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Appendix

The appendix consists of five sections. The sample data is described in section A0.

Section A1 enlarges on our discussion in the paper about the internal consumption habit prop-

agation mechanism. We present optimality and equilibrium conditions of the baseline habit

new Keynesian dynamic stochastic general equilibrium (NKDSGE) model in section A2, along

with stochastically detrended, steady state, and linearized versions of these equations. This

section also outlines the algorithm applied to solve the linearized NKDSGE models. The next

section gives instructions to identify and estimate infinite order structural vector moving av-

erages, SVMA(∞)s. Next, we engage existing literature to show that the SVMA(∞)s retrieve the

economic shocks of the NKDSGE models. This is followed by formulas to compute the iden-

tified permanent and transitory output and consumption growth spectral densities, SD∆Y and

SD∆C . Section A4 completes the appendix with more information about the Bayesian Monte

Carlo experiments discussed in the paper as well as summaries of NKDSGE model fit given the

habit parameter h is endowed with a β prior, two different uniform priors, SVMA(∞)s are esti-

mated with VAR(4)s instead of VAR(2)s, and the Kolmogorov-Smirnov goodness of fit statistic

is replaced with the Cramer-von Mises goodness of fit statistic.

A0. Data Sources and Construction

This section sketches the 1954Q1–2002Q4 sample data. The source of the data is Fred-ii

maintained by the Federal Reserve Bank of St. Louis at http://research.stlouisfed.org/fred2/.

Mnemonics appear in parentheses. The NIPA data are real chained 1996 billion dollars and sea-

sonally adjusted at annual rates. The consumption series equals Real Personal Consumption

Expenditures on Nondurables (PCNDGC96) plus Real Personal Consumption Expenditures on

Services (PCESVC96). Investment is constructed by adding together Real Personal Consumption

Expenditures on Durables (PCDGCC96), Real Gross Private Domestic Investment (GPDIC1), Real

National Defense Gross Investment (DGIC96), and Real Federal Nondefense Gross Investment
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(NDGIC96). Government spending subtracts Real National Defense Gross Investment plus Real

Federal Nondefense Gross Investment from Real Government Consumption Expenditures and

Gross Investment (GCEC1). Output equals the sum of consumption, investment and govern-

ment spending. Aggregate quantities are divided by Civilian Labor Force (CLF16OV) to create

per capita series. Since the Civilian Labor Force is monthly, temporal aggregation produces

quarterly observations. Finally, the money stock is equated with the seasonally adjusted, St.

Louis Adjusted Monetary Base (AMBSL). This monthly series is temporally aggregated to obtain

a quarterly series and also made per capita.

A1. Consumption Dynamics under Internal and External

Consumption Habits

This sections studies the propagation mechanism of additive internal consumption habit.

We also show that subsequent to log linearization additive internal and external consumption

habit produce observationally equivalent consumption growth dynamics up to a normalization

on the impact shock of the AR(1) real rate.

A1.1 The Internal Consumption Habit Propagation Mechanism

Section 2.2 of the paper presents a calibration exercise that discusses the additive internal

consumption habit propagation mechanism. The discussion begins with the Euler equation

λt = βEt

{
λt+1Rt+1

1+πt+1

}
, (A1.1)

where the forward-looking marginal utility of consumption is λt = 1
ct − hct−1

−Et

{
βh

ct+1 − hct

}
,

h is the habit parameter, ct is household consumption, β is the household discount factor,

the mathematical expectations operator conditional on date t information is Et{·}, Rt is the

nominal rate, and 1+πt+1 (= Pt+1/Pt) is date t + 1 inflation. Given a random walk (with drift)

drives total factor productivity (TFP) At , the Euler equation (A1.1) and λt are stochastically

detrended according to
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λ̂t = βEt

{
λ̂t+1Rt+1

αt+1(1+πt+1)

}
, (A1.2)

and

λ̂t =
αt

αt ĉt − hĉt−1
− Et

{
βh

αt+1ĉt+1 − hĉt

}
, (A1.3)

where λ̂t ≡Atλt and αt =At/At−1 = exp(α+εt), α > 0, and εt is the mean zero, homoskedastic

TFP shock innovation. Since household consumption and the marginal utility of consumption

are stationary, the Euler equation (A1.2) and marginal utility function (A1.3) can be log lin-

earized around the means (i.e. steady state) of λ̂t , ĉt , Rt , and πt . The results are

λ̃t = Et

{
λ̃t+1 − εt+1 + R̃t+1 −

π∗

1+π∗ π̃t+1

}
, (A1.4)

and

(α∗−βh)(α∗−h)λ̃t = α∗βhEt c̃t+1−(βh2+α∗2)c̃t+α∗hc̃t−1−α∗βhEtεt+1+α∗hεt, (A1.5)

where, for example, c̃t = ln ĉt − ln c∗ or R̃t = lnRt − lnR∗, andα∗ = exp(α) is the deterministic

TFP growth rate. We combine equations (A1.4) and (A1.5) to obtain

α∗βhEt
{∆c̃t+2 + εt+2

}
− (βh2 +α∗2)Et

{∆c̃t+1 + εt+1

}
+α∗h(∆c̃t + εt)

= −(α∗ − βh)(α∗ − h)Etq̃t+1, (A1.6)

where the demeaned real rate is q̃t = R̃t − π∗
1+π∗ π̃t . By exploiting stochastic detrending,
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the linearized Euler equation (A1.6) can be written as a second-order expectational stochastic

difference equation in demeaned household consumption growth

α∗βhEt∆̃ct+2 − (βh2 +α∗2)Et∆̃ct+1 +α∗h∆̃ct = −(α∗ − βh)(α∗ − h)Etq̃t+1, (A1.7)

where ∆̃ct = ∆ ln ĉt + εt denotes demeaned household consumption growth.

We solve equation (A1.7) to obtain the backward-looking stable root ϕ1 = hα∗−1 and

forward-looking unstable root ϕ2 = α∗/(βh). These roots are exploited by the lag polynomial

−L−1(1 −ϕ1L)(1 −ϕ−1
2 L−1)ϕ2α∗βh∆̃ct , which is an alternative to the left side of equation

(A1.7). After applying the lag polynomial, we have

(
1− h

α∗
L
) ∆̃ct = (α∗ − βh)(α∗ − h)

α∗2

∞∑
j=0

(
βh
α∗

)j
Etq̃t+j , (A1.8)

which is the unique (i.e., sunspot free) solution of the second-order stochastic difference equa-

tion (A1.7). This solution is equation (2) of the paper, where Ψ = (α∗ − βh)(α∗ − h)α∗βh . Equation

(A1.8) is forward-looking in the expected discounted present value of q̃t and backward-looking

in the lag of demeaned consumption growth. Assume q̃t is a AR(1) with persistence parameter

ρq. In this case, the Wiener-Kolmogorov formulas alter equation (A1.8) to

(
1− h

α∗
L
) ∆̃ct = (α∗ − βh)(α∗ − h)

α∗(α∗ − ρqβh)
q̃t. (A1.9)

We employ equation (A1.9), put h on the grid [0.15 0.35 0.50 0.65 0.85], calibrate [β α∗]′ =

[0.993 exp(0.004)]′, and estimate a AR(1) for q̃t to generate the impulse response functions

plotted in figure 1.

The real federal funds rate q̃t is measured with the demeaned quarterly nominal federal

funds rate and demeaned implicit GDP deflator inflation. The latter is multiplied by the ratio
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of its mean to one plus its mean and subtracted from the former to create the real federal

funds rate q̃t on a 1954Q1–2002Q4 sample. Although likelihood ratio tests and the Hannan-

Quinn criterion suggest a AR(3), we settle on a AR(1) using the SIC against AR(2) to AR(10)

specifications. On the 1954Q1–2002Q4 sample, OLS estimates of the AR(1) of q̃t are ρq =

0.8687 and the standard error of the regression is 1.2059.

A1.2 An Observational Equivalence Result for Internal and External Consumption Habits

We show in this section that under internal and external additive consumption habit the

preferences ln[ct − hct−1] yield log linearized Euler equations that are observationally equiv-

alent up to a normalization of the AR(1) real rate, q̃t . The consumption habit specification

ln[ct − hct−1] is found in the NKDSGE models that Christiano, Eichenbaum, and Evans (2005)

and Smets and Wouter (2007) estimate. The latter (former) paper uses internal (external) con-

sumption habit. According to Dennis (2009), the economic content of estimates of linearized

NKDSGE models appears to be unaffected by the choice of consumption habit specification. He

also shows that the mapping from additive to multiplicative (i.e. ‘keeping up with the Jones’)

consumption habit parameters is onto (only in this direction).

Additive external consumption habit restricts the marginal utility of consumption to

be purely backward-looking. After stochastic detrending, λ̂t,ECH = αt
αt ĉt − hĉt−1

, where ECH

denotes external consumption habit. The log linearized Euler equation (A1.4) becomes

α∗c̃t − hc̃t−1 + hεt = Et
{
α∗c̃t+1 − hc̃t +α∗εt+1 + (α∗ − h)q̃t+1

}
, (A1.10)

with (α∗ − h)λ̃t,ECH = −α∗c̃t + α∗c̃t−1 − hεt . A bit of rearranging transforms the linearized

Euler equation (A1.10) into the first-order expectational stochastic difference equation

Et
{∆c̃t+1 + εt+1

}
= h
α∗
(∆c̃t + εt) − α∗ − hα∗

Etq̃t+1. (A1.11)
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Given a mean zero, homoskedastic expectation error ϑc̃,t = c̃ − Et−1c̃, the first-order stochastic

difference equation (A1.11) can be written

(
1− h

α∗
L
) ∆̃ct = α∗ − h

α∗
q̃t + ϑc̃,t, (A1.12)

which represents reduced-form consumption growth dynamics under additive ECH.

Equations (A1.9) and (A1.12) produce observationally equivalent dynamics in ∆̃ct up

to the impact coefficient on q̃t given it is a AR(1). The dynamics are equivalent because equa-

tions (A1.9) and (A1.12) share the same leading autoregressive root, which equals h/α∗. Thus

across additive internal and external consumption habit, a shock to q̃t generates identical re-

sponses in ∆̃ct beyond impact. Only at impact can internal and external consumption habit

yield disparate responses in ∆̃ct to an innovation in q̃t . As h -→ 1 the impact responses of ∆̃ct
differ by a factor of 12 for internal and external consumption habit at the calibration of section

2.2, but the impact responses converge as h -→ 0.

A2. Solving the Habit NKDSGE Models

This section presents the optimality and equilibrium conditions of the baseline habit

NKDSGE models, the stochastically detrended versions of these conditions, the steady state of

this economy, the log linearized optimality and equilibrium conditions, and solution method

invoked to compute a multivariate linear approximate equilibrium law of motion.

