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Abstract

This paper investigates structural identi�cation and residual-based bootstrap in-
ference schemes for impulse response functions (IRFs) in factor-augmented vector au-
toregressions (FAVARs). I �rst discuss general conditions for structural identi�cation,
which also resolve the random rotation of the principal components estimates. I also
provide empirically popular three such identi�cation schemes: short-run, long-run and
contemporaneous restrictions with sign restrictions. Second, two bootstrap procedures
for the identi�ed structural IRFs are compared: A) bootstrap with factor estimation
and B) bootstrap without factor estimation. Although both procedures are asymptot-
ically valid in the �rst-order under

p
T=N ! 0 (T and N are the time and the cross

sectional dimensions), the errors in the factor estimation produce higher-order discrep-
ancies. The asymptotic normal intervals also tend to provide smaller coverage ratios
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theoretical �ndings.
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1 Introduction

Factor-augmented vector autoregressions (FAVARs), initiated by Bernanke et al. (2005) and

further explored by Stock and Watson (2005, 2010), have at least two attractive features for

empirical researchers. First, the dynamic factor model essentially reduces the data dimension

hence it enables the conventional small-scaled VAR framework to accommodate vast amount

of information contained in a large panel data set. Second, macroeconomists have long been

considering that certain concepts in economic models, say "productivity" or "in
ation",

are often better captured by latent factors measured by multiple indicators rather than

by a single speci�c series. (Sargent and Sims, 1977, for example1) Empirical applications

of FAVARs are rapidly growing across various topics and a current incomprehensive list

includes Ang and Piazzesi (2003), Giannone et al. (2005), Boivin et al. (2007), Acconcia

and Simonelli (2008), Moench (2008), Ludvigson and Ng (2009ab), Gilchrist et al. (2009)

and Boivin et al. (2010) among others.

This paper considers bootstrap inference methods for the impulse response functions

(IRFs) in FAVARs when the latent factors are extracted using the method of principal com-

ponents. Recently Bai and Ng (2006b) and their seminal works have developed a benchmark

asymptotic normal inference for the coe�cients in factor-augmented regression models. They

show that under certain conditions, including
p
T=N ! 0 as N; T !1; one can replace the

latent factors with their principal components estimates in FAVAR models and still rely on

the same asymptotic distribution. However, there are two concerns in applying this method

to impulse response analysis in FAVARs. First, the errors in the latent factor estimation

can be relevant in �nite samples, especially in cases where N is much smaller than T , i.e.p
T=N ! 0 is not appropriate. This caveat is substantiated by Ludvigson and Ng (2009b)

and Gon�calves and Perron (2011). From this perspective, bootstrap methods are a poten-

tial alternative to the normal approximation. Indeed, Gon�calves and Perron (2011) study

theoretical properties of residual-based bootstrap inference in factor-augmented regressions

under more general framework
p
T=N ! c (0 � c <1) and show that the bootstrap method

involving a bias correcting procedure works well. The second concern pertains to the struc-

tural identi�cation schemes in FAVARs. In general, structural identi�cation methods are

more involved in FAVARs than in conventional small-scaled VARs in which all the variables

are observed. This is because, as Bai and Ng (2010) recently pointed out, the individual

1See Bai and Ng 2006a, Armah and Swanson 2008, for examples of comparison between observed and
latent factor models.
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parameters are not statistically identi�ed in factor models and the factors and the attached

coe�cients estimates are randomly rotated from their true counterparts. Hence, in order to

estimate the individual parameters and IRFs, identifying restrictions and estimations must

explicitly account for this random factor rotation problem. Bai and Ng (2010) propose three

sets of parameter restrictions to achieve the statistical identi�cation, however, these restric-

tions are not necessarily compatible with what are placed in the structural VAR literature.

Hence I revisit the principle of identi�cation schemes in a structural manner and provide

empirically popular examples, i.e. short-run, long-run, and contemporaneous identi�cation

schemes involving sign restrictions. Importantly, these identi�cation schemes do not only

achieve statistical identi�cation in the original sample space, but also do in the bootstrap

space so that the IRFs are identi�ed in each bootstrap replication as well.

In order to justify the bootstrap procedures provided in this paper, I exploit most recent

papers Gon�calves and Perron (2011) and Shintani and Guo (2011), who show the asymptotic

validity of bootstrap inference in factor-augmented models. My suggestion is in the same

line as theirs and this paper particularly compares two bootstrap algorithms: namely, A)

bootstrapping with factor estimation and B) bootstrapping without factor estimation. I

show that although these procedures are both asymptotically valid in the �rst-order, the

errors in the factor estimation produce higher-order discrepancies. Monte Carlo simulations

also indicate that Procedure A performs well overall and is of more practical use. Conversely,

although Procedure B is considered as a straightforward extension of the methods conducted

in many small-scaled VAR excercises under the assumption that the estimated factors are

factual, it is unable to capture the e�ects of higher-order factor estimation errors and may

produce a smaller coverage ratio than the nominal level in �nite samples. Indeed, our

simulation results con�rm this �nding, especially when N is relatively small when compared

with T . The asymptotic normal intervals also tend to provide smaller coverage ratios and

are quite erratic.

The rest of the paper is structured as follows. Section 2 introduces the models and

regularity conditions. Section 3 discusses the identi�cation and estimation methods for

the IRFs. In Sections 4 and 5, I propose bootstrap inference procedures and discuss their

asymptotic validity. Section 6 assesses the �nite sample properties of the suggested and

alternative procedures via Monte Carlo simulations using arti�cial data along with calibrated

models of US macroeconomic data. Section 7 provides some concluding remarks. Finally,

the appendices include technical derivations and validity of conditions in the main text.

Throughout the paper, the following notations are used. The Euclidean norm of vector
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x is denoted by kxk. For matrices, the vector-induced norm is used. The symbols "
p!" and

"
d!" represent convergence in probability under the probability measure P and convergence

in distribution. Op(�) and op(�) are the order of convergence in probability under P . I
de�ne P � as the bootstrap probability measure, conditional on the original sample. For any

bootstrap statistic T �, I write T �
p�! 0, in probability, or T � = op�(1), in probability, when for

all � > 0; P �(jT �j > �) = op(1). I write T
� = Op�(�), in probability, when for all � > 0 there

exists M(�) < 1 such that limN;T!1 P [P
�(jT �j > M(�)) > �] = 0: I also write T �

d�! D, in

probability, if conditional on a sample with probability that converges to one, T � converges

in distribution to D under P �. Let � = min
np

N;
p
T
o
and L be the standard lag operator.

Chol(X) denotes the Cholesky factorization of a positive de�nite matrix X returning a lower

triangular matrixW such thatW 0W = X. The operator vec(X) transforms an m�n matrix
X into an mn� 1 vector by stacking the columns.

2 Models and Assumptions

2.1 Reduced-form models

Consider the following factor model:

Xt = �+ �Ft + ut; t = 1; :::; T; (1)

whereXt is anN�1 vector of observations andN is the (typically large) number of equations.

I assume that Xt is driven by much lower dimensional unobservable factors Ft (r � 1) with
time-invariant unobservable factor loadings � = [�1; :::; �N ]

0 (N � r). ut = [u1t; :::; uNt]0 is an
N � 1 idiosyncratic shock. � is an N � 1 vector of constant.
In addition, the factors Ft form a VAR of order p with r � r coe�cient parameters �j

(j = 1; :::; p), an r � 1 constant vector �, and an error term et (r � 1) so that:

Ft = � +
Pp

j=1�jFt�j + et; (2)

If I write variables without their associated t subscript, then they denote the entire matrix

of observations, for example, X = [X1; :::; XT ]
0 is a T � N matrix and F = [F1; :::; FT ]

0 is

a T � r matrix. De�ne Z = [�; F(�1); F(�2); ::: ,F(�p)] (T � (rp + 1)) with � being a T � 1
vector of ones, F(�j) = [F1�j; :::; FT�j]

0 and � = [�; �1; :::;�p]
0 ((rp+ 1)� r) so that (2) can

equivalently be written as:

F = Z� + e:
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Note that the constant terms in the models can be omitted in case the data are demeaned2.

2.2 Structural models

Structural VAR framework can be straightforwardly employed to identify the contempora-

neous relationships among variables of interest in practice in FAVARs given a particular

interpretation for the factors. Stock and Watson (2005) detail a comprehensive modeling

strategy, hence I follow their lead. Using an r � r invertible matrix S, let the structural

factor model be de�ned as:

Xt = �s + �sF st + ut; (3)

F st = �s +
Pp

j=1�
s
jF

s
t�j + �t; (4)

where �s = �S, F st = S�1Ft, �
s
j = S�1�jS and �t = S�1et is a structural innovation. �

s

and �s are vectors of constant. Note that the models in this paper are simpler than ones in

Stock and Watson (2005) in order to focus on the essence of the problem.

2.3 Assumptions

I require standard regularity conditions for the remainder of the analysis. First, let the data

generating processes above be de�ned on a probability space (
;z; P ) and the following
assumptions hold. Note that M <1 is a generic constant.

Assumption 1.

a. The common factors Ft in (1) and (2) satisfy E kFtk4 < M , and T�1
PT

t=1 FtF
0
t

p! �F

as T !1 for a nonrandom r � r positive de�nite matrix �F ;

b. The factor loadings �i in (1) are either deterministic such that k�ik < M , or stochastic

such that E k�ik4 < M . In either case, �0�=N
p! �� as N ! 1 for a nonrandom

r � r matrix ��;

c. The eigenvalues of the r � r matrix ���F are distinct.

Assumption 2.

2For simplicity, theoretical derivations in this paper do not include the constant term, assuming that the
data is demeaned. In practice, when the model does not include a constant term and demeaned data is used,
it is important to make sure that the residuals will be demeaned in the bootstrap procedures. See Section 4.
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a. E(uit) = 0 and E juitj8 �M for all (i; t);

b. E(uitujs) = �ij;ts and j�ij;tsj � ��ij for all (t; s) and j�ij;tsj � � ts for all (i; j) such that
1
N

PN
i;j=1 ��ij �M; and 1

T

PT
t;s=1 � ts �M and 1

NT

PT
i;j;ts=1 j�ij;tsj �M ;

c. For every (t; s), E
���N�1=2PN

i=1(uisuit � E(uisuit))
���4 �M ;

d. E

�
1
N

PN
i=1




 1p
T

PT
t=1 Ftuit




2� �M , where E(Fteit) = 0 for all (i; t);

e. For each t; E



 1p

NT

PT
s=1

PN
i=1 Fs [uisuit � E(uisuit)]




2 �M ;

f. E



 1p

NT

PT
t=1

PN
i=1 Ftu

0
t�



2 �M , where E(Ft�

0
iuit) = 0 for all (i; t);

g. E

�
1
T

PT
t=1




 1p
N

PN
i=1 �iuit




2� �M , where E(�iuit) = 0 for all (i; t);

h. AsN; T !1, 1
TN

PT
t=1

PN
i=1

PN
j=1 �i�

0
juitujt��

p! 0, where � � limN;T!1
1
T

PT
t=1 �t >

0 and �t � V ar
�

1p
N

PN
i=1 �iuit

�
;

i. For each i, T�1=2
PT

t=1 Ftuit
d! N(0;�i):

Assumption 3.

a. E(et) = 0; E(ete
0
t) = �e an r�r positive de�nite matrix, and et and es are independent

for s 6= t;

b. E jeitejtekteltj � c for i; j; k; l = 1; :::; r; and all t;

c. et are independent of uis for all i; t and s;

d. For h = 1; 2; :::, T�1=2
PT

t=1 vec (Zte
0
t)

d! N(0;�) with � = �Z 
 �e and �Z �
p limT!1 Z

0Z=T ;

e. Roots of det(Ir � �1� � �2�2 � � � � � �p�p) = 0 lie outside the unit circle;

f. The r � r matrix S has full rank.
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Most of these assumptions are based on the usual regularity conditions discussed in the

seminal work on factor models by Bai (2003) and Bai and Ng (2006b) and in the standard

VAR literature including L�utkepohl (2005). Assumptions 1(a) and 1(b) allow general second

moments for the factors and loadings. Assumption 1c guarantees the uniqueness of the

limit of F̂ 0F=T; which is important when discussing the behavior of the factor rotation.

Assumption 2 is fairly standard and allows for weak dependence in cross sections and allows

for general time dependence in uit. Assumption 3 is standard in the VAR literature to

enforce a stable system that is estimable by least squares. Assumption 3(a) imposes a white

noise property on fetg since a stable covariance matrix �e is needed to obtain structural
identi�cations using up to the second moments of the residuals. In Assumption 3(c), futg
and fetg (thus futg and fFtg) are assumed to be independent at all leads and lags.

2.4 Impulse response functions

I consider the standard form of IRFs de�ned for the observable variable Xi to the VAR

innovations in both the reduced-form and the structural models. For the reduced-form

models, (1) and (2) can be rewritten in vector moving-average form under Assumption 3(e)

such that:

Xit = �+ �0i	(L)et + ut;

where 	(L) �
P1

j=0	jL
j with 	0 = Ir and 	(L) = [ Ir �

Pp
j=1�jL

j]�1. Let the reduced-

form IRF of observable Xi at time horizon h (h = 0; 1; 2; :::) be  ih. Then,

 ih �
@Xit+h

@et
= �0i	h:

The structural IRFs 'ih will be similarly de�ned based on the models of (3) and (4). It

can be straightforwardly shown that:

'ih �
@Xit+h

@�t
= �s0i 	

s
h;

where the moving average parameters are such that 	s(L) �
P1

j=0	
s
jL

j =
h
Ir �

Pp
j=1�

s
jL

j
i�1

=

S�1	(L)S with 	s0 = Ir and �
s
j is de�ned in (4). On the one hand, I note that the struc-

tural IRF can take a form that involves only structural parameters and no reduced-form

parameters. This fact suggests that the identi�cation of all the structural parameters guar-

antees the identi�cation of any structural IRFs. On the other hand, the structural IRFs can

equivalently be written as:

'ih = �0i	hS; (5)
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by using the reduced-form parameters �i and 	h. I also use this reduced-form representation

to derive the asymptotic distribution in the next section.

3 Identi�cation

3.1 Statistical identi�cation

It is well known that in the standard factor model (1) the individual factors and loadings are

not statistically identi�ed. In fact, only the space spanned by the factors is identi�ed. As

Bai and Ng (2010) point out, this fact is not problematic per se as long as the researcher's

interest lies only in the conditional mean or the values of the dependent variables. However,

if the analysis involves coe�cient values separated from the attached variables, then the

identi�cation of the individual factors must be achieved. As the IRF is nothing but a

function of individual coe�cients, the identi�cation of the individual parameters is then

necessary.

I brie
y review the consequence of this statistically nonidenti�cation problem in the

FAVAR setting. Throughout the paper, I assume that the reduced-form models (1) and (2)

are estimated by the following two-step PC procedure. In the �rst step, I extract the factors

using the popular static PC method. This is implemented by �nding the solution of:

(F̂ ; �̂) = argmin
�;F

PN
i=1

PT
t=1(Xit � �0iFt)

2: (6)

In the second step, the VAR equation for F̂t is estimated using standard least squares.

However, the problem (6) is not uniquely solvable since, for any r � r invertible matrix

H, �0iH
�1 and HFt are also solutions for (6). Also HFt can be generated through (2)

by a combination of fH�jH�1; Hetg instead of f�j; etg. To overcome this observational
equivalence problem between two sets f�0i; Ft; ut;�j; etg and f�0iH�1; HFt; ut; H�jH

�1; Hetg
embedded with the system (1) and (2), the PC method uses an arbitrary normalization

F 0F=T = Ir to somehow �x r
2 parameters. This yields an estimate F̂ of F , which is the

eigenvectors of XX 0=(TN) corresponding to the r largest eigenvalues (multiplied by
p
T ).

