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Abstract

This paper empirically establishes the significant roles of transport costs in price dispersions across

regions. We identify and estimate the iceberg-type distance-elastic transport costs as a parameter of

a structural model of cross-regional price differentials featuring product delivery decisions. Utilizing

a data set of wholesale prices and product delivery patterns of agricultural products in Japan, our

structural estimation approach finds large distance elasticities of the transport costs. The result

confirms that geographical barriers are an economically significant contributor to the failures of the

law of one price.
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1. Introduction

Recent years have witnessed the increased roles of trade costs in international macroe-

conomics. Highlighting the microfoundations of international trade patterns and geograph-

ical market segmentations with trade costs, careful calibration studies deepen our under-

standing of puzzling data characteristics in international macroeconomics.1

This paper empirically establishes the significant roles of transport costs, which are

the major component of trade costs, in price dispersions across regions. Utilizing a data set of

price differentials and product delivery patterns across regions, we identify and estimate the

distance-elastic transport costs as a parameter of a structural model. The previous reduced-

form regression studies treat the data associations between price differential and distance

as a proxy of transport costs liberally, as in Rogers and Jenkins (1995), Engel and Rogers

(1996), Engel and Rogers (2001), and Crucini et al.(2010). To the contrary, our structural

estimation approach econometrically extracts the unobservable size of the transport costs

from the reduced-form data associations in our data set.2 The resulting structural estimate

of the distance elasticity of transport costs evaluates an implicit price of the geographical

barrier between the segmented markets. Our estimation of a “price of distance,” indeed,

is the first attempt to parse out structurally different potential contributors to the cross-

regional price dispersions.

According to Anderson and van Wincoop (2004), trade costs in general consist of two

categories: costs imposed by policies (e.g., tariffs, quotas, and the like) and costs imposed

by the environment (e.g., transportation, insurance against various hazards, and time costs).

Except for the extensive work by Hummels (1999), the direct measures of both categories

are scarce and inaccurate. The empirical task of probing trade costs, therefore, largely relies

on indirect econometric inferences from the measurements of equilibrium prices and quan-

tities. Particularly in the field of international macroeconomics, the most common method

1Obstfeld and Rogoff (2001) point out trade costs as a central factor to explain six major puzzles in

open-economy macroeconomics. Utilizing trade costs to motivate entry and exit behavior of heterogenous

firms in export markets, Ghironi and Melitz (2005) provide a microfounded explanation for the Harrod-

Balassa-Samuelson effect. Allowing for the distribution of trade costs over goods, Bergin and Glick (2009)

endogenously determine the tradedness of goods in a small open-economy model. The resulting endogenous

share of non-traded goods in the consumer price index accounts for the empirically observed low volatility

in the relative price of non-traded goods. Atkeson and Burstein (2008) show that trade costs are essen-

tial to pricing-to-market behaviors of firms with variable markups in an open-economy model of imperfect

competitive markets.
2Our structural estimate is a cousin of those identified in recent works by Crozet and Koenig (2010) and

Balistreri et al.(2011) who use structural gravity models of international trade. Our approach, however, is

quite different from theirs.
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of inferring trade costs exploits the hypothesis of the law of one price (LOP) because trade

costs are recognized to be the main obstacles to the perfect arbitrage of goods across re-

gions. To approach the hypothesis, previous studies scrutinize disaggregate consumer prices,

which are surveyed internationally as well as domestically across retail stores. In addition

to the well-known violations of the LOP, one of the most robust findings across the previ-

ous reduced-form regression exercises is the statistically significant effects of geographical

distance on the absolute levels or the times-series variances of the cross-regional price differ-

entials.3 Because distance is used as a liberal proxy for the transport costs, the empirically

significant distance effects in the price differentials are suggestive, but still indecisive, evi-

dence for transport costs as a major contributor to the LOP violations. There are at least

three concerns.

The first concern relates to the measurement of transport costs. As argued by Engel

and Rogers (1996) and Engel et al.(2005), the dependence of consumer price differentials

on the distance observed in the reduced-form regressions is a mixture of several mutually

exclusive effects: it reflects not only the transport costs but also other factors such as the

geographical differences in the local distributional costs and the heterogeneous markups due

to a home bias in preferences. The second concern regards the economic significance of

the transport costs in the price differentials. Many of the past studies estimate that the

elasticity of the price differential with respect to distance is less than 3%.4 This small

estimate for the distance elasticity of the price differential requires an unrealistically large

degree of geographical scattering of sampling points (i.e., retail stores in cities) to explain

the observed degree of price dispersions alone.5 This observation naturally casts doubt on

3A not-exhaustive list of studies that conduct gravity-type regressions contains Engel and Rogers (1996),

Parsley and Wei (1995), Broda and Weinstein (2008), Engel et al. (2005), Ceglowski (2003), Crucini at al.

(2010), and Baba (2007).
4Among a series of past studies, for example, Broda and Weinstein (2008) observe the 1.2% distance

elasticity of the absolute log price differentials within the barcode-level scanner data of retail prices across

Canadian and U.S. cities. Engel et al. (2005) find the distance elasticity of 0.32% with pooled annual

panel data distributed by the Economic Intelligence Unit (EIU) that covers retail prices of 100 consumer

goods surveyed in 17 Canadian and U.S. cities. Ceglowski (2003) reports 1.6-2.0% estimates for the distance

elasticities of 45 different products across 25 Canadian cities. Baba (2007) scrutinizes Japanese and Korean

retail price survey data and estimates less than approximately 3% of the distance elasticity after taking into

account a border dummy between the two countries.
5Because the standard deviation of the absolute value of the log price differential is typically reported at

approximately 20% in this literature, we need a standard deviation of the log of distance of 6.66 to explain the

observed degree of regional price dispersions only by geographical distance. The required standard deviation

of the log of distance, however, is too large to be consistent with the actual degree for the geographical

scattering of cities. For instance, the standard deviation of the log of distance between two prefectural

capital cities in Japan is 0.803 over all of the 1081 city-pairs from 47 prefectures.
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defining the transport costs as a main economic source for the cross-regional price dispersions:

distance is empirically “dead” as a prime suspect for the commonly observed violations of

the LOP.

Lastly, this economically subtle distance effect on the price differentials appears to

be sharply inconsistent with the indirect econometric inferences from equilibrium trade vol-

umes. Past empirical studies in international trade unambiguously recognize that distance

plays an economically crucial role in determining bilateral trade volumes. Anderson and

van Wincoop (2003) estimate a gravity model of bilateral trade volumes and infer that the

distance elasticity of transport costs is approximately 20% conditional on a conventional

calibration of the elasticity of substitution. Helpman et al.(2008) find that the distance elas-

ticity of bilateral export volumes is approximately 80%, taking account of firms’ selections

into bilateral export markets with firm heterogeneity in productivity.6 Importantly, their

estimate suggests a 20% distance elasticity of transport costs under the same calibration

of the elasticity of substitution as that used in Anderson and van Wincoop (2003). Why

is our inference of the distance elasticity of transport costs widely diverse, at between ap-

proximately 3% and 20% when using data of equilibrium prices and quantities, respectively?

This question is a serious challenge for the students of international economics who admit

the importance of trade costs.

We incorporate the above concerns into our inferences on the effects of transport

costs on price dispersions. In so doing, we investigate a unique daily data set of wholesale

prices of agricultural products in Japan.7 Following the spirit of Parsley and Wei (1996), we

use disaggregate price data within a country to avoid any potential effects of cross-country

differences in tax, tariff, quota, and currency on our inference on transport costs. Scrutinizing

the information of wholesale prices helps us overcome the first concern: we make our estimate

of transport costs immune to the influences of local distributional costs as well as to the local

retailers’ pricing strategies.8

More importantly, there are two outstanding characteristics of our data set. First,

6Indeed, this size for the distance effects on export volumes is common in the literature of empirical

trade. For example, in their meta analysis based on 1,051 past estimates of distance effects, Disdier and

Head (2008) report the average of 0.893.
7This is not the first paper that intensively scrutinizes price data of agricultural products in the literature

of the LOP and PPP. Midrigan (2007) employs the prices of agricultural products sold in open-air markets

in European countries to test the theoretical implications of his state-dependent pricing model with trade

costs.
8As pointed out by the editor Charles Engel, our inferences from the wholesale prices are still not immune

to the influence of the cross-regional heterogeneity of markups. We empirically control for these effects by

regional fixed effects in our estimation exercise.
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we can identify the wholesale prices of an identical product at both the producing and the

consuming regions. The first characteristic is essential for identifying the transport costs

because, as discussed by Anderson and van Wincoop (2004), only when the source region of

a product is identified, can the correct information for the transport costs be extracted from

the relative prices at the consuming regions to the corresponding source region. The main

difficulty that past studies face is the fact that a retail price survey at retail stores rarely

provides information on the source regions of a product and the market prices prevailed

in these regions. Our data set, on the other hand, shows us not only in which regions in

Japan a variety of fruits and vegetables are produced but also at what wholesale prices these

products are sold in their originated regions.9

The second outstanding characteristic of our data set is the provision of information

on the daily delivery patterns of an identical product from the source region to the final

consuming regions. This data aspect empirically shows us how far a product is delivered

from the source region. In this paper, we build a structural model to explain the observed

patterns of product delivery, and we claim theoretically that ignoring the underlying choice

of delivery might result in a serious bias toward our inference on the role of distance in cross-

regional price differentials. Because the price of the product at a consuming region is observed

only when a product delivery occurs, an inference drawn only from the information of price

differentials could be subject to a sample-selection bias due to an incidental truncation.

In particular, the direction of the potential bias should be downward because a rise in

the unobservable component of transport costs in general increases a price differential but

simultaneously deteriorates the probability of delivery.

