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Abstract

We provide methods for estimating and testing multiple structural changes occur-
ring at unknown dates in linear models using band spectral regressions. We consider
changes over time within some frequency bands, permitting the coe�cients to be dif-
ferent across frequency bands. Using standard assumptions, we show that the limit
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e�ciency of the estimates and power of the tests. We also discuss a very useful appli-
cation related to contexts in which the data is contaminated by some low frequency
process (e.g., level shifts or trends) and that the researcher is interested in whether
the original non-contaminated model is stable. All that is needed to obtain estimates
of the break dates and tests for structural changes that are not a�ected by such low
frequency contaminations is to truncate a low frequency band that shrinks to zero at
rate log(T )=T . Simulations show that the tests have good sizes for a wide range of
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between hours worked and productivity. When applying structural change tests in
the time domain we document strong evidence of instabilities. When excluding a few
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1 Introduction

This paper considers methods for estimating and testing multiple structural changes in linear

models using band spectral regressions. Since the classic work by Hannan (1963), band spec-

tral regressions have found wide applicability and have been useful for various problems when

the coe�cients of linear regression models are suspected to be frequency dependent. Engle

(1974, 1978) adopted Hannan's insight to an econometric context and, for linear regression

models, showed that the spectral least squares coe�cients estimates and the associated test

statistics have the same properties as in the standard time domain regressions. He also

considered the classical Chow test for a change in the coe�cients across frequency bands.

Our paper tackles the problem of structural changes from a di�erent angle. First, as has

become common now, we consider the possibility of multiple structural changes occurring

at unknown dates. More importantly, instead of considering changes across frequencies, we

consider changes over time within some frequency bands, permitting the coe�cients to be

di�erent across frequency bands. We derive the appropriate methods to estimate the break

dates and to construct the tests for structural changes. Using standard assumptions, we show

that the limit distributions obtained are similar to those in the time domain counterpart

as derived by Bai and Perron (1998) or Perron and Qu (2006); see Perron (2006) for a

review. We show that when the coe�cients change only within some frequency band (e.g.,

the business cycle) we can have increased e�ciency of the estimates of the break dates and

increased power for the tests provided, of course, that the user chosen band contains the band

at which the changes occur. Our framework can therefore be very useful in various empirical

applications. For instance, using an international data set consisting of series covering a

long span, Basu and Taylor (1999) document that the cyclical behavior of the real wage (the

relationship between aggregate output and real wages within some spectral band) may have

been changing over time. Their analysis is based on changes in the correlation coe�cients

across di�erent spectral bands and di�erent time segments. We provide a general framework

to analyze such issues in a rigorous and systematic manner.

We also discuss a very useful application of testing for structural changes via a band

spectral approach. The framework we consider is one in which the data is contaminated

by some low frequency process and that the researcher is interested in whether the original

non-contaminated model is stable. For example, the dependent variable may be a�ected by

some random level shift process (a low frequency contamination) but at the business cycle

frequency the model of interest is otherwise stable. We show that all that is needed to obtain
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estimates of the break dates and tests for structural changes that are not a�ected by such

low frequency contaminations is to truncate a low frequency band that shrinks to zero at rate

log(T )=T . Simulations show that the tests have good sizes for a wide range of truncations.

The exact truncation does not really matter, as long as some of the very low frequencies are

excluded. Hence, the method is quite robust. We also show that our method delivers more

precise estimates of the break dates and tests with better power compare to using �ltered

series obtained via a band-pass �lter or from a Hodrick-Prescott (1997) �lter.

Along this line, our method has enhanced potential applicability in wide range of prob-

lems in macroeconomics, �nance and other �elds. Indeed, it has been shown for numerous

problems that estimates and tests are sensitive to the low frequency components which are

often driven by mean shifts or various types of trends. This feature also applies to issues

related to structural changes. In a �nance context, it has been documented that investiga-

tions of instabilities in stock returns predictive regressions is largely driven by low frequency

components. For instance, mean shifts in dividends can lead one to conclude that the div-

idend/price ratio no longer has predictive power, e.g., Lettau and Neiuwerburgh (2008).

Our framework allows one to draw conclusions about the stability of a relationship at some

\business-cycle" frequency, say, without having to specify the nature of the low frequency

movements. In a macroeconomic context, Fernald (2007) highlights the sensitivity of results

about the e�ect of a productivity shock on hours worked based on vector autoregressions

identi�ed from long-run restrictions to the speci�cations of the low frequency components

of hours worked and productivity. Our empirical application, reported in Section 5 sheds

further light on this important issue. We analyze the stability of the relation between hours

worked and productivity. When applying the structural change tests in the time domain, or

equivalently the full set of frequencies, we document strong evidence of instabilities. When

excluding a few low frequencies, none of the structural change tests are signi�cant. Hence,

the results provide evidence to the e�ect that the relation between hours worked and pro-

ductivity is stable over any spectral band that excludes the lowest frequencies, in particular

it is stable over the business-cycle band. This result has important implications for the

analysis of the e�ect of a technological shock on hours worked. It indicates that the various

structural-based methods used to assess the sign and magnitude of this e�ect should be

carried using a frequency band that excludes the lowest frequencies or with a business-cycle

band.

In view of this type of applications of our methods, our work is related to a recent strand

in the literature that attempts to deliver tests and estimates that are robust to low frequency
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contaminations. One example pertains to estimation of the long-memory parameter. It is by

now well known that spurious long-memory can be induced by level shifts or various kinds of

low frequency contaminations. Perron and Qu (2007, 2010), McCloskey and Perron (2012)

and Iacone (2010) exploit the fact that the level shifts or time trends will produce high peaks

of the periodograms at a very few low frequencies, and suggests procedures that are robust

by eliminating such low frequencies. Tests for spurious versus genuine long-memory have

been proposed by Qu (2011) (see also Shimotsu, 2006). McCloskey (2010) provides a general

method applicable to the estimation of various time series models, such as ARMA, GARCH

and stochastic volatility models.

The structure of the paper is the following. Section 2 introduces the framework adopted,

the basic model, the assumptions imposed, the asymptotic distributions of the estimates of

the break dates and of the tests for structural changes. Section 3 considers models with

low frequency contaminations and show how the trimming of some low frequencies delivers

estimates and tests having the same limit distribution as in the non-contaminated models.

Section 4 presents simulation evidence showing that the procedures suggested have good

properties in small samples and performs better than using �ltered data. Section 5 illustrates

the usefulness of our methods by considering the stability of the relation between hours

worked and productivity. Section 6 provides brief concluding comments and an appendix

contains the technical derivations.

2 The framework and assumptions

2.1 The model

Consider a general multiple linear regression model with m breaks or m+ 1 regimes. There

are T observations and m is assumed known for now. The break dates occur at fT1; :::; Tmg.
Let y = (y1; :::; yT )

0 be the dependent variable and X a T by p matrix of regressors. De�ne
�X = diag(X1; :::; Xm+1), a T by (m + 1)p matrix with Xi = (xTi�1+1; :::; xTi)

0 for i =

1; :::;m + 1, with the convention that T0 = 1 and Tm+1 = T (each matrix Xi is a subset of

the regressor matrix X corresponding to regime i). The matrix �X is a diagonal partition

of X, the partition being taken with respect to the set of break points fT1; :::; Tmg. It will
also be convenient to de�ne Yi = (yTi�1+1; :::; yTi)

0. The vector U = (u1; :::; uT )
0 is the set of

disturbances and � = (�01; :::; �
0
m+1)

0 is the (m + 1)p vector of coe�cients. We consider the

general pure structural change model with restrictions on the coe�cients, i.e.

Y = �X� + U; (1)
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where R� = r with R a k by (m + 1)p matrix with rank k and r a k dimensional vector of

constant. Note that this framework includes the case of a partial structural change model

by an appropriate choice of the restrictions on the parameters (see Perron and Qu, 2006).

