (Xu
T )} in the following sense (as shown

in Figure 1). First, F stands for the insurer’s deterministic allocation when the monitoring is not

undertaken and is interpreted as an insurance premium.9

8E.g., payoff functions are kinked in debt contracts and options.
9For example, consider the case that the insured could not commit to the contract at time T .

In the case, the insurer could enforce the insured to pay F in advance (i.e., at time 0) in order to
avoid failure to collect F at time T .
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Figure 1: Insurance contract

Second, we assume that there exists a constant b such that, when X̃u
T is lower than b, a monitor-

ing action is triggered. In other words, b stands for a threshold to trigger the monitoring. Note that

we will verify the existence of such b below. The set {X̃u
T < b} is called the monitoring region on

R; its complement (i.e., {X̃u
T ≥ b}) the no-monitoring region. If the monitoring is undertaken and

verifies the truth, the insurer provides the insured with the allocation CM (Xu
T ) to insure against the

low outcome. On the other hand, if a lie is verified, everything is confiscated from the insured and,

in addition, the insured is penalized by the utility cost of −∞.10 Thus the verification of the false

reporting would be out of equilibrium. Let b = −∞ denote the case that only the no-monitoring

region exists, and b = +∞ denote the case that only the monitoring region exists. b is said to be

feasible if −∞ < b < +∞. Thus b is the threshold of insurance compensation in equilibrium.

Third, the function CM (Xu
T ) : R → R is the insured’s time-T allocation when the monitor-

ing is undertaken and verifies the truth. CM (Xu
T ) − (Xu

T − F ) is the insurance compensation.

The compensation works as a put option. We impose two assumptions on CM (Xu
T ). Firstly,

CM (Xu
T ) is assumed to be continuous. The continuity could be justified if the contract needs to be

renegotiation-proof. Secondly, CM (Xu
T ) is assumed to be non-decreasing. This assumption means

a co-payment relationship, which looks relevant in practice.

Let us look at the incentive compatibility in the insurance contracts more specifically. When

Xu
T < b, the insured could have an incentive to tell a lie if he is better off behaving as if he would be

in the no-monitoring state. That would not be incentive compatible. Thus, to induce the insured

10The penalty can be interpreted as reputation loss and the cost of being imprisoned, for example.
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to tell the truth, CM (Xu
T ) ≥ (Xu

T − F ). On the other hand, when Xu
T ≥ b, the monitoring action

should not be undertaken. Therefore, CM should be less than Xu
T − F . Also, as usual in contract

theory, we assume that, when the insured is indifferent between two actions, he will choose the one

that is better to the insurer. Thus the incentive compatibility condition is written as:

(
CM (Xu

T )− (Xu
T − F )

)
(Xu

T − b) ≤ 0. (2.4)

In previous standard costly monitoring models, due to the assumption of risk neutrality, mini-

mizing the probability of undertaking a monitoring action is equivalent to maximizing the princi-

pal’s expected wealth while providing the agent with no lower than his reservation utility; see e.g.

Gale and Hellwig [5], Williamson [16]. Thus, to be incentive compatible, when being monitored,

everything should be confiscated from the agent. Accordingly, that optimal contact form is called

a simple debt. In contrast, in our present paper, since the utility functions are non-linear, the

insured should receive positive allocation in the optimal risk-sharing arrangement when the mon-

itoring action is made (i.e., Xu
T < b). Precisely, the insured receives the allocation even when Xu

T

is larger than F , i.e., the monitoring action can be triggered optimally when the insured is liquid.

This contract form is not the simple debt, but rather an insurance contract.

With regard to the participation condition, the contracts are constrained to the ones that induce

the insured to participate. Define the insured’s optimal utility as V1 := sup
u∈A1

J(u) for each incentive

compatible CT ∈ A2. We assume that the insurer provides the insured with no lower utility than

his reservation utility (i.e., V1 ≥ r), so as to make the insured enter into the contract. In particular,

as usual in hidden action problems, we assume that the participation condition is binding:

V1 = r. (2.5)

In short, using the two constraints (2.4),(2.5), define the set A′2 of the contracts CT , which is

characterized by {F, b, CM} in Eq.(2.3), as follows.

Definition 3 Define the set A′2 of the contracts CT ∈ A2 satisfying

(i) CM is continuous and non-decreasing.