Following Melitz (2003) and Helpman et al.(2008), we build a simple structural model

of cross-regional product-delivery in which cross-regional price differentials and delivery pat-

terns are jointly determined by the same structure of transport costs.10 We then show that

9In a recent paper, Inanc and Zachariadis (2010) identify the source regions of products reported in the

Eurostat survey in several indirect ways and find approximately 10% distance elasticity of price differentials

in the 1990 survey. This finding could be indirect evidence that the identification of the origin of a product

is essential for the inference of transportation costs. A more direct identification of source regions is taken

by Donaldson (2010) who scrutinizes the cross-regional data for prices of salt in North India during the

British colonial period. In his paper, the source regions of salt are identified because salt was produced

only in several licensed districts in India. He observes approximately 24% distance elasticity of the price

differentials of salts.
10Closely related to this paper, Johnson (2010) investigates the implications of the model of Helpman et

al. (2008) on the aggregate sectoral export prices. He exploits the model’s implications on f.o.b. export

prices to improve the statistical inferences on the role of firms’ heterogeneity in the intensive and extensive

margins of international trades. Using f.o.b. export prices, however, means that his econometrics exercise is

silent about the distance effects on price differentials across countries or regions.
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the degree of the sample-selection bias depends critically on two structural parameters of

the model: the elasticity of transport costs to distance and that of substitution. Our the-

oretical analysis implies that drawing a correct inference on transport costs requires us to

estimate these two elasticities jointly. To do so, we propose a structural sample-selection

model, which consists of the price differential and the sample-selection equations, imposing

nonlinear theoretical restrictions on the joint probability distribution of data. We develop a

full information maximum likelihood (FIML) estimator incorporating instrumental variables

for the empirical model.

We estimate our sample-selection model by FIML using the data for wholesale prices

of several selected vegetables. The estimated sample-selection model passes two diagnostic

criteria in that it does a fairly good job in replicating the actual delivery patterns of these

vegetables and the actual data association of the price differentials with distances. More

importantly, the resulting estimates resolve the second and third concerns. We find large

estimates for the distance elasticity of transport costs across all of the vegetables relative to

the existing estimates in the LOP literature: all of them are over 20% and their average is

approximately 24%. The estimate of this paper, therefore, implies an economically significant

role of transport costs in cross-regional price differentials. Moreover, this size of the estimate

of the distance elasticity of transport costs is fairly consistent with those identified by the

international trade models that explain equilibrium trade volumes.

The organization of the rest of this paper is as follows. In the next section, we

introduce our model and derive our FIML estimator based on the corresponding sample-

selection model. Section 3 describes our data set. After reporting the empirical results in

section 4, we conclude in section 5.

2. Model and empirical framework

2.1. A model of cross-regional product delivery

The empirical analysis of this paper relies on a model of monopolistic competitive

firms as observed in Melitz (2003) and Helpman et al. (2008). In our model, a country

consists of distinct consuming regions indexed by i = 1, 2, · · · , I. Each region i is endowed

with a representative household who consumes a continuum of agricultural products (such as

cabbages, carrots, potatoes, and so on) by purchasing them at the regional wholesale market.

Agricultural products are indexed by l ∈ [0, 1]. Each product l is produced in distinct source

regions indexed by j = 1, 2, · · · , J . Source region j delivers its product to the wholesale
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markets in the same region j and in consuming regions i 6= j when the product delivery is

expected to be profitable.

The representative household in consuming region i differentiates product l over the

distinct source regions with an imperfect degree of substitution. Let xijl denote the demand

of region i for product l that is produced in and delivered from region j. The representative

household in region i then earns its utility from consuming product l with the following

constant elastic utility function

xil =

[
∫

j∈Bil

(δijlxijl)
αldj

]1/αl

, 0 < αl < 1,

where Bil is the set of source regions that deliver product l to consuming region i. This

utility function specific to product l shows that the representative household in region i

recognizes product l, if it is produced in different source regions, as different products:

the substitution of product l across distinct source regions is imperfect with the constant

elasticity εl ≡ 1/(1 − αl) > 1. Term δijl reflects the household’s biased preference for

different producing regions: the greater the term δijl, the more the household in region i

prefers product l from source region j relative to those from other source regions, ceteris

paribus. The above utility function then derives region i’s demand function for product l

delivered from source region j under the price pijl

xijl =

(

pijl
pil

)

−εl

δεl−1
ijl xil, (1)

where pil ≡ [
∫

j∈Bil
(δijlpijl)

1−εldj]1/(1−εl) is the average (i.e., aggregate) price level of product

l in consuming region i.

A producer in region j is a monopolistically competitive producer at the wholesale

markets in its own region as well as in the other regions to deliver. As specified by Helpman

et al. (2008), a producer in region j yields a unit of an agricultural product paying costs that

minimize a bundle of factor inputs. The marginal cost of producing product l is denoted

by cjal, where al measures the number of bundles of factor inputs used per unit output of

product l, and cj measures the unit cost of this bundle of factor inputs. Notice that al

is product-specific while cj is region-specific. This means that the efficient combination of

inputs for producing a product is common across regions, while factor costs are different

across regions.

We assume that a producer in a region does not need to bear any transport costs

when selling its product at the wholesale market in the same region. Hence, at the wholesale

market in region j, the producer of product l, who faces the demand function (1), maximizes

6



profits by charging a markup price. However, if the same producer seeks to sell its product at

the wholesale market in distinct consuming region i 6= j, two types of delivery costs should

be borne by the producer: a fixed cost of serving the market in region i, denoted by cjfij,

and an iceberg-type transport cost, denoted by τijl. As in Helpman et al. (2008), no fixed

or transport costs are required for a delivery to the local wholesale market: fjjl = 0 and

τjjl = 1 for any j. However, a producer in source region j needs to bear positive fixed and

transport costs: fijl > 0 and τijl > 1 for i 6= j. The optimal markup price, then, is

pijl = τijl
cjal
αl

. (2)

In this case, the operating profits of delivering product l to region i is

πijl = (1− αl)

(

τijlcj
αlpil

)1−εl

θ1−εl
ijl pilxil − cjfijl,

where θijl ≡ al/δijl is the ratio of the productivity level to the producing regional bias. If

the producer in region j sells its product l at the local wholesale market, the corresponding

monopolistic profit πjjl is always positive. However, delivering the same product to another

consuming region i is profitable only if θijl is smaller than a threshold θ̄ijl, where θ̄ijl is

defined by the zero profit condition,

(1− αl)

(

τijlcj
αlpil

)1−εl

θ̄1−εl
ijl pilxil = cjfijl. (3)

Let Tijl denote an indicator function that takes either the value of one if there is a delivery

of product l from source region j to consuming region i or the value of zero if there is no

delivery. The above determination of threshold (3) then implies

Tijl =







1 if θijl < θ̄ijl,

0 otherwise.
(4)

Therefore, equations (3) and (4) describe the decision mechanism for a profitable delivery.

Optimal price (2) implies that a price differential of an identical product between

the source and the consuming regions provides a precise identification of transport cost τijl.

Let qijl denote the log of the price differential of product l between the producing and the

consuming regions j and i: qijl ≡ ln pijl − ln pjjl. Then, optimal price (2) and delivery

decision mechanism (4) together yield the price differential equation

qijl = ln τijl, only if Tijl = 1. (5)
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Price differential equation (5) has two important empirical implications. First, transport

cost τijl can be measured from the corresponding price differential only when we can identify

the prices in the source and the consuming regions. This is the argument made by Anderson

and van Wincoop (2004) against the conventional approach to measuring trade costs in the

literature on regional and cross-country price dispersions. The second implication, however,

says that identifying the source and the consuming regions is not enough for a precise esti-

mation of the transport costs. Equation (5) shows that there is an incidental truncation or

sample section: we can observe the price differential of product l between the source and the

consuming regions only when the product is indeed delivered from the former region to the

latter. Hence, the sample is non-randomly selected by the selection mechanism of (4). This

selection mechanism depends on transport cost τijl through the threshold characterized by

equation (3). Therefore, transport cost τijl in equation (5) could be inconsistently estimated

unless we take sample-selection mechanism (4) explicitly into account.

An important caveat of the above identification of transport costs stems from product

arbitrage among distinct wholesale markets. With cross-market product arbitrage, a price

differential (5) might not be a sufficient statistic for the underlying transport cost because

the observed equilibrium price in a consuming region can deviate from the optimal price (2).

In this paper, we do not impose a no-arbitrage condition on our data as a restriction of our

model a priori. However, as we discuss in more detail in the next section, the amount of

product transfers across the wholesale markets of agricultural products is quite small relative

to the total amount of wholesale transactions in Japan. We interpret this fact as meaning

that there is almost no opportunity for product arbitrage in the equilibrium wholesale prices

in our data set. We simply control for any possible effects of product arbitrage on the price

differentials by adding an i.i.d. zero-mean random error to the price differential equation

(5).11

2.2. The empirical framework

Given the structural model, we now discuss our empirical framework. Following

Helpman et al.(2008), we parametrically specify transport cost τijl by

τijl = Dγl
ij exp(µl + uijl), uijl ∼ N(0, σ2

u,l),

where Dij represents the symmetric distance between regions i and j, γl exhibits the distance

elasticity of the transport cost, and uijl is an i.i.d. unobserved region-pair specific part of the

11Atkeson and Burstein (2008) also discuss the possibility of international product arbitrage in their two-

country general equilibrium model with imperfect competition and trade costs. They report that product

arbitrage plays almost no role in their quantitative simulation results. Therefore, our data set shares the

same characteristic of product arbitrage as in their simulation exercise.
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transport cost. The positive constant µl > 0 confirms that the transport cost always takes

a value greater than 1 for all (i, j) pairs. We further assume that the fixed cost of delivery,

fijl, is stochastic due to an i.i.d. unobserved regional-pair specific element vijl. Just as in

Helpman et al. (2008), we exploit a parametric specification of fijl:

fijl = exp(λjl + λil − vijl), vijl ∼ N(0, σ2
v,l),

where λil and λjl are consuming and producing regional specific constants. vijl is assumed

to be uncorrelated with uijl.