A2.1 Optimality and equilibrium conditions

The baseline habit NKDSGE models have first-order necessary conditions (FONCs) that

are restricted by the primitives of preferences, technology, market structure, and monetary

policy regime. The FONCs imply optimality and equilibrium conditions that must be satisfied

by any candidate equilibrium time series. The optimality and equilibrium conditions are
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λt =
1

Ct − hCt−1
− βhEt

{
1

Ct+1 − hCt

}
, (A2.1)

1− qt
qt

+ S
(

Xt
α∗Xt−1

)
+ S′

(
Xt

α∗Xt−1

)
Xt

α∗Xt−1
= β
α∗

Et

{
λt+1qt+1

λtqt
S′
(
Xt+1

α∗Xt

)[
Xt+1

Xt

]2
}
, (A2.2)

qt = βEt

{
λt+1

λt

[
ψut+1φt+1

YA,t+1

Kt+1
− a(ut+1)+ qt+1(1− δ)

]}
, (A2.3)

λt
Pt
= βEt

λt+1

Pt+1
Rt+1, (A2.4)

λt
Pt
= βEt

{
λt+1

Pt+1
+ 1
Mt+1

}
, (A2.5)

a′(ut) = ψφt
YA,t
Kt
, (A2.6)

Wt
Pt
= φt(1−ψ)

YA,t
Nt −N0

, (A2.7)
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YA,t
YD,t

=
(PA,t
Pt

)−ξ
, (A2.8)

Pc,t
Pt−1

=
(
ξ

ξ − 1

) Et

∞∑
i=0

[
βµP

]i
λt+iφt+iYD,t+i

[
Pt+i
Pt+i−1

]ξ

Et

∞∑
i=0

[
βµP

]i
λt+iYD,t+i

[
Pt+i
Pt+i−1

]ξ−1
, (A2.9)

Nt
nt
=
(WD,t
Wt

)−ξ
, (A2.10)

[Wc,t
Pt−1

]1+θ/γ
=

(
θ

θ − 1

) Et

∞∑
i=0

[
βµWα∗−θ(1+1/γ)

]i [[ Wt+i
Pt+i−1

]θ
Nt+i

]1+1/γ

Et

∞∑
i=0

[
βµWα∗(1−θ)

]i
λt+i

[
Wt+i
Pt+i−1

]θ [ Pt+i
Pt+i−1

]−1

Nt+i

, (A2.11)

Kt+1 = (1− δ)Kt +
[

1− S
(

Xt
α∗Xt−1

)]
Xt, (A2.12)

YD,t = Ct +Xt + a(ut)Kt, (A2.13)

YA,t =
[
utKt

]ψ[
(Nt −N0)At

]1−ψ
, (A2.14)
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P1−ξ
t = µP

[
Pt−1

Pt−2
Pt−1

]1−ξ
+ (1− µP)P1−ξ

c,t , (A2.15)

P−ξA,t = µP
[
PA,t−1

PA,t−2
PA,t−1

]−ξ
+ (1− µP)P−ξc,t , (A2.16)

W1−θ
t = µW

(
α∗
Pt−1

Pt−2
Wt−1

)1−θ
+ (1− µW )W1−θ

c,t , (A2.17)

and

W−θD,t = µW
(
α∗
Pt−1

Pt−2
WD,t−1

)−θ
+ (1− µW )W−θc,t , (A2.18)

where λt , Ct , qt , S(·), Xt , ut , rt , δ, a(ut), Pt , Mt , YA,t , PA,t , ξ, YD,t , φt , ψ, Kt , Wt , Pc,t , µP ,

θ, µW , Wc,t , WD,t , and γ denote the marginal utility of consumption, aggregate consumption,

the shadow price of capital (per unit of consumption), the investment growth cost function, the

deterministic TFP growth rate, aggregate investment, capital utilization rate, the rental rate of

capital, the depreciation rate of capital, the household cost of capital utilization, the aggregate

(demand) price level, the aggregate money stock at the end of date t− 1, aggregate output, the

aggregate supply price level, the price elasticity, aggregate demand, real marginal cost, capital’s

share of output, the aggregate capital stock at the end of date t−1, the aggregate nominal wage,

the firm’s optimal date t price, the fraction of firms forced to update their price at the previous

period’s inflation rate, the wage elasticity, the fraction of households forced to update their

nominal wage at the previous period’s inflation rate, the household’s optimal date t nominal
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wage, the aggregate demand nominal wage, and the inverse of the Frisch labor supply elasticity,

respectively.

A symmetric equilibrium is imposed on the markets in which final good firms and house-

holds have monopolistic power. Along the symmetric equilibrium path, firms i and j choose

the same commitment price Pc,t = Pi,t = Pj,t . The same restriction is placed on the nominal

wagesWc,t =W`,t =W℘,t of households ` and ℘. The optimality conditions (A2.9) and (A2.11)

reflect the impact of the symmetric equilibrium assumptions. Rather than Pi,t and W`,t , the

symmetric equilibrium impose the final good price Pc,t and nominal wageWc,t on the optimality

conditions (A2.9) and (A2.11).

The impulse vector consists of TFP and monetary policy shocks. We assume TFP, lnAt ,

is a random walk with drift

lnAt = α+ lnAt−1 + εt, εt ∼N
(
0, σ2

ε

)
. (A2.19)

The monetary policy shock is either the innovation µt of the first order autoregression, AR(1),

money growth (MG) supply rule

mt+1 = (1− ρm)m∗ + ρmmt + µt,
∣∣∣ρm∣∣∣ < 1, µt ∼N

(
0, σ2

µ

)
, (A2.20)

of the NKDSGE-MG model, where m∗ is the steady state money growth rate, or the innovation

υt to the interest rate smoothing Taylor rule (TR)

Rt = ρRRt−1 + (1− ρR)
(
R∗ + aπEt

{
Pt+1

Pt

}
+ aỸ Ỹt

)
+ υt,

∣∣∣ρR∣∣∣ < 1, υt ∼N
(
0, σ2

υ

)
, (A2.21)

of the NKDSGE-TR model, where the steady state nominal rate R∗ is the ratio of steady state
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inflation to the household discount factor, π∗/β, π∗ equals the differential of steady state

money growth and deterministic TFP growth, exp(m∗ − α), and Ỹt is the output gap (i.e.,

deviations of output from its trend). The TFP and money growth (or Taylor rule) innovations

are assumed to be uncorrelated at leads and lags, E{εt+i µt+j} = 0, (or E{εt+i υt+j} = 0) for all

i, j.

Equations (A2.1)–(A2.11) are the optimality conditions of the baseline habit NKDSGE

model. Internal consumption habit creates the forward-looking marginal utility of current

consumption, which is restated by equation (A2.1). Equation (A2.2) sets the cost of adding

one unit of aggregate investment,Xt , to its discounted expected benefit. The cost is represented

by the ratio of the cost of installing a unit of investment to the market value of extant capital

(i.e., the inverse of Tobin’s q), (1− qt)/qt , plus the total cost of installing a unit of investment

and the marginal cost of adding a unit of capital at the investment growth rate, Xt/Xt−1, net

of steady state growth α∗. The expected benefit equals the foregone marginal cost of future

investment valued at the pricing kernel, βλt+1/λt , which is weighted by the change in the price

of capital. The Euler equation of capital (A2.3) equates the price of increasing the capital stock

by one unit to the discounted expected return on the service flow of that unit of capital net

of the cost of capital services (or utilization) plus the net value of the unit of capital after

production evaluated at the pricing kernel. The riskless bond is priced in the Euler equation

(A2.4). The dynamics of the purchasing power of money is described by the Euler equation

(A2.5), where money is valued at the marginal utility of consumption. Equations (A2.4) and

(A2.5) yield the money demand function of the baseline habit NKDGSE model. Equation (A2.6)

is an intratemporal optimality condition that forces the marginal capital utilization rate to

match the marginal product of capital, which equals the rental rate of capital. Final good firm

labor demand is tied down by the intratemporal optimality condition (A2.7). The ratio of

aggregate supply to aggregate demand is connected to the ratio of the alternative aggregate

price level to the aggregate price level raised to the negative of the price elasticity by equation
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(A2.8). Equation (A2.9) specifies optimal pricing of a monopolistically competitive final good

firm. This decision is restricted by the Calvo staggered price technology, the firm’s discount

factor, real marginal cost, aggregate demand, and full indexation to lagged inflation of those

firms unable to obtain their optimal price at date t. Aggregate labor demand is equated to

aggregate labor supply in equation (A2.10) up to the ratio of the aggregate nominal wage indices

raised to the negative of the nominal wage elasticity. The optimal nominal wage decision is

characterized by equation (A2.11). The household settles on its optimal nominal wage by

balancing the discounted expected disutility of labor supply to the benefits of greater real

labor income in marginal utility of consumption units (i.e., the marginal rate of substitution

between the expected discounted lifetime disutility of work to the expected discounted value

of permanent income). Note that these costs and benefits are affected by the wage and labor

supply elasticities, and that those households unable to update their date t nominal wage reset

using lagged inflation.

Equilibrium conditions are given by equations (A2.12)–(A2.18) for the baseline habit

NKDSGE model. Equation (A2.12) is the law of motion of capital with capital adjustment costs.

Aggregate demand equals its constituent parts according to equation (A2.13). The constant

returns to scale aggregate technology is found in equation (A2.14). Equations (A2.15), (A2.16),

(A2.17), and (A2.18) are the laws of motion of the aggregate price levels and nominal wages

under Calvo price and nominal wage setting with full indexation.

The laws of motion (A2.16) and (A2.18) are added to avoid the curse of dimensionality.

Under Calvo staggered price and nominal wage setting, Yun (1996) points out that the price

and nominal wage aggregators (A2.15) and (A2.17) place the histories Pt and Wt (from date t

= 0) into the state vector of the baseline habit NKDSGE model. The reason is the histories of

Pt and Wt drive the process that restrict PC,t and WC,t along any candidate equilibrium path.

The aggregate supply price and aggregate demand nominal wage laws of motion (A2.16) and

(A2.18) are used to replace PC,t and WC,t with PA,t and WD,t in the state vector. This leaves the
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state vector with Pt , PA,t , Wt , and WD,t rather than their histories.