2.2 The band spectral regression

Band spectral regressions were early proposed by Hannan (1963) and have been adopted

subsequently in the econometric literature, see in particular Engle (1974, 1978). The frame-

work is useful in estimating linear regression models for which the coe�cients are frequency

dependent. Many economic applications �t in this framework. For example, consider a con-

sumption function for which consumers are assumed to react to the transitory and permanent

income in di�erent ways as the classical permanent income hypothesis suggests. Here, the

relationship between income and consumption can be di�erent for higher (transitory) and

lower (permanent) frequency variations. More recently the technique was found to be useful

in estimating cointegrating relations by Phillips (1991). Also, Corbae et. al. (2002) suggest

that the removal of time trends should be conducted in the frequency domain by estimating

frequency dependent coe�cients using band spectral regressions.

We �rst provide a brief description of the basic principles underlying band spectral re-

gressions. Consider a generic model where Y � is the dependent variable and Z is the matrix

of regressors. The starting point is to apply a discrete Fourier transformation to the data.

Let W be an orthogonal T � T matrix with wj;k = T�1=2 exp (ij(k � 1)(2�=T )) for its (j; k)
component where, as usual, i =

p
�1. Then the transformed data are, say, eZ = WZ andeY � = WY �. To have the analysis pertain to a particular band of interest, we follow the

technique suggested by Corbae et. al. (2002). Let the band of interest be BA = [!l; !h]

(0 � !l < !h � �)1. It is often easier to describe a certain frequency in terms of the position

of the observation in the vector. Hence, we de�ne jl = [!lT=�] and jh = [!hT=�] with [�]
returning the integer of the argument. The band selection can then be applied with another

linear operator consisting of a T � T selection matrix A with ones for the jth diagonal ele-

ments for jl � j � jh and zeros for all other elements. The transformed dependent variable

1Following the convention since Engle (1974), in practice we produce the observations in dual bands
corresponding to ! 2 [��; �] and choose symmetric bands, i.e. �! at the same time. This way, the discrete
Fourier transform will include both cos! + i sin! and cos! � i sin! and we can avoid complex valued
quantities.
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is now AeY �, the transformed regressors A eZ and the OLS estimate is
e�A = (Z 0�Z)�1(Z 0�Y �);

=
�P

BA
Iz;T (!j)

��1 �P
BA
Izy�;T (!j)

�
; (2)

where � =W 0AW , Iz;T (!) is the matrix of sample cross periodgrams of zt and Izy�;T (!) is a

vector of cross periodgrams of zt and y
�
t , both evaluated at frequency !. If serial correlation

in the errors is suspected, we can account for it using a matrix A de�ned with an estimate

of f
�1=2
u (!) in the diagonal of A instead of one, where fu(!) is the power spectrum of the

error term at frequency !. As a matter of notation, de�ne NA = jh � jl + 1, the number

of non-zero data points in the variables transformed by the operators A and W . Finally,

we consider for now the case of �xed bands in the asymptotic analysis so that !l and !h

are �xed. This implies that jl and jh increase at the same rate as T so that NA remains a

�xed portion of the sample size T . This framework is standard and does provide a useful

approximation in �nite samples, as will be shown later.

With this background description, the estimates of the break dates in our model are

de�ned as the solutions of the global least square minimization problem applied to band

spectral regressions such that:

(T̂1; :::; T̂m) = arg min
T1;::;Tm

SSRBAT (T1; :::; Tm); (3)

where

SSRBAT (T1; :::; Tm) =
m+1X
i=1

(AWYi � AWXi
e�Ai )0(AWYi � AWXi

e�Ai ); (4)

with e�Ai (i = 1; :::;m+1) the band spectral least squares coe�cient estimates for the selected
band BA de�ned by (2) with Y

� = Yi and Z = Xi, which contain the observations t =

Ti�1 + 1; :::; Ti.

2.3 Assumptions

In order to derive the limit distribution of our estimates, we impose the following standard

assumptions on the data, the errors and the break dates.

� Assumption A1: For each segment i = 1; :::;m+1, � it = f�tg
T 0i
t=T 0i�1+1

= f(x0t; ut)0g
T 0i
t=T 0i�1+1

is a jointly stationary time series, that is, � it =
P1

j=0 c
i
j�
i
t�j, with �

i
t � i:i:d:(0;�i) with
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�nite fourth moments and coe�cients cij satisfying
P1

j=0 j
1=2


cij

 < 1. Partitioned

conformably, the spectral density matrix f i�(!) of �
i
t is

f i�(!) =

24f ix(!) 0

0 f iu(!)

35 ;
with f ix(!) a non-random positive de�nite matrix and f

i
u(!) a positive constant for any

! 2 [!l; !h].

� Assumption A2: There exists an l0 > 0 such that for all l > l0, the minimum

eigenvalues of the sample periodgram matrix Ix(!) constructed by fxtg
T 0i +l

t=T 0i +1
and that

by fxtg
T 0i
t=T 0i �l

are bounded away from zero (i = 1; :::;m) for some ! 2 [!l; !h] .

� Assumption A3: The sample periodgram matrix associated with the spectral band

! 2 [!l; !h],
P!h

!=!l
Ix(!), constructed using fxtglt=k for l � k � �T , is invertible for

some � > 0.

� Assumption A4: Let the Lr-norm of a random matrix Z be de�ned by kZkr =
(
P

i

P
j E jZijj

r)1=r for r � 1: (Note that kZk is the usual matrix norm or the Eu-

clidean norm of a vector.) With fFi : i = 1; 2; ::g a sequence of increasing �-�elds,
we assume that fxiui;Fig forms a Lr-mixingale sequence with r = 2 + " for some

" > 0. That is, there exist nonnegative constants f�i : i � 1g and f j : j � 0g such
that  j # 0 as j ! 1 and for all i � 1 and j � 0; we have: (a) kE(xiuijFi�j)kr �
�i j; (b) kxiui � E(xiuijFi+j)kr � �i j+1: Also assume (c) maxi �i � K < 1; (d)P1

j=0 j
1+k j <1; (e) kxik2r < M <1 and kuik2r < N <1 for some K;M;N > 0.

� Assumption A5: T 0i = [T�
0
i ], where 0 < �01 < ::: < �0m < 1.

� Assumption A6: Let �T;i = �T;i+1 � �T;i. Assume �T;i = vT�i for some �i inde-

pendent of T , where vT > 0 is a scalar satisfying vT ! 0 and T (1=2)�#vT !1 for some

# 2 (0; 1=2). In addition, we assume E kxtk2 < K and E jutj2=# < K for some K <1
and all t.

These assumptions are standard in the literature. They follow Bai and Perron (1998) and

Perron and Qu (2006) for the structural change problem and Corbae et. al. (2002) for the

band spectral regression framework. Assumption A1 corresponds to Assumption 1 in Corbae

et. al. (2002) and it imposes stationarity within each regime. It also implies Assumption
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A1 in Perron and Qu (2006). Assuming the cross-spectrum of ut and xt essentially rules out

endogeneity. It can be relaxed by interpreting the coe�cients as the pseudo-true values, i.e.,

as the limit in probability of the inconsistent estimates. As shown in Perron and Yamamoto

(2012), this still permits consistent estimation of the break fractions and the con�dence

intervals for the estimates that can be constructed in the usual manner. Assumptions A2

and A3 impose conditions that are the frequency domain analogs of A2 and A3 in Bai and

Perron (1998). Assumption A4 imposes mild conditions on the regressors and errors which

permit a wide class of potential correlation structures in the errors and regressors. It also

allows lagged dependent variables as regressors when the errors are a martingale di�erence

sequence. A5 imposes the break points to be asymptotically distinct, a standard condition

needed to have non-degenerate limit distributions. A6 is also standard in the literature. It

dictates an asymptotic framework whereby the magnitudes of the breaks decrease as the

sample size increases, a feature needed to derive a limit distribution of the estimates of the

break dates that does not depend on the exact distribution of the errors.

2.4 Asymptotic properties

We now establish the consistency, rate of convergence and asymptotic distribution of the

estimates of the break dates de�ned by (3) and (4). We start with the following important

lemma.

Lemma 1 For the full spectrum case, that is A = I, the following equivalence holds:

SSRBAT (T̂1; :::; T̂m) � SSRT (T̂1; :::; T̂m);

where SSRT (T̂1; :::; T̂m) is the overall sum of squared residuals when the structural change

model is applied using a standard time domain procedure for model (1), viz.,

SSRT (T̂1; :::; T̂m) =
m+1X
i=1

(Yi �Xi�̂i)
0(Yi �Xi�̂i);

with �̂i = (X
0
iXi)

�1(X 0
iYi).