The product delivery choice is characterized as follows. Define a latent variable Zijl

Zijl =
(1− αl)

[

τijlcj
αlpil

]1−εl
θ1−εl
ijl pilxil

cjfijl
.

According to zero profit condition (3), product l is delivered from region j to region i only

if Zijl is greater than 1. The logarithm of Zijl, denoted by zijl ≡ logZijl, then is

zijl = βl − (εl − 1)γldij + εl ln pil + ln xil + ξjl + λil − %ijl + ηijl, ηijl ∼ N(0, σ2
η,l), (6)

where βl ≡ ln(1 − αl) + (εl − 1) lnαl + (1 − εl)µl + (1 − εl) ln al, ξjl ≡ −εl ln cj − λjl, and

%ijl ≡ (1 − εl) ln δijl. In particular, disturbance ηijl is given as a linear combination of the

unobserved components of the transport and the fixed costs, ηijl = (1− εl)uijl+vijl, with the

variance σ2
η,l = (1− εl)

2σ2
u,l + σ2

v,l. Notice that the delivery of product l occurs from source

region j to consuming region i and the corresponding price differential is selected into the

sample only when zijl > 0. We thus call equation (6) the selection equation below. Price

differential (5), in turn, is rewritten as

qijl = µl + γldij + uijl, only if zijl > 0. (7)

Disturbances ηijl and uijl of the selection and price differential equations (6) and (7) are

correlated negatively with the correlation coefficient ρl ≡ (1−εl)σu,l√
(1−εl)2σ

2

u,l
+σ2

v,l

< 0 because εl > 1.

Selection and price differential equations (6) and (7) jointly reveal two critical as-

pects when identifying the distance elasticity of the transport cost, γl. First, estimating

γl respecting only price differential equation (7) might lead to an under-biased inference.

Our model explains the joint distribution of the price differential and the distance by two

economic mechanisms. The first one, which is captured by price differential equation (7), is

an intensive margin effect of distance: the longer the delivery distance is, the wider the price

differential between the source and the consuming regions due to the greater transport cost.

The second one is an extensive margin effect of distance. A negative correlation between
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the disturbances of the two equations, ηijl and uijl, implies that, given the delivery distance

between the source and the consuming regions, a product having a higher price at the final

destination due to a greater unobservable factor of the transport cost tends not to be de-

livered to the consuming region. The intensive and the extensive margin effects then mean

that only data points with relatively smaller price differentials, which correspond to shorter

delivery distances and/or smaller unobservable factors of the transport costs, are likely to be

selected into the sample. If we estimate price differential equation (7) with such a truncated

sample, we obtain an under-biased estimate of distance elasticity γl.
12

Second, the severity of the under-biasedness depends crucially on the elasticity of sub-

stitution, εl. As shown by the correlation coefficient ρl, the degree of the negative correlation

between two disturbances uijl and ηijl relies on the size of the elasticity of substitution, which

the model restricts to being less than 1. In particular, notice that there is no correlation

under the unit elasticity of substitution. Only in this special case, can we obtain an unbiased

estimate of the distance elasticity estimating the price differential equation alone. This is

because the distribution of the price differentials becomes independent with the underlying

product delivery decision. Moreover, the distance effect on the delivery choice depends on

both the distance elasticity and the elasticity of substitution in a nonlinear way. Selection

equation (6) shows that the sensitivity of the delivery choice with respect to distance is

nonlinearly associated with the two elasticities: if εl is small, the marginal effect of γl on the

sensitivity of the delivery choice against distance, i.e., (εl − 1)dij, is small, and vice versa.

The above empirical implications of our model require that to identify the distance

elasticity correctly, we jointly estimate the distance elasticity of transport costs and the

elasticity of substitution within a sample-selection model that consists of equations (6) and

(7). For this purpose, we conduct a FIML estimation of a sample-selection model on which we

impose nonlinear constraints. A concern when implementing the FIML estimation, however,

is that the disturbance of the selection equation, ηijl, might be correlated with the endogenous

variables pil and xil in the RHS of the selection equation. If this is the case, our point

estimates of the structural parameters will be biased due to endogeneity.13 To take into

account the potential endogeneity bias, we further incorporate instrumental variables (IVs)

into the FIML estimation as follows.14 Let yi denote a bivariate vector that contains ln pil

and ln xil as its elements: yi ≡ [ln pil ln xil]
′. We assume that vector yi is linearly related to

12In Appendix A, we analytically describe the possibility of an under-biased estimate of distance elasticity

γl due to a sample selection.
13We greatly appreciate the suggestion of Mike Keane on the case of endogeneity.
14Maximum likelihood methods of limited dependent variable models with endogenous explanatory vari-

ables are proposed by, for example, Newey (1987), Rivers and Vuong (1988), and Vella and Verbeek (1999)

among past studies.
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a vector of exogenous IVs, si, up to i.i.d. 2× 1 mean zero random vector ei:

yi = Γsi + ei. (8)

Endogeneity bias occurs if the error of the selection equation (6), ηijl, is correlated with

the errors in equation (8), ei. More specifically, we assume that the 4 × 1 random vector

of disturbances, [e′i uijl ηijl]
′, is stochastically governed by a joint normal density with the

mean of zero and the 4× 4 symmetric positive-definite variance-covariance matrix Ω

Ω =







Ω11 ϕ′

u,l ϕ′

η,l

ϕu,l σ2
u,l σuη,l

ϕη,l σuη,l σ2
η,l






, (9)

where Ω11 is a 2 × 2 matrix, ϕu,l, and ϕη,l are 1 × 2 row vectors. The non-zero vector

ϕη,l characterizes the covariances between the disturbances of selection equation (6) and

instrument equation (8) that would lead to potential endogeneity bias. Through our analysis,

we presume that there is no correlation between the disturbances of price differential equation

(7) and instrument equation (8): ϕu,l = [0 0].

The accompaning technical appendix shows in detail how our structural sample-

selection model consisting of equations (7), (6), (8), and (9) provides the log likelihood

function

∑

i,j

(1− Tijl) ln [Φ (λijl)] +
∑

i,j

Tijl ln [Φ (κijl)]

+
∑

i,j

Tijl ln [φ (ωijl)]−
∑

i,j

Tijl ln σu,l +
∑

i,j

ln [f(yi|si)] , (10)

where

κijl =
βl − (εl − 1)γldij + [εl 1]yi + bsijl + ϕη,lΩ

−1
11 (yi − Γsi) + ρlσ

−1
u,l [qijl − µl − γldij − bpijl]

(1− ϕη,lΩ
−1
11 ϕ

′

η,l − ρ2l )
1

2

,

$ijl =
qijl − µl − γldij − bpijl

σu,l

,

λijl =
βl − (εl − 1)γldij + [εl 1]yi + bsijl + ϕη,lΩ

−1
11 (yi − Γsi)

(1− ϕη,lΩ
−1
11 ϕ

′

η,l)
1

2

,

f(yi|si) = (2π)−1|Ω11|−1/2 exp

{

−1

2
(yi − Γsi)

′Ω−1
11 (yi − Γsi)

}

,

Here, constant bpijl and bsijl control for the regional fixed effects in price differential and

selection equations (7) and (6), respectively.15 We also normalize the selection equation (6)

15We also include monthly dummies in the price differential and selection equations to control for season-

ality.
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by setting the standard deviation of its error term, ση,l, equal to 1.16 To maximize the log

likelihood function (10) conditional on the observations of the delivery index {Tijl}, the price
differential {qijl}Tijl=1, the log of distance {dij}, the average price and aggregate transaction

of product l in consuming regions {pil} and {xil}, and instruments {si}, we take a two-

step approach to make our computation tractable. In the first step, we regress endogenous

variable vector yi on IV vector si by OLS and keep the estimates of Γ and Ω11. In the second

step, we then insert the OLS estimates of Γ and Ω11 into the log likelihood function (10) and

maximize the resulting log likelihood function with respect to the rest of the parameters.17

3. Data and descriptive statistics

In this paper, we investigate a daily data set of the wholesale prices of agricultural

products in Japan — the Daily Wholesale Market Information of Fresh Vegetables and

Fruits. The details of our data set are provided in Appendix B. This daily market survey

covers the wholesale prices of 120 different fruits and vegetables. Each agricultural product

is further categorized by different varieties, sizes, grades, and producing prefectures. Hence,

for example, the data set reports the wholesale prices at 6 different wholesale markets of

the “Dansyaku (Irish Cobbler equivalent)” variety of potato of size “L” with grade “Syu

(excellent)” that was produced in “Hokkaido” prefecture on September 7, 2007. This high

degree of categorization is ideal for our purpose of approaching the absolute LOP rigorously

and inferring transport costs precisely because the LOP requires the identification of identical

goods as its theoretical premise.18 This daily market survey has been recorded since 1976.

In this paper, we scrutinize the 2007 survey that reports the market transactions on 274

market opening days.

Price differential qijl is constructed by subtracting the wholesale price in producing

16This standard normalization in a sample-selection model makes ρl equal to (1−εl)σu,l. During estimation,

we further impose a restriction that the correlation coefficient is always less than or equal to 1 in the absolute

value.
17Although reported in the accompaning technical appendix, our Monte Carlo experiments based on the

model show us that, given the elasticity of substitution, the degree of sample selection depends positively on

the distance elasticity of transport costs. The experiments also uncover two crucial facts: (i) the standard

exercise of regressing price differentials on the corresponding distances provides a heavily downwards-biased

estimate of the true distance elasticity of transport costs and (ii) our FIML estimator successfully identifies

the distance elasticity.
18The hypothesis of the LOP maintains an identical product with respect to the date of production.