A2.2 Stochastically detrended optimality and equilibrium conditions

The NKDSGE models contain a permanent technology shock At . Since this shock is a

random walk (with drift), stochastic detrending renders the equilibrium path of state and other

endogenous variables stationary. Stochastic detrending consists of Ĉt ≡ Ct/At , X̂t ≡ Xt/At ,

Ŷj,t ≡ Yj,t/At , j = A, D, K̂t+1 ≡ Kt+1/At , P̂t ≡ PtAt/Mt , P̂i,t ≡ Pi,tAt/Mt , i = A, c, Ŵt ≡ Wt/Mt ,

and Ŵc,t ≡ W℘,t/Mt , ℘ = D, c. Applying these definitions to equations (A2.1)–(A2.18) yields

the stochastically detrended optimality and equilibrium conditions

λ̂t =
αt

αtĈt − hĈt−1
− βhEt

{
1

αt+1Ĉt+1 − hĈt

}
, (A2.22)

1− qt
qt

+ S
(
αtX̂t
α∗X̂t−1

)
+ S′

(
αtX̂t
α∗X̂t−1

)
αtX̂t
α∗X̂t−1

= β
α∗

Et

αt+1
qt+1λ̂t+1

qtλ̂t
S′
(
αt+1X̂t+1

α∗X̂t

)[
X̂t+1

X̂t

]2
 , (A2.23)

qt = βEt

{
λ̂t+1

λ̂t

[
ψut+1φt+1

Ŷt+1

K̂t+1
+ qt+1[1− δ]− a(ut+1)

αt+1

]}
, (A2.24)

λ̂t
P̂t
= βEt

{
λ̂t+1

P̂t+1

Rt+1

exp(mt+1)

}
, (A2.25)

A .13



λ̂t
P̂t
= βEt

{[
λ̂t+1

P̂t+1
+ 1

]
exp(−mt+1)

}
, (A2.26)

a′(ut) = ψφtαt
Ŷt
K̂t
, (A2.27)

Ŵt
P̂t
= (1−ψ)φt

Ŷt
Nt −N0

, (A2.28)

ŶA,t
ŶD,t

=
(
P̂A,t
P̂t

)−ξ
, (A2.29)

exp(mt − εt)
P̂c,t
P̂t−1

=

(
ξ

ξ − 1

) Et

∞∑
i=0

(βµP)i λ̂t+iφt+iŶD,t+i
[
exp(mt+i − εt+i)

P̂t+i
P̂t+i−1

]ξ
Et

∞∑
i=0

(βµP)i λ̂t+iŶD,t+i
[
exp(mt+i − εt+i)

P̂t+i
P̂t+i−1

]ξ−1
, (A2.30)

Nt
nt
=
(
ŴD,t
Ŵt

)−ξ
, (A2.31)
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[
exp(mt)

Ŵc,t
P̂t−1

]1+θ/γ

= θ
θ − 1

×

Et

∞∑
i=0

(βµW )i exp(θ(1+ 1/γ)(mt+i +
i∑
j=1

εt+j−1)

[ Ŵt+i
P̂t+i−1

]θ
Nt+i

1+1/γ

Et

∞∑
i=0

(βµW )i λt+i exp(−(1− θ)(mt+i +
i∑
j=1

εt+j−1))
[
Ŵt+i
P̂t+i−1

]θ [
P̂t+i
P̂t+i−1

]−1

Nt+i

, (A2.32)

K̂t+1 =
(1− δ)K̂t
αt

+
[

1− S
(
αtX̂t
α∗X̂t−1

)]
X̂t, (A2.33)

Ŷt = Ĉt + X̂t +
a(ut)K̂t
αt

, (A2.34)

Ŷt =
[
ut
K̂t
αt

]ψ[
Nt −NO

]1−ψ
, (A2.35)

P̂1−ξ
t = µP

[
exp(−mt +mt−1 + εt − εt−1)

P̂t−1

P̂t−2
P̂t−1

]1−ξ
+ (1− µP)P̂1−ξ

c,t , (A2.36)

P̂−ξA,t = µP
[

exp(−mt +mt−1 + εt − εt−1)
P̂A,t−1

P̂A,t−2
P̂A,t−1

]−ξ
+ (1− µP)P̂−ξc,t , (A2.37)
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Ŵ1−θ
t = µW

[
exp(−mt +mt−1 − εt−1)

P̂t−1

P̂t−2
Ŵt−1

]1−θ
+ (1− µW )Ŵ1−θ

c,t , (A2.38)

and

Ŵ−θD,t = µW
[

exp(−mt +mt−1 − εt−1)
P̂t−1

P̂t−2
ŴD,t−1

]−θ
+ (1− µW )Ŵ−θc,t , (A2.39)

where it is understood in equation (A2.32) that at i = 0 the sum
∑i
j=1 εt+j−1 equals one.

Equations (A2.22)–(A2.39) constitute the basis of the steady state equilibrium and the first-

order linear approximation of the baseline habit NKDSGE models.

A2.3 Deterministic steady state

Let λ∗, C∗, Y∗, X∗, N∗, K∗, q∗, W∗, r∗, P∗, u∗, φ∗, and R∗ denote deterministic steady

state values of the corresponding endogenous variables. The steady state equilibrium rests on

u∗ = 1, a(1) = 0, and S(1) = S′(1) = 0, which is consistent with Christiano, Eichenbaum, and

Evans (2005). Given these assumptions, the following equations characterize the deterministic

steady state of the stochastically detrended system (A2.22)–(A2.39)

C∗λ∗ = α
∗ − βh
α∗ − h , (A2.40)

q∗ = 1, (A2.41)
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K∗

Y∗
= βα∗ψφ∗

α∗ − β(1− δ), (A2.42)

R∗ = exp(m∗)
β

, (A2.43)

λ∗

P∗
= β

exp(m∗)− β, (A2.44)

a′(1) = ψφ∗α∗Y
∗

K∗
, (A2.45)

W∗

P∗
= (1−ψ)φ∗ Y∗

N∗ −N0
, (A2.46)

φ∗ = ξ − 1
ξ
, (A2.47)

W∗

P∗
=
(
θ

θ − 1

)
N∗1/γ

λ∗
, (A2.48)
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X∗

K∗
= 1− (1− δ)

α∗
, (A2.49)

Y∗ = C∗ +X∗, (A2.50)

and

Y∗ =
[
K∗

α∗

]ψ [
N∗ −NO

]1−ψ
. (A2.51)

Note that equations (A2.46), (A2.48), and (A2.51) imply that the solution for N∗ is nonlinear.

Also, at the steady state equilibrium, P∗ = P∗A = P∗c and W∗ = W∗D = W∗c .

A2.4 Log-linearized baseline habit NKDSGE models

We log linearize the optimality and equilibrium conditions of the baseline NKDSGE mod-

els in this section. The log linear approximations (i.e., first-order Taylor expansions) of the

stochastically detrended system (A2.22)–(A2.39) are around the deterministic steady state

given by equations (A2.40)–(A2.51). The approximations exploit, for example, the definitions

C̃t = ln Ĉt − lnC∗ or Ñt = lnNt − lnN∗.

A symmetric equilibrium has several implications for the log linear approximation of

the baseline habit NKDSGE models. Subsequent to log linearizing around the steady state, the

aggregate price indices are equated P̃t = P̃A,t , as are the aggregate nominal wages W̃t = W̃D,t ,

given P0 = PA,0 and W0 = WD,0. This further reduces the dimension of the state vector.

Log linearizing the stochastically detrended system (A2.22)–(A2.39) yields the linear

approximate optimality and equilibrium conditions of the baseline habit NKDSGE model. The

relevant conditions are
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(α∗ − h)(α∗ − βh)λ̃t = βα∗hEtC̃t+1 − (βh2 +α∗2)C̃t +α∗h(C̃t−1 − εt), (A2.52)

β$EtX̃t+1 − (1+ β)$X̃t +$X̃t−1 + q̃t =$εt, (A2.53)

q̃t + λ̃t = Et

{
λ̃t+1 + βψφ∗

Y∗

K∗
[
φ̃t+1 + Ỹt+1 − K̃t+1

]
+ β1− δ

α∗
q̃t+1

}
, (A2.54)

λ̃t − P̃t = Et
{
λ̃t+1 − P̃t+1 + R̃t+1

}
− m̃t+1, (A2.55)

λ̃t − P̃t =
λ∗

λ∗ + P∗Et
{
λ̃t+1 − P̃t+1

}
− m̃t+1, (A2.56)

%ũt = φ̃t + Ỹt − K̃t + εt, (A2.57)

W̃t − P̃t = φ̃t + Ỹt −
N∗

N∗ −N0
Ñt, (A2.58)

A .19



µP(1+ β)π̃t = βµPEtπ̃t+1 + µP π̃t−1

+ (1− µP)(1− βµP)φ̃t + βµPm̃t+1 − µP(1+ β)(m̃t − εt)+ µP(m̃t−1 − εt−1), (A2.59)

[
1+ βµ2

W −
θ(1− µW )(1− βµW )

θ + γ

]
W̃t = βµWEtW̃t+1 + µW W̃t−1 +

[
(1− µW )(1− βµW )

θ + γ

]
Ñt

−
[
γ(1− µW )(1− βµW )

θ + γ

]
(λ̃t − P̃t)− βµW π̃t + µW π̃t−1 + βµWm̃t+1 − (1+ β)µWm̃t + µWm̃t−1

+ βµWεt − µWεt−1, (A2.60)

K̃t+1 =
(1− δ)
α∗

(
K̃t − εt

)
+ X

∗

K∗
X̃t, (A2.61)

Ỹt =
C∗

Y∗
C̃t +

X∗

Y∗
X̃t +ψφ∗ũt, (A2.62)
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Ỹt = ψ
(
ũt + K̃t

)
+ (1−ψ) N∗

N∗ −N0
Ñt −ψεt, (A2.63)

and

m̃t+1 = ρmm̃t + µt, (A2.64)

for NKDSGE-MG rule models, or for NKDSGE-TR models the interest rate rule

(1− ρRL)R̃t = (1− ρR)
(
aπEtπ̃t+1 + aπm̃t+1 + ay Ỹt

)
+ υt, (A2.65)

where % ≡ a
′′(1)
a′(1) (= 1.174) and π̃t ≡ P̃t − P̃t−1. The linear approximate habit NKDSGE-TR model

consists of the linear stochastic difference equations (A2.52)–(A2.63) and (A2.65) with the

unknowns λ̃t , C̃t , X̃t , q̃t , Ỹt , K̃t+1, R̃t , ũt , φ̃t , Ñt , P̃t , and W̃t . When the AR(1) money growth

rule (A2.64) replaces the Taylor rule (A2.65) in the system of linear stochastic difference

equations that approximate the baseline habit NKDSGE-MG model, the linearized detrended

bond Euler equation (A2.55) can be dropped along with the demeaned nominal rate R̃t .

A2.5 Solving the baseline habit NKDSGE models

This section describes the solution method we apply to solve the linear stochastic differ-

ence equations that approximate the NKDSGE models. Consider the baseline habit NKDSGE-TR

model that employs the monetary policy rule (A2.65). For this model, the vector of endogenous

variables is

Ht =
[
λ̃t C̃t X̃t q̃t Ỹt K̃t+1 R̃t ũt φ̃t Ñt P̃t W̃t m̃t+1

]′
.
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Next define the expectational forecast errors ϑλ̃,t+1 = λ̃t+1 − Etλ̃t+1, ϑC̃,t+1 = C̃t+1 − EtC̃t+1,

ϑX̃,t = X̃t+1 − EtX̃t+1, ϑq̃,t+1 = q̃t+1 − Etq̃t+1, ϑỸ ,t+1 = Ỹt+1 − EtỸt+1, ϑũ,t+1 = ũt+1 − Etũt+1,

ϑφ̃,t+1 = φ̃t+1 − Etφ̃t+1, ϑP̃ ,t = P̃t+1 − EtP̃t+1, and ϑW̃ ,t+1 = W̃t+1 − EtW̃t+1. Collect these

forecast errors into the vector ϑt+1. We use Ht and ϑt , the linear approximate optimality and

equilibrium conditions (A2.52)–(A2.63) and the Taylor rule (A2.65) to form the multivariate

first-order stochastic difference equation system of the baseline habit NKDSGE-TR model

G0Ht = G1Ht−1 +Vζt +Kϑt, (A2.66)

where Ht = [Ht EtHt+1]′ and ζt = [εt υt]′ (or when monetary policy is defined by the AR(1)

money growth rule (A2.64), ζt = [εt µt]′). It is understood that EtHt+1 contains only those

elements of Ht that enter equations (A2.52)–(A2.63) as one-step ahead expectations. The

matrices G0, G1, and V contain cross-equation restriction embedded in the optimality and

equilibrium conditions (A2.52)–(A2.63), and the Taylor rule (A2.65).