As Bai (2003) shows, the particular H obtained through the above PC estimation is:

HNT = V �1
NT (F̂

0F=T )(�0�=N); (7)

where VNT is a diagonal matrix with its diagonal elements being the r largest eigenvalues

of XX 0=(TN) in descending order. The actual value of HNT depends on the realized unob-

servable process F , an estimate F̂ , and unknown parameters �. What makes the situation

7



unique is the fact that the researchers neither observe nor are able to consistently estimate

the realization of HNT :

Bai and Ng (2010) further investigate this statistical nonidenti�cation problem in the

factor model (1) and provide three sets of parameter restrictions with which PC estimation

yields HNT ; which converges to the identity matrix as N; T !1 up to sign normalization.

In other words, if one of their restrictions holds, then the estimated factors and parameters

are individually identi�ed up to sign.

3.2 Structural identi�cation

Because of this statistical nonidenti�cation problem in the factor models, the conventional

structural VAR identi�cation schemes do not simply go through with FAVARs under the

standard regularity conditions. Also, the identifying assumptions proposed by Bai and Ng

(2010) may not be fully justi�ed by any underlying economic interpretations3. Recent struc-

tural VAR literature emphasize the importance of structural parameter restrictions. See

Rubio-Ramirez et al. (2010) for a comprehensive review. Therefore, I propose di�erent

identi�cation schemes from Bai and Ng (2010) in the sense of imposing identifying restric-

tions on the structural parameters rather than on the parameters in models (1) and (2) and

still accounting for the factor rotation. Indeed, these identi�cation schemes are technically

distinct from, but conceptually common in, many existing structural VAR studies. It is also

seen that through these identifying restrictions, although the reduced-form parameters are

not identi�ed, so are the structural ones (A similar result is obtained in Komunjer and Ng,

2011 in DSGE settings). To this e�ect, I introduce the following identifying assumptions:

Assumption 4. The lag order p and the number of factors r are known.

Assumption 5. E(� 0�) = Ir:

Assumption 6. I have either:

a. (short-run restriction) The short-run IRFs '0 � �s =

24 �s1:r

�sr+1:N

35 have �s1:r = [�s1; :::; �sr]0
an r � r (upper or) lower triangular matrix with positive diagonal elements; or

3For example, one of the Bai and Ng (2010)'s assumptions requires the orthogonality of the latent factors
(a restriction on the second moment of the latent factors). However, if we give a particular interpretation to
the factors in structural VARs, such an assumption can be too restrictive.
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b. (long-run restriction) The long-run IRFs '1:r;1 � �s1:r (
P1

h=0	
s
h) from the 1st to the

rth observations are an r� r (upper or) lower triangular matrix with positive diagonal
elements; or

c. (recursive restriction) Q�10S is an (upper or) lower triangular matrix and the signs of

its diagonal elements are known where Q�1 = p limN;T!1H
0
NT with HNT de�ned in

(7).

Assumption 4 excludes model uncertainty from the analysis and simpli�es the identi�ca-

tion and inference problems. Any attempts to relax this assumption should be practically

relevant and of great interest, however, this problem is beyond our scope4. Assumption

5 imposes the orthogonality of the structural shocks, which is common in structural VAR

literature. Note that Assumption 4 �xes the total number of parameters in the model and

Assumption 5 imposes restrictions on r2+r
2
parameters as the covariance matrix is symmetric

by de�nition.

One of the three conditions in Assumption 6 imposes r
2�r
2
zeros on the structural param-

eters, respectively. Hence, any of the restrictions in Assumption 6 together with Assumption

5 achieves the necessary order condition of r2 parameter restrictions on the structural mod-

els. Importantly, Assumption 6 also leads a su�cient condition for structural identi�cation

and this plays an essential role in the current analysis. Assumption 6(a) provides a set of

restrictions on the short-run structural IRFs. This requires researchers to �nd at least r� 1
observable variables where the kth (k � r � 1) is contemporaneously a�ected only by the
�rst k factors. Assumption 6(b) works similarly, but restricts the long-run IRFs instead of

the short-run IRFs. The implication of the long-run IRF restriction follows from, for ex-

ample, Blanchard and Quah (1989). Note that these two assumptions formalize the exact

identi�cation methods suggested by Stock and Watson (2005).

Assumption 6(c) is similar to the popular recursive restriction in structural VARs as it

imposes zeros on r2�r
2
parameters in an invertible matrix Q�10S. However, in FAVARs I

do not restrict the contemporaneous matrix S itself but one needs to consider its rotation

Q�10S to achieve the statistical identi�cation. In this sense, this is not a structural parameter

restriction and may be of limited use. However, as it involves the popular Cholesky identi�-

cation procedure, I further break down Assumption 6(c) into the following set of conditions

to ascertain its feasibility:

4For example, Dufour and Stevanovi�c (2011) discuss that when the factors are a linear combination of
observables, their dynamics are represented in general by VARMA processes rather than �nite-order VARs.
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Assumption 6(c)': The following three restrictions imply Assumption 6c:

1. �F is diagonal;

2. �� is diagonal;

3. S is an (upper or) lower triangular matrix and the signs of diagonal elements of Q�10S

are known.

The �rst two parts of Assumption 6(c)' imply that the model involves orthogonal factors

and loadings in its reduced-form and they are rather statistical assumptions. Given these

two statistical restrictions, I am now able to impose the recursive structure not on Q�10S

but on S as in conventional structural VARs. The signs of the diagonal elements of Q�10S

are barely known in practice as the matrix Q does not have any structural interpretations.

However, one can deduce them by using the signs of structural IRFs, as in Uhlig (2005).

Appendix B provides a proof that Assumption 6(c)' implies Assumption 6(c).

Given the above assumptions and the two-step PC estimation, I can proceed by intro-

ducing a su�cient identifying condition for the structural parameters and IRFs.

Condition 1. (Su�cient condition for structural identi�cation) Under Assump-

tions 1-6 one obtains an r � r matrix Ŝ such that:

Ŝ �HNTS
p! 0;

as N; T !1 where HNT is de�ned in (7).

The next question is how to obtain Ŝ as in Condition 1. In the following subsection, I

discuss examples of how the restrictions in Assumption 6 enable us to consistently estimate

the structural parameters and the IRFs.

Remark 1 It is also important to ensure that Condition 1 holds in the bootstrap replications.

To achieve this, the identifying assumptions must hold in the bootstrap space (for example,

assumptions on '0;1:r carry over to the same assumptions on '̂0;1:r in the limit). For ID1

and ID2, this is trivial since restrictions are on structural parameters and all the structural

parameters and IRFs are consistently estimated (not up to rotation). For ID3, I will show

that the restrictions incidentally hold in the bootstrap space. See Appendix B.
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3.3 Estimation of identi�ed structural models

Once the reduced-form models are estimated using the two-step PC method, structural pa-

rameter estimates are obtained by the contemporaneous coe�cient matrix Ŝ; which satis�es

Condition 1. The following three schemes are simple to implement and are often used in

empirical applications.

ID1 (short-run restriction):

1. Construct a short-run IRF estimate for observations from 1 to r :

'̂1:r;0 = Chol
h
 ̂1:r;0(ê

0ê=T ) ̂
0
1:r;0

i
;

2. Obtain Ŝ such that:

Ŝ =  ̂
�1
1:r;0'̂1:r;0;

The ID1 scheme achieves Condition 1 under Assumption 6.1.

ID2 (long-run restriction):

1. Construct a long-run IRF estimate for the observations from 1 to r :

'̂1:r;1 = Chol
h
 ̂1:r;1(ê

0ê=T ) ̂
0
1:r;1

i
;

with  ̂1:r;1 = �̂1:r

h
Ir �

Pp
h=1 �̂h

i�1
,

2. Obtain Ŝ such that:

Ŝ =  ̂
�1
1:r;1'̂1:r;1;

The ID2 scheme achieves Condition 1 under Assumption 6.2.

ID3 (recursive restriction):

1. Obtain Ŝ such that:

Ŝ = Chol [ê0ê=T ] ;

2. Adjust the signs of '̂ih (h = 0; 1; :::) if sign('̂i0) is not what was expected.

The ID3 scheme achieves Condition 1 under Assumption 6c or 6c'. Note that the second

step is to normalize the signs of Q�10S, which are not directly known. However, they

are deduced through the sign of the structural IRF '1:r;0 in practice for the following

reason. Given an estimate for �1:rQ is available as �̂1:r, and as we know the correct

signs of '1:r;0 = �1:rS, they imply the signs of Q
�10S. Hence, the sign restriction in

Assumption 6c'.3 has a structural interpretation through the signs of '1:r;0.
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In Appendix B, we prove that these methods will provide a contemporaneous matrix

estimate Ŝ, which satis�es Condition 1. Note that these examples would not be the only

ones that lead to the condition, however, the same principle would apply in general.

Theorem 1 (Consistency of the structural parameters) Under Assumptions 1{5 and Con-

dition 1, �̂
s

i � �si
p! 0; �̂s � �s p! 0; and '̂ih � 'ih

p! 0; for all i uniformly in h = 0; 1; 2; :::

as N; T !1.

Next I move to the asymptotic distributions of the structural IRFs. First, I require a

high-level condition about the limit distribution of Ŝ.

Condition 2. (Asymptotic normality of Ŝ) Under Assumptions 1-6, one obtains an

estimate Ŝ which satis�es:

p
Tvec(Ŝ �HNTS)

d! N(0;�S);

as N; T !1 and
p
T=N ! 0 with �S an r

2 � r2 �xed positive de�nite matrix.

This condition is high-level and enables me to establish the following asymptotic normal

results for the IRFs. It can also be interpreted that researchers can �nd an identi�cation

method which satis�es this condition on a case-by-case basis. To make sure the validity for

the three suggested schemes in this paper, I break down Condition 2 into more primitive

conditions in Appendix C. For example, one needs Condition C1 if ID3 is used and Conditions

C1 and C2 if ID1 or ID2 is used. I also note that the �nite sample distribution of Ŝ can be

quite contaminated from the normal distribution in practice as I further discuss in Appendix

C. The consequence is twofold. First the asymptotic normal inference for the IRFs does not

work very well. Second, the distributions of IRF estimates are non-centered so that a certain

type of bootstrap con�dence interval method is preferred to others. These conjectures are

investigated through Monte Carlo simulations in Section 5.

Theorem 2 (Asymptotic distribution of structural IRFs) Under Assumptions 1{5 and Con-

ditions 1 and 2, p
T ('̂ih � 'ih)

d! N(0;�'ih);

12



8i uniformly in h = 0; 1; 2; � � � as T;N ! 1 and
p
T=N ! 0 provided @'ih=@� 6= 0 where

� = [�i; vec(�)
0; vec(S)0]0,

�'ih =
@'0ih
@�0

��
@'ih
@�

;

and �� = diag(��̂i;��̂;�S) with ��̂i � Q�10�iQ
�1and

��̂ � [(Ip 
Q�10)�Z(Ip 
Q�1)]�1

�
�
(Ip 
Q�10)�Z(Ip 
Q�1)]
 [Q�10�eQ�1

�
�[(Ip 
Q�10)�Z(Ip 
Q�1)]�10:

There are two comments on this result. First despite the implication that the structural

IRFs only involve structural parameters, when I consider the distribution of the IRF estimate

I present the expression in terms of the reduced-form parameters. This follows the results of

IRFs in the standard structural VARs (See L�utkepohl 1990, 2005). Although the expressions

for the covariance matrices of individual parameters are notationally involved because of the

factor rotation, their estimates are easily constructed. Second and more importantly, the

asymptotic approximation is reasonable when
p
T=N ! 0 is relevant. However, if N is

relatively smaller than T and
p
T=N ! c (0 < c < 1) is more appropriate, then the

parameter estimates su�er from asymptotic bias as studied by Ludvigson and Ng (2009b)

and Gon�calves and Perron (2011). This becomes another source of the facts that the normal

approximation does not work very well and that the bootstrap distributions which are not

centered around the original estimates.

4 Bootstrap inference

4.1 Procedures

This section considers residual-based bootstrap algorithms to construct con�dence intervals

for the IRFs. I propose to use the i.i.d. bootstrap for the VAR equation in order to make

use of the white noise property of fetg, however, I can allow for methods which incorporate
more general patterns for fuitg as in Assumption 2. For instance, Gon�calves and Perron
(2011) propose residual-based wild bootstrap procedures, which are directly applicable to

this context if the idiosyncratic errors exhibit heteroskedasticity.

I present two algorithms which are often conducted in empirical studies. The �rst proce-

dure is A: bootstrapping with factor estimation; and the second procedure is B: bootstrap-

ping without factor estimation. The main feature of Procedure A is that it includes factor

13



estimation within each bootstrap replication so that the con�dence intervals can properly

account for the uncertainty associated with factor estimation and is in the same line as

Gon�calves and Perron (2011) and Shintani and Guo (2011). In contrast, Procedure B does

not re-estimate the factors in the bootstrap replications and thus takes the estimated factors

as factual. I �rst outline Procedure A as follows:

Procedure A: Bootstrapping with factor estimation

1. Estimate the model using the two-step PC procedure and obtain parameter estimates

�̂; �̂; Ŝ and residuals ût and êt. Obtain the IRF estimate '̂i:

2. Make sure that the residuals ût and êt are demeaned if the models do not include a

constant term. Resample the residuals êt with replacement and label them e�t . Generate

the bootstrapped sample F �t by F
�
t = �̂+

Pp
j=1 �̂jF

�
t�j+e

�
t . Also resample the residuals

ût with replacement, and label them u�t . When ut is suspected to be heteroskedastic,

a wild bootstrap proposed by Gon�calves and Perron (2011) is applied. Generate the

bootstrapped observations X� by X�
t = �̂ + �̂F �t + u�t . At this stage, some type of

bias-correction methods can be applied as discussed in Kilian (1998). See Appendix

D.

3. Using the bootstrapped observations X�
t , estimate (F̂

�; �̂�) using the �rst step of the

PC procedure. Then, estimate the VAR equation of F̂ �t to obtain the bootstrapped

estimates �̂� and Ŝ� using the second step of the PC procedure. This yields the

bootstrap IRF estimates '̂�i .

4. Repeat Steps 2 and 3 R times.

5. Store the recentered statistic s � '̂�ih � '̂ih. Sort the statistics and select the 100 � �th

and 100 � (1 � �)th percentiles (s(�); s(1��)). The resulting 100 � (1 � 2�)% con�dence

interval for 'ih is ['̂ih � s(1��); '̂ih � s(�)] for h = 0; 1; :::.

Important features of Procedure A in comparison to Procedure B are as follows. In Step

2, the bootstrap sample X�
t shares the same data generating process as the original sample

Xt. In Step 3, the bootstrap IRF estimates involve the same identi�cation and estimation

methods, especially factor estimation, as the original so that the dispersions of the bootstrap

estimates can mimic those of the original estimates.
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Procedure B: Bootstrapping without factor estimation

Procedure B requires modi�cation in Steps 3 of Procedure A and is formalized as follows:

3. Using the bootstrapped observations X�
t and factors F

�
t , estimate �̂

��, �̂�� and Ŝ��.

This yields the bootstrap IRF estimates '̂��i .

Procedure B would be a natural and simple extension of the methods conducted in

standard structural VAR analyses. However, the generated con�dence intervals will not

properly account for the factor estimation errors. The theoretical and �nite sample properties

of both algorithms are further investigated in the following sections. Finally, the bootstrap

interval speci�ed in Step 5 is known as Hall's percentile intervals (Hall, 1992). One can

alternatively consider what is commonly called Efron's percentile method by storing s � '̂�ih

and constructing
�
s(�); s(1��)

�
, however, this method is not exact when the interval is not

centered even asymptotically (see Efron and Tibshirani, 1994 and L�utkepohl, 2005). As

I have seen, the IRFs are likely to produce non-centered distributions in �nite samples

because of structural identi�cations and factor estimation errors. Another popular choice is

the percentile-t interval. However, Kilian (1999) observed that the percentile-t is not very

accurate for IRF estimates especially in long horizons when the sample size is small.

4.2 Asymptotic validity

This section discusses the asymptotic validity of Procedures A and B. The �rst-order asymp-

totic results are given in Theorems 3 and 4, and several remarks on higher-order correctness

will follow the statements. To this end, I extensively use some high-level conditions. These

conditions can be justi�ed by the following more primitive conditions in the bootstrap DGP.