Without exact information of the production date, working with daily data is likely to provide a close

identification of an identical product in terms of the production date.
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prefecture j, pjjl, from that in consuming prefecture i, pijl.
19 We set Tijl = 1 for pair (i, j)

if the sample of qijl is available.
20 The geographical distance between prefectural pair (i, j)

is approximated by that between the prefectural governments’ head offices placed in the

prefectural capital cities. Taking the logarithm of the geographical distance yields variable

dij. Our data set provides the daily aggregate transaction quantity of product l in consuming

region i, xil.
21 We are unable to obtain daily data of the aggregate price of product l in the

consuming region i, pil. Hence, we use as a proxy of pil the monthly data of the retail price of

product l. Moreover, to control for the daily variations in the producing and the consuming

prefectures, we include into selection equation (6) the daily temperature data in both of the

two prefectures as other explanatory variables. This inclusion of the regional temperatures

as determinants of delivery choice comes from our prior belief that the temperatures in the

producing and the consuming regions are important factors for the production of and the

demand for agricultural products. Finally, as valid IVs, we use the monthly numbers of

regular employees and the scheduled cash earnings in each prefecture in addition to the

monthly and consuming-region dummies.

We focus our exercise on 8 selected vegetables: cabbages, carrots, Chinese cabbages (c-

cabbage, hereafter), lettuce, shiitake-mushrooms (s-mushroom, hereafter), spinach, potatoes,

and welsh onions. Table 1 summarizes several descriptive statistics for these products. Panel

(a) of the table shows that each product is highly categorized by product varieties, sizes, and

grades. The number of distinct product entries is quite large; 1,207 for cabbages; 1,186 for

carrots; 1,001 for c-cabbages; 903 for lettuce; 1,423 for potatoes; 909 for s-mushrooms; 551

for spinach; and 1,115 for welsh onions.

For each product entry l, we count the number of the delivery Tijl = 1 and the

non-delivery Tijl = 0 only for the dates on which the product entry is indeed traded at the

wholesale market in producing prefecture j. We identify the product delivery Tijl = 1 if the

data reports that the source prefecture of the product entry l sold in consuming region i is

region j.22 The first row of panel (b) of the table reports that the total number of both the

19For some products, we cannot find the wholesale prices in the producing prefectures, although we can

observe those prices in the consuming prefectures. In this case, because we cannot construct the price

differentials between the producing and the consuming prefectures, we drop the data of these product entries

from our investigation.
20We also set Tjjl = 1 whenever we can observe pjjl. We consider such observations as the case that

product l is delivered from the producer to the wholesale market in the producing prefecture. We attach the

minimum distance of 10.00km to the samples with Tjjl = 1 to avoid taking the log of zero distance.
21Whenever the data set reports that xil = 0, we interpolate xil by a very small number of 0.00001 to

avoid taking the logarithm of zero.
22A problem with this identification would be that we cannot eliminate the possibility of product transfer:

a product yielded in a source region is delivered to a consuming region and then transferred to another
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delivery and the non-delivery cases over all of the product entries is almost over 190,000 for

each vegetable. This is the number of observations for our FIML estimation. Out of the total

number of delivery and non-delivery cases, the number of delivery cases is relatively small, as

exhibited in the second row of panel (b): it is approximately 10,000 for each vegetable. Our

data set, hence, indicates that the product delivery is quite limited.23 The third row of panel

(b) shows that the mean distance from the producing to the consuming prefectures over all

delivery and non-delivery cases is about 6.00 in the logarithmic term (or 403.428 km) and

almost identical across the vegetables. The fourth row of panel (b), however, conveys that

the mean distance over the delivery cases only is much shorter depending on the vegetable,

with the minimum number of 2.691 (14.746 km) for s-mushrooms and the maximum of 4.339

(76.630 km) for potatoes. Product delivery, therefore, is localized and concentrated on the

local areas neighboring the producing prefectures.

Figure 1 also confirms the locality of the product delivery graphically. Each window

of the figure depicts as a contour plot the data frequencies of the product delivery from the

producing to the consuming prefectures, which are calculated over all product entries on all

traded dates. The horizontal axis represents the producing prefectures and the vertical axis

represents the consuming prefectures. The order of the prefectures reflects the geographical

positions of the prefectures from the northern most prefecture, Hokkaido, to the southern

most, Okinawa. Therefore, two prefectures that are indexed by close integers are indeed

geographically close to each other. The brighter the contour line is, the higher the probability

of product delivery. The figure then uncovers three facts. First, each vegetable has several

dominant producing prefectures that are characterized by vertical contour lines. These main

producing prefectures deliver their products to not only the nearby prefectures but also to

the other remote prefectures. Second, the data frequencies of product delivery of the main

producing prefectures are decreasing in distance. Therefore, even the dominant producers do

not deliver their products to the consuming prefectures that are farthest away.24 Third, the

contour lines for the other minor producing prefectures are concentrated on the 45 degree

consuming region. If this case is dominant in our data set, our inference on the distance effects might be

biased. However, according to the Ministry of Agriculture, Forestry, and Fishery, the amount of product

transfers across the wholesale markets is very small relative to the total amount of wholesale transactions in

Japan. For example, in 2007, the ratio of product transfers to the total wholesale transactions is 4.8% for

cabbages; 6.5% for carrots; 4.9% for c-cabbages; 6.3% for lettuce; 6.0% for potatoes; 3.3% for s-mushrooms;

4.1% for spinach; and 3.9% for welsh onions. These ratios mean that almost all products in our data are

directly delivered from the source regions to the consuming regions as their final destinations.
23This observation echoes the findings of recent research on the extent of firms’ participation in export.

For instance, Bernard and Jensen (2004) report that only a small portion of the U.S. manufacturing plants

export their products.
24An exception is observed in the first producing prefecture, Hokkaido, in the cases of carrots and potatoes.
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line. The product delivery of these relatively minor producing prefectures, thus, is highly

localized.

The locality of product delivery that Table 1 and Figure 1 together unmask brings

us two important implications. First, as observed by Broda and Weinstein (2008) in their

barcode data of retail products, the agricultural products in our data set are segmented

and clustered geographically. Even in the same vegetable category, products that are sold

in two distinct prefectures far away from one another come from different sources and the

corresponding wholesale prices might be affected by regional factors that are idiosyncratic to

the product origins. The price differentials across the consuming regions that are generated

by these idiosyncratic factors cannot be attributed to transport costs. Hence, given the

observed high degree of the regional product clustering, it is crucial to scrutinize the price

differentials of a product that shares a source region to correctly infer the role that transport

costs play in absolute LOP violations. Second, drawing an inference on the transport costs

only from observed price differentials might be subject to a serious sample-selection bias, as

we repeatedly claim in this paper.

The mean of the observed log price differential is reported on the first row of panel

(c) of Table 1. The positive numbers reported in the first row imply that the wholesale

prices in the consuming prefectures are higher on average by between 0.3% and 8.1% than

those of the producing prefectures. This observation is suggestive for the important role

of transport costs in price differentials, as predicted by equation (7). The corresponding

standard deviation of the observed log price differential, which is displayed on the second

row of panel (c), is approximately 20 %. Our data set, thus, shows the almost same degree

of absolute LOP violations as observed in the previous studies (e.g., Crucini et al 2005,

and Broda and Weinstein 2008), even after identifying the source regions of products. We

also conduct an OLS regression of the observed price differential on the corresponding log

distance and the constant for each vegetable. The resulting OLS estimates of the coefficient

on the log distance, γ̂lOLS, are shown in the third row of panel (c), which are accompanied

by the standard errors. All of the point estimates are positive, with values between the

minimum of 0.007 and the maximum of 0.051 at any conventional statistical significance

levels. This range of the estimated distance elasticity of the price differential is consistent

with the estimates that past studies commonly found using different data sets such as in

Engel et al. (2005), Broda and Weinstein (2008), and Inanc and Zachariadis (2009).

4. Results

4.1. Results of the FIML estimation
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Table 2 summarizes the results of the FIML estimation based on the log likelihood

(10). The first and second rows of panel(a) of the table show that the distance elasticity

of transport costs, γ̂lFIML, is estimated to be positive and statistically significant for each

vegetable. The outstanding fact that this row tells us is the large size of the FIML esti-

mates: the mean (over the 8 vegetables) of the estimated distance elasticity is 0.238 with

the minimum of 0.210 for cabbages and the maximum of 0.325 for lettuce. According to

equation (7), the price differential of a product between the consuming and the producing

regions increases by approximately 24% in response to the 100 % stretch in delivery distance

when ignoring selection mechanism (6). Compared with the small size of the OLS estimate

of the distance elasticity, which is reported to be between 0.008 and 0.051 in the last row

of Table 1, this large size of the FIML estimate implies that the OLS estimate is seriously

biased downwards due to the underlying data truncation.

As discussed in section 2, the strength of the observed under bias tightly connects

with the elasticity of substitution, εl. As reported in the third and fourth rows of panel (a)

of Table 2, εl is estimated sensibly and significantly: the mean of the point estimate of εl

is 3.132 over the 8 vegetables. Combined with the large estimate of the distance elasticity

of transport costs, the estimated elasticity of substitution implies that the probability of

product delivery from the producing to the consuming prefectures depends negatively as

well as sensitively on the delivery distance. The point estimate of the correlation coefficient

between the unobserved disturbances of price differential equation (7) and selection equation

(6), ρl, then provides empirical evidence that sample-selection bias does matter. As displayed

in the fifth and sixth rows of panel(a) of Table 2, ρl is estimated to be negative with a high

statistical significance: the mean of the estimates of ρl over the 8 vegetables is -0.536 with

the minimum of -0.684 for welsh onions and the maximum of -0.278 for potatoes. This

highly negative correlation between the unobserved disturbances in the two equations is the

fundamental source for the under bias in the OLS estimate of the distance elasticity in the

price differential equation, as shown in equation (A.1).