This lemma shows that the global minimization problem (3) applied to the full spectrum

reduces to the standard time domain structural change problem for model (1). This is an

intuitive and useful property and a short proof is given in the appendix. This equivalence

will be useful in deriving the asymptotic results when the analysis is restricted in a certain
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band spectrum. To see this, consider the following time-domain data generating process

instead of (1),

y�t = x�t�i + u�t ; t = 1; :::; T (5)

for i = 1; :::;m+1, where ��t = fx�t ; u�tg is a process with the same spectral density as that of
�t at the Fourier frequencies ! 2 BA and has no variation for ! =2 BA. In matrix notation,

Y � = X�� + U�;

where X� = W�1AW �X;U� = W�1AWU , and Y � = W�1AWY: Note �rst that premulti-

plying by W�1 applies an inverse Fourier transform to the variables so that we are back

to the time domain and, second, that the coe�cient vector � is also not a�ected by this

transformation. As discussed in the appendix, the asymptotic properties of the series x�t are

investigated using the following structure sometimes called ideal (but infeasible) band-pass

�lter

x�t =
P1

k=�1 bkxt�k;

with b0 = [(!h � !l)=2�] and bk = [(sin(!hj) � sin(!lj))=(2�j)]. By applying Lemma 1
to (5), we obtain an equivalence of the global sum sum of squared residuals pertaining to

model (5) in the time domain and that pertaining to (3) with an arbitrary selector matrix

A. This implies that the the asymptotic properties of the estimates of the structural change

model involving a band spectral regression can be analyzed by investigating its time domain

counterpart (5). To this e�ect, we now state a lemma applicable to the variables in the time

domain model (5).

Lemma 2 Let �T 0i = T 0i �T 0i�1 and suppose A1-A5 hold. With ��t de�ned for any nonempty
band BA, the followings hold:

(a) (�T 0i )
�1

T 0i�1+[s�T
0
i ]P

t=T 0i�1+1

x�tx
�0
t

p! sQ�i ;

(b) (�T 0i )
�1

T 0i�1+[s�T
0
i ]P

t=T 0i�1+1

u�2t
p! s��2i ;

(c) (�T 0i )
�1

T 0i�1+[s�T
0
i ]P

r=T 0i�1+1

T 0i�1+[s�T
0
i ]P

t=T 0i�1+1

E(x�rx
�0
t u

�
ru
�
t )

p! s
�i uniformly in s;

(d) (�T 0i )
�1=2

T 0i�1+[s�T
0
i ]P

t=T 0i�1+1

x�tu
�
t ) B�

i (s);
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where Q�i and 

�
i are p � p positive de�nite matrices, ��2i is a positive scalar and B�

i (s)

is a multivariate Gaussian process on [0,1] with mean zero and covariance EB�
i (s)B

�
i (u) =

min fs; ug
�i .

Lemma 2 plays an essential role in establishing the asymptotic distribution of the es-

timates of the break dates and test statistics. The main result is stated in the following

theorem.

Theorem 1 Let T̂i be the estimates de�ned by (3) and �̂i = T̂i=T for i = 1; :::;m. Then,

under A1-A6, we have for any nonempty choice of the band BA. (a) For every � > 0, there

exists a C <1, such that for all large T , P (jT (�̂i � �0i )j > C) < �. (b)

(�0
iQ

�
i�i)v

2
T (T̂i � T 0i )) argmax

s
Z(i)(s)(i = 1; :::;m);

where

Z(i)(s) =

�
�i;1W

(i)
1 (�s)� jsj =2; for s � 0p

�i�i;2W
(i)
2 (�s)� �i jsj =2; for s > 0

;

with

�i = �0
iQ

�
i+1�i=�

0
iQ

�
i�i;

�2i;1 = �0
i

�
i�i=�

0
iQ

�
i�i;

�2i;2 = �0
i

�
i+1�i=�

0
iQ

�
i+1�i;

and W
(i)
j (j = 1; 2) are independent Wiener processes de�ned on [0;1).

Remark 1 Note that Q�i and 

�
i can also be expressed as Q

�
i =

R !h
!l
f ix(!)d! and 
�i =R !h

!l
f ix(!)f

i
u(!)d!, which are �xed matrices under assumption A1 for any !l and !h, 0 �

!l < !h � �.

2.5 Testing for structural change

We now consider the problem of testing the null hypothesis of no break versus a �xed number

(m) of breaks and show that the conventional SupF test applied to band spectral regression,

has the same limit distribution as in the standard time domain setup (see Andrews, 1993,

and Bai and Perron, 1998). Note that, as pointed out by Engle (1974), the number of degrees

of freedom is NA, the number of observations for AWX and not T . The SupFT test is then

de�ned by

SupFT = sup
(�1;:::;�m)2�m

FT (�1; :::; �m);
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where

FT (�1; :::; �m) =

�
NA � (m+ 1)p� k

mp

� e�A0R0(R( �X�0 �X�)�1R0)�1Re�A;
SSRBAT (T1; :::; Tm)

(6)

with R the usual matrix such that (R�)0 = (�1 � �2; :::; �m � �m+1), SSR
BA
T (T1; :::; Tm) is

as de�ned in (4) and �m� = f(�1; :::; �m) : j�i+1 � �ij � �; � 1 � �; � k � 1 � �g for some
small trimming value �. The limiting distribution of the SupFT statistic is described in the

following Theorem.

Theorem 2 Under A1-A6, supFT ) sup(�1;:::;�m)2�m F (�1; :::; �m) where

F (�1; :::; �m) =
1

mp

mP
i=1

k�iWp(�i+1)� �i+1Wp(�i)k2

�i+1�i(�i+1 � �i)

The proof is straightforward and presented in the appendix. Note the sequential tests for

l versus l+1 breaks (which permits estimating the number of breaks m) and the double max-

imum tests investigated in Bai and Perron (1998) can also be constructed with appropriate

changes for the regressors, residuals, coe�cient estimates and the number of observations as

described above. They have the same limit distributions as those stated in Bai and Perron

(1998). Serial correlation in the errors is accounted for using heteroskedastic robust standard

errors in the frequency domain as pointed out by Engle (1974).

3 Estimating and testing structural changes with contaminated models

In this section, we discuss a very useful application of testing for structural changes via a

band spectral approach. The framework we consider is one in which the data is contaminated

by some low frequency process and that the researcher is interested in whether the original

non-contaminated model is stable. For example, the dependent variable may be a�ected by

some random level shift process (a low frequency contamination) but at the business cycle

frequencies the model of interest is otherwise stable.

Let fdtg be an unobservable contaminating component whose exact form is not known

to the researcher. The speci�cation of the data-generating process is then

yDt = xt�j + dt + ut; (7)

for j = 1; :::;m+ 1, or equivalently

Y D = �X� +D + U;
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in vector form with D = (d1; :::; dT )
0 a T � 1 vector. The interest is in testing whether the

coe�cient vector � is stable over time without requiring a particular model for the con-

taminating component dt. The only requirement is that the contaminating component is

dominant at low frequency and that it is uncorrelated with the regressors and the errors,

which are standard conditions in this literature and reasonable given the types of contam-

inations analyzed (see below). The speci�c conditions required are stated in the following

assumptions.

� Assumption A7: The cross spectral density f i�d(!) of �t and dt is 0 for any ! 2
[!l; !h].

� Assumption A8: Id;T (!j) = Op(Tj
�2) for all j = 1; :::; [T=2].

The assumption A7 ensures the strict exogeneity of the process dt in the model. As-

sumption A8 states that the contaminating component has a periodogram that is divergent

for j < T 1=2 but is negligible for j > T 1=2. Hence, by restricting the analysis to a set of

frequencies that exclude a neighborhood around zero, one can obtain results that are not

a�ected by the contamination. Many processes of interest satisfy A8. The following is a

non-exhaustive list: a) a random level shift process of the form

dt =
tP
j=1

�T;j; �T;j = �T;j�j; (8)

where �j � i:i:d:(0; �2�) with �nite moments of all orders, �T;j � i:i:d: Bernoulli(p=T; 1)

for some p � 0, and with the components �T;j and �j being mutually independent; b)

deterministic level shifts of the form

dt =
NP
n=1

cnI(Tn�1 < t � Tn); (9)

where N is a �xed positive integer and I(�) is the indicator function; c) deterministic trends
of the form

dt = 	(t=T ); (10)

where 	(�) is a deterministic nonconstant function on [0,1] that is either Lipschitz continuous
or monotone and bounded.