Condition BT1.

a. E�(u�it) = 0 for all (i; t);

b. 1
T

PT
t=1

PT
s=1 j
�stj

2 = Op(1), where 

�
st = E�

�
1
N

PN
i=1 u

�
itu

�
is

�
;

c. 1
T 2

PT
t=1

PT
s=1E

�
���N�1=2PN

i=1(u
�
isu

�
it � E(u�isu

�
it))
���2 = Op(1);

d. 1
T

PT
t=1

PT
s=1 F

�
s F

�0
t 


�
st = Op(1);

e. 1
T

PT
t=1E

�



 1p

NT

PT
s=1

PN
i=1 F

�
s [u

�
isu

�
it � E�(u�isu

�
it)]



2 = Op(1);
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f. E�



 1p

NT

PT
t=1

PN
i=1 F

�
t �̂

0
iu
�
it




2 = Op(1);

g. 1
T

PT
t=1E

�



 1p

N

PN
i=1 �̂iu

�
it




2 = Op(1);

h. 1
T

PT
t=1

�
�̂0u�tp
N

��
u�0t �̂p
N

�
��� = op�(1), in probability, where �

� � 1
T

PT
t=1 V ar

�
�

1p
N
�̂0u�t

�
>

0;

i. For each i, �
��1=2
i

1p
T

PT
t=1 F

�
t u

�
it
d�! N(0; Ir); in probability, where �

�
i � V ar�

�
1p
T

PT
t=1 F

�
t u

�
it

�
;

j. p lim��i = Q�10�iQ
�1:

Condition BT2.

a. E�(e�t ) = 0; E�(e�t e
�0
t ) = ��e an r � r positive de�nite matrix, and e�t and e�s are

independent for s 6= t;

b. E�
��e�ite�jte�kte�lt�� = Op(1) for i; j; k; l = 1; :::; r; and all t;

c. e�t are uncorrelated with u
�
is for all i; t and s;

d. ��T�1=2
PT

t=p+1 vec(Z
�
t e
�
t )

d! N(0; Ipr2), in probability, where �
� � V ar�

�
1p
T

PT
t=1 Z

�
t e
�0
t

�
;

e. p lim�� = [(Ip 
Q�10) �Z (Ip 
Q�1)]
 (Q�10�eQ�1):

Condition BT3.

a.
p
Tvec(H��1Ŝ� � Ŝ)

d! N(0;�S);in probability, as N; T !1 and
p
T=N ! 0.

b.
p
Tvec(Ŝ�� � Ŝ)

d�! N(0;�S); in probability, as N; T !1:

Condition BT1 is a bootstrap analogue of Assumption 2 and follows the high-level condi-

tions considered in Gon�calves and Perron (2011). Condition BT2 is analogous to Assumption

3 where the white noise VAR errors are assumed. Condition BT3 is even higher and can be

broken down into more primitive conditions depending on speci�c structural identi�cation

schemes. These more primitive conditions as well as an explicit form of �S are discussed in

Appendix C. Given these conditions, I obtain the following theorems.
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Theorem 3 (Asymptotic validity of Procedure A) Under Assumptions 1{6 and Conditions

1, 2, BT1, BT2 and BT3(a),

sup
x2R

jP � [('̂�ih � '̂ih) � x]� P [('̂ih � 'ih) � x]j p! 0;

for all i and uniformly in h = 0; 1; 2; � � � as N; T !1, and
p
T=N ! 0.

The results are of �rst-order. To better understand the �nite sample inference properties,

higher-order terms in the estimation errors are of interest. To start with, the errors in the

original structural parameter estimation can be expanded into three components: (I) errors

pertaining to the contemporaneous coe�cient matrix Ŝ, (II) factor estimation errors, and

(III) combinations of (I) and (II). If I take the structural IRF at horizon 0 as an example,

the expansion of the original estimate is:

p
T ('̂i0 � 'i0) = T�1=2S 0H 0

NTHNTF
0ui + T 1=2"0H 0�1

NT�i

+T�1=2"0HNTF
0ui| {z }

(I): errors in Ŝ

+T�1=2S 0H 0
NT F̂

0(F � F̂H 0�1
NT )�i + T�1=2S 0H 0

NT (F̂ � FH 0
NT )

0ui| {z }
(II): factor estimation errors

+T�1=2"0F̂ 0(F � F̂H 0�1
NT )�i + T�1=2"0(F̂ � FH 0

NT )
0ui| {z }

(III): (I) and (II)

: (8)

with " = Ŝ �HNTS. In the original estimate, the terms in (I), (II), and (III) are of op(1);

Op(
p
T=�2), and op(1) respectively. Note Op(

p
T=�2) = op(1) when

p
T=N ! 0. When I

follow Procedure A, the bootstrap parameter estimates take the same form in the bootstrap

space so that:

p
T (e'�i0 � '̂i0) = T�1=2Ŝ 0H�0

NTH
�
NTF

�0u�i + T 1=2"�0H�0�1
NT �̂i

+T�1=2"�0H�
NTF

�0u�i| {z }
(I): errors in Ŝ�

+T�1=2Ŝ 0H�0
NT F̂

�0(F � � F̂ �H��10
NT )�̂i + T�1=2Ŝ 0H�0

NT (F̂
� � F �H�0

NT )
0u�i| {z }

(II): factor estimation errors

+T�1=2"�0F̂ �0(F � � F̂ �H�0�1
NT )�̂i + T�1=2"�0(F̂ � � F �H�0

NT )
0u�i| {z }

(III): (I) and (II)

: (9)

with

H�
NT = V̂ �1(F̂ �0F �=T )(�̂0�̂=N) (10)
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where V̂ is a diagonal matrix with its elements being eigenvalues of X�X�0=(TN) in descend-

ing order. The validity is shown under the stated conditions, which guarantee that all the

terms in (9) are of the same probability order under P � as those in (8) under P . Hence (I)

and (III) disappear as N; T !1, and so does (II) with an additional condition
p
T=N ! 0.

I now provide the validity of Procedure B.

Theorem 4 (Asymptotic validity of Procedure B) Under Assumptions 1{6 and Conditions

1, 2, BT1(i), BT1(j), BT2, and BT3(b):

sup
x2R

��P � �('̂��i;h � '̂i;h) � x
�
� P

�
('̂i;h � 'i;h) � x

��� p! 0;

for all i and uniformly in h = 0; 1; 2; � � � as N; T !1;
p
T=N ! 0.

When one uses Procedure B, the bootstrap estimate of the structural IRF at time 0 is

expanded in the bootstrap space as follows:

p
T ('̂��i0 � '̂i0) � T�1=2Ŝ 0F �0u�i + T 1=2"��0�̂i

+T�1=2"��0F �0u�i| {z }
(I): errors in Ŝ��

; (11)

with "�� = Ŝ�� � S. The higher-order terms associated with factor estimation errors (II)

and (III) in (9) do not appear with Procedure B in (11). Hence I expect that the intervals

constructed using Procedure B are generally tighter than those obtained using Procedure A

because of the factor estimation errors. More importantly, the intervals given by Procedure

B may not be as accurate as those using Procedure A, especially when N is not signi�cantly

larger than
p
T (
p
T=N ! 0 is not appropriate) as the terms in (II) that are not present

with Procedure B are relevant5. I also note that when the errors in the contemporaneous

matrix estimate " are not small, the terms in (I) and (III) can also play a signi�cant role.

This leads to an error in coverage over short horizons as the e�ect of " will diminish over

long horizons. Finally, the asymptotic normal approximation neither accounts for the factor

estimation errors (II) and (III), nor is it able to capture the e�ect of (I) well in �nite samples.

5Although the validity of Procedure A requires
p
T=N ! 0, Gon�calves and Perron (2011) shows that the

�nite sample coverage properties are quite well if factor estimation is involved in the bootstrap. They also
propose bias correction procedure to further improve �nite sample properties.
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5 Finite sample properties

5.1 Monte Carlo simulations

In this section, I provide simulation results to assess the �nite sample properties of the

proposed inference procedures. For simplicity I consider a two-factor VAR(1) model so that

the observable variables xi;t are generated as:

xi;t = �ift + ui;t;

and the factors (ft : 2� 1) evolve such that:

ft = �ft�1 + et;

for i = 1; :::; N and t = 1; :::; T with �i = [�i;1; �i;2] and � is a 2� 2 matrix. I consider three
types of structural identi�cations, hence, et = S�t and S is:

S =

241 0:5

0 1

35 :
for ID1 and ID2 cases and the identity matrix for ID3 case. I consider the IRF of the third

observation6 to a structural shock to the �rst factor. The loadings are �ij � i:i:d:U(0; 1)

and �21 = 0 for ID1 and ID2 so that I can use the triangular structure of the �rst two IRFs

�ij � i:i:d:N(0; 1) for ID3 to meet Assumption 6(c)'.2. The VAR parameter also � respects

identi�cation restrictions so that:

� =

240:4 0:2

0:2 0:4

35 for ID1 and ID2,

� =

240:4 0

0 0:4

35 for ID3,

so that �F is diagonal in ID3 case to satisfy Assumption 6(c)'.1.

I generate quasi-random variables �j;t and ui;t following i.i.d. standard normal ("Gaus-

sian errors") or a centered chi-square distribution with one degree of freedom ("chi-squared

errors") with unit variance. To eliminate the e�ect of the initial value, I generate a sample

with a size of 2� T and discard the �rst T sample.

6The �rst two observations are used for the structural identi�cation in ID1 and ID2 cases. Since the
loadings are homogeneous in this experiment, any observations besides the �rst two must give the same
results.
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Since the e�ect of the sample size on the inference results is of major interest, I compare

the results of the four (N; T ) combinations of N = f50; 200g and T = f40; 120g. The
bootstrap inference method is conducted for 1; 000 replications and I report the results for

equal-sided con�dence intervals of the 95% and 85% nominal levels. By default, the bias

correction in the spirit of Kilian (1998) is applied where the bias for �̂ is estimated by

another Rb = 1; 000 times bootstrap loop and evaluated by R�1b
PRb

j=1

h
�̂�j �H��̂jH

��1
i

with j = 1; :::; Rb. The number of replications in the Monte Carlo simulations for evaluating

the coverage ratio is 1; 000 and the impulse responses are considered up to �ve periods ahead.

The coverage ratios and the median of the lengths of the con�dence intervals are reported.

The coverage results of Procedures A and B and the asymptotic approximation at 95%

and 85% levels when Gaussian errors are used are shown in Tables 1a and 1b. The �rst

observation to note is that throughout the experiments Procedure A exhibits coverage prob-

abilities close to the nominal levels, however, Procedure B undercovers in many situations.

The undercoverage of Procedure B is most distinct in the case of (N; T ) = (50; 120), where

the condition
p
T=N ! 0 is least relevant among four cases. The second notable result is

that the asymptotic normal intervals work quite poorly in every case. The undercoverage

of the asymptotic approximation is prominent in short horizons when ID1 and ID2 are used

with small N , although it improves for longer horizons especially when T is large. This

re
ects the fact that the �nite distribution of Ŝ is contaminated with ID1 and ID2 than ID3.

However, even if ID3 is used, I see lower coverage rates especially in longer horizons. Finally,

these �ndings are robust to the chi-squared errors (Tables 2-a and 2-b).

In order to further investigate the di�erence between Procedures A and B, cases of

smaller sample sizes are of more interest as the factors are estimated less precisely as dis-

cussed in the previous section. To this end, the sample sizes are now chosen (N; T ) =

f(10; 120); (30; 120); (50; 120)g and I also consider more persistent factors and set the VAR
parameters with the diagonal elements 0:7 instead of 0:4. Everything else is the same as

the baseline simulation and the results for the 95% nominal level and Gaussian errors are

reported in Table 3. The table shows that Procedure A is still able to provide intervals with

coverage ratios very close to the nominal levels, however, the coverages using Procedure B

are remarkably smaller than the nominal level. This is �rst because, for smaller sample

sizes, the e�ects of neglecting factor estimation uncertainty with Procedure B becomes more

distinct. Second, as frequently shown in the empirical data, when factors are more persis-

tent and have more variability (the diagonal elements are larger) the di�erence in the two
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procedures becomes more distinct7.

Finally, I report the coverage properties using three di�erent con�dence intervals (label-

ing Hall's percentile, Efron's percentile, and percentile-t as PER-H, PER-E, and PER-T,

respectively) in Table 4 and the results without using the Kilian (1998)'s bias correction in

Table 5. In both cases, I report the results of Procedure A under the Gaussian errors and

ID1 identi�cation is used at the 95% level. Table 4 illustrates an advantage of the suggested

PER-H method over PER-E and PER-T methods as I conjectured in the previous section.

Table 5 con�rms that the coverage deteriorates in long horizons if bias correction is not

conducted. This e�ect becomes more distinct when the sample size is small and the factor

process is more persistent.

5.2 Monte Carlo simulation using empirical data

Finally, I present an empirical experiment to ascertain the robustness of the proposed Pro-

cedure A to actual economic data. To this end, I employ 110 US macroeconomic series

investigated by Stock and Watson (2008). The data are a mixture of quarterly and monthly

frequencies, spanning the period from 1959Q1 to 2006Q4. I conducted the following treat-

ment, as in the original paper by Stock and Watson (2008). First, monthly data are con-

verted into quarterly data by taking a simple average over three months. Second, all series

are transformed into stationary processes following Stock and Watson's (2008) guidelines.

In addition, the data are demeaned and standardized to have unit standard deviations. A

brief description of the data set is given in Table 8, with more details available in Stock and

Watson (2008). I choose two factors, which is justi�ed by the ICP2 criteria in Bai and Ng

(2002), though moderate variations in the lag order and the number of factors do not a�ect

the qualitative results. I also �nd that the �rst factor is closely related to medium-run real

economic activity measures (e.g. production) and the second factor has a stronger correla-

tion with price variables. This is consistent with the �ndings in Sargent and Sims (1977)

and Stock and Watson (2005). Hence, for identi�cation, I select the assumption that the

producer price index is contemporaneously a�ected only by the second factor. I select the

order of the vector autoregression to be four. The observation and VAR equations are then

identical to those described in the previous subsection, except with a higher lag order.

The aim here is to evaluate the coverage properties for the IRFs of Procedure A. However,

the coverage probabilities of the con�dence intervals constructed from actual data cannot

7Shintani and Guo (2011) also observe that when the factors are persistent, the asymptotic approximation
is more clearly dominated by the bootstrap inference.
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be calculated. Hence, I use the following calibration experiment in order to replicate an

approximation of the actual data-generating process.

1. Estimate the model using the PC method to obtain coe�cient estimates and residuals.

2. Generate quasi-observations from the calibrated model with the error terms resampled

from fûtg and fêtg with replacement. Note that fêtg are orthonormalized by �t =
êt�̂e

�1=2, where �̂e
�1=2 is the Cholesky decomposed covariance matrix of êt. This

allows �t to be interpreted as a structural innovation.

3. Using each generated data set, construct 95% con�dence intervals for the IRFs using

the proposed bootstrap procedure and see if the true (calibrated) IRFs are included in

the estimated interval.

4. Repeat Steps 2 and 3 1; 000 times to evaluate the coverage probabilities.

The considered IRFs are for prices (the personal consumption expenditures price index,

which is composed of nondurables excluding food, clothing and oil: GDP275 4), long-term

interest rates (the 10-year US treasury bill interest rate: FYGM10), a production index (the

industrial production index: IPS43) and the unemployment rate (the unemployment rate for

all workers 16 years & over: LHUR). Table 6-a provides the results for the impulse responses in

the �rst 8 periods. To examine the impact of the sample size, I conduct this experiment using

the full data set (T = 190), as shown in Table 6-a, and post-1984 data (1984Q1 : 2006Q4;

T = 90), as shown in Table 6-b. The results for both cases generally yield values very close

to the 95% nominal level for all four variables when using the full sample data set. This

�nding also holds true for the smaller sample size comprising post-1984 data. Therefore, the

good �nite sample properties of the bootstrap procedure are con�rmed by this calibrated

experiment.