In summary, our FIML estimates of the sample-selection model reveal the dual roles

that geographical distance plays in the regional price differentials. Distance creates a large

price gap between the consuming and the producing regions. At the same time, distance

significantly affects the choice of product delivery from the latter to the former regions. As a

result, the price differentials are not randomly sampled and, especially, their observations are

concentrated on the local areas that neighbor the producing regions. This concentration of

the observations within a relatively short distance conceals the actual size of the underlying

distance elasticity of transport costs and makes the OLS estimates biased downwards.
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4.2. Model validation through diagnostic checks

The above FIML estimates of the three structural parameters depend on the identi-

fication provided by our structural sample-selection model. Therefore, the relevance of the

estimates relies on the empirical validity of our model. As a model validation, we conduct

diagnostic checks of our model with respect to two important aspects of the actual data: the

pattern of product delivery and the association of price differentials with delivery distances.

If our sample-selection model is reliable, it should explain the pattern of product

delivery, Tijl, that is actually observed in our data. To check the ability of our model to

mimic the product delivery pattern in the data, we calculate the percents correctly predicted

(PCPs) measures for Tijl = 0 or 1.25 To construct the PCPs, we calculate the predicted

conditional probabilities of Tijl = 0 and Tijl = 1 on the observables, P̂ (Tijl = 0|.) and

P̂ (Tijl = 1|.), respectively. Then, if P̂ (Tijl = 0|.) > 0.5, we recognize that our model predicts

Tijl = 0, while if P̂ (Tijl = 1|.) > 0.5, it predicts Tijl = 1. The PCP for Tijl = 0 (or 1) is

calculated as the percentage of the total number of the observations of Tijl = 0 (or 1) that

are accompanied by P̂ (Tijl = 0|.) > 0.5 (or P̂ (Tijl = 1|.) > 0.5). The PCP for either Tijl = 0

or 1 is simply derived as a weighted average of the PCPs for Tijl = 0 and 1.

The results of the PCPs are summarized in the first, second, and third rows of panel

(b) of Table 2. As shown in the first row, our sample-selection model yields high PCPs of

approximately 0.990 for either Tijl = 0 or 1 for all of the vegetables. These results mean that

the model is fairly successful in replicating the observed pattern of product delivery overall.

In particular, as implied by the PCPs reported in the second and third rows of panel (b), the

model’s ability to replicate no delivery choice Tijl = 0 is better than its ability to replicate

delivery choice Tijl = 1. On the one hand, the high PCPs for Tijl = 0 of approximately 0.990

suggest the model’s outstanding predictive ability of no delivery choice. On the other hand,

the PCPs for Tijl = 1 are lower than those of no delivery choice with the mean of 0.820. The

model does a good job in predicting the delivery choice especially for some vegetables such

as s-mushrooms, spinach, and welsh onions.26 We confirm through this diagnosis criterion

that the model’s predictive ability for the pattern of product delivery is remarkable.

The second diagnosis criterion is the data association of the price differentials with

the delivery distances. As observed in the last row of Table 1, the OLS regression of the

former on the latter in actual data yields the estimate of the distance elasticity, γ̂OLS, at

25Wooldridge (2002) discusses the PCP for the model validation of probit models.
26The main reason for the model’s slightly lower predictive performance for carrots and potatoes is un-

derstandable. As observed in Figure 1, the main producing prefecture of these two vegetables, Hokkaido,

delivers its products to all other prefectures regardless of the delivery distance. This data aspect is hard to

explain with our simple structural model.
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approximately 3% on average. The question we ask here is if our sample-selection model

predicts this size of the OLS estimate or not.

To perform this diagnosis check, we derive the prediction of the model on price dif-

ferentials following equation (A.1). Each window of Figure 2 plots the resulting predicted

price differentials (blue dots) as well as the data counterparts (gray crosses) against the cor-

responding log distances for each vegetable. The blue dots are distributed inside the cloud

made of the gray crosses in all of the windows except in the case of carrots. Hence our model

successfully predicts the data association of the price differentials with the distances overall,

although the actual data show us a much sparser joint distribution between the two variables.

The fourth row of panel (b) of Table 2 reports the OLS estimate of regressing the predicted

price differentials on the corresponding distances. For comparison, we also display in the last

row of the panel the OLS estimate with the actual data that has already been reported in

Table 1. The model’s prediction on the OLS estimate is close to, but slightly larger than, its

actual data counterpart: the cross-vegetable average of the predicted OLS estimate is 0.063

whereas that with the actual data is 0.033. It is important, however, to remember that the

distance elasticity of the transport cost of our model is estimated at 0.238 by FIML. What

is striking is that the sample-selection model with such a large distance elasticity indeed

mimics such a small size of the OLS estimate. In this sense, we conclude that our model

successfully passes the second diagnostic check, although we fully understand that there is

still an unexplained gap between the model’s prediction and the actual data with respect to

the observed joint distribution of the price differentials and the distances.

5. Conclusion

As claimed by Anderson and van Wincoop (2004), this paper provides evidence that

the “death of distance” is exaggerated, even in the literature of regional price dispersions.

Exploiting data on the wholesale price differentials and the delivery patterns of agricultural

products in Japan, our structural estimation approach featuring product delivery choice

uncovers the high implicit prices of the geographical barriers across regions. The size of the

distance elasticity of transport costs that our FIML procedure estimates is fairly consistent

with those found in the past empirical studies using gravity-type models of equilibrium

trade volumes. The transport costs we infer as distance effects do indeed play economically

significant roles in regional price dispersions. The empirical exercise that this paper conducts

is the first rigid step to an ambitious goal of international finance — parsing out structurally

different potential contributors to the widely documented reduced-form observations of LOP

failures in retail prices.
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Although this paper intensively scrutinizes the data aspects of agricultural products,

the main arguments in this paper are also applicable to other products. For instance, iden-

tifying in which plant products are manufactured and taking into account the underlying

location choice of plants could be crucial for correct inferences on the role of transport costs

in regional price dispersions for manufactured non-perishable products. If the transport costs

are expensive, the firms might decide to locate their plants close to the consuming markets

to economize on transport costs.27 In this case, because product delivery becomes limited

around the local areas that neighbor the plants, the observations of the price of a product

sharing an identical plant will be truncated. The resulting sample selectivity then leads to a

biased inference on the role of transport costs in regional price dispersions, as in our exercise.

This conjecture suggests that there should be a more intensive use of plant level data in the

LOP literature.

Finally, it is worth noting a caveat regarding our inferences that depend on the

implications of the highly stylized structural model. An obvious limitation of our structural

inferences stems from the model’s assumption of monopolistically competitive firms facing

regional demand functions with a constant elasticity. To figure out the historical movements

of the relative PPP of the United States, a recent paper by Atkeson and Burstein (2008)

emphasizes the importance of richer market structures that make the price elasticity of

demand and markup variable in the market shares. If this is the case, the delivery choice

of a source region to its wholesale market should have a non-negligible impact on the price

elasticities of demand for the products from other source regions because the market shares

of the other source regions change. Given the transport costs, this change in the sensitivity

of demand then might affect the product delivery choices of the other source regions. This

mechanism potentially makes our inferences on the distance effects biased. We leave this

extension to future research.

Appendix A. Analytical description of under-biasedness due to sample selectivity

Taking the expectation of price differential equation (7) conditional on Tijl = 1 and other ob-
servables yields E[qijl|., Tijl = 1] = µl + γldij + E[uijl|., Tijl = 1] where . represents the other
observables. Notice that the term E[uijl|. , Tijl = 1] is related to the conditional expectation
η̄ijl ≡ E[ηijl|. , Tijl = 1] by E[uijl|. , Tijl = 1] = ρl

σu,l

ση,l
η̄ijl. A consistent estimate of η̄ijl is obtained

by the inverse Mills ratio ˆ̄ηijl = φ[ẑijl]/Φ[ẑijl], where φ(.) and Φ(.) are the standard normal density

27A recent paper by Evans and Hariggan (2005) emphasizes the importance of transport time proxied by

distance on the producers’ choices of plant location, and it provides empirical evidence that the products

where timely delivery is crucial are produced near the final demand markets.
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and cumulative distribution functions, respectively. Therefore, we can rewrite price differential
equation (7) as

qijl = µl + γldij + βuη ˆ̄ηijl + eijl, (A.1)

where βuη = ρl
σu,l

ση,l
, and eijl is an i.i.d. error term that satisfies E[eijl|., Tijl = 1] = 0. Our model

implies that ρl < 0. Moreover, the inverse Mills ratio ˆ̄ηijl is increasing in distance because ˆ̄ηijl is
a decreasing function of the predicted latent variable ẑijl, which then depends negatively on the
distance through selection equation (6). Hence, if we ignore the third term of the RHS of equation
(A.1) when estimating the distance elasticity γl only through the price differential equation, the
resulting estimate could be biased downwards.

Appendix B. Data sources

Wholesale prices:

The data source for wholesale prices is the Daily Wholesale Market Information of Fresh
Vegetables and Fruits (“Seikabutsu Hinmokubetsu Shikyo Joho” in Japanese). The data set is
distributed by the Center of Fresh Food Market Information Service (“Zenkoku Seisen Syokuryohin

Ryutsu Joho Senta” with the following URL: http://www2s.biglobe.ne.jp/ fains/index.html). All
of the contents in the data set are surveyed by the Ministry of Agriculture, Forestry, and Fishery
(MAFF) for almost all transactions at 55 wholesale markets that are officially opened and operated
in the 47 prefectures in Japan on a daily basis.

The data file contains information on the name of the product, the market prices, the name
of the production site, the name of the market-place, and the product characteristics. The price
reported has three forms: the highest price, the mode price, and the lowest price. Most of the
markets record all three prices, but several markets report only the highest and the lowest prices or
only the mode price. Thus, we construct our price variable by averaging these price variables. We
use the mode price when only the mode price is available. The transaction unit of each product is
also reported. To obtain the same unit for each product, we divide the price by the number of the
transaction unit.