(ii) CT satisfies Conditions (2.4) and (2.5).
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3 Optimal insurance design with costly monitoring

3.1 Insured’s optimization

Proposition 3.1 For CT ∈ A′2, the insured’s optimization problem sup
u∈A1

J(u) has a unique solu-

tion u∗ such that

J(u∗) = logE[ef(Z)], where Z ∼ N(0, T ).

Define

X∗t := Wt +

∫ t

0
u∗s ds.

We then obtain FX∗ = FW and u∗t = h(X∗t , t) where the deterministic function h : R× [0, T ]→ R

is defined as

h(x, t) :=
E[ef(Z)f ′(Z)]

E[ef(Z)]
, where Z ∼ N(x, T − t). (3.1)

Furthermore, u∗ satisfies

ef(X
∗
T ) = E∗[ef(X

∗
T )] E

(∫
u∗ dX∗

)
T

(3.2)

where E∗ denotes the expectation operator under the probability measure P∗ defined by the Radon-

Nikodym derivative:

dP∗

dP
:= E

(
−
∫
u∗ dW

)
T

=
1

E
( ∫

u∗ dX∗
)
T

.

Proof: See appendix.

Since u∗ is bounded, the Novikov condition is satisfied. By the Girsanov theorem, X∗ is a driftless

Brownian motion under the probability measure P∗. Also, h is a bounded function, because, defining

K := supx∈R\{x1,x2,··· ,xn} |f
′(x)| <∞ as in Definition 2,

|h(x, t)| ≤ E[ef(Z)|f ′(Z)|]
E[ef(Z)]

≤ E[ef(Z)K]

E[ef(Z)]
= K.
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Substituting the participation condition (2.5) into Eq.(3.2),

e−ref(X
∗
T ) = E

(∫
u∗ dX∗

)
T

=
dP
dP∗

. (3.3)

This means that the choice of the probability measure associated with the optimal action u∗ has an

explicit functional relationship with the insured’s allocation CT . Thus, the insurer can implement

the insured’s optimal effort u∗ by choosing the contract CT ∈ A′′2 in a way consistent with Eq.(3.3)

subject to Conditions (2.4) and (2.5). Call Eq.(3.3) the implementability condition.

Using Condition (3.3), define the set A′′2 of the contracts CT as:

Definition 4 Define the set A′′2 of the contracts CT ∈ A′2 satisfying Condition (3.3).

3.2 Insurer’s optimization

Now, we formulate the insurer’s optimization problem:

sup
CT∈A′′2

E
[
U2

(
X∗T − CT (X∗T , X

∗
T )
)
−KM1M

]
(3.4)

where 1M is an indicator function such that 1M = 1 when a monitoring action is undertaken (oth-

erwise, 0). Although the insurer cannot observe the truth Xu directly, she can verify it by designing

the optimal contract that implements the optimal effort u∗ and is incentive compatible (i.e., ũ = 0).

Accordingly, for CT ∈ A′′2, the insurer can take her expectation under P in Eq.(3.4). Due to Def-

inition 2 (ii), the integrability is ensured in Eq.(3.4). Using the implementability condition (3.3),

the optimization problem (3.4) is rewritten as

sup
CT∈A′′2

E
[
U2

(
X∗T − CT (X∗T , X

∗
T )
)
−KM1M

]
= sup

CT∈A′′2
E∗
[

dP
dP∗

(
U2

(
X∗T − CT (X∗T , X

∗
T )
)
−KM1M

)]
= sup

CT∈A′′2
E∗
[
e−ref(X

∗
T )
(
U2

(
X∗T − CT (X∗T , X

∗
T )
)
−KM1M

)]
= sup

CT∈A′′2
E∗
[
e−reU1(CT (X

∗
T ,X

∗
T ))
(
U2

(
X∗T − CT (X∗T , X

∗
T )
)
−KM1M

)]
. (3.5)

Note that, in Eq.(3.5), we change the measure so as to have the driftless Brownian motion X∗

under P∗. Define the Lagrangian multipliers associated with Conditions (2.4) and (2.5) as µ and λ,

respectively. Since V1 ≥ r and, in particular, V1 = r, we obtain λ > 0. Using Conditions (2.4) and
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(3.3), the constrained optimization problem (3.5) is rewritten into:

sup
{F,b,CM}

 e−r E∗
[
eU1(CT (X

∗
T ,X

∗
T ))
((
U2(X

∗
T − CT (X∗T , X

∗
T ))−KM1M

)
+ λ

)]
+µ
[(
CM (X∗T )− (X∗T − F )