Finally, Table 7 compares the results with those for Procedure B. Here, I use a smaller

data set by selecting only aggregate series from Stock and Watson's (2008) data set. For

example, I use the total industrial production index instead of the separate industrial pro-

duction indexes for durable and nondurable goods, and so on. This procedure leaves us with

47 data series (see Table 9). However, the basic structure of the data set remains unchanged

and it yields clearer results. I consider the full time length (T = 190). I also show that

if bootstrapping is applied without considering the uncertainty associated with factor esti-

mation (Procedure B), the resulting con�dence intervals become narrower and the coverage

ratios are mostly below the 95% nominal level.

22



6 Conclusions

This paper has two major contributions. First, I explicitly consider conditions and examples

of structural identi�cation in simple FAVAR models, which account for the random factor

rotation induced by the popular PC estimation method. The strategy is to impose identifying

restrictions on the structural parameters or IRFs, and these identifying assumptions are

widely used in empirical studies. Second, and more importantly, I investigate residual-

based bootstrap procedures suggested by Gon�calves and Perron (2011) and Shintani and

Guo (2011) in FAVAR context. I �nd that factor estimation errors play an important role

in inference problems in impulse response analyses. This is a formalization of the facts

pertaining to the factor estimation errors discovered by Ludvigson and Ng (2009b) and

Gon�calves and Perron (2011) in FAVAR setting. Although this is in close agreement with

these related studies, the e�ects of factor estimation errors can be more prominent in this

context through structural identi�cation schemes studied in this paper and the suggested

bootstrap procedure is highly recommended.
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Appendix A : Proof of Theorems

In the appendix, I suppress the subscript NT for the PC rotation matrix HNT and use
H.

Proof of Theorem 1: I show the results of the individual structural parameters �si and
�s. Then the continuous mapping theorem immediately yields the result of the structural
IRF. First, the reduced-form estimate �̂i is expanded into the following form (see Bai, 2003,
proof of Theorem 2).

�̂i = H 0�1�i + T�1HF 0ui + T�1F̂ 0(F � F̂H 0�1)�i + T�1(F̂ � FH 0)0ui: (A.1)

Under Condition 1, I let " = Ŝ�HS with " p! 0. This implies that � = Ŝ�1�S�1H�1 with

�
p! 0. Then, the estimate for the structural parameter �si = S 0�i is given by:

�̂
s

i = Ŝ 0�̂i = S 0�i + "0H 0�1�i + T�1S 0H 0HF 0ui + T�1"0HF 0ui

+T�1Ŝ 0F̂ 0(F � F̂H 0�1)�i + T�1Ŝ 0(F̂ � FH 0)0ui: (A.2)

Rearranging the terms in (A.2) gives:

�̂
s

i � �si = T�1S 0H 0HF 0ui + "0H 0�1�i + T�1"0HF 0ui

+T�1Ŝ 0F̂ 0(F � F̂H 0�1)�i + T�1Ŝ 0(F̂ � FH 0)0ui;

= I + II + III + IV + V:

Since I = Op(T
�1=2), II = op(1), III = Op(T

�1=2) by Condition 1 and Assumption 2(i), and

IV; V = Op(�
�2) by Bai and Ng (2006b) Lemma A1 it is shown that �̂

s

i � �si
p! 0:

For �s, the least squares estimate for � is given by:

�̂ =
�
Ẑ 0Ẑ

��1 �
Ẑ 0F̂

�
;

=
�
Ẑ 0Ẑ

��1 �
Ẑ 0FH 0

�
+
�
Ẑ 0Ẑ

��1
Ẑ 0(F̂ � FH 0);

=
�
Ẑ 0Ẑ

��1 h
Ẑ 0Z(Ip 
H 0)(Ip 
H 0�1)�H 0 + Ẑ 0eH 0

i
+
�
Ẑ 0Ẑ

��1
Ẑ 0(F̂ � FH 0);

=
�
Ẑ 0Ẑ

��1 h
Ẑ 0Ẑ(Ip 
H 0�1)�H 0

i
+
�
Ẑ 0Ẑ

��1 �
Ẑ 0eH 0

�
+
�
Ẑ 0Ẑ

��1 h
Ẑ 0(Z(Ip 
H 0)� Ẑ)(Ip 
H 0�1)�H 0

i
+
�
Ẑ 0Ẑ

��1
Ẑ 0(F̂ � FH 0);

= (Ip 
H 0�1)�H 0 +
�
T�1Ẑ 0Ẑ

��1 �
T�1(Ip 
H)Z 0eH 0�

+
�
T�1Ẑ 0Ẑ

��1 h
T�1(Ẑ � Z(Ip 
H 0))0eH 0

i
+
�
T�1Ẑ 0Ẑ

��1 h
T�1Ẑ 0(Z(Ip 
H 0)� Ẑ)(Ip 
H 0�1)�H 0

i
+
�
T�1Ẑ 0Ẑ

��1 h
T�1Ẑ 0(F̂ � FH 0)

i
: (A.3)
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Since T�1Ẑ 0Ẑ = Op(1), the last three terms in (A.3) are Op(�
�2) using Lemma A1 in

Bai and Ng (2006b). The estimate for the structural parameter �s = (Ip 
 S)�S�1 is then,

(Ip 
 Ŝ 0)�̂Ŝ 0�1 = (Ip 
 S 0)�S 0�1 + (Ip 
 S 0H 0)(T�1Ẑ 0Ẑ)�1
�
T�1(Ip 
HZ 0eS 0�1

�
+(Ip 
 S 0)

h
�H 0 + (T�1Ẑ 0Ẑ)�1T�1(Ip 
H)Z 0eH 0

i
�

+(Ip 
 "0)[(Ip 
H 0�1)� + (T�1Ẑ 0Ẑ)�1T�1(Ip 
H)Z 0e]S�1

+(Ip 
 "0)
h
(Ip 
H 0�1)� + (T�1Ẑ 0Ẑ)�1T�1(Ip 
H)Z 0eH 0

i
�

+(Ip 
 S)Op(�
�2)S�1; (A.4)

or

�̂s � �s = (Ip 
 S 0H 0)(T�1Ẑ 0Ẑ)�1
�
T�1(Ip 
H

�
Z 0eS 0�1)

+(Ip 
 S 0)
h
�H 0 + (T�1Ẑ 0Ẑ)�1T�1(Ip 
H)Z 0eH 0

i
�

+(Ip 
 "0)[(Ip 
H 0�1)� + (T�1Ẑ 0Ẑ)�1T�1(Ip 
H)Z 0e]S�1

+(Ip 
 "0)
h
(Ip 
H 0�1)� + (T�1Ẑ 0Ẑ)�1T�1(Ip 
H)Z 0eH 0

i
� +Op(�

�2);

= I + II + III + IV +Op(�
�2):

Since I = Op(T
�1=2) and II; III; IV = op(1) by Condition 1, I obtain �̂

s � �s p! 0: These
imply the result for a continuous mapping of structural parameters, i.e. the structural IRF

estimate '̂i;h � 'i;h
p! 0; uniformly in h for all i.

Proof of Theorem 2: Theorem 1 shows that the 'ih is consistently estimated by '̂ih
and I know from (5) that it is also a function of the reduced-form parameters (�i and �) and

S. Given that the reduced-form parameter estimates �̂i and �̂ are asymptotically normal as
N; T ! 1 and

p
T=N ! 0 under Assumptions 1{3 (see Bai, 2003 and Bai and Ng, 2006b,

who prove under weaker conditions) up to rotation and the asymptotic normality for Ŝ by
Condition 2, the delta method yields the asymptotic normality for the structural IRF with
the variance which is given in the theorem.

The following Conditions A1 and A2 are high-level assumptions ascertaining the fact that
several key convergence results in the original space are obtained in the bootstrap space as
well. The validity of Condition A1 under more primitive assumptions (Conditions BT1 and
BT2 in the main text) is shown by closely following the proofs provided in Gon�calves and
Perron (2011) and lengthy hence is only provided per requests. Conditions 1 and A2 are
shown in Appendix B.

Condition A1. Under Assumptions 1-3 and Conditions BT1 and BT2, the following
conditions hold for j = 1; � � � ; p:
a. T�1

PT
t=1




F̂ �t �H�F �t




2 = Op�(�
�2);
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b. T�1
PT

t=1(F̂
�
t �H�F �t )F

�0
t = Op�(�

�2);

c. T�1
PT

t=1(F̂
�
t �H�F �t )F̂

�0
t = Op�(�

�2);

d. T�1
PT

t=j+1(F̂
�
t�j �H�F �t�j)e

�0
t = Op�(

1
�
p
T
);

e. T�1
PT

t=1(F̂
�
t �H�F �t )u

�
it = Op�(�

�2);
in probability.

Condition A2. Under Assumptions 1-6 and Conditions 1 and BT1 the following con-
ditions on the contemporaneous coe�cient matrix estimate in Procedures A and B hold:

a. Ŝ� �H�Ŝ
p�! 0, in probability, as N; T !1;

b. Ŝ�� � Ŝ
p�! 0, in probability, as N; T !1:

Lemma A1. Under Assumptions 1-3 and Conditions BT1 and BT2, H�0H� p�! Ir; in
probability, as N; T !1.

Proof of Lemma A1: First,

F̂ �0F �=T = (F̂ � � F �H�0)0F �=T +H�F �0F �=T;

then,
H�0 = H�0 �H�0F �0F �=T + F̂ �0F �=T � (F̂ � � F �H�0)0F �=T: (A.5)

Right multiplying (A.5) by H� will yield:

H�0H� = [H�0H� �H�0(F �0F �=T )H�] + F̂ �0F̂ �=T

+F̂ �0(F �H�0 � F̂ �)=T � (F̂ � � F �H�0)0F �H�=T;

= I + II + III + IV:

Since F �0F �

T

p�! F̂ 0F̂
T
= Ir, in probability, I = op�(1), II = Ir by construction, and III; IV =

Op�(�
�2) by Conditions A1(b) and A1(c).

Proof of Theorem 3: I equivalently show that
p
T ('̂ih � 'ih)

d! N(0;�'ih) andp
T ('̂�ih� '̂ih)

d�! N(0;�'ih); in probability, as N; T !1 and
p
T=N ! 0. In the �rst step,

I con�rm that '̂�ih� '̂ih = op�(1); in probability, by showing it for the individual parameters

�si and �
s. In the second step, I show that the asymptotic variance for

p
T ('̂�ih � '̂ih)

converges to that of
p
T ('̂ih � 'ih); in probability.

First step: let "� = Ŝ� �H�Ŝ = op�(1) by Condition A2(a) and this implies �
� = op�(1).

For �si ,

�̂
s�
i � �̂

s

i = T�1Ŝ�0H�0H�F �0u�i + "�0H�0�1�̂i + T�1"�0H�F �0u�i

+T�1Ŝ�0F̂ �0(F � � F̂ �H�0�1)�̂i + T�1Ŝ�0(F̂ � � F �H�0)0u�i ; (A.6)

= I + II + III + IV + V:
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Note that I have the same expression as (A.2) after replacing the original parameters, factors,
rotation, and errors with their bootstrap counterparts. Hence I = Op�(T

�1=2) by Condition
BT1(i), II = op�(1) under Condition A2(a), III = Op�(T

�1=2) by Condition BT1(i) and
A2(a), IV; V = Op�(�

�2) by Condition A1(c) and A1(e), in probability. Hence the RHS of
(A.6) is op�(1), in probability, as N; T !1. For �s; it follows that:

�̂s� � �̂s = (Ip 
 Ŝ 0H�0)(T�1Ẑ�0Ẑ�)�1
�
T�1(Ip 
H��Z�0e�Ŝ 0�1)

+(Ip 
 Ŝ 0)
h
�̂H�0 + (T�1Ẑ�0Ẑ�)�1(Ip 
H�)Z�0e�H�0

i
��

+(Ip 
 "�0)[(Ip 
H�0�1)�̂ + (T�1Ẑ�0Ẑ�)�1T�1(Ip 
H�)Z�0e�]Ŝ 0�1

+(Ip 
 "�0)
h
(Ip 
H�0�1)�̂ + (T�1Ẑ�0Ẑ�)�1T�1(Ip 
H�)Z�0e�H�0

i
��

+Op�(�
�2); (A.7)

= I + II + III + IV +Op�(�
�2)

in probability, under Condition A1. Now (A.7) is analogous to (A.4). It is similarly shown
that I = op�(T

�1=2) and II; III; IV are all op�(1), in probability, under Conditions A1

and A2. Hence �̂s� � �̂s = op�(1), in probability. This two facts imply '̂
�
ih � '̂ih

p�! 0, in
probability, as N; T !1.
The second step involves the limit distributions. I hypothetically consider the "rotation-

adjusted" version of the reduced-form parameter estimates induced by H� in the bootstrap

space. Speci�cally, the rotation-adjusted estimates of �̂
�
i is H

�0�̂
�
i and that of �̂

� is (Ip 

H�0)�̂�H�0�1 and that of Ŝ is H��1Ŝ. Note that given the fact that the structural IRF is
identi�ed, all H�s are eventually cancelled out in the structural IRF estimate.
For �i; I construct a bootstrap analogue of (A.1) left-multiplied by H

�0 and scaled byp
T :

p
T (H�0�̂

�
i �H�0H�0�1�̂i)

= T�1=2H�0H�F �0u�i + T�1=2H�0F̂ �0(F � � F̂ �H�0�1)�̂i + T�1=2H�0(F̂ � � F �H�0)0u�i ;

= T�1=2H�0H�F �0u�i +Op�(T
1=2��2) +Op�(T

1=2��2); (A.8)

in probability, under Conditions A1(c) and A1(e), so that:

p
T (H�0�̂

�
i � �̂i)

d�! N(0; Q�10�iQ
�1);

in probability, as N; T ! 1 and
p
T=N ! 0 under Condition BT1(i) and BT1(j) and

Lemma A1. For �, constructing a bootstrap analogue of (A.3) left-multiplied by (Ip
H�0),
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righ-multiplied by H�0�1 and scaled by
p
T gives

p
T [(Ip 
H�0)�̂�H�0�1 � (Ip 
H�0H�0�1)�̂H�0H�0�1]

= T�1=2(Ip 
H�0)
�
T�1Ẑ�0Ẑ�

��1
[Z�(Ip 
H�0)]

0
e�H�0H�0�1

+T�1=2(Ip 
H�0)
�
T�1Ẑ�0Ẑ�

��1 h
Ẑ� � Z�(Ip 
H�0)

i0
e�H�0H�0�1

+T�1=2(Ip 
H�0)
�
T�1Ẑ�0Ẑ�

��1
Ẑ�0(Z�(Ip 
H�0)� Ẑ�)(Ip 
H�0�1)�̂H�0H�0�1

+T�1=2(Ip 
H�0)
�
T�1Ẑ�0Ẑ�

��1
Ẑ�0(F̂ � � F �H�0)H�0�1;

= T�1=2(Ip 
H�0)
�
T�1Ẑ�0Ẑ�

��1
[Z�(Ip 
H�0)]

0
e�

+Op�(�
�1) +Op�(T

1=2��2) +Op�(T
1=2��2);

in probability, under Conditions A1(c) and A1(d). Since

T�1Ẑ�0Ẑ� = T�1[Z�(Ip 
H�0)]0Z�(Ip 
H�0)

+T�1
h
Ẑ� � Z�(Ip 
H�0)

i0
Z�(Ip 
H�0)

+T�1 [Z�(Ip 
H�0)]
0
h
Ẑ� � (Ip 
H�0)Z�

i
;

= T�1(Ip 
H�)Z�0Z�(Ip 
H�0) +Op�(T
1=2��2);

in probability, I obtain

p
T
h
(Ip 
H�0)�̂�H�0�1 � �̂

i
;

= T�1=2(Ip 
H�0)(Ip 
H�)(Z�0Z�=T )(Ip 
H�0)(Ip 
H�)Z�0e� +Op�(T
1=2��2) +Op�(�

�2);