The fact that A8 is satis�ed for the random level shift process (8) was shown in Perron

and Qu (2010), for the deterministic level shifts process it was shown in McCloskey and

Perron (2012), while Qu (2011), building on results by K�unsh (1986) showed it for the
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general deterministic trend function. To have more generality and methods with increased

e�ciency, we allow !l to approach 0 at some rate so that what is excluded is only a shrinking

frequency band near zero. Recall that the lower bound of the truncation is jl = [!lT=�]. We

start with a result that states the relationship between the global sums of squared residuals

from the band spectral regressions obtained from the original and contaminated models.

Lemma 3 Consider model (7) with fdtg satisfying A7 and A8. With !h > 0, let jl ! 1
and jl= log(T )!1 as T !1. Then,

SSRD;BAT (T1; :::; Tm) = SSRBAT (T1; :::; Tm) + �T + op(1);

with �T = op(T ), where

SSRD;BAT (T1; :::; Tm) =
mX
i=1

(AWY D
i � AWXi

e�D;Ai )0(AWY D
i � AWXi

e�D;Ai ):

with e�D;Ai = (X 0
i�Xi)

�1(X 0
i�Y

D
i ).

Since SSRBAT (T1; :::; TM) = Op(T ), the lemma shows that, under the stated assumptions,

one obtains the asymptotic equivalence of the sum of squared residuals given a set of break

dates between the models with and without the contaminating term. What is required is

that a certain low frequency band that shrinks to zero at rate !l / log(T )=T is truncated, the
band spectrum estimates of the break dates are then not a�ected, at least in large samples,

by an unknown contaminating component fdtg speci�ed by A7 and A8. If one restricts the
analysis to a �xed band BA = [!l; !h] with !l any �xed positive number, then jl = O(T )

and the requirement is automatically satis�ed. This provides a method to obtain estimates

and tests that are robust to such misspeci�cations. The results are formally stated in the

following proposition.

Proposition 1 Consider the contaminated model (7) with A1-A8 holding. With !h > 0, let

jl ! 1 and jl= log(T ) ! 1 as T ! 1, then the band spectrum estimates of the multiple

structural changes

(T̂1; :::; T̂m) = arg min
T1;:::;Tm

SSRD;jlT (T1; :::; Tm);

satisfy the properties stated in Theorem 1. De�ne the SupF test statistic by

FT =

�
T � jl � (m+ 1)p� k

mp

� e�A;jl0R0(R( �X�0 �X�)�1R0)�1Re�A;jl
SSRD;jlT (T1; :::; Tm)

;
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where �A;jl = (�A;jl01 ; :::; �A;jl0m+1)
0 with e�A;jli = (X 0

i�jlXi)
�1(X 0

i�jlY
D
i ) and �jl is a selection

matrix with zeros in the �rst jl diagonal elements and ones in the other diagonals. Then,

the SupF test has the limiting distribution as stated in Theorem 2.

Remark 2 To be more precise, one could state the requirement on the rate of growth of

jl as a function of the e�ective sample size within each regime, namely jl= log(�Ti) ! 1
as T ! 1, where �Ti = Ti � Ti�1, i = 1; :::;m + 1. However, this make no di�erence

theoretically since �Ti = O(T ).

4 Monte Carlo simulations

In this section, we present simulation results about the properties of the estimates of the

break dates obtained from the band spectral regression (bias, standard errors, coverage rate

of the asymptotic distribution) and the size and power of the test for structural change. We

start in Section 4.1 with the case of no low frequency contamination and in Section 4.2 we

consider models with such contaminations. In Section 4-3, we compare the proposed band

spectral approach with the standard Bai and Perron (1998) method using �ltered data, via a

band-pass �lter as suggested by Baxter and King (1999) or after applying a Hodrick-Prescott

(1997) �lter2.

4.1 Models without contamination

The data generating process used is

yt = xt�t + ut; t = 1; :::; T;

where the regressor xt is a stationary ARMA(1,1) process with a constant mean �:

xt = �+ zt;

zt = �zt�1 + et + �et�1;

with et and ut sequences of i:i:d: N(0; 1) random variables independent of each other. We

consider a single break model

�t =

�
�c for t < Tb
c for t � Tb

:

2To have increased computational e�ciency and to avoid potential problems associated with complex
numbers, we adopted the �nite Fourier transforms in real term proposed by Harvey (1978).
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We consider three cases for the type of regressors: for case 1, xt is uncorrelated so that

(�; �) = (0; 0); for case 2, xt is MA(1) with � = 0 and � = 0:5; for case 3, xt is an AR(1)

process with � = 0:5 and � = 0. We set � = 1 in all cases. For the choice of the bands, we

consider several cases which are popular in empirical applications. The �rst group pertains

to low frequency bands with (!l; !h) = (0; �=4) and (0; �=2). The second group corresponds

to typical seasonal and business cycles bands with quarterly data given by (!l; !h) = ([1=2�
0:15]�; [1=2+0:15]�) and (�=16; �=2), respectively. The third group consists of high frequency

bands with (!l; !h) = (�=4; �) and (�=2; �). We tried several other types of bands and the

results were similar. We set T = 100 and 200 and the break date is at mid-sample, so that

Tb = 50 for T = 100 and Tb = 100 for T = 200. The number of replications is 1; 000.

We �rst consider the properties of the estimates of the break fraction T̂B=T with c = 0:1.

Table 1 reports results for the bias, standard error and coverage rate of the asymptotic

distribution. The bias is very close to zero for all cases considered, which supports the

consistency result for the break fractions in Theorem 1(a). Table 1 also reports the coverage

rates obtained from the asymptotic distribution for 90% nominal con�dence intervals. The

results show the exact coverage rates to be very close to the nominal level in all cases

con�rming the adequacy of the limiting distribution as an approximation to the �nite sample

distribution. The results with T = 200 are similar with, as expected, a reduction in the

variance of the estimates. We also computed the size of the heteroskedastic robust SupF

test when the errors follow an AR(1) process and obtained broadly similar results.

Table 2 shows the �nite sample size properties of the SupF test with c = 0 for a 5%

nominal size. The results show that the exact size is very close to 5% in all cases. We next

consider its power. Figure 1 shows the rejection frequency as a function of the magnitude of

the break c. The three panels correspond to the cases with low, middle, and high frequency

bands. In all cases, the results show good power, which approaches one quickly. As expected,

using the full spectrum gives tests with the highest power. This is due to the fact that the

data is generated with coe�cients that are the same across frequencies. Of more interest are

cases for which the coe�cients change only in some particular frequency band, a problem

we address next.

We now consider the power of the SupF test when the true data generating process has a

structural break only in a particular spectral band B0
A. In such cases, we expect that power

would be highest when the band used in constructing the test BA is the same as B
0
A, showing

that tests for structural change based on our band regression framework can yield higher

power. As we shall see, this is indeed the case. To this end, the data-generating process
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used is

yt = xAt �t + xCt � + ut; t = 1; :::; T;

where

xAt =

8<: xt; if ! 2 B0
A

0; otherwise
;

xCt =

8<: xt; if ! =2 B0
A

0; otherwise
;

and �t is the same as in the previous experiments but � is a constant (set at � = 0) so that

a structural change is present only in the frequency band B0
A. The following four bands are

considered for B0
A: a) a low frequency band (0; �=4), b) a high frequency band (�=4; �), c) a

seasonal frequency band ([1=2�0:15]�; [1=2+0:15]�) and d) a business cycle frequency band
(�=16; �=2). In Figure 2, results are presented for the power of the SupF test using the true

spectral band B0
A and the full spectrum since the latter is equivalent to the standard time

domain structural break test. The results show that important power gains can be achieved

using tests based on a band spectral regression if one uses the correct band in which the

change occurs. Note that the power gains are more important when the band in which the

change occurs consists of higher frequencies. As expected, if the band considered is one in

which no break occurs, then power is equal to the size of the test, see panels (a) and (b).