We need to control for product characteristics to examine the prices between the production
site and the market place. Thus, we construct the same category products by using the product
characteristics and the production site. The product characteristics are: brand name, size of
products, and grade of products. The size is coded by categorical variables, such as large, medium,
and small. The grade is also measured by the categorical variables, such as A, B or superior.28

Because prices depend on detailed characteristics, we use each combination of characteristics to
represent the same product.

The coverage of the vegetables traded through the central wholesale markets is substantial in
Japan. While currently, the large supermarket and restaurant chains can not only directly purchase
agricultural products from producers but can also directly import from foreign producers, the share
of agricultural products covered by these markets in the entire set of vegetable transactions is still
over 75% in Japan in 2006, according to MAFF. Thus, our data set enables us to approach the
population characteristics of transport costs.

28For example, according to the guideline document of Yamanashi prefecture, spinach is classified as grade
A under the following conditions: it is of one type and no mixture of types affects the appearance, and it is
clean, trimmed, and free from decay and damage by insects. Otherwise, it is ranked as B.
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Geographical distance:

The data of distance is provided by the Geographical Survey Institute (GSI) of the Govern-
ment of Japan. The data are publicly available at the GSI website (http://www.gsi.go.jp/kokujyoho/
kenchokan.html).

Retail prices :

The monthly data of the retail price of product l is reported in the Retail Price Survey
(“Kouri Bukka Tokei Chosa” with the following URL: http://www.stat.go.jp/data/kouri/index.htm)
from the Ministry of Internal Affairs and Communication conducts.

Daily temperatures:

The daily temperature data are reported by the Japan Meteorological Agency. We download
the data from the website: http://www.data.jma.go.jp/obd/stats/etrn/index.php.

Regular employees and scheduled cash earnings:

The monthly data for the number of regular employees and scheduled cash earnings are re-
ported in the Monthly Labor Survey (“Maitsuki Kinrou Tokei Chosa”) conducted by the Ministry of
Health, Labour, andWelfare. The data are available from the website: http://www.mhlw.go.jp/toukei/list/30-
1.html.
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Table 1: Descriptive Statistics of Data

Cabbage Carrot C-Cabbage Lettuce Potato S-Mushroom Spinach Welsh Onion

(a) Product entry

No. of varieties 3 10 4 7 10 1 4 11
No. of size categories 63 62 50 71 50 74 17 103
No. of grade categories 34 66 50 46 93 55 85 58
No. of producing prefectures 47 46 46 43 47 44 47 46
No. of wholesale markets 47 47 47 47 47 47 47 47
No. of distinct product entries 1,207 1,186 1,001 903 1,423 909 551 1,115

(b) Data truncation

No. of Tijl = 0 or 1 369,343 198,129 241,871 239,703 264,280 476,919 466,337 547,272
No. of Tijl = 1 15,841 8,395 10,803 11,565 10,921 11,845 15,977 14,874
Mean log distance over Tijl = 0 or 1 5.939 6.027 5.938 5.984 6.219 5.930 5.922 5.944
Mean log distance of Tijl = 1 3.705 3.990 4.009 3.950 4.339 2.691 3.255 2.943

(c) Price differential

Mean log price differential qijl 0.039 0.075 0.065 0.026 0.081 0.003 0.029 0.016
SD. log price differential qijl 0.167 0.285 0.227 0.267 0.265 0.127 0.216 0.178
γ̂lOLS 0.033 0.051 0.042 0.022 0.037 0.008 0.044 0.033
(s.e.) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Note 1: γ̂lOLS
represents the OLS estimate of the coefficient γl in the regression specification qijl = µl+γldij +uijl where µl is constat and uijl is

an OLS disturbance. Note that qijl is the price differential between consuming and producing regions i and j. “(s.e.)” reports the corresponding
standard error.



Table 2: Results of FIML-IVs estimation

Cabbage Carrot C-Cabbage Lettuce Potato S-Mushroom Spinach Welsh onion

(a) Point estimates and s.e.

γ̂lFIML 0.210 0.312 0.304 0.325 0.256 0.303 0.302 0.256
(s.e.) (0.001) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002)
ε̂l 3.907 1.819 3.435 2.876 1.919 3.576 3.521 4.004
(s.e.) (0.012) (0.010) (0.016) (0.013) (0.012) (0.041) (0.013) (0.014)
ρ̂l -0.629 -0.313 -0.646 -0.691 -0.278 -0.395 -0.656 -0.684
(s.e.) (0.003) (0.004) (0.002) (0.002) (0.003) (0.006) (0.003) (0.002)

log likelihood -36434.658 -192952.779 -11670.878 -53524.355 -144737.779 -448473.896 -29364.250 99351.534
No. of observations 369,343 198,129 241,871 239,703 264,280 476,919 466,337 547,272

(b) Diagnosis check

PCP for Tijl = 0 or 1 0.989 0.962 0.990 0.990 0.981 0.994 0.994 0.996
PCP for Tijl = 0 0.995 0.976 0.995 0.996 0.997 0.997 0.998 0.999
PCP for Tijl = 1 0.856 0.642 0.874 0.865 0.612 0.903 0.902 0.911
γ̂lOLS with predicted qijl 0.059 0.113 0.062 0.068 0.040 0.018 0.085 0.063
γ̂lOLS 0.033 0.051 0.042 0.022 0.037 0.008 0.044 0.033

Note 1: The log likelihood of the FIML estimation is given by equation (11). Each estimation includes monthly dummies, consuming prefectural
dummies, and producing prefectural dummies both in selection and price differential equations (6) and (7).
Note 2: “Pcp” represents the “percent correctly predicted.”



F
ig
u
re

1:
D
at
a
F
re
q
u
en
ci
es

of
P
ro
d
u
ct

D
el
iv
er
y.

N
ot
e.

E
ac
h
w
in
d
ow

p
lo
ts

d
at
a
fr
eq
u
en
ci
es

of
p
ro
d
u
ct

d
el
iv
er
y
of

th
e

co
rr
es
p
on

d
in
g
ve
ge
ta
b
le

fr
om

p
ro
d
u
ci
n
g
to

co
n
su
m
in
g
p
re
fe
ct
u
re
s
as

co
n
to
u
r
li
n
es
.
In

ea
ch

w
in
d
ow

,
th
e
h
or
iz
on

ta
l
li
n
e

re
p
re
se
n
ts

p
ro
d
u
ci
n
g
p
re
fe
ct
u
re
s
an

d
th
e
ve
rt
ic
al

li
n
e
co
n
su
m
in
g
p
re
fe
ct
u
re
s.

T
h
e
li
gh

te
r
th
e
b
lu
e
co
n
to
u
r
li
n
e
is
,
th
e
h
ig
h
er

th
e
p
ro
b
ab

il
it
y
of

p
ro
d
u
ct

d
el
iv
er
y
is
.
If

p
ro
d
u
ct

d
el
iv
er
y
is

p
er
fe
ct
ly

lo
ca
l,
co
n
to
u
r
li
n
es

ar
e
co
n
ce
n
tr
at
ed

al
on

g
th
e
45

d
eg
re
e
li
n
e.



F
ig
u
re

2:
P
re
d
ic
te
d
an

d
A
ct
u
al

P
ri
ce

D
iff
er
en
ti
al
s.

N
ot
e.

E
ac
h
w
in
d
ow

p
lo
ts

th
e
p
re
d
ic
te
d
an

d
th
e
ac
tu
al

p
ri
ce

d
iff
er
en
ti
al
s

on
th
e
lo
ga
ri
th
m

of
d
is
ta
n
ce

fo
r
th
e
co
rr
es
p
on

d
in
g
ve
ge
ta
b
le
.
In

ea
ch

w
in
d
ow

,
th
e
b
lu
e
d
ot
s
re
p
re
se
n
t
th
e
p
re
d
ic
te
d
p
ri
ce

d
iff
er
en
ti
al
s,
w
h
il
e
th
e
gr
ay

cr
os
se
s
th
e
ac
tu
al

p
ri
ce

d
iff
er
en
ti
al
s.



Appendix:

Exaggerated Death of Distance:

Revisiting Distance Effects on Regional Price Dispersions

Kazuko Kano Takashi Kano Kazutaka Takechi

Gruduate School of Economics Graduate School of Economics Faculty of Economics

The University of Tokyo Hitotsubashi University Hosei University

Hongo 7-3-1, Bunkyo-ku Naka 2-1, Kunitachi 4342 Aihara-machi, Machida-shi

Tokyo, 113-0033, Japan Tokyo, 186-8601, Japan Tokyo, 194-0298, Japan

Tel: +81-3-5841-1746 Tel: +81-42-580-8283 Tel: +81-42-783-2566

Fax: +81-3-5841-1747 Fax: +81-42-580-8283 Fax: +81-42-783-2611

Email: kkano@e.u-tokyo.ac.jp Email: tkano@econ.hit-u.ac.jp Email: ktakechi@hosei.ac.jp

May 6, 2012

This appendix is not intended for publication.



Appendix A. A structural sample-selection model with
endogenous explanatory variables in selection

A.1. Derivation of the conditional likelihood function

Consider the structural sample-selection model in the main text

qij = µ+ γdij + bpij + uij , if Tij = 1, (A.1)

Tij = 1[β − (ε− 1)γdij + [ε 1]yi + bsij + ηij > 0] (A.2)

yi = Γsi + ei. (A.3)

To economize notation, we ignore product index l in this appendix. Eqs. (A.1) and (A.2) are the

price differential equation and the selection equation, respectively. In this paper, we allow for a

possibility that the explanatory variables in the selection equation, yi = [ln pi lnxi]
′, are correlated

with the error term of the selection equation, ηij. As shown in eq. (A.3), we assume that yi is

linearly related to a vector of exogenous variables (i.e., instruments), si, up to i.i.d. mean zero

random vector ei. An endogeneity problem then is the case when ηij is correlated with ei. More

specifically, we assume that random vector εij = [e′i uij ηij ]
′ is stochastically governed by a joint

normal density with the mean of zero and the 4×4 symmetric positive-definite variance-covariance

matrix Ω

Ω =







Ω11 ϕ′

u ϕ′

η

ϕu σ2
u σuη

ϕη σuη σ2
η






, , (A.4)

where Ω11 is an 2 × 2 matrix, ϕu and ϕη are 1 × 2 row vectors, respectively. The endogeneity

problem then occurs when ϕη 6= 0.