=
�
T�1Z�0Z�

��1
T�1=2Z�0e� +Op�(T

1=2��2) +Op�(�
�2);

in probability, using Lemma A1. Hence,

p
Tvec

h
(Ip 
H�0)�̂�H�0�1 � �̂

i
d�! N(0; [Ir 
 ��1Z�]0��[Ir 
 ��1Z�]);

with �Z� = p limZ�0Z�=T as N; T ! 1 and
p
T=N ! 0 under Condition BT2(d) and

BT2(e). Since

�Z�
p! (Ip 
Q�10)�Z(Ip 
Q�1);

in probability, and the probability limit of �� is given in Condition BT2(e),

p
Tvec

h
(Ip 
H�0)�̂�H�0�1 � �̂

i
d�! N(0; [(Ip 
Q�10)�Z(Ip 
Q�1)]�1

�
�
(Ip 
Q�10)�Z(Ip 
Q�1)]
 [Q�10�eQ�1

�
�[(Ip 
Q�10)�Z(Ip 
Q�1)]�10);
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in probability. Finally, for S, the rotation adjusted version of Ŝ� isH��1Ŝ� and
p
Tvec(H��1Ŝ��

Ŝ)
d�! N(0;�S), in probability from Condition BT3(a).
For the original estimate, it is straightforward to show from (A.1), (A.3) and Condition

2 that:
p
T (�̂i �H 0�1�i)

d! N(0; Q�10�iQ
�1);

p
Tvec

h
�̂� (Ip 
H 0�1)�̂H 0

i
d! N(0; [(Ip 
Q�10)�Z(Ip 
Q�1)]�1

�[(Ip 
Q�10)�Z(Ip 
Q�1)]
 [Q�10�eQ�1]
�[(Ip 
Q�10)�Z(Ip 
Q�1)]�10);
p
Tvec(Ŝ �HS)

d! N(0;�S):

Proof of Theorem 4: With Procedure B, H� does not show up. Hence, I do not
need to introduce the rotation-adjusted parameter estimates. In addition, expansions of the
bootstrap parameter estimates will have fewer terms in the absence of the factor estimation
errors. For �si ;

�̂
s��
i � �̂

s

i = T�1Ŝ 0F �0u�i + "��0�̂i + T�1"��0F �0u�i = I + II + III: (A.9)

I = Op�(T
�1=2) under Condition BT1(i) and II; III = op�(1), in probability, under Condition

A2(b). For �s;

�̂s�� � �̂s = (Ip 
 Ŝ)(Z�0Z�)�1(Z�0e�Ŝ�1)

+(Ip 
 Ŝ)
h
�̂ + (Z�0Z�)�1Z�0e�

i
��

+(Ip 
 "�)[�̂ + (Z�0Z�)�1Z�0e�]Ŝ�1

+(Ip 
 "�)
h
�̂ + (T�1Z�0Z�)�1T�1Z�0e�

i
��

p�! 0;

in probability, under Condition BT2(d) and Condition A2(b). Next, consider the asymptotic
distributions. For �i;

p
T (�̂

��
i � �̂i) = T�1=2F �u�i

d�! N(0; Q�10�iQ
�1);

in probability, as N; T !1 by Condition BT1(i) and BT1(j). For �, since

�̂�� � �̂ = (Z�0Z�=T )�1(Z�0e�=T );

I obtain:
p
Tvec(�̂�� � �̂) d�! N(0; [(Ip 
Q�10)�Z(Ip 
Q�1)]�1

�
�
(Ip 
Q�10)�Z(Ip 
Q�1)]
 [Q�10�eQ�1

�
� [(Ip 
Q�10)�Z(Ip 
Q�1)]�10);
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in probability, as N; T ! 1, follows the proof of Theorem 3. Finally, Condition BT3(b)

guarantees
p
Tvec(Ŝ�� � Ŝ)

d�! N(0;�S); in probability, as N; T !1:

Appendix B: Proof of Conditions 1 and A2

Lemma B1. Under Assumptions 1{3, ê
0ê
T
�Q�10�eQ

�1 = Op(�
�2).

Proof of Lemma B1: First I expand the residuals ê.

ê = F̂ � Ẑ�̂ = F̂ � Ẑ�̂

= FH 0 + (F̂ � FH 0)� Ẑ�̂

= eH 0 + Z�H 0 + (F � FH 0)� Ẑ�̂

= eH 0 + (F̂ � FH 0) +
h
Z(Ip 
H 0)� Ẑ

i
(Ip 
H 0�1)�H 0

+Ẑ
h
(Ip 
H 0�1)�H 0 � �̂

i
: (A.10)

Then,

ê0ê

T
= H

e0e

T
H 0 +

1

T
(F̂ � FH 0)0(F̂ � FH 0)

+H�0(Ip 
H 0�1)0
1

T

h
(Z(Ip 
H 0)� Ẑ)0(Z(Ip 
H 0)� Ẑ)

i
(Ip 
H 0�1)�H 0

+
h
(Ip 
H 0�1)�H 0 � �̂

i0 1
T
Ẑ 0Ẑ

h
(Ip 
H 0�1)�H 0 � �̂

i
= H

e0e

T
H 0 + I + II + III + cross terms (A.11)

Using Cauchy-Schwartz inequality, I � Op(�
�2) and II � Op(�

�2). Also, III = Op(T
�1).
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The cross terms are C + C 0 where

C = He0(F̂ � FH 0)=T| {z }
Op
�

1p
T�

�
+H

�
e0
h
Z(Ip 
H 0)� Ẑ

i
=T
�

| {z }
Op
�

1p
T�

�
(Ip 
H 0�1)�H 0

+H
�
e0Ẑ=T

�
| {z }
Op(T 1=2�

�2)

h
(Ip 
H 0�1)�H 0 � �̂

i
| {z }

Op(T�1=2)| {z }
Op(�

�2)

+
�
(F̂ � FH 0)0

h
Z(Ip 
H 0)� Ẑ

i
=T
�

| {z }
Op(�

�2)

(Ip 
H 0�1)�H 0

+
h
(F̂ � FH 0)Ẑ=T

i
| {z }

Op(�
�2)

h
(Ip 
H 0�1)�H 0 � �̂

i
| {z }

Op(T�1=2)

+H�0(Ip 
H 0�1)0
�h
Z(Ip 
H 0)� Ẑ

i0
Ẑ=T

�
| {z }

<Op(�
�2)

h
(Ip 
H 0�1)�H 0 � �̂

i

hence C = Op(�
�2) using Lemma A1 in Bai and Ng (2006b).

� Proof of Condition 1:

{ ID1: Using the notation �1:r =  1:r;0, the part inside the Cholesky factorization
in the step 1 becomes

�̂1:r(ê
0ê=T )�̂01:r = �̂1:rHSS

0H 0�̂01:r + �̂1:r (ê
0ê=T �HSS 0H 0) �̂01:r;

= �1:rH
�1HSS 0H 0H 0�1�01:r �

h
�̂1:r � �1:rH�1

i
HSS 0H 0

h
�̂1:r � �1:rH�1

i0
��̂1:rHSS 0H 0

h
�̂1:r � �1:rH�1

i0
�
h
�̂1:r � �1:rH�1

i
HSS 0H 0�̂01:r

+�̂1:r (ê
0ê=T �HSS 0H 0) �̂01:r;

= �1:rSS
0�01:r + I + II + III + IV: (A.12)

Since �̂1:r � �1:rH�1 = Op(T
�1=2), I = Op(T

�1) and II; III = Op(T
�1=2). For

IV;

ê0ê=T �HSS 0H 0 = ê0ê=T �H(e0e=T )H 0| {z }
!Op(��2) by LemmaB1

+H(e0e=T )H 0 �HSS 0H 0| {z };
!0 by Assumption 5
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hence I obtain �̂1:r(ê
0ê=T )�̂01:r

p! �s1:r�
s0
1:r. Since �

s
1:r is a triangular matrix with

positive diagonal elements by Assumption 6(a)

Ŝ �HS = �̂�11:r|{z}
!Q�10��11:r

Chol
h
�̂1:r(ê

0ê=T )�̂01:r

i
| {z }

!�1:rS

� HS|{z}
!Q�10S

p! 0:

{ ID2: I exactly follow ID1 by replacing the short-run IRF with the long-run IRF.
As '̂1:r;1 � '1:r;1 = Op(T

�1=2) is straightforward from Theorem 1, the entire
discussion for ID1 goes through.

{ ID3: I �rst show that Assumption 6(c)' implies Assumption 6(c). To this end, I
show that under Assumptions 6(c)'.1 and 6(c)'.2, Q�1 becomes a diagonal matrix.
Combining this fact and S being triangular by Assumption 6(c)'.3 will yield the
result. The proof is similar to Bai and Ng (2010)'s PC1 condition. I start with:

F̂ 0F=T = (F̂ � FH 0)0F +HF 0F=T = HF 0F=T +Op(�
�2):

De�ne HF = (F
0F=T )H. From the de�nition of H in (7),

H = V �1
NT (F̂

0F=T )(�0�=N) = V �1
NTH

0
F (�

0�=N) +Op(�
�2);

so that multiplying F 0F=T on both side will give:

HF = V �1
NTH

0
F (�

0�=N)(F 0F=T ) +Op(�
�2):

Multiplying VNT on each side and taking the transpose:

(F 0F=T )(�0�=N)HF = HFVNT +Op(�
�2):

Denote Q�1F = �FQ
�1: In the limit,

�F��Q
�1
F = Q�1F V;

with V � p lim
N;T!1

VNT . This equation suggests that Q
�1
F is a matrix consisting of

eigenvectors of �F��. Since �F�� is diagonal by Assumptions 6(c)'.1 and 6(c)'.2
and it has distinct eigenvalues by Assumption 1(c), each eigenvalue is associated
with a unique eigenvector and each eigenvector has a single nonzero element. This
implies that Q�1F is diagonal. Now since �F is diagonal and so is Q

�1
F as shown

above, Q�1 = �FQ
�1
F is a diagonal matrix. Finally, it is straightforward to obtain:

Ŝ �HS = Chol (ê0ê=T )| {z }
!Q�10SS0Q�1| {z }
!Q�10S

� HS|{z}
!Q�10S

p! 0;

by triangularity of Q�10S and the sign restriction.
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� Proof of Conditions A2:
The proof requires two steps. Step 1 shows that the identifying restrictions hold in
the bootstrap space, i.e. the same restrictions are relevant in the limits of the original
estimates. Step 2 con�rms all the convergence results which are used to prove Condition
1 hold in the bootstrap space.

{ ID1 and ID2:

� Step 1 is trivial since all the identifying restrictions are on structural IRFs
which are consistently estimated by the original estimates. Hence the restric-
tions on '0;1:r carry over to the limit of '̂0;1:r, in probability.

� Step 2 (Procedure A): The goal is to show:

�̂�1:r(ê
�0ê�=T )�̂�01:r

p�! �̂s1:r�̂
s0
1:r;

in probability. Given the fact that I have the same expansion as (A.12)
with the bootstrap counterpart, I = Op�(T

�1), II, III = Op�(T
�1=2) since

�̂�1:r � �̂1:rH��1 = Op�(T
�1=2): I also have

ê�0ê�=T �H�(e�0e�=T )H�0 = Op�(T
�1=2);

by the same argument of Lemma B1 using Condition A1. Finally,

H�(e�0e�=T )H�0 �H�ŜŜ 0H�0 p�! 0;

in probability, is shown by using e�0e�

T

p�! ê0ê
T
and the fact both ê0ê=T �

Q�10SS 0Q�1 = Op(�
�2) by Lemma B1 and ŜŜ 0 � Q�10SS 0Q�1

p! 0 by Con-
dition 1 yield

ê0ê=T � ŜŜ 0
p! 0: (A.13)

Hence,

Ŝ� �H�0Ŝ = �̂��11:r|{z}
!Q��10�̂�11:r

Chol
h
�̂�1:r(ê

�0ê�=T )�̂�01:r

i
| {z }

!�̂1:rŜ

� H�0Ŝ| {z }
!Q��10Ŝ

p�! 0;

in probability.

� Step 2 (Procedure B): I need to show �̂��1:r(ê��0ê��=T )�̂��01:r
p�! �̂s1:r�̂

s0
1:r. Since

�̂��1:r and ê
�� are simple least square estimates of �̂1:r and e

�, �̂��1:r � �̂1:r =
Op�(T

�1=2). Also,

ê��0ê��=T � e�0e�=T
p�! 0;

in probability, or

ê��0ê��=T � ê0ê=T
p�! 0; (A.14)
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in probability. It is suggested by (A.13) and (A.14) that:

Ŝ�� � Ŝ = �̂���11:r| {z }
!�̂�11:r

Chol
h
�̂��1:r(ê

��0ê��=T )�̂��01:r

i
| {z }

!�̂1:rŜ

� Ŝ
p�! 0;

in probability. Note that the same discussion goes through with ID2 case
with replacing the short-run IRFs with long-run IRFs.

{ ID3:

� Step 1 is not as trivial as the previous cases since the restrictions of Assump-
tion 6(c) are on reduced-form parameters. However, I show that the same
restrictions on the original estimates hold in the bootstrap world incidentally.
That is, I show that the following conditions analogous to Assumption 6(c)'
hold:
1. F �0F �=T

p�! Ir, in probability;

2. �̂0�̂=N is a diagonal matrix;

3. Ŝ is an (upper or) lower triangular matrix and the signs of diagonal

elements of Q��10Ŝ are known.
1. is trivial since:

F �0F �=T
p�! F̂ 0F̂ =T = Ir:

2. is also trivial since �̂0�̂=N = VNT by construction of the principal com-

ponents and VNT is a diagonal matrix. Triangularity of Ŝ in 3. is because
Ŝ = Chol

�
ê0ê
T

�
. The signs are deduced in bootstrap replications through the

signs of structural IRF estimates as in the original estimates. Hence Assump-
tion 6(c) holds in the bootstrap space. This will give the fact that Q��10Ŝ is
a triangular matrix and the signs of its diagonal matrix are known.

� Step 2 (Procedure A): I have:

Ŝ� �H�0Ŝ = Chol (ê�0ê�=T )| {z }
!Q��10ŜŜ0Q��1| {z }
Q��10Ŝ

� H�0Ŝ| {z }
!Q��10Ŝ

p�! 0;

in probability.

� Step 2 (Procedure B): I use (A.13) and (A.14) to get:

Ŝ�� � Ŝ = Chol(ê��0ê��=T )| {z }
!ŜŜ0| {z }
Ŝ

� Ŝ
p�! 0;

in probability.
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Appendix C: A Discussion on Conditions 2 and BT3

This appendix provides a discussion about the relevance of Conditions 2 and BT3. I also

consider the e�ects of the identi�cation schemes on the distribution of Ŝ. First, I provide a
more primitive condition of Condition 2:

Condition C1. Let �̂ = vec
�
ê0ê
T

�
and � = vec (Q�10SS 0Q�1). Then,

p
T (�̂ � �)! N(0;��);

as N; T !1 and
p
T=N ! 0.

This condition in conventional structural VARs is proven in L�utkepohl (2005) based on
the assumption of Gaussian VAR errors with the Cholesky identi�cation. If I simply apply
this results in our model, the explicit form of �� is given by:

�� = 2
�
(Q�10SS 0Q�1)�1 
 (Q�10SS 0Q�1)�1

��1
:

The di�erence in our context is that our ê involves factor estimation errors, however, as
in Lemma B1, it is shown that the terms associated with factor estimation errors are at
most Op(

p
T��2) and negligible under

p
T=N ! 0. I next need a bootstrap counterpart of

Condition C1.

Condition C1-BT.
a. Let �̂� = vec

�
H��1 ê�0ê�

T
H�0�1� and e� = vec

�
ŜŜ 0

�
. Then,

p
T���1=2� (�̂� � e�)! N(0; Ir2);

in probability, as N; T !1 and
p
T=N ! 0. Moreover, p lim(���) = ��.

b. Let �̂�� = vec
�
ê��0ê��

T

�
. Then,

p
T���1=2� (�̂� � e�)! N(0; Ir2);

in probability, as N; T !1. Moreover, p lim(���� ) = ��.