)
(b−X∗T )

]
 . (3.6)

With regard to CM , a necessary condition for optimality is:

eU1(CM )U ′1(CM )

{
(λ−KM )−

(
U ′2(X

∗
T − CM )

U ′1(CM )
− U2(X

∗
T − CM )

)}
+ erµ (b−X∗T ) = 0. (3.7)

On the assumption that CM is continuous and non-decreasing, by the incentive compatibility

condition (2.4), if b is feasible,

CM (b) = b− F. (3.8)

Accordingly, when X∗T ≥ b, the incentive compatibility condition is necessarily slack. Therefore,

we can focus attention on the case of X∗T < b in the second term on the left-hand side of Eq.(3.7).

For notational convenience, regarding Eq.(3.7), define

H(y) := eU1(y)U ′1(y)

{
(λ−KM )−

(
U ′2(X

∗
T − y)

U ′1(y)
− U2(X

∗
T − y)

)}
+ erµ (b−X∗T ) ,

L(y) :=
U ′2(X

∗
T − y)

U ′1(y)
− U2(X

∗
T − y).

Then,

H ′(y) = eU1(y)U ′1(y)

{
U ′1(y)

(
(λ−KM )− L(y)

)(
1 +

U ′′1 (y)

(U ′1(y))2

)
− L′(y)

}
= eU1(y)U ′1(y)

{
−
µ (b−X∗T ) er−U1(y)

U ′1(y)

(
U ′1(y) +

U ′′1 (y)

U ′1(y)

)
− L′(y)

}
.

Noting −U ′′1
U ′1
≥ U ′1, µ ≤ 0 and L′(y) =

−U ′′2 (X∗T−y)U
′
1(y)−U ′2(X∗T−y)U

′′
1 (y)

(U ′1(y))
2 + U ′2(X

∗
T − y) > 0, we obtain

H ′(y) < 0. Therefore, Eq.(3.7) is the necessary and sufficient condition for optimality.

For the reference, similarly to Cvitanić and Zhang [3], we look at the case that there exists

moral hazard without ex-post informational asymmetry. It means that the incentive compatibility

condition is slack, i.e., µ = 0. The insurer does not need to monitor. Thus CM can be replaced
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by CT . Hence,

U ′2(X
∗
T − CT )

U ′1(CT )
− U2(X

∗
T − CT ) = λ. (3.9)

And,

0 <
dCT
dX∗T

= 1− U ′2U
′′
1

U ′′2U
′
1 + U ′2U

′′
1 − U ′2(U ′1)2

< 1. (3.10)

Furthermore, we examine the case that there are no moral hazard and no ex-post informational

asymmetry. The standard Borch rule is then obtained:

U ′2(X
∗
T − CT )

U ′1(CT )
= λ, (3.11)

0 ≤ dCT
dX∗T

= 1− U ′2U
′′
1

U ′′2U
′
1 + U ′2U

′′
1

< 1. (3.12)

Accordingly, from Eq.(3.9) and Eq.(3.11), we see that the term U2(X
∗
T −CT ) stands for the effect of

moral hazard, whereas the term µ (b−X∗T ) stands for the effect of ex-post informational asymmetry.

From Eq.(3.10) and Eq.(3.12), dCT
dX∗T

is less than one, either with or without moral hazard.

In addition, it is higher in Eq.(3.10) than in Eq.(3.12). I.e., when X∗T gets higher, the larger

compensation is required in the moral hazard case due to the necessity to induce the insured to

make the optimal efforts. The effect of moral hazard on CT is represented by the difference between

Eq.(3.10) and Eq.(3.12):

∆

(
dCT
dX∗T

)
:=

(
1− U ′2U

′′
1

U ′′2U
′
1 + U ′2U

′′
1 − U ′2(U ′1)2

)
−
(

1− U ′2U
′′
1

U ′′2U
′
1 + U ′2U

′′
1

)
=

−U ′′1 (U ′1U
′
2)