Given the above sample-selection model, we characterize the corresponding conditional

likelihood f(qij, Tij ,yi|dij , si) ≡ f(qij, Tij = 1,yi|dij , si)Tijf(qij, Tij = 0,yi|dij , si)1−Tij . Since qij is

observed only when Tij = 1, we can factorize the density f(qij, Tij = 1,yi|dij , si) as follows:

f(qij, Tij = 1,yi|dij , si) = f(qij|Tij = 1,yi, dij , si)f(Tij = 1,yi|dij , si),

=
P(Tij = 1|qij ,yi, dij , si)f(qij|yi, dij , si)

P(Tij = 1|yi, dij , si)
f(Tij = 1,yi|dij , si),

= P(Tij = 1|qij ,yi, dij , si)f(qij |yi, dij , si)f(yi|dij , si),

where the second line results from the Bayes’ rule and the third line comes from the fact that

f(yi|Tij = 1, dij , si) = f(yi|dij , si). When Tij = 0, we cannot observe qij. In this case, we factorize

the conditional density f(qij, Tij = 0,yi|dij , si) as

f(qij, Tij = 0,yi|dij , si) = f(Tij = 0,yi|dij , si),
= P(Tij = 0|yi, dij , si)f(yi|dij , si).

1



Our task then is to characterize conditional densities, P(Tij = 0|yi, dij , si), P(Tij = 1|qij ,yi, dij , si),

f(qij|yi, dij , si), and f(yi|dij , si), respectively.

To accomplish this task, we first figure out the conditional densities of the error terms,

f(ηij|ei), f(ηij |ei, uij), and f(uij|ei) by conducting the triangular factorization of the variance-

covariance matrix Ω (A.4). We then obtain Ω = ADA′ in which

A =







In 0 0

ϕuΩ
−1
11 1 0

ϕηΩ
−1
11 H32H

−1
22 1






and D =







Ω11 02,1 02,1

01,2 H22 0

01,2 0 H33 −H32H
−1
22 H23






,

for H22 = σ2
u − ϕuΩ

−1
11 ϕ

′

u, H23 = H32 = σuη − ϕuΩ
−1
11 ϕ

′

η , and H33 = σ2
η − ϕηΩ

−1
11 ϕ

′

η . Let a new

random vector ε̃ij ≡ [ẽi
′ ũij η̃ij]

′ denote A−1εij . The above triangular factorization implies that ε̃ij
is normally distributed with the mean of zero and the diagonal variance-covariance matrix of D.

Then, by construction, we can obtain the following system of equations:

ei = ẽi, (A.5)

uij = ϕuΩ
−1
11 ẽi + ũij , (A.6)

ηij = ϕηΩ
−1
11 ẽi +H32H

−1
22 ũij + η̃ij . (A.7)

To derive the conditional density f(ηij|ei), let ãij denote H32H
−1
22 ũij + η̃ij . Notice that ãij is

normally distributed with the mean of zero and the variance of H33.
1 Using this fact, we can

rewrite equation (A.7) as

ηij = ϕηΩ
−1
11 ei + ãij

Since ãij is orthogonal to ei = ẽi, the above equation implies that the conditional distribution of

ηij on ei is normal with the mean of ϕηΩ
−1
11 ei and the variance of H33.

ηij |ei ∼ N(ϕηΩ
−1
11 ei,H33).

Following the similar process, we can characterize the conditional densities f(ηij|ei, uij) and f(uij|ei)
from the corresponding conditional distributions

ηij |ei, uij ∼ N(ϕηΩ
−1
11 ei +H32H

−1
22 (uij − ϕuΩ

−1
11 ei), H33 −H32H

−1
22 H23),

and

uij |ei ∼ N(ϕuΩ
−1
11 ei, H22).

Now we can characterize conditional probability P(Tij = 0|yi, dij , si) as

P(Tij = 0|yi, dij , si)

= P(β − (ε− 1)γdij + [ε 1]yi + bsij + ηij ≤ 0|yi, dij , si),

= P(ηij ≤ −β + (ε− 1)γdij − [ε 1]yi − bsij|yi, dij , si),

= P(ãij ≤ −β + (ε− 1)γdij − [ε 1]yi − bsij − ϕηΩ
−1
11 ei|yi, dij , si),

= 1− Φ(λij)

1The variance of ãij is (H32H
−1

22
)2σ2

ũ + σ2

η̃ = (H32H
−1

22
)2H22 +H33 −H32H

−1

22
H23 = H33.

2



where Φ(.) is the standard normal cumulative distribution and

λij =
β − (ε− 1)γdij + [ε 1]yi + bsij + ϕηΩ

−1
11 (yi − Γsi)

(σ2
η − ϕηΩ

−1
11 ϕ

′
η)

1

2

.

We can show conditional probability P(Tij = 1|qij ,yi, dij , si) as

P(Tij = 1|qij ,yi, dij , si)

= P(β − (ε− 1)γdij + [ε 1]yi + bsij + ηij > 0|qij,yi, dij , si),

= P(ηij > −β + (ε− 1)γdij − [ε 1]yi − bsij|qij ,yi, dij , si),

= P(η̃ij > −β + (ε− 1)γdij − [ε 1]yi − bsij − ϕηΩ
−1
11 ei −H32H

−1
22 (uij − ϕuΩ

−1
11 ei)|qij ,yi, dij , si),

= Φ(κij),

where

κij =
β − (ε− 1)γdij + [ε 1]yi + bsij + (ϕη −H32H

−1
22 ϕu)Ω

−1
11 (yi − Γsi) +H32H

−1
22 (qij − µ− γdij − bpij)

(H33 −H32H
−1
22 H23)

1

2

.

To find out conditional density f(qij|yi, dij , si), consider conditional distribution

Fqij |yi,dij ,si
(q∗) = P(qij < q∗|yi, dij , si),

= P(µ+ γdij + bpij + uij < q∗|yi, dij , si),

= P(uij < q∗ − µ− γdij − bpij|yi, dij , si),

= P(ũij < q∗ − µ− γdij − bpij − ϕuΩ
−1
11 ei|yi, dij , si),

= Φ($ij)

where

$ij =
q∗ − µ− γdij − bpij − ϕuΩ

−1
11 (yi − Γsi)

H
1

2

22

.

We then can construct conditional density f(qij|yi, dij , si) taking a derivative of Fqij |yi,dij ,si
(q∗)

with respect to q∗ and evaluating the result at qij:

f(qij|yi, dij , si) = H
−

1

2

22 φ($ij)

where φ(.) is the standard normal kernel. Finally, it is straight-forward for us to characterize condi-

tional density f(yi|dij , si). Since the vector of the endogenous explanatory variables, yi, is always

observable regardless of the value of Tij, conditional density f(yi|dij , si) is simply characterized by

eq. (A.3) as a Gaussian joint density with the mean of Γsi and the variance-covariance matrix of

Ω11:

f(yi|dij , si) = f(yi|si) = (2π)−1|Ω11|−1/2 exp

{

−1

2
(yi − Γsi)

′Ω−1
11 (yi − Γsi)

}

.

3



Summarizing the above characterization of the conditional densities, we can derive the

conditional likelihood f(qij, Tij ,yi|dij , si) as

f(qij, Tij ,yi|dij , si) = [Φ(κij)H
−

1

2

22 φ($ij)]
Tij [1−Φ(λij)]

1−Tijf(yi|dij , si).

Following the conventional identification exercise with a sample selection model, we normalize the

standard deviation of the error term of the selection equation to one: ση = 1. We also assume that

uij is uncorrelated with ei: ϕu = 0. The likelihood function then turns out to be much simpler:

f(qij, Tij ,yi|dij , si) = [Φ(κij)σ
−1
u φ($ij)]

Tij [1− Φ(λij)]
1−Tijf(yi|dij , si), (A.8)

where

κij =
β − (ε− 1)dij + [ε 1]yi + bsij + ϕηΩ

−1
11 (yi − Γsi) + ρσ−1

u (qij − µ− γdij − bpij)

(1− ϕηΩ
−1
11 ϕ

′
η − ρ2)

1

2

,

$ij =
qij − µ− γdij − bpij

σu
,

λij =
β − (ε− 1)γdij + bsij + [ε 1]yi + ϕηΩ

−1
11 (yi − Γsi)

(1− ϕηΩ
−1
11 ϕ

′
η)

1

2

,

for the correlation coefficient between ui and ηi, ρ.

A.2. The inverse-Mills ratio

The sample selection model predicts the price differential by the conditional expectation

E[qij |., Tij = 1] = µ+ γdij +E[uij |., Tij = 1].

To understand the conditional expectation of the error term, E[uij |., Tij = 1], consider a random

vector ωij = [e′i ηij uij ]
′ that is stochastically governed by a joint normal density with the mean of

zero and the 4× 4 symmetric positive-definite variance-covariance matrix Σ

Σ =







Ω11 ϕ′

η ϕ′

u

ϕη σ2
η σuη

ϕu σuη σ2
u






.