The probability limits of ��� and �
��
� are similarly derived as:

p lim 2
h
(ŜŜ 0)�1 
 (ŜŜ 0)�1

i�1
= 2

�
(Q�10SS 0Q�1)�1 
 (Q�10SS 0Q�1)�1

��1
;

so that the stated conditions are valid. Conditions C1-BT(a) and C1-BT(b) correspond to
Conditions BT3(a) and BT3(b) respectively. Hence given that Conditions C1 and C1-BT
hold, Conditions 2 and BT3 are straightforward if a simple Choleskey identi�cation (ID3)
is used (See L�utkepohl, 2005, Proposition C15(3)). In this case, a particular form of �S is
given by:

�S = G��G
0;

35



with
G = [(Ir2 +Kr2r2)(S 
 Ir)]

�1;

where Kmn is a commutation matrix such that vec(A
0) = Kmnvec(A) for an m�n matrix A

in general. When ID1 or ID2 schemes are used, Ŝ involves the short-run or long-run reduced-
form IRF estimates. However, if the following conditions hold, the asymptotic distributions
of Ŝ estimated based on ID1 and ID2 are identical to that of ID3.

Condition C2. Let  and S be r� r �xed matrices respectively and the multiplication
 S is a lower triangular matrix with positive diagonal elements. Then Chol( ̂ŜŜ 0 ̂

0
) and

 ̂Ŝ scaled by
p
T have the same limit distribution as N; T !1 and

p
T=N ! 0.

Note that  is interpreted as the short-run or long-run reduced-form IRFs. The bootstrap
counterparts of Condition C2 are given the following Condition C2-BT.

Condition C2-BT.
a. The bootstrap estimates Chol( ̂

�
Ŝ�Ŝ�0 ̂

�0
) and  ̂

�
Ŝ� have the same limit distribution

in probability as N; T !1 and
p
T=N ! 0:

b. The bootstrap estimates Chol( ̂
��
Ŝ��Ŝ��0 ̂

��0
) and  ̂

��
Ŝ�� have the same limit distri-

bution in probability as N; T !1:

In the bootstrap space, these are straightforward conditions. For part a,  ̂
�
Ŝ� is a

consistent estimate for  ̂Ŝ since the object is structural (without rotations). For part b,

construction of  ̂
��
Ŝ�� does not involve any factor estimations thus rotations. There are a few

remarks regarding this condition. First  is used as a catalyzer only to make the argument
in the Choleskey operator a lower triangular matrix, which is guaranteed by Assumptions

6(a) or 6(b). The common idea of ID1 and ID2 is to obtain Ŝ such that Ŝ =  ̂
�1
 ̂Ŝ given

 ̂ is invertible. Second, since  ̂Ŝ is not exactly triangular in its estimate, the �nite sample
distributions can be contaminated. This e�ects on the �nite sample coverage ratios are
investigated in Monte Carlo simulations in Section 5.

Appendix D: Bias-correction in the bootstrap procedures

For the simulation studies presented in this paper, I applied the following bias-correction
procedure in the spirit of Kilian (1998), for the VAR parameter �. The important di�erence

for our setup from Kilian (1998) is to estimate the bias by using �̂�j � H��̂jH
��1 instead

of �̂�j � �̂j (j = 1; :::; p) in Procedure A. For Procedure B, the bias is simply �̂��j � �̂j.
This estimation should be straightforward to implement given the asymptotic results for the
two-step PC estimates described in the main text.
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1. In Procedure A, estimate the model and generate Rb bootstrap replications �̂
�;k,

k = 1; 2; � � � ; Rb. Then approximate the bias Bj = E(�̂�j � H��̂jH
��1) by Bb

j =

1
Rb

RbP
k=1

(�̂�;ibj �H��̂jH
��1) where H� is estimated by regressing F̂ �t on F

�
t . In Procedure

B, the bias is Bb
j =

1
Rb

RbP
k=1

(�̂��;ibj � �̂j).

2. Calculate the modulus of the largest eigenvalues of the companion matrix:26666664
�̂1 �Bb

1 � � � �̂p�1 �Bb
p�1 �̂p �Bb

p

Ik 0 0 0

0
. . . 0 0

0 0 Ik 0

37777775 ;

and if it is less than 1, construct the bias-corrected coe�cient estimate e� = �̂�Bb. If

not, let e� = �̂. This will preserve the stationarity of the generated process.
3. Generate the bias-corrected bootstrap replications for the IRFs by using �̂, e�, êt, and
ût.
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Table 1-a. Coverage properties of impulse response functions

(Gaussian errors, 95% level)
ID1: short­run restriction

Coverage Ratio (%) Length of C.I. (Median)
T N h =0 1 2 3 4 5 h =0 1 2 3 4 5
40 50 94.3 95.2 95.6 95.8 95.7 94.5 9.06 5.87 3.60 2.29 1.51 1.04
40 200 94.6 95.8 95.7 95.8 95.3 95.1 8.98 5.87 3.69 2.41 1.62 1.15

120 50 94.4 95.3 95.7 95.4 94.5 93.4 5.08 2.63 1.64 1.02 0.65 0.42
120 200 92.9 95.9 97.2 97.1 96.6 95.6 3.41 2.09 1.43 0.93 0.61 0.41
40 50 92.4 95.2 95.8 94.4 92.7 91.2 4.36 3.03 1.89 1.31 0.91 0.69
40 200 92.6 94.2 94.6 94.9 93.8 93.3 5.00 3.15 2.00 1.38 0.97 0.72

120 50 82.3 91.9 95.5 96.1 95.5 93.2 1.78 1.09 0.77 0.55 0.38 0.28
120 200 88.4 92.8 95.7 96.3 95.6 94.4 2.08 1.37 0.97 0.68 0.48 0.33
40 50 45.8 66.0 75.6 75.8 75.2 72.6 0.81 0.65 0.49 0.34 0.23 0.15
40 200 52.9 66.0 75.9 77.9 77.3 74.9 0.84 0.67 0.50 0.36 0.25 0.16

120 50 30.0 44.6 60.6 71.1 75.5 79.4 0.46 0.37 0.30 0.22 0.16 0.11
120 200 34.3 44.3 57.4 66.9 73.7 77.9 0.49 0.39 0.32 0.24 0.17 0.12

ID2: long­run restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h =0 1 2 3 4 5 h =0 1 2 3 4 5
40 50 95.7 95.8 95.7 95.2 94.4 93.5 19.13 8.74 5.06 3.53 2.37 1.73
40 200 94.8 95.0 95.1 95.5 94.9 94.1 16.42 7.72 4.69 3.18 2.17 1.58

120 50 94.9 95.8 96.2 95.9 95.1 94.5 8.52 3.33 2.02 1.22 0.80 0.53
120 200 94.8 96.3 96.9 96.7 96.3 95.0 6.06 2.59 1.80 1.17 0.80 0.54
40 50 97.2 96.4 95.2 94.1 92.4 91.6 10.48 3.52 1.80 1.19 0.86 0.64
40 200 96.9 96.5 94.9 95.1 93.0 92.5 10.32 3.36 1.88 1.29 0.95 0.70

120 50 95.4 91.6 93.5 94.6 94.2 92.7 3.76 1.14 0.78 0.55 0.38 0.28
120 200 97.0 93.6 95.2 95.3 94.8 93.8 4.26 1.34 0.91 0.65 0.45 0.32
40 50 63.4 90.3 89.9 87.1 83.9 80.6 1.98 1.29 0.87 0.58 0.38 0.24
40 200 65.3 92.2 92.8 90.0 86.3 83.0 1.88 1.23 0.85 0.58 0.37 0.24

120 50 48.7 72.5 84.1 86.9 88.8 88.7 1.08 0.74 0.52 0.37 0.25 0.17
120 200 53.7 75.6 84.5 87.7 89.0 88.7 1.14 0.76 0.54 0.38 0.26 0.18

ID3: contemporaneous restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h =0 1 2 3 4 5 h =0 1 2 3 4 5
40 50 89.2 95.6 92.4 93.8 94.2 94.5 1.08 1.19 0.89 0.64 0.45 0.32
40 200 89.7 95.5 92.6 94.9 95.3 96.4 1.08 1.23 0.90 0.66 0.47 0.34

120 50 90.3 96.9 95.1 92.9 92.6 93.1 0.68 0.73 0.54 0.34 0.20 0.12
120 200 91.8 97.3 94.1 93.0 92.5 93.0 0.67 0.71 0.52 0.33 0.20 0.12
40 50 82.7 89.4 88.9 94.2 95.4 96.0 0.74 1.01 0.77 0.55 0.39 0.28
40 200 82.9 89.3 87.5 93.1 95.2 96.2 0.75 1.04 0.75 0.55 0.41 0.29

120 50 83.7 90.4 90.2 90.7 91.3 93.2 0.46 0.62 0.46 0.29 0.18 0.10
120 200 85.6 91.9 90.5 91.3 92.8 93.4 0.45 0.59 0.44 0.28 0.17 0.10
40 50 94.9 93.3 89.7 88.8 87.9 87.0 1.07 1.09 0.69 0.38 0.21 0.11
40 200 94.9 92.8 88.9 87.6 86.9 86.1 1.09 1.11 0.70 0.39 0.21 0.11

120 50 95.0 92.0 91.8 91.4 89.3 89.2 0.63 0.65 0.44 0.25 0.13 0.07
120 200 94.8 94.0 91.7 91.4 90.9 90.1 0.60 0.61 0.43 0.24 0.13 0.07

Pr
oc

. A
Pr

oc
. B

N
or

m
al

Pr
oc

. A
Pr

oc
. B

N
or

m
al

Pr
oc

. A
Pr

oc
. B

N
or

m
al

41



Table 1-b. Coverage properties of impulse response functions

(Gaussian errors, 85% level)
ID1: short­run restriction

Coverage Ratio (%) Length of C.I. (Median)
T N h =0 1 2 3 4 5 h =0 1 2 3 4 5
40 50 79.2 84.6 86.4 85.1 83.1 81.6 3.01 2.01 1.24 0.84 0.58 0.42
40 200 81.5 85.5 85.8 87.2 86.2 83.4 2.88 1.99 1.27 0.88 0.63 0.45

120 50 76.3 82.9 87.0 88.0 87.8 86.2 1.73 1.00 0.67 0.44 0.30 0.20
120 200 76.1 83.7 88.3 90.0 90.0 88.4 1.33 0.93 0.66 0.46 0.31 0.21
40 50 78.0 83.6 85.5 85.4 84.6 82.0 1.68 1.22 0.87 0.64 0.47 0.36
40 200 77.1 84.6 85.7 85.7 84.8 83.3 1.77 1.26 0.88 0.65 0.49 0.36

120 50 64.0 73.3 82.6 87.2 88.1 87.1 0.91 0.61 0.47 0.33 0.24 0.17
120 200 66.4 74.3 82.0 86.3 88.4 88.4 1.02 0.71 0.52 0.38 0.27 0.19
40 50 45.8 66.0 75.6 75.8 75.2 72.6 0.81 0.65 0.49 0.34 0.23 0.15
40 200 52.9 66.0 75.9 77.9 77.3 74.9 0.84 0.67 0.50 0.36 0.25 0.16

120 50 30.0 44.6 60.6 71.1 75.5 79.4 0.46 0.37 0.30 0.22 0.16 0.11
120 200 34.3 44.3 57.4 66.9 73.7 77.9 0.49 0.39 0.32 0.24 0.17 0.12

ID2: long­run restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h =0 1 2 3 4 5 h =0 1 2 3 4 5
40 50 82.5 84.6 84.4 85.5 82.8 81.4 6.07 2.82 1.71 1.21 0.83 0.61
40 200 80.1 84.5 85.1 85.8 83.6 82.8 5.43 2.61 1.62 1.11 0.77 0.56

120 50 80.2 81.9 85.0 87.6 87.1 85.4 3.10 1.26 0.80 0.53 0.34 0.23
120 200 80.4 80.2 87.1 89.2 89.2 88.3 2.51 1.17 0.81 0.54 0.37 0.26
40 50 88.7 85.4 83.8 84.8 81.7 79.9 3.96 1.41 0.79 0.59 0.44 0.32
40 200 88.0 85.6 83.7 83.5 82.0 80.5 3.71 1.30 0.82 0.61 0.45 0.34

120 50 81.4 73.2 78.7 84.3 85.3 85.4 2.00 0.63 0.45 0.33 0.24 0.17
120 200 85.8 75.9 83.1 86.5 88.3 87.5 2.11 0.67 0.50 0.36 0.26 0.18
40 50 48.9 78.1 80.8 79.8 77.4 75.4 1.46 0.95 0.64 0.42 0.28 0.17
40 200 53.7 83.0 85.6 83.8 80.9 77.6 1.38 0.91 0.63 0.42 0.27 0.17

120 50 37.8 60.8 69.9 76.2 79.1 79.0 0.79 0.54 0.38 0.27 0.18 0.12
120 200 40.2 61.3 70.7 76.6 79.4 80.3 0.83 0.56 0.40 0.28 0.19 0.13

ID3: contemporaneous restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h =0 1 2 3 4 5 h =0 1 2 3 4 5
40 50 80.7 86.5 84.2 86.5 87.7 87.4 0.80 0.88 0.64 0.44 0.28 0.19
40 200 80.2 87.2 86.1 88.6 89.3 90.0 0.80 0.91 0.66 0.45 0.30 0.19

120 50 81.5 91.3 89.9 88.5 87.6 87.8 0.51 0.55 0.40 0.24 0.14 0.08
120 200 82.2 91.4 89.9 88.5 87.9 88.1 0.49 0.52 0.39 0.23 0.14 0.08
40 50 72.8 76.7 77.6 83.1 86.5 89.2 0.55 0.75 0.57 0.38 0.25 0.17
40 200 71.1 78.4 78.5 83.5 88.3 91.0 0.56 0.76 0.55 0.39 0.27 0.18

120 50 73.4 78.8 80.3 82.1 83.5 84.7 0.34 0.46 0.34 0.21 0.12 0.07
120 200 75.0 79.9 81.4 82.3 85.0 86.3 0.33 0.43 0.32 0.20 0.12 0.07
40 50 86.2 83.1 80.7 79.6 80.6 81.1 0.78 0.80 0.51 0.28 0.15 0.08
40 200 86.7 83.6 80.7 81.5 81.1 81.1 0.80 0.82 0.51 0.29 0.15 0.08

120 50 83.2 81.9 81.8 82.4 82.0 81.9 0.46 0.48 0.33 0.19 0.10 0.05
120 200 86.5 83.0 83.8 83.0 83.4 83.4 0.44 0.45 0.31 0.18 0.09 0.05
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Table 2-a. Coverage properties of impulse response functions

(chi-squared errors, 95% level)
ID1: short­run restriction

Coverage Ratio (%) Length of C.I. (Median)
T N h =0 1 2 3 4 5 h =0 1 2 3 4 5
40 50 93.0 94.2 94.7 94.7 93.7 93.6 12.08 7.57 4.27 2.66 1.72 1.20
40 200 95.4 95.0 95.1 95.1 94.7 94.5 12.17 8.87 5.26 3.49 2.38 1.66

120 50 95.2 95.2 95.4 95.8 95.7 95.8 11.48 6.82 3.87 2.33 1.42 0.88
120 200 94.5 94.7 94.5 94.8 94.9 95.2 9.04 5.48 3.36 2.01 1.26 0.80
40 50 93.5 94.6 94.4 94.0 92.7 91.4 7.95 4.39 2.58 1.66 1.07 0.79
40 200 95.2 96.3 96.4 96.2 95.5 94.6 7.82 4.33 2.67 1.75 1.21 0.86