2

(U ′′2U
′
1 + U ′2U

′′
1 ) (U ′′2U

′
1 + U ′2U

′′
1 − U ′2(U ′1)2)

> 0. (3.13)

3.3 Characterization

We characterize the optimal CM from Eq.(3.7). Suppose that, in the monitoring region, the optimal

effort is attained. Then,

U ′2(X
∗
T − CM (X∗T ))

U ′1(CM (X∗T ))
− U2(X

∗
T − CM (X∗T )) = λ−KM . (3.14)
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Noting strict concavity of U1,

0 <
dCM
dX∗T

= 1− U ′2U
′′
1

U ′′2U
′
1 + U ′2U

′′
1 − U ′2(U ′1)2

< 1. (3.15)

By Eq.(3.8) and Eq.(3.15), CM ≥ X∗T − F in the monitoring region, i.e, the insured is better off

telling the truth when the payment rule CM as well as (F, b) are given. Also, by construction, there

is no informational asymmetry in the no-monitoring region. Hence, µ = 0. Accordingly, if optimal

efforts are attained as in Eq.(3.14), the problem of moral hazard is differentiated from the problem

of ex-post informational asymmetry in the monitoring region. Furthermore, from Eq.(3.15), we

can confirm that the threshold b is well-defined in Eq.(2.3) satisfying the incentive compatibility

condition (2.4).

Implications are as follows. Similarly to Cvitanić and Zhang [3], CT is non-linear in X∗T in

contrast to Holmström and Milgrom [7] and Schättler and Sung [15]. Furthermore, this paper

draws richer implications of insurance than Cvitanić and Zhang [3]’s. First, if the optimal efforts

are attained in Eq.(3.14), the insurer can write explicitly the insurance contract that distinguishes

between the two information problems, by using the costly monitoring effectively. Note that Cvi-

tanić and Zhang [3], by contrast, face difficulty with writing the optimal contract that differentiates

between the informational problems, even by using dynamic data, because, with only costless re-

porting, it is very hard to compute the Lagrangian multipliers associated with the informational

problems.

Second, we look at dynamic interaction between the problem of moral hazard and the problem

of ex-post informational asymmetry in the optimal insurance contract. We focus on the case that

b is feasible. We compare this model with the case of moral hazard without ex-post informational

asymmetry characterized by Eq.(3.9). The ex-post informational asymmetry problem is reduced,

i.e., the insured can still enjoy an information advantage while in good shape. On the other hand,

in the monitoring region, there is no µ, i.e., informational asymmetry is removed there. Eq.(3.14)

looks equivalent to Eq.(3.9), except for the existence of KM on the right-hand side. Let us examine

the effect of the monitoring on moral hazard, which is measured by the effect on dCT
dX∗T

like ∆
(

dCT
dX∗T

)

15



in Eq.(3.13). From Eq.(3.15), when U ′′2 < 0,

d

dKM

(
dCM
dX∗T

)
=

d

dCM

(
dCM
dX∗T

)
· dCM

d(λ−KM )
· d(λ−KM )

dKM

=
U ′2U

′
1U
′′
2U
′′
1

(U ′′2U
′
1 + U ′2U

′′
1 − U ′2(U ′1)2)

2︸ ︷︷ ︸
≥0



((
−U ′′′2
U ′′2

)
−
(
−U ′′2
U ′2

))
+
((
−U ′′′1
U ′′1

)
−
(
−U ′′1
U ′1

))
+

U ′1(
−
U′′2
U′2

) ((−U ′′′1
U ′′1

)
− 2

(
−U ′′1
U ′1

))


· 1
−U ′′2 U ′1−U ′2U ′′1

(U ′1)
2 + U ′2︸ ︷︷ ︸
>0

·d(λ−KM )

dKM
. (3.16)

To draw economic implications of insurance from Eq.(3.16), we add several definitions as follows.