4.2 Models with contaminating components

We now consider models with a contaminating component and evaluate how the truncation

of the low frequencies helps in obtaining tests with good size and power properties. The

data are generated by

yt = xt�t + dt + ut:

We consider the following four cases for the contaminating component dt; which all satisfy

assumptions A7 and A8:

� Case D1, Deterministic Level Shifts: dt = c1I(1 � t < TD) + c2I(TD � t � T );

� Case D2, Random Level Shifts: dt =
Pn

j=1 �T;j�j, where �j � i:i:d: N(0; 1) and �T;j �
i:i:d: B(p=T; 1), �j and �T;j are independent;

� Case D3, Linear Trend with a Break: dt = 
1tI(1 � t < TD) + 
2tI(TD � t � T );
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� Case D4, Quadratic Trend: dt =  t2.

The parameter values were selected in order to have the long run variance of all four

processes be of similar magnitude. To that e�ect, we set (c1; c2) = (�1; 1), p = 5, (
1; 
2) =
(0:02; 0:01), and  = 0:01. Although these values are arbitrary, simulations using other

values yielded qualitatively similar results. The break date of the contaminating processes

(1) and (3) was set to TD = 50. We only report the results for T = 100 (those for T = 200

were qualitatively similar). The speci�cations for the other components xt�t and ut are as

in the previous sub-section. We consider the following truncations jl: the integer values of

1; 5; log(T ), log(T )2, T 0:5, and T 0:6.

Table 3 provides the exact sizes of the SupF test for a nominal 5% size test according

to the pattern of fdtg, the truncations and the DGP for xt. Of importance is the fact that
for all cases serious size distortions are present when no truncation is applied. However, the

exact size is much closer to the nominal level when a truncation is applied. For power, Table

4-1 presents the non size adjusted powers and Table 4-2 displays the size adjusted ones.

We only report the case with a white noise regressor (case 1) given that the results were

qualitatively similar for the other cases. First, the size-adjusted power of the test without

truncation is comparatively very small. Second, when a truncation is applied the power is

improved considerably. Third, in general power is not much sensitive to the particular choice

for the truncation rule.

The size and power results are comforting since any reasonable choice of the truncation

rule, say greater than or equal to log(T ) and less than T :6, will lead to test with similar

properties. What is important is that some truncation be done, even truncating a single

frequency yields dramatic improvements over the full sample-based tests.

4.3 Comparisons with �ltered series

An issue of interest is how our method compares to simply using �ltered data prior to

estimating and testing for structural changes. To provide some answers to this question, we

compare the properties of the break date estimates and the structural change tests based on

our band spectral approach with standard methods applied to �ltered series. For the latter,

band-pass �lters as well as the Hodrick-Prescott (1997) �lter (HP) are considered. For an

original series yt, the �ltered series obtained using Baxter and King's (1999) approximate

band-pass �lter (BP) with frequency band ! 2 [!l; !h], denoted yBPt , is de�ned by:

yBPt = �(L)yt = [�h(L)� �l(L)]yt;
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where

�h(L) =
XK

k=�K
bhkL

k; bh0 =
!h
�
(k = 0), bhk =

sin(k!h)

k�
(k 6= 0);

�l(L) =
XK

k=�K
blkL

k; bl0 =
!l
�
(k = 0), blk =

sin(k!l)

k�
(k 6= 0):

For the truncation parameter, we consider K = 4 and 12. The HP �ltered series, yHPt , is

de�ned by:

yHPt =

�
�(1� L)2(1� L�1)2

1 + �(1� L)2(1� L�1)2

�
yt:

For the parameter �, we consider two popular choices, namely 1; 600 and 6:25.

In Table 5-1, we present the bias and standard deviation of the break fraction estimates,

and the exact coverage rate of the asymptotic 90% con�dence intervals when the DGPs

are the non-contaminated models of Section 4.1. Throughout, 1,000 replications are used.

For brevity, we only consider three spectral bands: [�=16; �=2] (band 1), [0; �=16] (band

2), and [�=2; �] (band 3). Here, our comparisons are only with the BP �ltered series. The

results show that when using the BP �ltered-based estimates the bias remains small but the

standard deviations are larger than when using the band spectral approach. Also, the exact

coverage rate of the asymptotic con�dence intervals are near 90% in all cases using the band

spectral approach but there is severe under-coverage when using the BP �ltered approach.

The next experiment pertains to a comparison our log(T ) truncation method with stan-

dard methods applied to HP �ltered series in the case of the contaminated processes consid-

ered in Section 4.2. The results presented in Table 6 show that using HP �ltered series leads

to estimates with larger variance and exact coverage rates below the 90% nominal level.

The last experiment pertains to the power of the SupF test for a single structural change.

We use the non-contaminated models with a break in all frequencies when comparing with

the BP �lter (results reported in Figure 3, panels a-c) and with a break in the frequency

band [�=16; �=2] when comparing with the HP �lter (results reported in Figure 3, panel d).

The power functions are for tests with a 5% nominal size. In all cases, our band spectral

method leads to tests with higher power.

These simulations illustrate the relative e�ciency and 
exibility of our proposed method

over standard methods based on �ltered series3.

3We also compared the power of the test for structural change using our truncation method with the HP
�ltered approach when the models are contaminated as in Section 4.2. In this case, the power functions are
comparable.
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5 Empirical example

At the core of real business cycle theories is the prediction that labour supply rises following

a technological shock. A large body of literature has tackled this problem empirically. One

of the �rst and most in
uential is the study by Gali (2001) who found that, if hours worked

and productivity are speci�ed as integrated processes, hours worked instead falls after a

technological shock. On the other hand, Christiano et al. (2004) argued that hours worked

should be considered stationary, in which case hours worked do increase after a technological

shock. However, as argued by Fernald (2007), the results appear largely driven by low

frequency components such as types of time trend and structural breaks in the data. The

aim here is to assess whether the relation between hours worked and productivity is stable

over time when allowing for possible low frequency contaminations and also whether it is

stable over the business cycle frequencies.

Note that we are not concerned about addressing the issue about whether technological

shock have a positive or negative impact on hours worked. This would require a full structural

model that is well identi�ed. Our concern is on the stability of the relationship between the

two variables, which is a valuable starting point to analyze the structural issues of interest.

To that e�ect, one does not have to specify a structural model. One can indeed simply use

a reduced form estimated by OLS even if it involves correlation between the errors and the

regressors, as shown in Perron and Yamamoto (2012).

The data used is the same as in Gali (2001) and was downloaded directly from the U.S.

Department of Labor website. Labor productivity is Output per Hour of All Persons, the

hours worked series is Hours of All Persons in the Business Sector and the population is mea-

sured by the Civilian Noninstitutional Population over 16 Years. All series are transformed

into their natural logarithms. The data used is from 1948Q1 to 2009Q4. We consider the

following reduced form equation:

nt =
4P
j=1

aj�pt�j +
4P
k=1

bknt�k + ut; (11)

where nt standards for hours worked per capita and pt is productivity, both series being in

logarithmic forms. When we use the level speci�cation, nt is linear detrended. When we

use the di�erence speci�cation, the �rst di�erences �nt are used for the regression
4. Note

4We use demeaned data instead of including a constant in the regression. If a constant is included, this
will imply a rank de�ciency of the regressor matrix given that applying a discrete Fourier transform and
truncating the zero frequency implies that the constant becomes zero.
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that this is a part of the system estimated in Shapiro and Watson (1988). We consider

possible breaks in the autoregressive coe�cients aj and report the SupF , double maximum

(UD max), and SupF (l + 1jl) tests. If tests for breaks are signi�cant, the estimated break
dates resulting from the sequential procedure are reported. The trimming used for the

permissible break dates is � = 0:15 and the maximum number of breaks allowed is 5. Table

7-1 reports the results of the speci�cation (11) and Table 7-2 is for the model without lagged

nt (or �nt) but allowing for possible serial correlations in ut using a heteroskedasticity and

autocorrelation robust covariance matrix estimate. Each table presents results for the \full

spectrum" (0 � ! � �), the \truncated spectrum" (LT = dlog T e), and the \business cycle
band" (�=16 � ! � �=2), the latter including frequencies corresponding to periods ranging

from 1 to 8 years.