120 50 90.4 95.1 96.6 96.8 95.6 94.1 4.17 2.22 1.31 0.84 0.54 0.37
120 200 92.8 95.4 96.5 96.4 95.6 94.9 3.81 2.12 1.35 0.85 0.56 0.38
40 50 62.9 82.7 86.9 85.1 82.6 80.8 1.66 1.15 0.78 0.53 0.36 0.22
40 200 70.0 83.0 87.8 87.4 84.6 82.0 1.55 1.11 0.79 0.54 0.34 0.22

120 50 44.6 65.4 76.5 85.1 88.3 88.2 0.90 0.64 0.48 0.35 0.24 0.16
120 200 50.3 67.0 80.6 87.1 91.2 92.5 0.85 0.62 0.47 0.34 0.24 0.17

ID2: long­run restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h =0 1 2 3 4 5 h =0 1 2 3 4 5
40 50 94.7 94.4 94.6 95.2 95.1 93.9 22.59 9.94 5.48 3.54 2.30 1.58
40 200 93.1 92.7 92.8 93.3 93.6 93.8 24.50 13.41 7.62 5.11 3.52 2.53

120 50 95.5 94.5 94.9 94.9 95.1 95.0 20.48 8.48 4.78 2.90 1.70 1.04
120 200 96.0 96.5 96.2 96.3 96.4 95.8 16.89 6.66 3.90 2.52 1.55 1.01
40 50 96.2 96.1 95.4 94.6 93.7 92.6 14.88 4.79 2.36 1.53 1.01 0.69
40 200 94.6 94.2 94.2 93.8 92.8 92.2 15.34 4.83 2.54 1.66 1.13 0.78

120 50 95.5 94.1 95.7 95.2 93.7 91.1 6.42 2.03 1.08 0.68 0.43 0.29
120 200 97.6 96.7 97.2 96.8 96.0 94.9 6.37 1.95 1.11 0.74 0.50 0.33
40 50 71.6 92.3 92.9 88.9 85.0 82.0 2.73 1.58 1.00 0.66 0.41 0.24
40 200 71.5 92.9 93.7 91.9 89.0 85.1 2.69 1.65 1.11 0.71 0.47 0.29

120 50 55.9 81.3 88.9 92.5 92.2 90.8 1.53 0.93 0.62 0.41 0.27 0.17
120 200 58.0 83.0 88.1 90.3 91.1 90.8 1.44 0.90 0.60 0.42 0.28 0.18

ID3: contemporaneous restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h =0 1 2 3 4 5 h =0 1 2 3 4 5
40 50 86.9 94.1 92.3 94.2 94.9 94.8 1.55 1.31 0.95 0.66 0.45 0.32
40 200 86.6 94.4 92.8 94.9 95.8 96.6 1.49 1.23 0.88 0.61 0.44 0.31

120 50 91.0 96.3 94.0 93.1 93.7 93.3 1.03 0.78 0.53 0.33 0.20 0.12
120 200 92.3 96.5 95.7 95.0 94.3 94.5 1.05 0.81 0.57 0.35 0.21 0.13
40 50 82.7 89.1 89.4 93.9 95.0 95.9 1.17 1.11 0.80 0.57 0.40 0.29
40 200 81.7 89.5 89.8 94.1 96.3 97.5 1.15 1.06 0.76 0.55 0.40 0.28

120 50 86.7 89.7 88.1 89.2 90.7 92.7 0.81 0.67 0.47 0.30 0.18 0.10
120 200 88.4 92.1 91.0 91.8 92.8 94.2 0.78 0.67 0.49 0.31 0.19 0.11
40 50 87.8 91.4 89.9 88.1 87.6 87.2 1.25 1.15 0.72 0.40 0.21 0.11
40 200 87.1 91.4 89.5 89.0 87.8 86.5 1.19 1.09 0.68 0.38 0.20 0.11

120 50 87.1 89.9 89.6 89.0 89.0 88.6 0.70 0.65 0.44 0.25 0.13 0.06
120 200 85.6 92.7 93.0 91.7 91.4 91.8 0.70 0.65 0.47 0.27 0.14 0.07
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Table 2-b. Coverage properties of impulse response functions

(chi-squared errors, 85% level)
ID1: short­run restriction

Coverage Ratio (%) Length of C.I. (Median)
T N h =0 1 2 3 4 5 h =0 1 2 3 4 5
40 50 76.5 82.0 81.9 82.4 80.5 79.1 3.97 2.45 1.41 0.94 0.61 0.42
40 200 80.0 83.9 83.6 82.4 81.2 80.5 3.97 2.92 1.76 1.20 0.82 0.58

120 50 79.0 82.2 83.8 85.0 85.0 83.3 3.78 2.24 1.30 0.81 0.51 0.33
120 200 80.8 83.9 84.2 85.1 85.1 84.9 2.97 1.84 1.13 0.70 0.44 0.30
40 50 76.7 82.2 84.0 83.0 80.9 78.8 2.71 1.59 0.97 0.68 0.47 0.35
40 200 80.7 84.9 84.3 84.7 81.6 80.7 2.60 1.57 1.02 0.73 0.51 0.36

120 50 70.8 77.7 83.9 87.2 86.8 84.8 1.62 0.91 0.60 0.42 0.29 0.19
120 200 75.9 81.7 86.2 88.0 88.3 87.6 1.48 0.89 0.60 0.41 0.28 0.20
40 50 48.8 67.6 75.9 75.4 75.5 74.1 1.22 0.84 0.58 0.39 0.26 0.16
40 200 56.8 70.5 74.9 76.7 76.8 75.2 1.14 0.81 0.58 0.40 0.25 0.16

120 50 35.0 51.9 63.4 72.1 76.6 78.3 0.66 0.47 0.36 0.25 0.18 0.12
120 200 38.9 53.8 66.8 75.6 80.3 83.2 0.63 0.46 0.35 0.25 0.18 0.12

ID2: long­run restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h =0 1 2 3 4 5 h =0 1 2 3 4 5
40 50 81.7 83.1 82.1 82.0 80.6 80.4 7.24 3.23 1.76 1.17 0.77 0.54
40 200 81.7 80.3 81.0 80.8 80.5 79.0 7.60 4.28 2.51 1.71 1.16 0.84

120 50 83.5 82.1 83.3 83.6 82.9 81.9 6.60 2.72 1.58 0.93 0.57 0.35
120 200 85.8 86.1 86.9 87.5 87.2 86.2 5.35 2.22 1.33 0.83 0.53 0.35
40 50 87.4 84.6 82.0 81.5 77.9 77.8 5.07 1.71 0.92 0.63 0.42 0.29
40 200 85.2 82.6 79.2 80.9 79.8 78.0 5.10 1.70 0.97 0.67 0.46 0.34

120 50 81.8 81.0 83.6 84.8 84.3 81.9 2.61 0.86 0.50 0.34 0.23 0.16
120 200 87.3 82.2 85.5 86.9 86.9 85.0 2.68 0.82 0.53 0.36 0.26 0.18
40 50 58.0 82.9 85.8 82.6 79.7 77.0 2.01 1.16 0.73 0.49 0.30 0.18
40 200 58.5 84.5 87.1 86.6 83.8 79.1 1.97 1.21 0.81 0.52 0.34 0.21

120 50 42.6 69.7 78.2 82.7 85.5 84.2 1.13 0.69 0.45 0.30 0.20 0.13
120 200 44.6 69.3 77.0 80.3 81.8 82.5 1.06 0.66 0.44 0.31 0.21 0.13

ID3: contemporaneous restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h =0 1 2 3 4 5 h =0 1 2 3 4 5
40 50 77.0 86.3 85.7 86.2 86.5 86.7 1.14 0.97 0.66 0.43 0.28 0.18
40 200 77.9 85.0 84.0 85.6 86.6 88.0 1.10 0.90 0.61 0.41 0.27 0.17

120 50 82.3 89.2 87.5 86.9 87.4 86.9 0.75 0.58 0.38 0.23 0.13 0.07
120 200 83.9 91.3 90.0 89.9 90.1 89.9 0.76 0.59 0.41 0.25 0.14 0.08
40 50 70.2 76.3 75.8 82.1 87.3 89.8 0.87 0.82 0.57 0.37 0.25 0.17
40 200 72.3 76.1 76.9 83.8 87.5 89.7 0.85 0.77 0.55 0.37 0.25 0.16

120 50 77.5 79.2 79.3 80.2 82.0 84.6 0.59 0.49 0.34 0.21 0.12 0.06
120 200 80.2 83.3 82.0 84.3 86.2 86.9 0.58 0.49 0.36 0.22 0.13 0.07
40 50 76.5 79.2 79.2 79.7 79.8 81.1 0.92 0.85 0.53 0.29 0.16 0.08
40 200 76.7 79.9 79.8 80.7 81.1 81.8 0.88 0.80 0.50 0.28 0.15 0.08

120 50 73.6 79.6 80.8 80.2 80.9 81.0 0.52 0.48 0.33 0.19 0.09 0.05
120 200 71.9 82.8 83.4 83.5 84.9 84.7 0.52 0.48 0.34 0.20 0.10 0.05
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Table 3. Coverage properties of Procedure A with small N and persistent

factors

(Gaussian errors, 95% level)

ID1
Coverage Ratio (%) Length of C.I. (Median)

T N h =0 1 2 3 4 5 h =0 1 2 3 4 5
120 10 91.9 90.6 91.9 93.2 93.2 93.9 6.42 3.86 3.23 2.85 2.54 2.31
120 30 92.3 92.1 93.8 94.4 95.1 95.2 3.88 2.70 2.50 2.31 2.11 1.95
120 50 92.8 92.6 94.8 96.4 97.1 97.2 3.30 2.46 2.34 2.23 2.07 1.93
120 10 59.9 65.2 72.9 79.2 84.4 88.9 1.01 0.85 0.85 0.86 0.87 0.87
120 30 73.7 76.3 82.7 87.0 90.0 91.7 1.09 0.94 1.00 0.99 0.99 0.98
120 50 78.5 81.2 87.6 90.8 92.1 94.2 1.32 1.08 1.13 1.12 1.12 1.09
120 10 26.3 34.4 44.0 54.4 62.2 69.9 0.55 0.53 0.56 0.57 0.57 0.57
120 30 35.0 42.5 51.9 59.6 67.7 73.9 0.58 0.53 0.53 0.54 0.55 0.54
120 50 39.1 44.2 52.0 58.6 65.4 71.8 0.61 0.55 0.56 0.57 0.57 0.57

ID2
Coverage Ratio (%) Length of C.I. (Median)

T N h =0 1 2 3 4 5 h =0 1 2 3 4 5
120 10 95.2 95.0 94.5 95.1 95.1 94.6 28.43 8.39 6.53 5.98 5.23 4.64
120 30 96.9 96.6 97.1 97.4 97.1 96.9 21.96 9.27 7.75 7.28 6.90 6.47
120 50 95.7 96.8 97.2 96.9 97.0 97.1 17.88 8.77 7.83 7.52 7.19 6.75
120 10 76.3 75.3 73.4 76.9 80.5 84.0 7.21 1.54 0.78 0.70 0.71 0.71
120 30 78.5 87.3 90.3 89.2 91.1 92.5 9.51 2.91 1.37 1.05 0.97 0.93
120 50 88.3 97.3 92.1 90.1 90.4 91.7 10.37 3.57 1.73 1.22 1.10 1.06
120 10 35.3 76.2 85.5 90.1 92.6 92.2 2.33 1.73 1.52 1.33 1.19 1.04
120 30 45.5 80.2 91.5 94.3 95.4 95.7 2.64 2.11 1.86 1.65 1.49 1.35
120 50 47.2 77.8 90.3 93.2 95.2 95.7 2.50 2.07 1.85 1.64 1.48 1.34

ID3
Coverage Ratio (%) Length of C.I. (Median)

T N h =0 1 2 3 4 5 h =0 1 2 3 4 5
120 10 83.4 91.5 96.0 95.9 95.4 94.3 0.80 0.87 0.93 0.89 0.82 0.72
120 30 84.3 92.3 95.3 95.5 95.1 94.4 0.78 0.83 0.89 0.87 0.80 0.71
120 50 84.3 92.5 96.1 96.4 95.6 95.8 0.77 0.82 0.88 0.86 0.79 0.71
120 10 74.1 82.1 85.7 88.2 90.2 91.2 0.43 0.61 0.73 0.74 0.68 0.60
120 30 75.3 83.2 87.5 88.6 88.2 89.4 0.42 0.58 0.70 0.71 0.65 0.59
120 50 76.0 84.6 89.0 90.6 91.8 92.3 0.42 0.58 0.70 0.70 0.66 0.58
120 10 87.2 85.5 87.4 87.7 87.7 87.2 0.62 0.66 0.72 0.68 0.59 0.49
120 30 87.6 87.0 88.0 87.6 87.0 86.1 0.61 0.64 0.69 0.65 0.58 0.48
120 50 86.7 87.9 90.2 89.9 89.4 88.7 0.58 0.62 0.69 0.65 0.57 0.47
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Table 4: Coverage properties of Procedure A

under various bootstrap con�dence intervals

(Gaussian errors, ID1, 95% level)
Coverage Ratio (%) Length of C.I. (Median)

T N h =0 1 2 3 4 5 h=0 1 2 3 4 5
40 50 92.3 94.4 94.5 94.8 94.4 93.2 9.52 6.05 3.74 2.50 1.66 1.12
40 200 95.0 95.3 95.4 95.5 94.7 94.7 8.77 5.73 3.66 2.38 1.62 1.12

120 50 94.6 95.5 95.5 96.1 95.9 94.9 9.12 5.95 3.79 2.53 1.69 1.20
120 200 92.5 96.3 97.3 97.1 96.2 95.3 3.24 2.11 1.50 0.99 0.65 0.44
40 50 99.7 100.0 100.0 100.0 99.7 99.4 9.52 6.05 3.74 2.50 1.66 1.12
40 200 99.8 100.0 100.0 99.7 99.3 99.0 8.77 5.73 3.66 2.38 1.62 1.12

120 50 99.8 100.0 100.0 100.0 99.9 99.6 9.12 5.95 3.79 2.53 1.69 1.20
120 200 89.9 96.6 98.4 98.8 99.1 98.9 3.24 2.11 1.50 0.99 0.65 0.44
40 50 86.7 90.0 89.6 90.7 87.5 86.9 9.88 6.46 3.76 2.85 1.97 1.61
40 200 90.2 90.9 91.8 91.5 90.7 89.3 8.22 5.79 3.76 2.71 1.82 1.51

120 50 90.3 91.8 91.5 91.2 89.9 88.1 8.44 6.06 4.22 2.61 1.98 1.57
120 200 79.7 86.5 90.7 93.4 94.3 95.1 2.75 2.12 1.57 1.11 0.73 0.51
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Table 5: Coverage properties of Procedure A without bias corrections

(Gaussian errors, ID1, 95% level)
Coverage Ratio (%) Length of C.I. (Median)

T N h =0 1 2 3 4 5 h =0 1 2 3 4 5
40 50 94.0 93.7 93.0 90.8 87.2 84.3 9.48 4.30 2.00 1.09 0.60 0.37
40 200 95.6 95.4 94.4 93.3 89.4 86.4 8.59 4.28 2.11 1.17 0.66 0.39

120 50 93.9 94.2 94.5 94.9 92.9 91.1 4.88 2.15 1.22 0.73 0.46 0.28
120 200 93.7 95.2 95.9 95.5 94.4 92.5 3.72 1.83 1.17 0.68 0.41 0.26
40 50 93.8 91.6 91.1 89.5 86.5 83.1 9.02 5.19 3.75 2.84 2.12 1.62
40 200 95.7 95.0 94.2 92.9 90.2 86.6 7.74 4.76 3.54 2.65 2.07 1.63

120 50 91.3 91.3 91.9 91.8 91.6 91.3 3.11 2.16 1.88 1.61 1.42 1.23
120 200 91.4 91.4 92.1 93.3 93.4 93.1 2.61 1.99 1.85 1.65 1.42 1.27
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Table 6-a. Coverage properties for calibrated model by Procedure A