Sims (2002) studies and solves multivariate linear rational expectations models that

match (A2.66). His solution algorithm taps the QZ (or generalized complex Schur) decom-

position of matrices G0 and G1. The QZ decomposition employs Q′FZ′ = G0 and Q′OZ′ = G1,

where Q′Q = Z′Z = I and matrices F and O are upper triangular. Matrices Q, Z, F and O are

possibly complex. Let Dt = Z′Ht and premultiply equation (A2.66) by Q to obtain

 F11 F12

0 F22


 D1,t

D2,t

 =
 O11 O12

0 O22


 D1,t−1

D2,t−1

+
 Q1·

Q2·

 (Vζt +Kϑt) , (A2.67)

where Qj· denotes the jth block of rows of Q. Although the QZ decomposition of G0 and G1

never fails to exist, these decompositions are not unique. Nonetheless, generalized eigenvalues
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of F and O can be unique if infinite values are allowed and zero eigenvalues for G0 and G1 are

ruled out. Denote the generalized eigenvalues of F and O as f−1
ii oii. These eigenvalues are

ordered to partition the system (A2.67) in such a way to place only explosive elements inD2,t .

The ‘reduced form’ process of D2,t is the second row of the system (A2.67), which is written

D2,t =MD2,t−1 +MO−1
22Q2· (Vζt +Kϑt) , (A2.68)

whereM≡ F−1
22 O22. Forward iteration of equation (A2.68) gives

D2,t = −
∞∑
i=0

M−iO−1
22Q2· (Vζt+i+1 +Kϑt+i+1) , (A2.69)

where the transversality conditionM−iD2,t+i, i -→∞ holds.

Extrinsic or sunspot equilibria are excluded from the solution of the present value (A2.69)

of D2,t . The present value invokes a no sunspot result because the expectation error vector

ϑt has no impact on D1,t and D2,t . The implications is that D2,t belongs only to the date t

information set (i.e., it includes only the intrinsic shocks of ζt), which mean that

Et

∞∑
i=0

M−iO−1
22Q2·Vζt+i+1 =

∞∑
i=0

M−iO−1
22Q2· (Vζt+i+1 +Kϑt+i+1) ,

For an intrinsic equilibrium to exist, Sims (2002) shows that the necessary and sufficient con-

ditions are that the set of equations Q2·Vζt+1 +Q2·Kϑt+1 equal a column vector of zeros. A

solution is available for the multivariate first order system (A2.66) if (and only if) the column

space of Q2·V is contained in that of Q2·K. Given ζt is uncorrelated, the solution follows im-

mediately. This is not true for the NKDSGE-MG models. When the intrinsic shocks are serially
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correlated, Q2·Kϑt is calculated from information in Q2·Vζt .

Suppose that an intrinsic solution exists. When there is no sunspot equilibria, the row

space of Q1·K is contained in that of Q2·K. This is a necessary and sufficient condition for

uniqueness of the solution of the linear approximate system (A2.66), as Sims (2002) shows.

He suggests working with a matrix Φ that yields Q1·K = ΦQ2·K. By premultiplying equation

(A2.67) with [I −Φ], combining this with equation (A2.68), and noting that this wipes out the

expectational forecast errors ϑt , we have

F11D1,t + (F12 − ΦF22)D2,t = O11D1,t−1 + (O12 − ΦO22)D2,t−1 + (Q1· − ΦQ2·)Vζt.

Stacking these equations on top of the equations of (A2.69) produces

 F11 F12 − ΦF22

0 I


 D1,t

D2,t

 =
 O11 O12 − ΦO22

0 0


 D1,t−1

D2,t−1



+

 Q1· − ΦQ2·

0

Vζt +
 0

Et
∑∞
i=0M−iO−1

22Q2·Vζt+i+1

 .

This matrix system maps into the unique intrinsic solution for Ht

Ht = ΘHHt−1 +Θζζt, (A2.70)

where
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ΘH = Z
 F11 F12 − ΦF22

0 I


−1  O11 O12 − ΦO22

0 0

Z′

and

Θζ = Z
 F11 F12 − ΦF22

0 I


−1  Q1· − ΦQ2·

0

 .

We engage the system of first-order stochastic difference equations (A2.70) to produce linear

approximate solutions for the NKDSGE models. These solutions generate synthetic data sets

that are inputs into our Bayesian simulation experiments.

A3. Estimating SVMAs, Checking Their ABC and Ds,

and Spectral Density Computation

This section fills in a few gaps about the methods used to evaluate the NKDSGE models.

We review the Blanchard and Quah (1989) decomposition and apply it to vector autoregressions

(VARs) of output growth (or consumption growth) and inflation. These VARs are identified with

a long-run monetary neutrality (LRMN) restriction that the level of output or consumption is

independent of monetary shocks at t -→∞. The LRMN restriction yields SVMA(∞), processes of

output (or consumption growth) and inflation. We show that it retrieves the TFP and monetary

policy shock innovations of the NKDSGE models as in the ABCs and Ds of Fernández-Villaverde,

Rubio-Ramírez, Sargent, and Watson (2007). The SVMA(∞) also provides a map to permanent

and transitory output and consumption growth spectral densities, SD∆Y and SD∆C . This section

ends with a review of several methods available to compute these SD∆Y and SD∆C .
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A3.1 VARs and SVMAs

The SVMAs are constructed from a VAR ofXt = [∆ lnYt ∆ lnPt]′ or [∆ lnCt ∆ lnPt]′ and

the LRMN restriction using the Blanchard and Quah (1989) decomposition. The unrestricted

joint probability distribution of Xt is approximated by the finite-order VAR

Xt = A(L)Xt−1 + et, A(L) =
p∑
j=1

AjL
j , (A3.1)

where constants are ignored, the forecast errors et = Xt − E
{
Xt
∣∣∣Xt−1,Xt−2, . . . ,Xt−p

}
are

Gaussian, and its covariance matrix is Σ. We set p = 2 in sample estimation and for the Bayesian

Monte Carlo experiments, but below we report results for p = 4.

The unrestricted VAR of (A3.1) is invertible whether estimated or under the NKDSGE

models. Inverting this VAR yields the reduced form VMA(∞), Xt =
[
I − A(L)

]−1
et , or Wold

representation of Xt , C(L)et , where C(L) =
∑∞
i=0CiL

i and the reduced form impact matrix C0

= I. The corresponding SVMA(∞) is

Xt = B(L)ςt, ςt ∼N
(
0, I

)
, (A3.2)

which summarizes equation (10) of the paper. The NKDSGE models predict that in the long run

the levels of output and consumption are independent of monetary policy innovations (i.e., the

money growth rule innovation µt or Taylor rule innovation υt). This is the LRMN restriction,

which forces the upper right element of B(1) to be zero, or
∑∞
j=0 Bj,1,2 = B(1)1,2 = 0. The

SVMA (A3.2) and the reduced form VMA(∞) also force et = B0ςt and Bj = AjB0. Note that

once estimates of the four unknown elements of the structural impact response matrix B0 are

available, we can compute the SVMA of (A3.2) from the reduced form VMA(∞).
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Our goal is to recover the four unknown coefficients of B0. The map from the structural

shocks to the reduced form errors, et = B0ςt , and the covariances matrices of et and ςt place

three restrictions on the four unknowns of B0. These three restrictions present us with three

nonlinear equations that follow from expanding Σ = B0B′0 to

Σ1,1 = B2
0,1,1 + B2

0,1,2,

Σ1,2 = B0,1,1B0,2,1 + B0,1,2B0,2,2,

Σ2,2 = B2
0,2,1 + B2

0,2,2.

(A3.3)

The remaining restriction is found by summing both sides of Bj = AjB0 from j ≥ 0, which

leads to B(1) = C(1)B0. The LRMN restriction imposes

C(1)1,1B0,1,2 + C(1)1,2B0,2,2 = 0, (A3.4)

which is a fourth nonlinear equation. We solve the four nonlinear equations (A3.3) and (A3.4)

to calculate estimates of the four unknown coefficients of B0.

Markov chain Monte Carlo (MCMC) simulations of the SVMA(∞) of equation (A3.2) en-

gage the BACC software of Geweke (1999) and McCausland (2004). The MCMC simulators need

priors that are obtained, only in part, from ordinary least squares (OLS) estimates of the re-

duced form VAR(2) of equation (A3.1). These estimates and related covariance matrices are

the prior information used to generate J (= 5,000) posterior draws of the reduced form VAR(2)

coefficients. Next we calculate the reduced form VMA(∞) and apply the BQ decomposition by

imposing the LRMN restriction to recover the SVMA(∞) of equation (A3.2). The J samples of

the B(L)s are the basis of the empirical distributions of the permanent and transitory SDE,∆Y
and SDE,∆C . The theoretical, T , distributions of these moments are estimated in the same

manner, but on synthetic samples generated by NKDSGE models.
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We treat synthetic samples generated by MCMC simulations of the unrestricted VAR

(A3.1) and the NKDSGE models in the same way, with one caveat. The exception is that al-

though the off diagonal elements of the NKDSGE model structural shock covariance matrix Ξ
= E

{
ζtζ′t

}
are zero, its diagonal elements are not unity. The NKDSGE model SVMAs are nor-

malized for the Blanchard and Quah (BQ) decomposition with a correction that relies on the

Choleski decomposition of Ξ, Ξ1/2. Given D(L) is the infinite-order lag polynomial matrix of

the theoretical SVMA(∞), the normalization is D(L) Ξ1/2. This normalization is imposed by the

BQ decomposition on the ensemble of J theoretical SVMAs that are created from synthetic time

series of lengthM × T obtained from Bayesian simulations of the NKDSGE models.

A3.2 The ABCs and Ds of the NKDSGE models, LRMN, and SVARs

This section shows how the SVMA(∞) of equation (A3.2) retrieves the economic shocks of

a NKDSGE model. This involves restating a result from Fernández-Villaverde, Rubio-Ramírez,

Sargent, and Watson (2007). They study a condition that equates the shocks identified by an

econometric model to those of a DSGE model. We exploit their condition to tie the shocks of a

structural VAR (SVAR) identified by LRMN to the NKDSGE model shocks ζt .