Consider �rst the results in Table 7-1 using the full spectrum (the usual time domain

tests). With the level speci�cation, the SupF test is signi�cant at the 1% level suggesting

strong evidence of at least one break in the coe�cients. Since the SupF (2j1) test is insigni�-
cant, we conclude that there is a one-time structural change at 1986:Q1. With the di�erence

speci�cation, the results are similar although now the SupF test is signi�cant at the 10%

level and the SupF (2j1) test is signi�cant at the 5% level. The two estimated break dates are
1967:Q1 and 1981:Q2, quite di�erent from those obtained with the level speci�cation. The

results make it di�cult to give a relevant economic interpretation. A possibility is that the

tests are signi�cant because of some low frequency components in the series, suggesting the

need to apply the tests with a truncation and within the business-cycle band. When doing

so, the results are very di�erent. None of the structural change tests are signi�cant using

either the level or di�erence speci�cation for hours. Hence, the results provide evidence to

the e�ect that the relation between hours worked and productivity is stable over any spectral

band that excludes the lowest frequencies, in particular it is stable over the business-cycle

band.

Table 7-2 provides the results using a model without the lagged dependent variables. Here

we �nd no break with the level speci�cation and one break with the di�erence speci�cation.

The break date is estimated at 1976:Q1, which is not consistent with the previous speci-

�cation with lagged dependent variables. What is noteworthy is how di�erent the results

are between the two speci�cations when using a full frequency regression. The di�erences

can be ascribed to possible low frequency components in the hours and productivity se-

ries, which has been extensively discussed in the literature (e.g., Fernald, 2007, Francis and

Ramey, 2009, and Gospodinov et al., 2011). However, once we exclude the low frequency
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contamination using a small trimming, there is no evidence of structural changes in the re-

lation between hours and productivity in either models. Furthermore, there is no signi�cant

change when considering a business-cycle band. These results have important implications

for the analysis of the e�ect of a technological shock on hours worked. It indicates that

the various structural-based methods used to assess the sign and magnitude of this e�ect

should be carried using a frequency band that excludes the lowest frequencies or within a

business-cycle band.

6 Conclusion

We investigated methods for estimating and testing multiple structural changes using band

spectral regressions. We showed that all standard results in Bai and Perron (1998) and Qu

and Perron (2006) continue to hold with appropriate modi�cations. We documented the

fact that the tests have good size in �nite samples and that the estimates of the break dates

obtained have good properties, including the adequacy of the limit distributions as approx-

imations to the �nite sample distributions of the estimates of the break dates. Structural

change tests using band spectral regressions were shown to be more powerful than their time

domain counterparts when breaks occur only within some frequency band, provided of course

that the user-chosen band contains the appropriate subset. An important advantage of us-

ing a band spectral framework is that tests and estimates that are robust to low frequency

contaminations can easily be obtained. We have shown that inference can be made robust

to various contaminations (trends, random level shifts, etc.) by simply excluding a few fre-

quencies near zero. We illustrated our methods by showing that the relationship between

hours worked and productivity is stable if one uses estimates that are robust to such low

frequency contaminations but not otherwise. This example sheds light on the importance of

a careful consideration of the frequency band in estimating and testing multiple structural

changes and highlights the usefulness of the methods developed in this paper.
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Appendix

Proof of Lemma 1: Denote SSRBAT with A = I by SSRfullT . Since

SSRT =
P

i[Yi �Xi�̂i]
0[Yi �Xi�̂i];

SSRfullT =
P

i[WYi �WXi
e�i]0[WYi �WXi

e�i];
=

P
i[Yi �Xi

e�i]0[Yi �Xi
e�i];

by using W 0W = I, all we need to show is �̂i =
e�i. The result follows from the fact that

e�i = (X 0
iW

0WXi)
�1(X 0

iW
0WYi);

= (X 0
iXi)

�1(X 0
iYi) = �̂i:

Proof of Lemma 2: For parts (a) and (b), it is easy to show from A1 that the process
��t constructed with any band has a constant spectral density at any !. This implies the
covariance stationarity of ��t from which the results follow applying standard law of large
number. For parts (c) and (d), given the fact that the series ��t can be represented as a
band-pass process of �t, the former can be expressed as an in�nite order moving average of
the latter such that ��t =

P1
j=�1 bj�t�j =

P1
j=�1 c

�
j�t�j and

c�j =
1

2�

hR !h
!l
cje

i!jd!
i
=

cj
2�ij

�
ei!hj � ei!lj

�
= cj

sin(!hj)� sin(!lj)
2�j

Following Phillips and Solo (1992), we need to show that
P1

j=0 j
1=2


c�j

 <1 for the invari-

ance principle to hold. This follows given that

j1=2




cj �sin(!hj)� sin(!lj)2�j

�



 � j1=2 kcjk
����sin(!hj)� sin(!lj)2�j

���� ;
and ����sin(!hj)� sin(!lj)2�j

���� � ����!h � !l
2�

���� � 1:
Proof of Theorems 1 and 2: We show that the assumptions for the original model with
�t are also satis�ed with the model involving the series �

�
t . In particular, we need to show

that A1-A4 hold. It is obvious that A1 holds for ��t since f�(!) = f��(!) for ! 2 [!l; !h].
For A2 and A3, we know that

P
x�tx

�0
t =

P
!j2BA Ix(!j). Since

P
x�tx

�0
t is symmetric, for

any non zero p� 1 vector �,

min � 0 [
P
x�tx

�0
t ] � = min � 0

�P
!2BA Ix(!)

�
�;

� min
P

!2BA �
0Ix(!)�;

� (�0 + �1)�
0�

with �0 and �1 the minimum eigenvalue of I(!0) and I(!1). By A2, these are bounded away

from zero. For A3, the minimum eigenvalue of
Pl

t=k x
�
tx
�0
t is shown to be strictly positive
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using the same argument. Since it is symmetric and the minimum eigenvalue is strictly
positive, the invertibility is guaranteed. For A4, the fact that jjc�j jj � kcjk for all j implies
that properties from (a) to (e) in A4 are satis�ed with fx�t ; u�tg. The time domain estimates
of the break dates based on model (5) can be expressed as

(T̂ �1 ; :::; T̂
�
m) = argmaxSST

�
T (T1; :::; Tm)

with

SST �T (T1; :::; Tm) =
P

i[W
�1AWYi �W�1AWXi

e�i]0[W�1AWYi �W�1AWXi
e�i]:

The equivalence SSTBAT � SST �T is then shown using Lemma 1 so that the Theorem 1
follows. Also, given that assumptions A1-A6 applies to the model (5), Lemma 2 implies
that the limiting distributions of the Sup F test is as stated in Theorem 2 following the
arguments in Perron and Qu (2006).