In economics, −U ′′′i (x)
U ′′i (x)

> 0 is called absolute prudence, which measures downward-risk aversion, i.e.,

the strength of the precautionary saving motive. Because U ′′′i (x) > 0 for i ∈ {1, 2} here, both players

are downward-risk averse in this model. We put a further classification of downward-risk aversion

as follows. For i ∈ {1, 2}, player i’s downward-risk aversion is said to be weak if −U ′′′i
U ′′i
≤ −U ′′i

U ′i
,

in that
d

(
−U
′′
i (x)

U′
i
(x)

)
dx =

U ′′i
U ′i

{(
−U ′′′i
U ′′i

)
−
(
−U ′′i
U ′i

)}
≥ 0. I.e., the player has the precautionary saving

motive in the sense of absolute prudence, but his or her absolute risk aversion −U ′′i (x)
U ′i(x)

is increasing

in wealth. On the other hand, for i ∈ {1, 2}, player i’s downward-risk aversion is said to be strong

if −U ′′′i
U ′′i

> −U ′′i
U ′i

. Note that, when player i’s downward-risk aversion is weak, −U ′′′1
U ′′1
≤ −U ′′1

U ′1
< −2

U ′′1
U ′1

.

Also, we can guess that larger KM leads to higher λ due to the tighter participation constraint.

Still, we are not certain whether dλ
dKM

≥ 1 or dλ
dKM

< 1. The participation constraint is said to be

not too tight (with respect to KM ) if dλ
dKM

< 1.

Using these definitions, we characterize Eq.(3.16). When U ′′2 < 0, if the insured’s downward-

risk aversion as well as the insurer’s are weak and if the participation constraint is not too tight,

then a higher level of the monitoring technology (i.e., smaller KM ) mitigates the problem of moral

hazard. Also, even when the insurer’s downward-risk aversion is strong, if the effect of the insured’s

weak downward-risk aversion overpowers the effect of the insurer’s strong downward-risk aversion

in Eq.(3.16) and if the participation constraint is not too tight, then a higher level of the monitoring

technology (i.e., smaller KM ) can mitigate the problem of moral hazard. A logic behind this result is

as follows. When the insured’s downward-risk aversion is weak, he does not demand excessively high

compensation. Also, when the tight participation constraint is not too tight, larger (smaller) KM
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does not tighten (loosen) the right-hand side of Eq.(3.14) much. In this case, it is not quite costly

to induce the insured to make the optimal efforts. Thus, for larger (smaller) KM , the monitoring

technology is a less (more) useful devise to verify the truth. Therefore, a lower (higher) level of the

monitoring technology (i.e., larger (smaller) KM ) then leads to more (less) moral hazard.

Also, we look at the case of U ′′2 = 0:

d

dKM

(
dCM
dX∗T

)
=

− (U ′2)
2 (U ′1)

2 U ′′1
(U ′2U

′′
1 − U ′2(U ′1)2)

2︸ ︷︷ ︸
≥0

((
−U

′′′
1

U ′′1

)
− 2

(
−U

′′
1

U ′1

))
·

1
−U ′2U ′′1
(U ′1)

2 + U ′2︸ ︷︷ ︸
>0

·d(λ−KM )

dKM
. (3.17)

We can draw the similar implications as in the above case of U ′′2 < 0.

4 Numerical analysis of optimal insurance design

4.1 Numerical method

So far we have imposed several high-level assumptions on the set of the controls. Also, the effect of

KM on the endogenous variable λ has not been obtained explicitly in a closed form. Accordingly,

we are not certain whether, for some practically relevant values of the structural parameters, we can

obtain plausible solutions to the above optimal insurance design problem and can provide useful

predictions regarding the insured’s strategic behavior under moral hazard and ex-post informational

asymmetry in the optimal insurance contract. To complete our study, we do numerical analyses

and draw quantitative implications in this section.

Assume that v is a positive constant. Based on the results in Section 3, if b is feasible, a

derivation method for the optimal values of b, F, CM , u
∗, λ consists of the following four steps.

(1) When Eq.(3.14) holds, CM (X∗T ) can be written as a function of λ, denoted by CλM (X∗T ).

(2) By Eq.(3.8), when b is feasible,

CλM (b) = b− F. (4.1)

Thus F can be written as a function of b and λ, denoted by F (b, λ).
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(3) By Condition (3.3), λ can be written as a function of b, denoted by λ(b), satisfying:

er = E∗[eU1(CT )]

=

∫ +∞

b
eU1(X∗T−F (b,λ))Φ(dX∗T ) +

∫ b

−∞
eU1(CλM (X∗T ))Φ(dX∗T ) (4.2)

where Φ denotes the cumulative distribution function of X∗T under P∗ at time 0. Set Φ(x) =

N
(

x
v
√
T

)
where N(·) denotes the standard normal cumulative distribution function, i.e., for

x ∈ R, N(x) := 1√
2π

∫ x
−∞ exp

(
−u2

2

)
du; see e.g. Musiela and Rutkowski [10].