Fernández-Villaverde, Rubio-Ramírez, Sargent, and Watson (FVRRSW) construct a VAR(∞)

driven by DSGE model shocks to expose the condition that links these shocks to those identified

by a SVAR(∞). The baseline habit NKDSGE Taylor rule model yields the VAR(∞)

Xt = ΓH ∞∑
j=0

[ΘH −ΘζΓ−1
ζ ΓH]j ΘζΓ−1

ζ Xt−j−1 + Γζζt, (A3.5)

which combines the equilibrium law of motion (A2.70), the system

Xt = ΓHHt−1 + Γζζt, (A3.6)
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that relates the observables of Xt to Ht and ζt , and several steps described by FVRRSW. Note

that Γζ is square and its inverse is taken to exist. FVRRSW also examine

Ht =
∞∑
j=0

[ΘH −ΘζΓ−1
ζ ΓH]j ΘζΓ−1

ζ Xt−j , (A3.7)

which results from passing Γ−1
ζ through equation (A3.6), substituting it into the equilibrium law

of motion (A2.70), and rearranging terms. Equation (A3.7) recovers the state vector Ht from

the history ofXt−j , which consists of observed variables (i.e., there are no latent state variables),

if (and only if) the eigenvalues of ΘH − ΘζΓ−1
ζ ΓH are strictly less than one in modulus. This is

the condition FVRRSW require to equate shocks identified by a SVAR to the NKDSGE model

shocks ζt . Given the FVRRSW condition is satisfied by ΘH − ΘζΓ−1
ζ ΓH, the coefficients of the

lag polynomial implied by
[
I−

(ΘH −ΘζΓ−1
ζ ΓH)L

]
also fulfill the needs of square summability.

By also assuming that Γζζt is orthogonal to Xt−j−1 (j = 0, 1, . . . , ∞), equation (A3.5) can be

interpreted as the theoretical VAR(∞) of Xt .

We rely on LRMN for identification of the SVMA(∞) of equation (A3.2). This complicates

the problem of using the FVRRSW condition to connect NKDSGE model shock innovations ζt to

innovations identified by an econometric model. A solution is to exploit an approach of King

and Watson (1997) that imposes the LRMN restriction on the SVAR(∞)

 1 −Λ∆Y ,∆P,0
−Λ∆P,∆Y ,0 1

Xt =
 Λ∆Y ,∆Y (L) Λ∆Y ,∆P(L)
Λ∆P,∆Y (L) Λ∆P,∆P(L)

Xt−1 +

 η1,t

η2,t

 , (A3.8)

where the impact matrix Λ0 is nonsingular, Λ(L) summarizes the lag polynomial attached to

Xt−1, ηt =
[
η1,t η2,t

]′
, Ω is the diagonal covariance matrix of E

{
ηtη′t

}
, Eηt = 0, and E

{
ηtη′t−i

}
= 0, for all non-zero i.
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King and Watson (1997) are interested in identifying and estimating SVARs with impact

and long run restrictions. We focus on the latter type of restriction to identify the SVAR of

(A3.8) with LRMN. The identification relies on the response of the level of output to a permanent

change in the nominal shock η2,t , which is

L∆Y ,∆P = Λ∆Y ,∆P,0 +Λ∆Y ,∆P(1)
1−Λ∆Y ,∆Y (1) .

This ratio is zero when LRMN holds because it measures the long run response of output to a

monetary shock. Following King and Watson, the LRMN restriction is imposed on the structural

VAR of (A3.8) by rewriting its top equation as

∆ lnYt = [Λ∆Y ,∆P,0 +Λ∆Y ,∆P(1)]∆ lnPt +Λ∆Y ,∆Y (1)∆ lnYt−1

+ Ψ∆Y ,∆Y (L)∆2 lnYt−1 + Ψ∆Y ,∆P(L)∆2 lnPt−1 + η1,t,

where, for example, Ψ∆Y ,∆P,i = −∑∞s=i+1Λ∆Y ,∆P,s . Next, multiply and divide the first term after

the equality by L∆Y ,∆P to produce

∆ lnYt −L∆Y ,∆P∆ lnPt = Λ∆Y ,∆Y (1)[∆ lnYt−1 −L∆Y ,∆P∆ lnPt]

+ Ψ∆Y ,∆Y (L)∆2 lnYt−1 + Ψ∆Y ,∆P(L)∆2 lnPt−1 + η1,t,

or under LRMN

∆ lnYt = Λ∆Y ,∆Y (1)∆ lnYt−1 + Ψ∆Y ,∆Y (L)∆2 lnYt−1 + Ψ∆Y ,∆P(L)∆2 lnPt−1 + η1,t.
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The previous equation and the bottom equation of (A3.8) form a just-identified SVAR from

which η1,t and η2,t can be computed. An estimator of these shocks does not rely on identifying

either impact coefficient Λ∆Y ,∆P,0 or Λ∆P,∆Y ,0. Rather the former coefficient is obtained from

L∆Y ,∆P,0 = 0 given Λ∆Y ,∆Y (1), Ψ∆Y ,∆Y (L) and Ψ∆Y ,∆P(L), while the latter coefficient is obtained

from the bottom equation of (A3.8). King and Watson (1997) use an instrumental variable (IV)

estimator with η1,t serving as the additional instrument. Instead of the IV estimator, we apply

the BQ decomposition, equations (A3.3) and (A3.4), to synthetic samples of Xt , rather than

estimate SVAR(∞)s.

The FVRRSW condition enables us to match the shocks of the SVAR of (A3.8) with the

NKDSGE shocks ζt . This SVAR implies the reduced form VAR(∞)

Xt = S(L)Xt−1 + νt, S(L) =
∞∑
j=1

Sj Lj , (A3.9)

is associated with the SVAR of (A3.8), where νt = Xt − E
{
Xt
∣∣∣Xt−1,Xt−2, . . . ,Xt−p, . . .

}
, S(L)

= Λ−1
0 Λ(L), and νt = Λ−1

0 ηt . Equation (A3.9) serves to represent the VAR(∞) of Xt when the

sum from i= 1, . . . ,∞ of S2∆Y ,∆Y ,i + S2∆Y ,∆P,i + S2∆P,∆Y ,i + S2∆P,∆Y ,i is finite and the orthogonality

condition E
{
νtX′t−j

}
= 0, holds for all j ≥ 1. We can acquire shocks from this reduced form

VAR that match those of the baseline habit NKDSGE-TR model when Λ0νt = Γζζt . FVRRSW

show that the equality links the econometric and NKDSGE model shocks if (and only if) the

eigenvalues of ΘH −ΘζΓ−1
ζ ΓH are strictly less than one in modulus.

The FVRRSW restriction is checked at each of the J = 5000 replications of the Bayesian

simulations of the 12 NKDSGE models. The simulations reveal that the NKDSGE models satisfy

the FVRRSW restriction on the eigenvalues ΘH − ΘζΓ−1
ζ ΓH at all J replications. Thus, the the-

oretical SVMA(∞)s estimated on synthetic data always recover the economic shocks of the 12

NKDSGE models.
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A3.3 Computing permanent and transitory spectral densities

In Section 3.2, the paper presents the map from the SVMA(∞) of equation (A3.2) to

permanent and transitory SD∆Y and SD∆C . We reproduce the SD (at frequencyω) that appears

at the end of section 3.2 here as

SD∆Y ,ι(ω) = 1
2π

40∑
j=0

∣∣∣B∆Y ,ι,je−ijω∣∣∣2
, ι = ε, υ, (A3.10)

where it is understood that the Bayesian simulations of the NKDSGE models account for the

non-unit diagonal elements of Ξ. Although we calculate the permanent and transitory SD∆Y
and SD∆C using (A3.10), there are (at least) two other methods available to compute these

moments. First, the SD(ω) can be represented as

SD∆Y ,ι(ω) = B
2∆Y ,ι,0
2π

40∑
j=0

∣∣∣∣∣B∆Y ,ι,jB∆Y ,ι,0 e−ijω
∣∣∣∣∣

2

,

which leads to the factorization

1+ B∆Y ,ι,1
B∆Y ,ι,0z +

B∆Y ,ι,2
B∆Y ,ι,0z2 + . . .+ B∆Y ,ι,40

B∆Y ,ι,0 z40 = (1− χι,1z)(1− χι,2z) · · · (1− χι,40z),

in terms of the eigenvalues, the χι,hs, of the MA(40) process of output growth with respect to

the NKDSGE shocks ε, µ, or υ. The eigenvalue factorization gives

SD∆Y ,ι(ω) = B2∆Y ,ι,0
2π

40∏
j=1

[
1 + χ2

ι,j − 2χι,j cos(ω)
]
,

which provides a third method to compute SD(ω)s.
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A4. Additional NKDSGE model evaluation

Our paper grounds its evaluation of 12 NKDSGE models on the minimal econometric

interpretation (MEI) of Geweke (2010). The MEI is useful to judge the fit of a NKDSGE model

because no pretense is made that it provides a complete description of economic behavior.

According to Geweke, a NKDSGE model is incomplete because it fails to produce densities for

sample moments and the predictive density of the sample data.

This section presents more information about the NKDSGE model evaluation presented

in section 4 of the paper. These are figures 3.A, 3.B, 4.A, 4.B, 5.A, and 5.B. These figures are

numbered to match figures 3–5 of the paper. That is, figures 3.A and 3.B contain results for

the baseline NKDSGE models, figures 4.A and 3.B contain results for the sticky price (SPrice)

NKDSGE models, and figures 5.A and 5.B contain results for the sticky wage (SWage) NKDSGE

models. The A denotes results for NKDSGE-MGR models while the NKDSGE-TR models are

represented with B.

Figures 3.A–5.B are laid out from the top row to the bottom containing results for per-

manent SD∆Y , transitory SD∆Y , permanent SD∆C , and transitory SD∆C . Mean permanent and

transitory SDP,∆Y , SDP,∆C , SDT ,∆Y , and SDT ,∆C appear in the first column of figures 3.A–5.B.

The second (third) column of figures 3.A–5.B contain densities of KS statistics computed using

the entire spectrum (constrained to eight to two years per cycle). We denote mean SDPs and

KSP statistic densities with (blue) solid lines, mean SDT s and KST statistic densities generated

by non-habit NKDSGE models with (green) dashed lines, and mean SDT s and KST statistic den-

sities created by habit NKDSGE models with (red) dot-dash lines in figures 3.A–5.B. Goodness

of fit statistic densities appear with associated CIC in figures 3.A–5.B.

We also discuss five more Bayesian Monte Carlo experiments that are grounded on the

MEI in this section. To review, we engage the MEI to evaluate 12 NKDSGE models on prior and

posterior population moments, permanent and transitory SD∆Y and SD∆C , that are functions

of actual observable data. By drawing from priors of parameters of a NKDSGE model, its lin-
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earized version produces prior population SDs from SVMA(∞)s estimated on synthetic samples

of lengthM (= T ×W ). We label these posterior moments theoretical SDs, or SDT s. The same

SVMA(∞)s are used to build posterior SDs, tagged as empirical SDs or SDPs, on synthetic sam-

ples of length T generated by MCMC simulators. Actual data, unrestricted VAR(2)s, and priors

of these models are the conditioning information on which the SDPs are built.