Proof of Lemma 3: Let e� = e�A � e�D;A where e�D;A and e�A are the band spectral
regression estimate of � obtained from the model (7) and the model (1). Then for the ith
segment

SSRD;BAT;i = [AWUi + AWXi(�i � e�Ai ) + AWXi
e�i + AWDi]

0

�[AWUi + AWXi(�i � e�Ai ) + AWXi
e�i + AWDi];

= SSRBAT;i +D0
i�Di + e�0iX 0

i�Xi
e�i + 2U 0i�Xi

e�i + 2(�i � e�Ai )0X 0
i�Xi

e�i
+2U 0i�Di + 2(�i � e�Ai )0X 0

i�Di + 2e�0iX 0
i�Di;

= SSRBAT;i +D0
i�Di + I + II + III + IV + V + V I

By assumption A7, X 0
i�Di = op(1) and U

0
i�Di = op(1): We also have

e�i = (X 0
i�Xi)

�1(X 0
i�Di) = op(T

�1):

Hence we obtain I = op(T
�1) � Op(T ) � op(T�1) = op(T

�1); II = Op(T
1=2) � op(T�1) =

op(T
�1=2), III = Op(1) � Op(T ) � op(T�1) = op(1); IV; V = op(1) and V I = op(T

�1) � op(1) =
op(T

�1). Consider now the term D0�D. We have D0�D =
Pjh

jl
Id;T (!j). Given Assumption

A8, this is bounded in probability by CT
Pjh

jl
(1=j2) for some large enough C > 0. Now,Pjh

jl
(1=j2) � (1=jl)

Pjh
jl
(1=j) = O(log(T )=jl) since jh = [!hT=�] = O(T ). Hence, D0�D =

Op(T log(T )=jl) = op(T ) if log(T )=jl ! 0 as T !1.
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Table 1. Finite sample properties of the estimates of the break dates

(T=100)

0 0 0 π/2­.15 π/16 π/4 π/2
π π/4 π/2 π/2+.15 π/2 π π

DGP­1 for xt 0.002 0.002 ­0.002 0.001 0.003 0.011 0.002
DGP­2 for xt 0.012 ­0.002 ­0.004 0.006 ­0.004 ­0.012 ­0.001
DGP­3 for xt 0.005 0.006 0.003 ­0.003 ­0.005 ­0.011 ­0.007
DGP­1 for xt 0.198 0.204 0.189 0.208 0.195 0.207 0.201
DGP­2 for xt 0.193 0.195 0.189 0.205 0.189 0.209 0.204
DGP­3 for xt 0.207 0.205 0.190 0.208 0.193 0.212 0.210
DGP­1 for xt 0.884 0.892 0.904 0.900 0.932 0.932 0.925
DGP­2 for xt 0.886 0.886 0.910 0.903 0.947 0.924 0.910
DGP­3 for xt 0.859 0.877 0.897 0.891 0.933 0.928 0.926

ω l

ω h

bi
as

s.
e.

co
ve

ra
ge

ra
te

(T=200)

0 0 0 π/2­.15 π/16 π/4 π/2
π π/4 π/2 π/2+.15 π/2 π π

DGP­1 for xt ­0.007 ­0.015 ­0.005 ­0.001 ­0.005 0.004 0.004
DGP­2 for xt 0.000 ­0.002 ­0.001 0.009 0.000 ­0.016 ­0.005
DGP­3 for xt ­0.002 ­0.003 0.000 ­0.001 0.000 ­0.015 ­0.010
DGP­1 for xt 0.176 0.189 0.180 0.201 0.208 0.197 0.203
DGP­2 for xt 0.169 0.182 0.170 0.194 0.197 0.205 0.208
DGP­3 for xt 0.182 0.181 0.183 0.204 0.199 0.207 0.209
DGP­1 for xt 0.873 0.883 0.905 0.920 0.932 0.932 0.918
DGP­2 for xt 0.872 0.899 0.900 0.926 0.924 0.929 0.919
DGP­3 for xt 0.860 0.884 0.902 0.931 0.915 0.937 0.943

ω h

bi
as

s.
e.

co
ve

ra
ge

ra
te

ω l
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Table 2. Exact size of the SupF test; 5% nominal size

(T=100)

ω l 0 0 0 π/2­.15 π/16 π/4 π/2
ω h π π/4 π/2 π/2+.15 π/2 π π

DGP­1 for xt 0.07 0.08 0.05 0.11 0.07 0.05 0.06
DGP­2 for xt 0.07 0.08 0.05 0.10 0.06 0.05 0.06
DGP­3 for xt 0.07 0.08 0.05 0.12 0.08 0.06 0.07

(T=200)

ω l 0 0 0 π/2­.15 π/16 π/4 π/2
ω h π π/4 π/2 π/2+.15 π/2 π π

DGP­1 for xt 0.05 0.06 0.05 0.09 0.06 0.04 0.05
DGP­2 for xt 0.06 0.06 0.05 0.08 0.07 0.05 0.06
DGP­3 for xt 0.06 0.06 0.05 0.07 0.05 0.05 0.07
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Table 3. Exact size of the SupF test with contaminated models
(5% nominal size)

Case D1: Deterministic Level Shift

j l 0 1 5 logT logT2 T.5 T.6

DGP­1 for xt 1.00 0.04 0.04 0.05 0.05 0.05 0.05
DGP­2 for xt 1.00 0.03 0.04 0.03 0.04 0.03 0.05
DGP­3 for xt 0.99 0.06 0.07 0.07 0.07 0.07 0.07

Case D2: Random Level Shifts

j l 0 1 5 logT logT2 T.5 T.6

DGP­1 for xt 0.65 0.04 0.05 0.05 0.05 0.05 0.05
DGP­2 for xt 0.61 0.06 0.05 0.06 0.06 0.05 0.06
DGP­3 for xt 0.58 0.10 0.07 0.08 0.08 0.09 0.08

Case D3: Linear Trend with a Break

j l 0 1 5 logT logT2 T.5 T.6

DGP­1 for xt 0.70 0.03 0.05 0.05 0.06 0.06 0.07
DGP­2 for xt 0.59 0.05 0.05 0.06 0.06 0.06 0.06
DGP­3 for xt 0.58 0.04 0.06 0.05 0.05 0.05 0.06

Case D4: Quadratic Trend

j l 0 1 5 logT logT2 T.5 T.6

DGP­1 for xt 0.46 0.04 0.04 0.04 0.05 0.05 0.05
DGP­2 for xt 0.41 0.04 0.05 0.05 0.06 0.06 0.07
DGP­3 for xt 0.40 0.05 0.06 0.07 0.07 0.06 0.07
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Table 4-1. Finite sample power of the SupF test with contaminated models
(non size adjusted)

Case D1: Deterministic Level Shift

j l

c 0 1 5 logT logT2 T.5 T.6

0.0 1.00 0.04 0.04 0.05 0.05 0.05 0.05
0.1 1.00 0.07 0.09 0.09 0.10 0.10 0.10
0.2 1.00 0.29 0.31 0.31 0.31 0.30 0.30
0.3 1.00 0.60 0.60 0.61 0.60 0.59 0.58
0.4 1.00 0.86 0.84 0.85 0.84 0.83 0.81
0.5 1.00 0.97 0.96 0.97 0.95 0.95 0.95
0.6 1.00 1.00 1.00 1.00 1.00 1.00 0.99
0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Case D2: Random Level Shifts

j l

c 0 1 5 logT logT2 T.5 T.6

0.0 0.65 0.04 0.05 0.05 0.05 0.05 0.05
0.1 0.67 0.08 0.12 0.12 0.13 0.12 0.13
0.2 0.71 0.25 0.29 0.29 0.29 0.29 0.27
0.3 0.78 0.52 0.60 0.60 0.60 0.59 0.56
0.4 0.82 0.74 0.84 0.83 0.82 0.82 0.80
0.5 0.84 0.93 0.96 0.96 0.96 0.96 0.95
0.6 0.87 0.97 0.99 0.99 0.99 0.99 0.99
0.7 0.90 0.99 1.00 1.00 1.00 1.00 1.00
0.8 0.94 1.00 1.00 1.00 1.00 1.00 1.00
0.9 0.96 1.00 1.00 1.00 1.00 1.00 1.00
1.0 0.96 1.00 1.00 1.00 1.00 1.00 1.00
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Case D3: Linear Trend with a Break

j l

c 0 1 5 logT logT2 T.5 T.6

0.0 0.70 0.03 0.05 0.05 0.06 0.06 0.07
0.1 0.92 0.09 0.09 0.10 0.09 0.10 0.09
0.2 0.99 0.26 0.28 0.28 0.27 0.28 0.26
0.3 1.00 0.61 0.61 0.63 0.61 0.62 0.58
0.4 1.00 0.85 0.84 0.85 0.84 0.84 0.81
0.5 1.00 0.97 0.97 0.98 0.97 0.97 0.96
0.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Case D4: Quadratic Trend

j l

c 0 1 5 logT logT2 T.5 T.6

0.0 0.46 0.04 0.04 0.04 0.05 0.05 0.05
0.1 0.85 0.09 0.11 0.11 0.11 0.12 0.11
0.2 0.97 0.29 0.30 0.31 0.30 0.30 0.29
0.3 1.00 0.62 0.62 0.64 0.60 0.60 0.57
0.4 1.00 0.87 0.87 0.87 0.86 0.85 0.83
0.5 1.00 0.98 0.97 0.97 0.95 0.95 0.94
0.6 1.00 1.00 0.99 1.00 0.99 0.99 0.99
0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 4-2. Finite sample power of the Sup F test with contaminated models
(size adjusted)