(4) By Eq.(3.6), with respect to b, the insurer optimizes her expected utility:

e−r E∗
[
eU1(CT )

(
(U2(X

∗
T − CT )−KM1M ) + λ(b)

)]
= e−r


(
U2(F (b, λ(b))) + λ(b)

) ∫ +∞
b eU1(X∗T−F (b,λ(b)))Φ(dX∗T )

+
∫ b
−∞ e

U1(C
λ(b)
M (X∗T ))

(
U2(X

∗
T − C

λ(b)
M (X∗T ))−KM + λ(b)

)
Φ(dX∗T )

 . (4.3)

4.2 Numerical example

As an example, let us look at the case that U1(x) = log(x) and U2(x) = x. There is one crucial

caveat: this case does not fit the above theoretical formulation perfectly, in that, due to the log

utility form, the insured’s consumption should be strictly positive. Still, we examine this case for

the following two reasons. First, the numerical formulation is simple and comprehensive clearly

from a financial viewpoint. Second, we implicitly assume that, if any non-positive allocation is given

to the insured, the players’ contractual relationship is deductible, i.e., the insured and the insurer

repudiate without a cost and live in autarky, which provides the players with zero utility, from the

time onwards. If the probability of being deducted (as we will show below, P∗
(
X∗T < −(λ−KM )

)
)

is small, the problem is not serious.

From −U ′′1 (x)
U ′1(x)

= 1
x = U ′1(x) and Eq.(3.14),

CM =
X∗T + (λ−KM )

2
.

For the positivity of CM , X∗T > −(λ−KM ). By Eq.(4.1), if b is feasible,

F =
b− (λ−KM )

2
.
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Note that the insurer’s allocation can take negative values due to her risk neutrality, while the

insured’s one is positive due to his log utility. By Eq.(4.2),

er =

∫ +∞

b

(
x− b− (λ−KM )

2

)
Φ(dx) +

∫ b

−(λ−KM )

(
x+ (λ−KM )

2

)
Φ(dx)

=

∫ +∞

b

(
x− b

2

)
1√
2π
e−

x2

2v2T dx+

∫ b

−(λ−KM )

(x
2

) 1√
2π

e−
x2

2v2T dx

+
(λ−KM )

2

(
1−N

(
−(λ−KM )

v
√
T

))
(4.4)

By Eq.(4.3), the insurer optimizes her utility with respect to b and λ,

(F + λ)

∫ +∞

b
(x− F )Φ(dx) +

∫ b

−(λ−KM )
CM

(
(x− CM ) + (λ−KM )

)
Φ(dx)

=

(
b+ λ+KM

2

)∫ +∞

b

(
x− b− (λ−KM )

2

)
1√
2π

e−
x2

2v2T dx

+

∫ b

−(λ−KM )

(
x+ (λ−KM )

2

)2 1√
2π

e−
x2

2v2T dx

subject to Eq.(4.4). Figure 2 illustrates the optimal insurance contract in this example.
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Monitoring No monitoring 

-() 

Figure 2: Optimal insurance contract

Finally, let us look at optimal insurance properties in the cases of b = −∞ and b = +∞. First,

since the payment rule is continuous, we obtain F = −(λ−KM ). From Eq.(4.4),

er =

∫ +∞

−(λ−KM )
(x+ (λ−KM )) Φ(dx) =

∫ +∞

0
zΦ
(

d(z − (λ−KM ))
)
.

Therefore, so long as b = −∞ holds, F = −(λ −KM ) remains constant as KM is changed. Next,
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when b = +∞, from Eq.(4.4),

er =

∫ +∞

−(λ−KM )

x+ (λ−KM )

2
Φ(dx) =

∫ +∞

0

z

2
Φ
(

d(z − (λ−KM ))
)
.

Therefore, so long as b = +∞ holds, −(λ−KM ) remains constant as KM is changed.