We offer the five new Bayesian Monte Carlo experiments to check the robustness of the

evaluation of the 12 NKDSGE models conducted by the paper. The first of these experiments

replaces the prior of the habit parameter, h ∼ U(0.05, 0.95), with a prior drawn from the β

distribution,h∼β(0.65,0.15). Next, we break the priorh∼U(0.05, 0.95) in half to conduct two

experiments. One set of simulations condition on the prior h ∼ U(0.50, 0.95), while the other

set relies on the prior h ∼ U(0.05, 0.499). The fourth experiment retains the original priors,

includingh∼U(0.05, 0.95), but uses VAR(4)s, rather than VAR(2)s, to construct the SVMA(∞)s.

In the final experiment, we return to the structure of the Bayesian Monte Carlo experiments

presented in the paper except that the CIC are calculated using distributions of Cramer-von

Mises (CvM ) goodness of fit statistics instead of Kolmogorov-Smirnov (KS ) statistics.

Results of the five additional NKDSGE model evaluation exercises appear in tables A1–A5

and figures A1–A30. Tables A1–A4 contain CIC that measure the overlap of KSP and KST distri-

butions generated by Bayesian Monte Carlo experiments employing the prior h ∼ β(0.65,0.15),

the prior h ∼ U(0.50, 0.95), the prior h ∼ U(0.050, 0.499), and switching from VAR(2)s to

VAR(4)s, respectively. The source of CIC reported in table A5 are densities of CvM statis-

tics constructed from distributions of permanent and transitory SDP,∆Y , SDP,∆C , SDT ,∆Y , and

SDT ,∆C .

Figures A1–A30 are laid out in the fashion as figures 3.A–5.B of the paper. From top to

bottom, the rows of figures A1-A30 list results for permanent SD∆Y , transitory SD∆Y , perma-

nent SD∆C , and transitory SD∆C . Mean permanent and transitory SDP,∆Y , SDP,∆C , SDT ,∆Y , and

SDT ,∆C appear in the first column of figures A1–A30. The second (third) column of figures A1–
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A24 contain densities of KS statistics computed using the entire spectrum (constrained to eight

to two years per cycle). We denote mean SDPs and KSP statistic densities with (blue) solid lines,

mean SDT s and KST statistic densities generated by non-habit NKDSGE models with (green)

dashed lines, and mean SDT s and KST statistic densities created by habit NKDSGE models

with (red) dot-dash lines in figures A1–A24. Densities of CvM statistics are displayed in the

second and third columns of figures A25-A30 using the same scheme. Goodness of fit statistic

densities appear with associated CIC in figures A1–A30.

A4.0 Preliminary NKDSGE model fit: Prior predictive analysis

Before reviewing the five Bayesian Monte Carlo experiments, this section presents a prior

predictive analysis of the 12 NKDSGE models. Our prior predictive analysis asks if a NKDSGE

model can account for sample innovation variances of VAR(2)s estimated on output growth

and inflation and consumption growth and inflation data that starts in 1955Q1 and ends with

2002Q4, T = 196. The data is described in section A0. Draws from priors of NKDSGE model

parameters and linearized NKDSGE models generate synthetic samples of output growth, con-

sumption growth, and inflation of length T on which equivalent VARs are estimated to extract

J = 5000 pairs of output growth and consumption growth regression forecast innovation vari-

ances. These VAR innovation variances form the prior distributions of interest.

Scatter plots of the prior distributions are reported in the three rows and four columns

of figure A0. The baseline, SPrice, and SWage versions of these models appear in the rows of

figure A0 from top to bottom. From left to right, the columns contain results for non-habit

NKDSGE-MGR, habit NKDSGE-MGR, non-habit NKDSGE-TR, and habit NKDSGE-TR models. The

12 scatter plots of figure A0 place the innovation variance of the consumption (output) growth

regression on the horizontal (vertical) axes. The symbol “+” in these plots denote the combina-

tion of sample innovation variance estimates obtained from output and consumption growth

regressions. In each scatter plot of figure A0, clouds of points represent prior distributions of

artificial innovation variances.
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Figure A0 shows that non-habit NKDSGE models fail to explain sample innovation vari-

ances of the output and consumption growth regressions. Neither baseline, SPrice, nor SWage

non-habit NKDSGE models produce prior distributions of synthetic innovation variances in

the first and third columns of figure A0 that cover the plus sign, “+”, that symbolizes the

intersection of the sample shock innovations. This is preliminary evidence that non-habit

NKDSGE models cannot describe fluctuations in U.S. output and consumption growth data

on the 1955Q1–2002Q4 sample.

The habit NKDSGE model are better able to explain the sample innovation variances of

the output and consumption growth regression. The second and fourth columns of figure A0

present clouds of prior distributions of shock innovation variances that blanket the sample

innovation variances. This result holds for baseline, SPrice, and SWage habit NKDSGE models.

Thus, NKDSGE models find it useful to include consumption habit to explain sample output

and consumption growth innovation variances.

A4.1 More evidence about NKDSGE model fit

The first column of figures 3.A–5.B include the mean dynamics of the prior and posterior

SDs that are reported in figures 3–5 of the paper. The second and third columns of figures

3.A–5.B give information about the prior KS statistics distributions of the habit and non-habit

NKDSGE models compared to the posterior KS statistic distributions. The overlap of the prior

and posterior distributions of the KS statistics confirm the CIC of table 2 of the paper. When a

CIC > 0.3 in table 2, the associated prior KS statistic distributions exhibits substantial overlap

with the posterior KS statistic distributions.

A4.2 NKDSGE model fit under the prior h ∼ β(0.65, 0.15)

The uniform prior for the consumption habit parameter, h ∼ U(0.05, 0.95), only utilizes

information about the theoretical restriction that h takes values on the open interval between

zero and one. We replace this uninformative prior for h with a β prior informed by evidence

from previous DSGE model studies, h ∼ β(0.65,0.15). The β prior gives h a mean of 0.65,
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a standard deviation of 0.15, and a 95 percent coverage interval of [0.3842, 0.8765]. This

calibration focuses on estimates of Christiano, Eichenbaum, and Evans (2005) and also covers

values of h found in Boldrin, Christiano, and Fisher (2001) and Francis and Ramey (2005),

among others. The non-habit NKDSGE models remain defined by the degenerate prior h = 0.

Table A1 reports CIC generated from Bayesian Monte Carlo experiments of the NKDSGE

models given the β prior for h. We include density plots of KS statistic distributions based

on distributions of permanent and transitory SDP,∆Y , SDP,∆C , SDP,∆Y , and SDP,∆C in figures

A1–A6. The CIC and KS statistic densities indicate that the β prior for h produces only minimal

changes in NKDSGE model fit compared to CIC found in table 2. Figures A1–A6 reinforce this

conclusion.

A4.3 NKDSGE model fit under the prior h ∼ U(0.50, 0.95)

Bounding the prior of h from below at 0.5 yields one important change in the evaluation

of the 12 NKDSGE models discussed in the paper. Although the prior h ∼ U(0.50, 0.95) is

uninformative, it eliminates values of h that suggest weaker consumption habit induced prop-

agation and monetary transmission. With only the prior h ∼ U(0.50, 0.95) different, the top

half of table A3 shows that habit NKDSGE-MGR models achieve six more CIC ≥ 0.3 compared

to results found in the top half of table 2. These additional matches are mostly made by base-

line and SWage habit NKDSGE-MGR models to distributions of transitory SDP,∆Y and SDP,∆C
when fit is restricted to eight to two years per cycle. The SPrice habit NKDSGE-TR model gen-

erates an additional CIC ≥ 0.3 in the bottom half of table A3 when drawing from the prior

h ∼ U(0.50, 0.95) instead of h ∼ U(0.05, 0.95). This match occurs on the transitory SDP,∆Y
distribution when the evaluation is conducted using the entire spectrum. Visual support for

these results are KSP and KST densities displayed in figures A7–A12. The first column of

these figures present mean permanent and transitory SDT ,∆Y and SDT ,∆C that are qualitatively

similar to those found in the first column of figures 3.A–5.B.
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A4.4 NKDSGE model fit under the prior h ∼ U(0.050, 0.499)

The reason for replacing the prior h ∼ U(0.50, 0.95) with h ∼ U(0.050, 0.499) is to

generate evidence about the impact of a weaker consumption habit process on NKDSGE model

propagation and monetary transmission. Moving to the prior h ∼ U(0.050, 0.499) has the

unsurprising effect of reducing the number of successful matches, CIC ≥ 0.3, by five. Compared

to the top half of table 2, the top half of table A3 reveals that the SPrice habit NKDSGE-MGR

model achieves two fewer matches. SPrice and SWage habit NKDSGE-TR models exhibit three

fewer CIC ≥ 0.3 in the bottom half of table A3 on this dimension when set next to the CIC of

table 2 of the paper. These failed matches are to distributions of permanent and transitory

SDT ,∆C . The deterioration in the fit of SPrice habit NKDSGE-MGR, SPrice habit NKDSGE-TR, and

SWage habit NKDSGE-TR models is reflected in in figures A13–A18 by mean permanent and

transitory SDT ,∆Y and SDT ,∆C that are farther from mean permanent and transitory SDP,∆Y
and SDP,∆C as well as KSP and KST densities that display less overlap.

A4.5 NKDSGE model fit using VAR(4)s to estimate SVMA(∞)s

We estimate unrestricted VARs with longer lags to examine the impact on the construc-

tion of SVMA(∞)s, permanent and transitory SD∆Y and SD∆C , and our Bayesian evaluation to

NKDSGE model. Table A4 includes CIC that indicate switching to VAR(4)s from VAR(2)s has

little impact on judging the fit of the 12 NKDSGE models to distributions of SDP,∆Y and SDP,∆C .

For the experiments relying on VAR(4)s, there are in net two additional CIC ≥ 0.3 compared

to table 2. The bottom half of table A4 shows the SPrice non-habit NKDSGE-TR model failing

to duplicate the distribution of the permanent SDP,∆Y . The SWage habit NKDSGE-MGR model

is responsible for two CIC ≥ 0.3 as shown in the top half of table A4 given VAR(4)s, instead

of VAR(2)s, are engaged by the Bayesian Monte Carlo experiments. These matches occur on

distributions of transitory SDP,∆Y and SDP,∆C when evaluation is constrained to the business

cycle frequencies. Another CIC ≥ 0.3 is provided by the SWage habit NKDSGE-TR model in

the bottom half of table A4 that is not observed in table 2. This NKDSGE model replicates the
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distribution of the transitory SDP,∆Y on the entire spectrum.

Figures A19-A24 indicate that the impact of estimating VAR(4)s, rather than VAR(2)s,

falls on the mean transitory SDP,∆C . This SD displays a peak in the business cycle frequencies.