(full sample, 95% level)
h =0 1 2 3 4 5 6 7

Price coverage (%) 94.6 94.7 96.3 95.8 95.2 94.5 94.3 95.4

length 4.11 1.55 0.77 0.80 0.97 1.16 1.15 1.09

10­yr Tbill rate coverage (%) 94.6 94.8 95.0 94.6 94.5 94.8 94.3 94.3

length 6.79 1.25 2.01 3.41 3.34 3.10 2.64 2.16

Production coverage (%) 94.5 94.3 94.7 94.3 94.0 94.4 94.4 95.0

length 2.22 8.38 10.04 9.63 6.50 4.24 2.72 1.59

Unemployment rate coverage (%) 93.5 94.4 94.6 94.6 94.5 94.3 94.5 94.6

length 0.27 7.32 9.64 9.72 7.02 4.79 3.28 1.82

Table 6-b. Coverage properties for calibrated model by Procedure A

(post 1984, 95% level)
h =0 1 2 3 4 5 6 7

Price coverage (%) 93.7 93.8 92.5 97.0 95.7 96.4 96.9 96.6

length 2.04 0.42 0.37 0.35 0.44 0.26 0.21 0.21

10­yr Tbill rate coverage (%) 94.7 93.7 94.7 96.1 94.0 95.4 97.3 96.2

length 2.13 1.25 1.06 1.01 0.97 0.73 0.58 0.53

Production coverage (%) 90.8 92.7 94.8 95.0 92.9 93.3 94.6 93.4

length 1.00 1.15 0.94 0.89 0.84 0.67 0.52 0.48

Unemployment rate coverage (%) 91.8 93.5 93.0 93.5 94.5 94.0 93.5 92.9

length 0.16 1.25 1.03 0.97 0.91 0.74 0.58 0.55
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Table 7. Comparison between Procedures A and B

(95% level)

Coverage ratios

Proc h =0 1 2 3 4 5 6 7

Price A 94.9 94.7 94.8 94.8 95.5 95.8 95.7 95.9

B 81.7 77.5 80.6 90.4 89.1 87.0 89.0 88.9

10­yr Tbill rate A 92.6 94.7 96.1 96.5 98.3 96.0 94.8 96.5

B 63.5 72.1 77.1 66.5 92.7 88.4 85.9 88.0

Production A 93.2 94.2 96.9 96.7 98.0 96.1 96.4 95.1

B 64.9 70.5 74.8 67.0 88.9 88.0 86.5 88.0

Unemployment rate A 94.5 94.1 96.2 97.0 98.0 96.8 96.9 96.6

B 67.9 69.9 72.2 69.0 82.8 87.2 87.1 88.2

Length of C.I. (median)

Proc h =0 1 2 3 4 5 6 7

Price A 2.37 1.66 1.21 1.12 1.38 1.06 0.83 0.85

B 0.83 0.63 0.46 0.41 0.44 0.31 0.22 0.21

10­yr Tbill rate A 8.61 6.05 3.66 4.01 3.13 2.79 2.69 2.53

B 3.25 2.58 1.50 1.72 1.04 0.81 0.75 0.62

Production A 7.41 5.11 3.01 3.51 2.57 2.27 2.32 2.12

B 2.93 2.27 1.33 1.50 0.92 0.70 0.66 0.60

Unemployment rate A 7.59 5.18 3.09 3.48 2.68 2.31 2.32 2.15

B 2.97 2.30 1.40 1.56 1.08 0.77 0.70 0.62
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Table 8. Data description (disaggregate data)

1) Monthly data
mnemonic transform data description

1 IPS13 5 INDUSTRIAL PRODUCTION INDEX ­  DURABLE CONSUMER GOODS
2 IPS18 5 INDUSTRIAL PRODUCTION INDEX ­  NONDURABLE CONSUMER GOODS
3 IPS25 5 INDUSTRIAL PRODUCTION INDEX ­  BUSINESS EQUIPMENT
4 IPS34 5 INDUSTRIAL PRODUCTION INDEX ­  DURABLE GOODS MATERIALS
5 IPS38 5 INDUSTRIAL PRODUCTION INDEX ­  NONDURABLE GOODS MATERIALS
6 IPS43 5 INDUSTRIAL PRODUCTION INDEX ­  MANUFACTURING (SIC)
7 IPS306 5 INDUSTRIAL PRODUCTION  INDEX ­  FUELS
8 PMP 1 NAPM PRODUCTION INDEX (PERCENT)
9 UTL11 1 CAPACITY UTILIZATION ­ MANUFACTURING (SIC)

10 CES277R 5 REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM ­ CONSTRUCTION (CES277/PI071)
11 CES278 R 5 REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM ­ MFG (CES278/PI071)
12 CES006 5 EMPLOYEES, NONFARM ­ MINING
13 CES011 5 EMPLOYEES, NONFARM ­ CONSTRUCTION
14 CES017 5 EMPLOYEES, NONFARM ­ DURABLE GOODS
15 CES033 5 EMPLOYEES, NONFARM ­ NONDURABLE GOODS
16 CES046 5 EMPLOYEES, NONFARM ­ SERVICE­PROVIDING
17 CES048 5 EMPLOYEES, NONFARM ­ TRADE, TRANSPORT, UTILITIES
18 CES049 5 EMPLOYEES, NONFARM ­ WHOLESALE TRADE
19 CES053 5 EMPLOYEES, NONFARM ­ RETAIL TRADE
20 CES088 5 EMPLOYEES, NONFARM ­ FINANCIAL ACTIVITIES
21 CES140 5 EMPLOYEES, NONFARM ­ GOVERNMENT
22 LHEL 2 INDEX OF HELP­WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA)
23 LHELX 2 EMPLOYMENT: RATIO; HELP­WANTED ADS:NO. UNEMPLOYED CLF
24 LHNAG 5 CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA)
25 LHUR 2 UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,SA)
26 LHU680 2 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA)
27 LHU5 5 UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA)
28 LHU14 5 UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA)
29 LHU15 5 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA)
30 LHU26 5 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA)
31 LHU27 5 UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA)
32 CES151 1 AVG WKLY HOURS, PROD WRKRS, NONFARM ­ GOODS­PRODUCING
33 CES155 2 AVG WKLY OVERTIME HOURS, PROD WRKRS, NONFARM ­ MFG
34 HSNE 4 HOUSING STARTS:NORTHEAST (THOUS.U.)S.A.
35 HSMW 4 HOUSING STARTS:MIDWEST(THOUS.U.)S.A.
36 HSSOU 4 HOUSING STARTS:SOUTH (THOUS.U.)S.A.
37 HSWST 4 HOUSING STARTS:WEST (THOUS.U.)S.A.
38 FYFF 2 INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA)
39 FYGM3 2 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3­MO.(% PER ANN,NSA)
40 FYGT1 2 INTEREST RATE: U.S.TREASURY CONST MATURITIES,1­YR.(% PER ANN,NSA)
41 FYGT10 2 INTEREST RATE: U.S.TREASURY CONST MATURITIES,10­YR.(% PER ANN,NSA)
42 FYBAAC 2 BOND YIELD: MOODY'S BAA CORPORATE (% PER ANNUM)
43 Sfygm6 1 fygm6­fygm3
44 Sfygt1 1 fygt1­fygm3
45 Sfygt10 1 fygt10­fygm3
46 sFYAAAC 1 FYAAAC­Fygt10
47 sFYBAAC 1 FYBAAC­Fygt10
48 FM1 6 MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK'ABLE DEP)(BIL$,SA)
49 MZMSL 6 MZM (SA) FRB St. Louis
50 FM2 6 MONEY STOCK:M2(M1+O'NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP(BIL$,
51 FMFBA 6 MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA)
52 FMRRA 6 DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA)
53 FMRNBA 6 DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA)
54 BUSLOANS 6 Commercial and Industrial Loans at All Commercial Banks (FRED) Billions $ (SA)
55 CCINRV 6 CONSUMER CREDIT OUTSTANDING ­ NONREVOLVING(G19)
56 PSCCOMR 5 Real SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) (PSCCOM/PCEPILFE)
57 PW561R 5 PPI Crude (Relative to Core PCE) (pw561/PCEPiLFE)
58 PMCP 1 NAPM COMMODITY PRICES INDEX (PERCENT)
59 EXRUS 5 UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.)
60 EXRSW 5 FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$)
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61 EXRJAN 5 FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$)
62 EXRUK 5 FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND)
63 EXRCAN 5 FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$)
64 FSPCOM 5 S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941­43=10)
65 FSPIN 5 S&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941­43=10)
66 FSDXP 2 S&P'S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM)
67 FSPXE 2 S&P'S COMPOSITE COMMON STOCK: PRICE­EARNINGS RATIO (%,NSA)
68 FSDJ 5 COMMON STOCK PRICES: DOW JONES INDUSTRIAL AVERAGE
69 HHSNTN 2 U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD­83)
70 PMI 1 PURCHASING MANAGERS' INDEX (SA)
71 PMNO 1 NAPM NEW ORDERS INDEX (PERCENT)
72 PMDEL 1 NAPM VENDOR DELIVERIES INDEX (PERCENT)
73 PMNV 1 NAPM INVENTORIES INDEX (PERCENT)
74 MOCMQ 5 NEW ORDERS (NET) ­ CONSUMER GOODS & MATERIALS, 1996 DOLLARS (BCI)
75 MSONDQ 5 NEW ORDERS, NONDEFENSE CAPITAL GOODS, IN 1996 DOLLARS (BCI)

2) Quarterly data
76 GDP253 5 Real Personal Consumption Expenditures ­ Durable Goods , Quantity Index (2000=
77 GDP254 5 Real Personal Consumption Expenditures ­ Nondurable Goods, Quantity Index (200
78 GDP255 5 Real Personal Consumption Expenditures ­ Services, Quantity Index (2000=100) ,
79 GDP259 5 Real Gross Private Domestic Investment ­ Nonresidential ­ Structures, Quantity
80 GDP260 5 Real Gross Private Domestic Investment ­ Nonresidential ­ Equipment & Software
81 GDP261 5 Real Gross Private Domestic Investment ­ Residential, Quantity Index (2000=100
82 GDP263 5 Real Exports, Quantity Index (2000=100) , SAAR
83 GDP264 5 Real Imports, Quantity Index (2000=100) , SAAR
84 GDP266 5 Real Government Consumption Expenditures & Gross Investment ­ Federal, Quantit
85 GDP267 5 Real Government Consumption Expenditures & Gross Investment ­ State & Local, Q
86 LBOUT 5 OUTPUT PER HOUR ALL PERSONS: BUSINESS SEC(1982=100,SA)
87 LBPUR7 5 REAL COMPENSATION PER HOUR,EMPLOYEES:NONFARM BUSINESS(82=100,SA)
88 LBMNU 5 HOURS OF ALL PERSONS: NONFARM BUSINESS SEC (1982=100,SA)
89 LBLCPU 5 UNIT LABOR COST: NONFARM BUSINESS SEC (1982=100,SA)
90 GDP274_1 6     Motor vehicles and parts Price Index
91 GDP274_2 6     Furniture and household equipment Price Index
92 GDP274_3 6     Other Price Index
93 GDP275_1 6     Food Price Index
94 GDP275_2 6     Clothing and shoes Price Index
95 GDP275_3 6     Gasoline, fuel oil, and other energy goods Price Index
96 GDP275_4 6     Other Price Index
97 GDP276_1 6     Housing Price Index
98 GDP276_3 6       Electricity and gas Price Index
99 GDP276_4 6       Other household operation Price Index
100 GDP276_5 6     Transportation Price Index
101 GDP276_6 6     Medical care Price Index
102 GDP276_7 6     Recreation Price Index
103 GDP276_8 6     Other Price Index
104 GDP280A 6       Structures
105 GDP281A 6       Equipment and software Price Index
106 GDP282A 6     Residential Price Index
107 GDP284A 6   Exports Price Index
108 GDP285A 6   Imports Price Index
109 GDP287A 6   Federal Price Index
110 GDP288A 6   State and local Price Index

Note : Transformation code indicates followings: 1-no transformation, 2-�rst di�erence,

3-second di�erence, 4-logarithms, 5-�rst di�erence after taking logarithms, 6-second di�er-

ence after taking logarithms.
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Table 9. Data description (aggregate data)

1) Monthly data
mnemonic transform data description

1 IPS10 5 INDUSTRIAL PRODUCTION INDEX ­  TOTAL INDEX
2 IPS43 5 INDUSTRIAL PRODUCTION INDEX ­  MANUFACTURING (SIC)
3 UTL11 1 CAPACITY UTILIZATION ­ MANUFACTURING (SIC)
4 CES278 6 AVG HRLY EARNINGS, PROD WRKRS, NONFARM ­ MFG
5 CES002 5 EMPLOYEES, NONFARM ­ TOTAL PRIVATE
6 LHEL 2 INDEX OF HELP­WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA)
7 LHUR 2 UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,SA)
8 LHU680 2 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA)
9 CES151 1 AVG WKLY HOURS, PROD WRKRS, NONFARM ­ GOODS­PRODUCING

10 CES155 2 AVG WKLY OVERTIME HOURS, PROD WRKRS, NONFARM ­ MFG
11 HSBR 4 HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR)
12 HSFR 4 HOUSING STARTS:NONFARM(1947­58);TOTAL FARM&NONFARM(1959­)(THOUS.,SA
13 FYFF 2 INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA)
14 FYGM3 2 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3­MO.(% PER ANN,NSA)
15 FYGT10 2 INTEREST RATE: U.S.TREASURY CONST MATURITIES,10­YR.(% PER ANN,NSA)
16 FYAAAC 2 BOND YIELD: MOODY'S AAA CORPORATE (% PER ANNUM)
17 Sfygt10 1 fygt10­fygm3
18 FMFBA 6 MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA)
19 FMRRA 6 DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA)
20 BUSLOANS 6 Commercial and Industrial Loans at All Commercial Banks (FRED) Billions $ (SA)
21 CCINRV 6 CONSUMER CREDIT OUTSTANDING ­ NONREVOLVING(G19)
22 PWFSA 6 PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA)
23 PSCCOM 6 SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100)
24 PW561 6 PRODUCER PRICE INDEX: CRUDE PETROLEUM (82=100,NSA)
25 EXRUS 5 UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.)
26 FSPCOM 5 S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941­43=10)
27 HHSNTN 2 U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD­83)
28 PMI 1 PURCHASING MANAGERS' INDEX (SA)
29 PMNO 1 NAPM NEW ORDERS INDEX (PERCENT)
30 PMDEL 1 NAPM VENDOR DELIVERIES INDEX (PERCENT)
31 PMNV 1 NAPM INVENTORIES INDEX (PERCENT)

2) Quarterly data
32 GDP251 5 Real Gross Domestic Product, Quantity Index (2000=100) , SAAR
33 GDP252 5 Real Personal Consumption Expenditures, Quantity Index (2000=100) , SAAR
34 GDP256 5 Real Gross Private Domestic Investment, Quantity Index (2000=100) , SAAR
35 GDP263 5 Real Exports, Quantity Index (2000=100) , SAAR
36 GDP264 5 Real Imports, Quantity Index (2000=100) , SAAR
37 GDP265 5 Real Government Consumption Expenditures & Gross Investment, Quantity Index (2
38 GDP272 6 Gross Domestic Product, Price Index (2000=100) , SAAR
39 GDP273 6 Personal Consumption Expenditures, Price Index (2000=100) , SAAR
40 GDP275_4 6     Other Price Index
41 GDP277 6 Gross Private Domestic Investment, Price Index (2000=100) , SAAR
42 GDP284 6 Exports, Price Index (2000=100) , SAAR
43 GDP285 6 Imports, Price Index (2000=100) , SAAR
44 GDP286 6 Government Consumption Expenditures & Gross Investment, Price Index (2000=100)
45 LBOUT 5 OUTPUT PER HOUR ALL PERSONS: BUSINESS SEC(1982=100,SA)
46 LBMNU 5 HOURS OF ALL PERSONS: NONFARM BUSINESS SEC (1982=100,SA)
47 LBLCPU 5 UNIT LABOR COST: NONFARM BUSINESS SEC (1982=100,SA)

Note : Same as Table 8.
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