We set the wealth volatility to be a conventional level v = 25%, based on previous empirical

results. With regard to the estimates of monitoring cost KM (relative to r), there is a controversy

in previous empirical literatures. Thus we cover a wide range of KM (relative to the insured’s utility

level r) in this numerical analysis. To determine the scale of this model, set r = 1. Parameterization

and numerical results are shown in Table 1.

Table 1: Parameterization and numerical results

Parameters
Wealth: Diffusion v 25% 25% 25% 25% 25% 25% 25%
Reservation utility r 1 1 1 1 1 1 1
Monitoring cost KM 0.01 ∼ 0.9 1.0 1.6 2.2 2.8 5.0 10.0

Optimal results
Insurance premium F n.a. −1.09 −0.95 −0.94 −0.93 −1.06 −1.06
Compensation trigger b +∞ −0.17 −0.32 −0.36 −0.45 −∞ −∞
Lagrangian multiplier λ 5.45 ∼ 6.34 3.00 3.19 3.72 4.21 6.06 11.06
Deductible threshold −(λ−KM ), F −5.44 −2.00 −1.59 −1.52 −1.41 −1.06 −1.06
Monitoring region b+ (λ−KM ) > −5.44 1.83 1.27 1.16 0.96 0.00 0.00

The results are as follows. When the monitoring cost KM is an immediate level, the moni-

toring action is undertaken only for low wealth levels −(λ − KM ) < X∗T < b. The contract is

deductible when the time-T wealth is less than −(λ −KM ). This is a typical insurance contract

with deductibles. Since 0 < dλ
dKM

< 1, the participation constraint is not too tight. However,

−U ′′′1
U ′′1

= −2
U ′′1
U ′1

> −U ′′1
U ′1

, i.e., the insured’s downward-risk aversion is strong. From Eq.(3.17), we

find that the problem of moral hazard is unchanged by a higher level of the monitoring technology

(i.e., smaller KM ). As KM gets larger, the monitoring region gets smaller. Also, the insurance

premium F (the compensation trigger b, respectively) is slightly increasing (decreasing) in KM . A

logic behind these results is as follows. When KM becomes larger, the whole pie to be shared be-

comes smaller. Thus the probability of monitoring is reduced. To make up for the high monitoring

cost, the insurer demands the high insurance premium F and the low compensation trigger b.

For a very small KM (i.e., 0.01 ≤ KM < 1), the insurer necessarily prefers the truth, even by

incurring the monitoring cost (i.e., b = +∞). The monitoring action is then undertaken for all
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nondeductible X∗T (i.e., unless the contract is deductible for X∗T ), and the allocations are state-

dependent. As mentioned above, when b = +∞ holds, −(λ − KM ) remains constant as KM is

changed. On the other hand, for a very large KM , the monitoring action would shrink largely

the whole wealth to be shared. The monitoring action is necessarily avoided in equilibrium. The

optimal contract is then of a state-independent debt-type for all nondeductible X∗T , i.e., b = −∞.

Note that, in this case, F becomes a deductible threshold as well. Again, as mentioned above,

when b = −∞ holds, F and −(λ−KM ) remain constant as KM is changed.

5 Conclusion

We found the properties of optimal insurance in the model of continuous-time costly monitoring un-

der moral hazard and ex-post informational asymmetry. For future work, we will extend the model

to have (1) risk pooling in a model with multi-insureds and (2) securitized insurance contracts.
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Appendix

A Proof of Proposition 3.1

Defined in Eq.(2.1), for u ∈ A1, X
u
t = Wt +

∫ t
0 us ds. As it was shown above, Xu is a driftless

Brownian motion under the probability measure Pu characterized by the Radon-Nikodym deriva-

tive:

dPu

dP
= E

(
−
∫
udW

)
T
.

By the Martingale Representation Theorem, there exists an FXu
-adapted process Hu

s such that

Eu[ ef(X
u
T ) | FXu

t ] = Eu[ ef(X
u
T )] +

∫ t

0
Hu
s dXu

s .

Define γu as

γut :=
Hu
t

Eu[ ef(X
u
T ) | FXu

t ]
.

We then obtain

ef(X
u
T ) = Eu[ef(X

u
T )] E

(∫
γu dXu

)
T
. (A.1)

Since the Clark-Ocone formula is applicable to ef(·),11

Hu
t = Eu[ ef(X

u
T )f ′(Xu

T ) | FXu

t ]. (A.2)

11As to the Clark-Ocone formula, see Appendix B.
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Since Xu is the driftless Brownian motion under Pu, Xu
T ∼ N(Xu

t , T − t) conditional on FXu

t .