Note that figure 2, which is constructed on VAR(2)s, contains a mean transitory SDP,∆C that

has a plateau from the growth into the business cycle frequencies. Otherwise, the VAR(4)s

have few qualitative implications for mean SDP , mean SDT , KSP densities, and KST densities

comparing those in figures A19–A24 to those in figures 3.A–5.B.

A4.5 Gauging NKDSGE model fit with the Cramer-von Mises statistic

Table A5 contains CIC for 12 NKDSGE models based on the CvM statistic. We ground

CIC on densities of CvM statistics to check the robustness of measures of NKDSGE model fit

presented in the paper. The CvM statistic is

CvMD,j =
∫ 1

0
B2
D,j(κ)dκ,

for D = P, T and replication j of the ensemble of J (= 5000) P and T synthetic samples.

Section 3.4 provides details about computing BD,j(·), but to review

BD,j(κ) =
√

2H
2π

[
VD,j(κπ)− κVD,j(π)

]
,

where κ ∈ [0, 1] ( [0.064, 0.25]) when evaluation is conducted on the entire spectrum (on the

business cycle frequencies of eight to two years per cycle) and H = T if D = P, otherwise

H = M. Also, the partial sum VD,j
(
2πq/H

)
= 2π

∑q
`=1RD,j

(
2π`/H

)
/H and the ratio

RD,j(ω) = ÎT (ω) / ID,j(ω), where the numerator (denominator) is the sample (jth P or T )

output or consumption growth SD at frequencyω. Distributions of CvMP and CvMT statistics

are the basis of CIC that quantify the overlap of the ensemble of distributions of permanent

and transitory SDP,∆Y , SDP,∆C , SDT ,∆Y , and SDT ,∆C .
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The fit of the NKDSGE models is qualitatively similar across table A5 and table 2 with two

exceptions. First, table 2 shows that the SPrice non-habit NKDSGE-MGR model produces one

CIC > 0.30. Using the CvM statistic allows this NKDSGE model to produce an additional CIC

≥ 0.30 in the third row of table A5. This row of CIC shows that the SPrice non-habit NKDSGE-

MGR model replicates distributions of permanent and transitory SDP,∆Y s when evaluation is

grounded on frequencies between eight to two years per cycle. However, distributions of CvMP

and CvMT statistics generate CIC limited on the business cycle frequencies that indicate the

fit of the SPrice habit NKDSGE-MGR model dominates the fit of the SPrice non-habit NKDSGE

model-MGR. The former model also duplicates the distribution of transitory SDP,∆C on the

entire spectrum using the CvM statistic, which is the other difference between table A5 and

table 2 of the paper.

Figures A25–A30 plot mean SDPs and SDT s and densities of CvMP and CvMT statistics.

A striking feature of these figures is that for CIC > 0.3 measured on the entire spectrum, the

CvMT statistic densities often decay smoothly from left to right instead of showing well-defined

peaks. For example the middle panel of the bottom row of figure A26 shows that the baseline

habit NKDSGE-TR model yields a CIC = 0.56 on the distribution of transitory SDP,∆C , but the

relevant CvM statistic density is relatively flat with a long right-hand tail. The explanation

is that the quadratic form of the CvM statistic can place weight on large deviations between

sample SD, ÅSDT (ω), and say, the jth draw from the distribution of SDT (ω), SDT ,j(ω). In

this case, the density of the CvMT statistic will be disperse with a long thin right tail. The

supremum of the KS statistic, KST ,j = Maxκ∈[0,1]
∣∣∣BT ,j(κ)∣∣∣, is immune from this dispersion,

especially in cases when CIC > 0.3. Nonetheless, using the CvM statistic does not alter our

evaluation of habit and non-habit NKDSGE models.
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Table A1: CICs of Kolmogorov-Smirnov Statistics

Replace the prior h ∼ U(0.05, 0.95) with h ∼ β(0.65, 0.15)

∆Y w/r/t ∆Y w/r/t ∆C w/r/t ∆C w/r/t
Trend Sh’k Transitory Sh’k Trend Sh’k Transitory Sh’k

Model ∞ : 0 8 : 2 ∞ : 0 8 : 2 ∞ : 0 8 : 2 ∞ : 0 8 : 2

NKDSGE-MGR

Baseline
Non-Habit 0.02 0.03 0.00 0.01 0.00 0.00 0.00 0.00
Habit 0.00 0.03 0.20 0.22 0.01 0.20 0.12 0.22

SPrice
Non-Habit 0.03 0.47 0.00 0.23 0.01 0.17 0.00 0.04
Habit 0.17 0.73 0.15 0.72 0.07 0.62 0.54 0.79

SWage
Non-Habit 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06
Habit 0.00 0.01 0.23 0.29 0.01 0.09 0.14 0.29

NKDSGE-TR

Baseline
Non-Habit 0.01 0.00 0.12 0.71 0.00 0.00 0.08 0.68
Habit 0.00 0.03 0.80 0.46 0.02 0.15 0.53 0.85

SPrice
Non-Habit 0.40 0.57 0.00 0.76 0.01 0.16 0.00 0.49
Habit 0.37 0.83 0.45 0.59 0.14 0.65 0.33 0.76

SWage
Non-Habit 0.00 0.00 0.21 0.37 0.00 0.00 0.02 0.81
Habit 0.00 0.05 0.62 0.47 0.02 0.14 0.44 0.77

The prior h ∼ β(0.65, 0.15) implies a 95 percent coverage interval of [0.3842, 0.8765]. NKDSGE-MGR and
NKDSGE-TR denote the NKDSGE model with the AR(1) money supply rule (8) and the Taylor rule (9), respectively.
Baseline NKDSGE models include sticky prices and sticky wages. The acronyms SPrice and SWage represent
NKDSGE models with only sticky prices or sticky nominal wages, respectively. The column heading ∞ : 0 (8 : 2)
indicates that CICs measure the intersection of distributions of KSP and KST statistics computed over the entire
spectrum (from eight to two years per cycle).
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Table A2: CICs of Kolmogorov-Smirnov Statistics

Replace the prior h ∼ U(0.05, 0.95) with h ∼ U(0.50, 0.95)

∆Y w/r/t ∆Y w/r/t ∆C w/r/t ∆C w/r/t
Trend Sh’k Transitory Sh’k Trend Sh’k Transitory Sh’k

Model ∞ : 0 8 : 2 ∞ : 0 8 : 2 ∞ : 0 8 : 2 ∞ : 0 8 : 2

NKDSGE-MGR

Baseline
Non-Habit 0.02 0.03 0.00 0.01 0.00 0.00 0.00 0.00
Habit 0.00 0.06 0.27 0.32 0.03 0.32 0.26 0.36

SPrice
Non-Habit 0.03 0.47 0.00 0.23 0.01 0.17 0.00 0.04
Habit 0.24 0.80 0.21 0.78 0.17 0.63 0.57 0.77

SWage
Non-Habit 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06
Habit 0.00 0.03 0.29 0.39 0.03 0.20 0.26 0.39

NKDSGE-TR

Baseline
Non-Habit 0.01 0.00 0.12 0.71 0.00 0.00 0.08 0.68
Habit 0.00 0.06 0.78 0.39 0.05 0.28 0.76 0.83

SPrice
Non-Habit 0.40 0.57 0.00 0.76 0.01 0.16 0.00 0.49
Habit 0.44 0.88 0.55 0.56 0.23 0.66 0.61 0.73

SWage
Non-Habit 0.00 0.00 0.21 0.37 0.00 0.00 0.02 0.81
Habit 0.01 0.10 0.60 0.47 0.05 0.26 0.67 0.70

See the notes to table A1 except that the results of this table rely on h ∼ U(0.50, 0.95).
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Table A3: CICs of Kolmogorov-Smirnov Statistics

Replace the prior h ∼ U(0.05, 0.95) with h ∼ U(0.050, 0.499)

∆Y w/r/t ∆Y w/r/t ∆C w/r/t ∆C w/r/t
Trend Sh’k Transitory Sh’k Trend Sh’k Transitory Sh’k

Model ∞ : 0 8 : 2 ∞ : 0 8 : 2 ∞ : 0 8 : 2 ∞ : 0 8 : 2

NKDSGE-MGR

Baseline
Non-Habit 0.02 0.03 0.00 0.01 0.00 0.00 0.00 0.00
Habit 0.01 0.02 0.06 0.02 0.00 0.00 0.00 0.00

SPrice
Non-Habit 0.03 0.47 0.00 0.23 0.01 0.17 0.00 0.04
Habit 0.03 0.48 0.00 0.39 0.00 0.25 0.00 0.20

SWage
Non-Habit 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06
Habit 0.00 0.00 0.09 0.08 0.00 0.00 0.00 0.08

NKDSGE-TR

Baseline
Non-Habit 0.01 0.00 0.12 0.71 0.00 0.00 0.08 0.68
Habit 0.00 0.00 0.50 0.66 0.00 0.00 0.30 0.87

SPrice
Non-Habit 0.40 0.57 0.00 0.76 0.01 0.16 0.00 0.49
Habit 0.41 0.60 0.04 0.74 0.08 0.26 0.04 0.80

SWage
Non-Habit 0.00 0.00 0.21 0.37 0.00 0.00 0.02 0.81
Habit 0.00 0.00 0.52 0.42 0.00 0.00 0.20 0.84

See the notes to table A1 except that the results of this table rely on h ∼ U(0.050, 0.499).
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Table A4: CICs of Kolmogorov-Smirnov Statistics

Using VAR(4)s to Construct SVMA(∞)s

∆Y w/r/t ∆Y w/r/t ∆C w/r/t ∆C w/r/t
Trend Sh’k Transitory Sh’k Trend Sh’k Transitory Sh’k

Model ∞ : 0 8 : 2 ∞ : 0 8 : 2 ∞ : 0 8 : 2 ∞ : 0 8 : 2

NKDSGE-MGR

Baseline
Non-Habit 0.01 0.04 0.00 0.03 0.00 0.00 0.00 0.00
Habit 0.02 0.09 0.14 0.19 0.04 0.18 0.14 0.21

SPrice
Non-Habit 0.14 0.53 0.00 0.36 0.01 0.12 0.00 0.04
Habit 0.29 0.67 0.23 0.75 0.14 0.46 0.28 0.52

SWage
Non-Habit 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.09
Habit 0.01 0.03 0.23 0.30 0.03 0.11 0.14 0.30

NKDSGE-TR

Baseline
Non-Habit 0.00 0.01 0.24 1.00 0.00 0.00 0.03 0.56
Habit 0.02 0.07 0.70 0.98 0.05 0.15 0.44 0.83

SPrice
Non-Habit 0.13 0.78 0.00 0.92 0.00 0.13 0.00 0.52
Habit 0.40 0.88 0.33 0.89 0.16 0.48 0.34 0.81

SWage
Non-Habit 0.00 0.00 0.31 1.00 0.00 0.00 0.01 0.65
Habit 0.02 0.06 0.60 0.92 0.04 0.14 0.40 0.84