Case D1: Deterministic Level Shift

j l

c 0 1 5 logT logT2 T.5 T.6

0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.1 0.19 0.11 0.11 0.10 0.11 0.10 0.10
0.2 0.49 0.37 0.34 0.31 0.32 0.31 0.30
0.3 0.77 0.68 0.63 0.61 0.61 0.60 0.58
0.4 0.90 0.91 0.87 0.85 0.85 0.83 0.82
0.5 0.98 0.99 0.97 0.97 0.95 0.95 0.95
0.6 0.99 1.00 1.00 1.00 1.00 1.00 0.99
0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.9 0.99 1.00 1.00 1.00 1.00 1.00 1.00
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Case D2: Random Level Shifts

j l

c 0 1 5 logT logT2 T.5 T.6

0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.1 0.05 0.09 0.13 0.13 0.13 0.12 0.13
0.2 0.10 0.28 0.31 0.32 0.29 0.29 0.27
0.3 0.13 0.55 0.61 0.64 0.60 0.59 0.55
0.4 0.24 0.75 0.85 0.85 0.82 0.82 0.80
0.5 0.30 0.94 0.96 0.96 0.96 0.96 0.95
0.6 0.42 0.98 0.99 0.99 0.99 0.99 0.99
0.7 0.53 0.99 1.00 1.00 1.00 1.00 1.00
0.8 0.63 1.00 1.00 1.00 1.00 1.00 1.00
0.9 0.71 1.00 1.00 1.00 1.00 1.00 1.00
1.0 0.78 1.00 1.00 1.00 1.00 1.00 1.00
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Case D3: Linear Trend with a Break

j l

c 0 1 5 logT logT2 T.5 T.6

0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.1 0.21 0.13 0.10 0.10 0.07 0.09 0.07
0.2 0.53 0.32 0.28 0.29 0.22 0.26 0.22
0.3 0.84 0.68 0.62 0.65 0.55 0.61 0.52
0.4 0.96 0.89 0.85 0.85 0.80 0.83 0.77
0.5 1.00 0.99 0.98 0.98 0.96 0.97 0.94
0.6 1.00 1.00 1.00 1.00 1.00 1.00 0.99
0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Case D4: Quadratic Trend

j l

c 0 1 5 logT logT2 T.5 T.6

0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.1 0.22 0.11 0.13 0.13 0.11 0.12 0.11
0.2 0.56 0.33 0.32 0.34 0.30 0.30 0.29
0.3 0.89 0.67 0.66 0.66 0.61 0.61 0.57
0.4 0.99 0.91 0.88 0.88 0.86 0.86 0.83
0.5 1.00 0.98 0.97 0.98 0.95 0.95 0.94
0.6 1.00 1.00 1.00 1.00 0.99 0.99 0.99
0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 5. Comparisons with �ltered series using an approximate band-pass �lter

band1 band2 band3
BSR BP(K=4) BP(K=12) BSR BP(K=4) BP(K=12) BSR BP(K=4) BP(K=12)

DGP­1 for xt 0.004 0.001 ­0.002 0.010 0.012 0.002 0.011 0.002 0.000
DGP­2 for xt ­0.004 0.007 0.004 ­0.004 0.004 ­0.002 0.002 0.000 0.008
DGP­3 for xt ­0.002 ­0.002 ­0.007 ­0.002 0.002 0.014 0.004 0.005 0.006
DGP­1 for xt 0.192 0.225 0.224 0.204 0.222 0.211 0.214 0.231 0.234
DGP­2 for xt 0.187 0.223 0.220 0.203 0.220 0.206 0.207 0.224 0.228
DGP­3 for xt 0.190 0.228 0.220 0.201 0.220 0.211 0.207 0.226 0.233
DGP­1 for xt 0.904 0.688 0.602 0.825 0.878 0.612 0.869 0.718 0.548
DGP­2 for xt 0.895 0.687 0.613 0.812 0.849 0.621 0.892 0.759 0.566
DGP­3 for xt 0.894 0.680 0.618 0.811 0.829 0.624 0.877 0.743 0.555

bi
as

s.
e.

co
ve

ra
ge

ra
te

Table 6. Comparisons with �ltered series using the Hodrick and Prescott �lter
Case D1 Case D2 Case D3 Case D4

BSR BSR BSR BSR
logT l=1600 l=6.25 logT l=1600 l=6.25 logT l=1600 l=6.25 logT l=1600 l=6.25

DGP­1 for xt 0.001 ­0.001 ­0.002 ­0.001 0.005 0.005 ­0.019 0.000 0.001 0.002 0.002 0.004
DGP­2 for xt ­0.001 0.003 0.001 ­0.002 ­0.005 0.001 ­0.012 0.003 0.003 0.002 0.001 0.005
DGP­3 for xt ­0.001 ­0.006 ­0.002 0.002 0.005 ­0.001 ­0.016 ­0.001 ­0.002 0.002 ­0.001 0.003
DGP­1 for xt 0.123 0.212 0.219 0.200 0.219 0.222 0.189 0.220 0.222 0.197 0.218 0.221
DGP­2 for xt 0.124 0.206 0.221 0.194 0.218 0.222 0.188 0.215 0.218 0.195 0.218 0.221
DGP­3 for xt 0.126 0.206 0.222 0.196 0.218 0.226 0.191 0.217 0.225 0.195 0.216 0.223
DGP­1 for xt 0.926 0.812 0.737 0.928 0.783 0.720 0.922 0.779 0.725 0.908 0.787 0.738
DGP­2 for xt 0.916 0.811 0.746 0.918 0.776 0.743 0.915 0.777 0.743 0.898 0.774 0.746
DGP­3 for xt 0.907 0.813 0.754 0.915 0.773 0.746 0.897 0.779 0.737 0.895 0.787 0.756

HP HP HP

s.
e.

co
ve

ra
ge

ra
te

HP

bi
as
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Table 7-1. Empirical results (1): model with lagged dependent variables

Hours in Levels Hours in First­Differences
full truncated cycle full truncated cycle

SupF 23.84*** 7.58 2.77 14.94* 0.69 3.48

SupF(2|1) 10.27 1.12 3.66 19.72** 8.80 6.17
SupF(3|2) 8.12 1.55 11.03 7.95 6.34 5.28
SupF(4|3) 3.49 1.12 0.47 7.13 5.09 1.64
UD max 23.84*** 7.70 5.03 14.94* 7.03 6.57

Dates 1986:Q1 ­ ­ 1967:Q1 ­ ­
­ ­ ­ 1981:Q2 ­ ­

Table 7-2. Empirical results (2): model without lagged dependent variables

Hours in Levels Hours in First­Differences
full truncated cycle full truncated cycle

SupF 5.75 6.10 11.29 18.92** 0.34 5.93

SupF(2|1) 7.70 13.99 1.42 10.59 8.68 2.33
SupF(3|2) 29.36*** 1.92 4.33 8.78 7.94 20.58**
SupF(4|3) 0.30 0.00 0.00 4.87 1.24 4.52
UD max 7.91 6.61 11.29 18.92** 6.36 7.00

Dates ­ ­ ­ 1976:Q1 ­ ­

Note: 1. *, **, *** denote signi�cance at the 10%, 5% and 1% levels respectively.
2. For Table 7-2, we use a heteroskedasticity and autocorrelation robust covariance estimate

with a Bartlett kernel and the bandwidth chosen using Andrews' (1991) AR(1) approximation
method for the full frequency results. For the truncated and the cycle results, White's (1980)
heteroskedasticity robust covariance matrix estimate is used.
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Figure 1. Finite sample power of the SupF test
with a break common to all frequencies
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Figure 2. Finite sample power of the SupF test
with a break in a particular spectral band

a) Break in ! = (0; �=4) b) Break in ! = (�=4; �)
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Figure 3. Finite sample power of the SupF tests:
Comparisons with �ltered series

a) BP �lters, band 1 b) BP �lters, band 2
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