Hence,

γut =
Eu[ ef(X

u
T )f ′(Xu

T ) | FXu

t ]

Eu[ ef(X
u
T ) | FXu

t ]
= h(Xu

t , t) (A.3)

as in Eq.(3.1). Therefore, γu is bounded. Taking logarithms on both sides of Eq.(A.1),

f(Xu
T ) = logEu[ef(X

u
T )] +

∫ T

0
γus dXu

s −
1

2

∫ T

0
(γus )2 ds

= logEu[ef(X
u
T )] +

∫ T

0
γus dWs −

1

2

∫ T

0

{
(γus )2 − 2usγ

u
s

}
ds.

Subtracting 1
2

∫ T
0 u2s from both sides and taking expectations under the probability measure P,

E
[
f
(
WT +

∫ T

0
us ds

)
− 1

2

∫ T

0
u2s ds

]
= logEu[ef(X

u
T )]− 1

2
E
[∫ T

0
(γus − us)2 ds

]
≤ logEu[ef(X

u
T )]. (A.4)

Note that logEu[ef(X
u
T )] on the right-hand side of Eq.(A.4) is independent of u. If γu = u, i.e.,

if there exists some u ∈ A1 that satisfies the implementability condition (3.3), it is an optimal

solution. Moreover,

γu = u ⇐⇒ u· = h(Xu
· , ·) ∵ Eq.(A.3)

⇐⇒ Xu
· = W· +

∫ ·
0
h(Xu

s , s) ds. (A.5)

It is well known that, by Zvonkin [17] (see also Karatzas and Shreve [8], Chapter 5 Notes, p.396),

the last Markovian stochastic differential equation (A.5):

dXu
t = dWt + h(Xu

t , t) dt, Xu
0 = 0

has a unique strong solution X∗. Since it is the strong solution, FX∗ = FW . �

B Supplementary note on the Clark-Ocone formula

The Clark-Ocone formula for general functionals is stated in terms of the Malliavin-Fréchet deriva-

tive (see e.g. Ocone and Karatzas [11], Revuz and Yor [12] and Rogers and Williams [13]), but, in
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order to show our formula (A.2), the following simple argument is sufficient.

Let us define the function g : R× [0, T )→ R by

g(x, t) :=

∫ ∞
−∞

1√
2π(T − t)

e
− y2

2(T−t) ef(x+y)dy,

which is a C2 function since it is the convolution of ef(x) and 1√
2π(T−t)

e
− x2

2(T−t) . Also, we have

E
[
ef(WT )

∣∣Ft] = g(Wt, t) a.s., 0 ≤ t < T

and thus the process {g(Wt, t)}0≤t<T is a martingale. It then follows from Itô’s formula that

g(Wt, t) = g(0, 0) +

∫ t

0

∂g

∂x
(Ws, s)dWs, 0 ≤ t < T, a.s.

It remains to prove that

∂g(x, t)

∂x
= lim

ε→0

∫ ∞
−∞

1√
2π(T − t)

e
− y2

2(T−t)
ef(x+y+ε) − ef(x+y)

ε
dy

=

∫ ∞
−∞

1√
2π(T − t)

e
− y2

2(T−t) f ′(x+ y)ef(x+y) dy.

This can be shown by the following two properties combined with Lebesgue’s dominated convergence

theorem:

• For almost every x ∈ R, lim
ε→0

ef(x+ε) − ef(x)

ε
= f ′(x)ef(x);

• Since the Lipschitz constant of f is K := supx∈R\{x1,x2,··· ,xn} |f
′(x)| < ∞, we have, for

every x ∈ R,

sup
0<|ε|<1

∣∣∣ef(x+ε) − ef(x)
ε

∣∣∣ = ef(x) sup
0<|ε|<1

∣∣∣ef(x+ε)−f(x) − 1

ε

∣∣∣
≤ ef(x) sup

0<|ε|<1

e|f(x+ε)−f(x)| − 1

|ε|

≤ ef(x) sup
0<|ε|<1

eK|ε| − 1

|ε|

= (eK − 1)ef(x).
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