Covariance matrix Σ has a triangular factorization Σ = BQB ′ such that

B =







In 0 0

ϕηΩ
−1
11 1 0

ϕuΩ
−1
11 J32J

−1
22 1






, and Q =







Ω11 02,1 02,1

01,2 J22 0

01,2 0 J33 − J32J
−1
22 J23






,

where J22 = σ2
η − ϕηΩ

−1
11 ϕ

′

η , J23 = J32 = σuη − ϕηΩ
−1
11 ϕ

′

u, and J33 = σ2
u − ϕuΩ

−1
11 ϕ

′

u. Define a

new random vector ω̃ij = [ẽi
′ η̃ij ũij ]

′ = B−1ωij. The above triangular factorization implies that

4



new vector ω̃ij is normally distributed with the mean of zero and the diagonal variance-covariance

matrix of Q. Then, by construction, we can obtain the following system of equations:

ei = ẽi,

ηij = ϕηΩ
−1
11 ẽi + η̃ij ,

uij = ϕuΩ
−1
11 ẽi + J32J

−1
22 η̃ij + ũij.

Under the assumption of ϕu = 0 and the normalization of ση = 1, the above equations imply that

uij = σuη(1− ϕηΩ
−1
11 ϕ

′

η)
−1(ηij − ϕηΩ

−1
11 ei) + ũij,

and conditional expectation E[uij |., Tij = 1] is

E[uij |., Tij = 1] = σuη(1− ϕηΩ
−1
11 ϕ

′

η)
−1E[ηij − ϕηΩ

−1
11 ei|., Tij = 1],

= σuη(1− ϕηΩ
−1
11 ϕ

′

η)
−1E[η̃ij |., Tij = 1]. (A.9)

Conditional expectation E[η̃ij |., Tij = 1] is then given as

E[η̃ij |., Tij = 1] = E[η̃ij |ηij > −β + (ε− 1)γdij − [ε 1]yi − bij ],

= E[η̃ij |ϕηΩ
−1
11 ẽi + η̃ij > −β + (ε− 1)γdij − [ε 1]yi − bij ],

= E[η̃ij |η̃ij > −β + (ε− 1)γdij − [ε 1]yi − bij − ϕηΩ
−1
11 ẽi],

= E[η̃ij |η̃ij > −ẑij ],

= φ(ẑ∗ij)/Φ(ẑ
∗

ij). (A.10)

where ẑ∗ij = β − (ε− 1)γdij + [ε 1]yi + bij +ϕηΩ
−1
11 (yi −Γsi). Equation (A.10) is the corresponding

inverse-Mills ratio.

Appendix B. A Monte Carlo experiment with a linear economy

In this section, we conduct Monte Carlo experiments based on our model in section 2 to

understand the following two questions: (i) what bias does the conventional regression exercise

without identifying producing regions and ignoring the sample-selection mechanism introduce into

our inference on the distance elasticity γ, and (ii) how much can our FIML estimator correct the

bias successfully. To implement the experiments, we assign hypothetical values to the structural

parameters of our model as follows.

Consider an economy that is geographically separated into 47 regions. Each region is indexed

by an integer between 1 and 47, respectively.2 The distance between regions i and j, Dij , is

equal to 100|i − j| with the minimum distance of 100 and the maximum of 4600. Each region

yields an identical product under productivity level al that is set equal to 1.00. The parameter

2This assumption of the linear economy might be the most relevant for an island country with a long-narrow arc

shape like Japan that consists of 47 prefectures.
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of demand function (1), α, is common across the regions and equal to 0.75. This number of

α means that the price elasticity of demand is 4.00 and the wholesale price is 33.33 % marked

up over the corresponding marginal cost. All the producing regions share the same factor cost

cj of 0.55. Each region is also characterized by the aggregate price and transaction, pi and xi,

respectively, both of which we set to 20.00. For simplicity, we ignore the cross-regional variations

in the productivity-regional bias ratio θij by setting δij = 1.00 for all pairs of regions i and j. The

fixed cost fij = exp(λi + λj − vij) is specified as follows. We calibrate the sum of the producing

and consuming regional fixed effects, λi + λj, so that, when γ = 0.00, the probability of product

delivery from source to consuming regions is always equal to 0.50. The resulting fixed effect term

λi+λj then is (1−α)αε−1c−ε
j pεixi for all (i, j) pairs. The Gaussian random component in the fixed

cost, vij , has the standard deviation of σv = 0.30. We set the constant term of the transportation

cost µ to 1.50 and allow for idiosyncratic random variations in the transportation cost setting the

standard deviations of the random component of the transportation cost, σu, to 0.30. Finally, in

our experiments, we admit no possibility of endogeneity bias simply setting ϕη = [0 0].

In our Monte Carlo experiments, we first draw 1000 sets of Gaussian random variables uij

and vij independently from their distributions. We then calculate price differential qij and latent

variable zij following equations (6) and (7) under one of the three hypothetical values of γ, 0.00,

0.15, and 0.50. In each Monte Carlo draw with each true value of γ, we then implement four

different estimations of γ. The first one is the simple OLS regression of price differential qij on the

log of the distance dij using the whole synthetic samples regardless of Tij = 0 or 1. By construction,

this OLS estimator, denoted by γ̂whole, is consistent and, hence, should be distributed around the

hypothetical true value. The second one is the OLS regression of the price differential qij on the

log of the distance dij using only the samples that are selected with Tij = 1. This second OLS

estimator, denoted by γ̂OLS, suffers from sample-selection bias. Therefore, we expect to observe

that the distribution of γ̂OLS is biased against the true value. The third estimation is with the FIML

estimator we introduce in section 3. This estimator, denoted by γ̂FIML, should correct potential

bias due to sample selection. Finally, to explain the fourth estimator, consider the price differential

between two consuming regions without identifying producing regions, i.e., ln p̃i − ln p̃k for any two

consuming regions i and k, where p̃i denotes the price of product l in consuming region i. The

OLS estimator conventional in the literature of the absolute LOP, which is denoted by γ̂conv, then

is constructed by regressing the absolute value of the price differential between consuming regions

i and k, | ln p̃i− ln p̃k|, on the log of the corresponding distance dik.
3 Comparing the distribution of

γ̂conv with that of γ̂whole, we can understand the degree of bias the conventional regression exercise

suffers from on the inference of γ.

We first observe how the size of γ affects delivery choice. The left, middle, and right

windows of Figure B.1 depict the contour plots of the probabilities of delivery from producing

3For each Monte Carlo draw, the price of product l that is sampled in consuming region i, p̃i, is constructed as

follows. For each consuming region i, we obtain the set of the truncated prices that are delivered from producing

regions Si = {pij |j ∈ Bi}. This set Si includes the prices of the product that can be sampled as the representative

price in consuming region i, p̃i. We uniformly draw 100 prices from this set Si and take the average over them to

construct p̃i.
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regions to consumption regions for the cases of γ = 0.50, 0.15, and 0.00, respectively. In each

window, the contour lines represent the combinations of the producing and consuming regions

that have an identical delivery probability. The left window shows that with the large distance

elasticity of γ = 0.50, the product delivery is profitable only locally. This is obvious from the fact

that all contour lines are parallel to the 45 degree line and the equiprobability bands, which are

constructed by two contour lines with the same probability, are very narrow and always include

the 45 degree line. This shape of the contour plot implies that the product delivery occurs only

to consuming regions neighboring source regions closely. The middle window then exhibits that

the equiprobability bands become much wider with the smaller distance elasticity of γ = 0.15.

Hence, in this model, a larger distance elasticity creates geographical clustering of products based

on different source regions. This is clearer if we set γ = 0.00. As displayed in the right window,

the equiprobability lines with the delivery probability of 0.50 are almost randomly placed over the

whole window: the product delivery occurs with the 50 % chance even between the producing and

consuming regions that are farthest apart each other.

Figure B.2 depicts simulated price differentials against the corresponding logs of distances.

The first, second, and third rows of the figure are for the cases with γ = 0.50, 0.15, and 0.00,

respectively. In each row, the first column reports the simulated samples conditional on the choice

of delivery Tij = 1, while the second column plots the whole samples regardless of delivery choice

Tij = 0, or 1. The two windows in the first row reveal severe data truncation under γ = 0.50.

Although the whole samples of the simulated price differentials have a clear positive association

with the logs of distances, the underlying selection mechanism is so strong that the observed

samples are concentrated only on local areas surrounding source regions with short range delivery.

The association of the observed price differentials with the logs of distances then becomes quite

vague. The second and third rows prove that the sample selection turns out to be weaker when γ

becomes smaller to 0.15 and 0.00.

Figure B.3 reports the densities of the four different estimators of γ that are nonparametri-

cally smoothed with the Epanechnikov kernel. The first row corresponds to the case with γ = 0.50;

the second the case with γ = 0.15; and the third the case with γ = 0.00. The first column plots

the smoothed densities of γ̂whole; the second γ̂OLS; the third γ̂FIML; and the fourth γ̂conv. The three

windows in the first column show that γ̂whole is consistent and distributed around the underlying

true value. The three windows in the second column, however, uncover that γ̂OLS is subject to

severe downward bias. On the one hand, as displayed in the first and second rows in the second

column, γ̂OLS is distributed far left from the corresponding true value when γ is set to either 0.50

or 0.15. On the other hand, as shown in the third row of the second column, γ̂OLS is consistent and

distributed around the true value if γ = 0.00. Therefore, a positive distance elasticity generates

the data truncation that causes the OLS estimates to be biased downwards. The three windows in

the third column clearly reveal that γ̂FIML is consistent and distributed around the underlying true

value. The most striking fact from the three windows in the fourth column is that γ̂conv performs

the worst among the other estimators. In the first and second rows for the cases of γ = 0.50 and

0.15, γ̂conv is distributed with the means of 0.019 and 0.003, respectively, and even far left from

the corresponding density of γ̂OLS. This is the evidence that the conventional regression exercise

7



without identifying producing regions suffers from the worst under-bias toward an inference on γ

among all the other estimators.

The Monte Carlo experiments of this section, therefore, confirm the necessity of identifying

producing regions and taking into account the sample-selection mechanism to draw a correct infer-

ence on the distance elasticity of transportation costs. The proposed FIML estimator can correctly

identify the true values of the distance elasticity with synthetic data generated from our structural

model.
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