The SVMA(∞) are constructed from unrestricted VAR(4)s estimated on actual and synthetic data. Otherwise, see
the notes at the bottom of table A1.
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Table A5: CICs of Cramer-von Mises Statistics

∆Y w/r/t ∆Y w/r/t ∆C w/r/t ∆C w/r/t
Trend Sh’k Transitory Sh’k Trend Sh’k Transitory Sh’k

Model ∞ : 0 8 : 2 ∞ : 0 8 : 2 ∞ : 0 8 : 2 ∞ : 0 8 : 2

NKDSGE-MGR

Baseline
Non-Habit 0.02 0.02 0.00 0.02 0.00 0.00 0.00 0.00
Habit 0.00 0.02 0.20 0.18 0.02 0.12 0.14 0.18

SPrice
Non-Habit 0.04 0.52 0.00 0.49 0.02 0.21 0.00 0.14
Habit 0.14 0.65 0.09 0.75 0.09 0.46 0.32 0.60

SWage
Non-Habit 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.01
Habit 0.00 0.01 0.23 0.26 0.01 0.01 0.14 0.19

NKDSGE-TR

Baseline
Non-Habit 0.03 0.00 0.12 0.62 0.00 0.00 0.10 0.75
Habit 0.00 0.02 0.63 0.50 0.03 0.14 0.56 0.87

SPrice
Non-Habit 0.42 0.61 0.00 0.80 0.01 0.21 0.00 0.71
Habit 0.42 0.73 0.27 0.56 0.16 0.50 0.35 0.81

SWage
Non-Habit 0.00 0.00 0.21 0.33 0.00 0.00 0.03 0.87
Habit 0.00 0.04 0.54 0.43 0.02 0.13 0.46 0.78

The column heading ∞ : 0 (8 : 2) indicates that CICs measure the intersection of distributions of CvMP and
CvMT statistics computed over the entire spectrum (from eight to two years per cycle). Otherwise, see the notes
at the bottom of table A1.
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Figure A0: Prior Predictive Analysis:

Sample and NKDSDE Prior Estimates of VAR(2) Innovation Variances

The horizontal (vertical) axes contain the innovation variance of the consumption (output) growth regression. The plus symbols denote
the intersection of sample innovation variance estimates of the consumption and output growth regressions. The clouds of points are
the prior distributions of estimated synthetic innovation variances from the consumption and output growth regressions generated
by the NKDSGE models.



Figure 3.A: Mean Structural P and T SDs and KS Densities

for Baseline NKDSGE Models with the AR(1) Money Growth Rule
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Figure 3.B: Mean Structural P and T SDs and KS Densities

for Baseline NKDSGE Models with the Taylor Rule
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Figure 4.A: Mean Structural P and T SDs and KS Densities

for NKDSGE Models with the AR(1) Money Growth Rule and Only Sticky Prices
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Figure 4.B: Mean Structural P and T SDs and KS Densities

for NKDSGE Models with the Taylor Rule and only Sticky Prices
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Figure 5.A: Mean Structural P and T SDs and KS Densities

for NKDSGE Models with the AR(1) Money Growth Rule and Only Sticky Wages
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Figure 5.B: Mean Structural P and T SDs and KS Densities

for NKDSGE Models with the Taylor Rule and only Sticky Wages
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Figure A1: Mean Structural P and T SDs and KS Densities

for Baseline NKDSGE Models with the Money Growth Rule and h ∼ β
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Figure A2: Mean Structural P and T SDs and KS Densities

for Baseline NKDSGE Models with the Taylor Rule and h ∼ β
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Figure A3: Mean Structural P and T SDs and KS Densities for NKDSGE Models

with the Money Growth Rule, Only Sticky Prices, and h ∼ β
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Figure A4: Mean Structural P and T SDs and KS Densities

for NKDSGE Models with the Taylor Rule, only Sticky Prices, and h ∼ β
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Figure A5: Mean Structural P and T SDs and KS Densities for NKDSGE Models

with the Money Growth Rule, Only Sticky Wages, and h ∼ β
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Figure A6: Mean Structural P and T SDs and KS Densities

for NKDSGE Models with the Taylor Rule, only Sticky Wages, and h ∼ β
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Figure A7: Mean Structural P and T SDs and KS Densities

for Baseline NKDSGE Models with the Money Growth Rule and h ∼ U(0.50, 0.95)
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Figure A8: Mean Structural P and T SDs and KS Densities

for Baseline NKDSGE Model with the Taylor Rule and h ∼ U(0.50, 0.95)
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Figure A9: Mean Structural P and T SDs and KS Densities for NKDSGE Models

with the Money Growth Rule, Only Sticky Prices, and h ∼ U(0.50, 0.95)
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Figure A10: Mean Structural P and T SDs and KS Densities

for NKDSGE Models with the Taylor Rule, only Sticky Prices, and h ∼ U(0.50, 0.95)
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Figure A11: Mean Structural P and T SDs and KS Densities for NKDSGE Models

with the Money Growth Rule, Only Sticky Wages, and h ∼ U(0.50, 0.95)
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Figure A12: Mean Structural P and T SDs and KS Densities

for NKDSGE Models with the Taylor Rule, only Sticky Wages, and h ∼ U(0.50, 0.95)

8 4 2 1
0

8

16

24
Mean Spectral Densities

Δ
Y

  
/w

/r
/t

P
er

m
a
n

en
t 

S
h

o
ck

 

 

0 6 12 18
0

0.6

1.2

1.8
KS Densities: Entire Spectrum

Non-Habit: CIC = 0.00

Habit: CIC = 0.01

0 8 16 24 32
0

0.2

0.4

0.6

KS Densities: Business Cycle Frequencies
(8 to 2 years per cycle)

Non-Habit: CIC = 0.00

Habit: CIC = 0.10

8 4 2 1
0

0.8

1.6

2.4

3.2

Δ
Y

  
/w

/r
/t

T
ra

n
si

to
ry

 S
h

o
ck

0 5 10 15
0

0.6

1.2

1.8

Non-Habit: CIC = 0.21

Habit: CIC = 0.60

0 1.4 2.8 4.2
0

0.8

1.6

2.4

Non-Habit: CIC = 0.37

Habit: CIC = 0.47

8 4 2 1
0

2

4

6

8

10

Δ
C

  
/w

/r
/t

P
er

m
a
n

en
t 

S
h

o
ck

0 2 4 6 8 10
0

0.9

1.8

2.7

Non-Habit: CIC = 0.00

Habit: CIC = 0.05

0 9 18 27 36
0

0.3

0.6

0.9

Non-Habit: CIC = 0.00

Habit: CIC = 0.26

8 4 2 1
0

0.5

1.0

1.5

Years per cycle

Δ
C

  
/w

/r
/t

T
ra

n
si

to
ry

 S
h

o
ck

0 4 8 12
0

0.7

1.4

2.1

Non-Habit: CIC = 0.02

Habit: CIC = 0.67

0 2 4 6
0

0.9

1.8

2.7

Non-Habit: CIC = 0.81

Habit: CIC = 0.70

Empirical

Non-Habit

Habit



Figure A13: Mean Structural P and T SDs and KS Densities

for Baseline NKDSGE Models with the Money Growth Rule and h ∼ U(0.050, 0.499)
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Figure A14: Mean Structural P and T SDs and KS Densities

for Baseline NKDSGE Models with the Taylor Rule and h ∼ U(0.050, 0.499)
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Figure A15: Mean Structural P and T SDs and KS Densities for NKDSGE Models

with the Money Growth Rule, Only Sticky Prices, and h ∼ U(0.050, 0.499)
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Figure A16: Mean Structural P and T SDs and KS Densities

for NKDSGE Models with the Taylor Rule, only Sticky Prices, and h∼U(0.050, 0.499)
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Figure A17: Mean Structural P and T SDs and KS Densities for NKDSGE Models

with the Money Growth Rule, Only Sticky Wages, and h ∼ U(0.050, 0.499)
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Figure A18: Mean Structural P and T SDs and KS Densities

for NKDSGE Models with the Taylor Rule, only Sticky Wages, andh∼U(0.050, 0.499)

8 4 2 1
0

8

16

24
Mean Spectral Densities

Δ
Y

  
/w

/r
/t

P
er

m
a
n

en
t 

S
h

o
ck

 

 

0 6 12 18
0

0.6

1.2

1.8
KS Densities: Entire Spectrum

Non-Habit: CIC = 0.00

Habit: CIC = 0.00

0 8 16 24 32
0

0.2

0.4

0.6

KS Densities: Business Cycle Frequencies
(8 to 2 years per cycle)

Non-Habit: CIC = 0.00

Habit: CIC = 0.00

8 4 2 1
0

0.7

1.4

2.1

2.8

Δ
Y

  
/w

/r
/t

T
ra

n
si

to
ry

 S
h

o
ck

0 5 10 15
0

0.6

1.2

1.8

Non-Habit: CIC = 0.21

Habit: CIC = 0.52

0 0.8 1.6 2.4 3.2
0

0.8

1.6

2.4

Non-Habit: CIC = 0.37

Habit: CIC = 0.42

8 4 2 1
0

2

4

6

8

10

Δ
C

  
/w

/r
/t

P
er

m
a
n

en
t 

S
h

o
ck

0 3 6 9
0

0.9

1.8

2.7

Non-Habit: CIC = 0.00

Habit: CIC = 0.00

0 9 18 27 36
0

0.3

0.6

0.9

Non-Habit: CIC = 0.00

Habit: CIC = 0.00

8 4 2 1
0

0.5

1.0

1.5

Years per cycle

Δ
C

  
/w

/r
/t

T
ra

n
si

to
ry

 S
h

o
ck

0 6 12 18
0

0.5

1.0

1.5

Non-Habit: CIC = 0.02

Habit: CIC = 0.20

0 5 10 15
0

0.14

0.28

0.42

Non-Habit: CIC = 0.81

Habit: CIC = 0.84

Empirical

Non-Habit

Habit



Figure A19: Mean Structural P and T SDs and KS Densities

for Baseline NKDSGE Models with the Money Growth Rule Using a VAR(4)
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Figure A20: Mean Structural P and T SDs and KS Densities

for Baseline NKDSGE Models with the Taylor Rule Using a VAR(4)
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Figure A21: Mean Structural P and T SDs and KS Densities for NKDSGE Models

with the Money Growth Rule and Only Sticky Prices Using a VAR(4)
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Figure A22: Mean Structural P and T SDs and KS Densities

for NKDSGE Models with the Taylor Rule and only Sticky Prices Using a VAR(4)
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Figure A23: Mean Structural P and T SDs and KS Densities for NKDSGE Models

with the Money Growth Rule and Only Sticky Wages Using a VAR(4)

8 4 2 1
0

10

20

30

40
Mean Spectral Densities

Δ
Y

  
w

/r
/t

P
er

m
a
n

en
t 

S
h

o
ck

 

 

0 8 16 24 32
0

0.4

0.8

1.2
KS Densities: Entire Spectrum

Non-Habit: CIC = 0.00

Habit: CIC = 0.01

0 14 28 42
0

0.1

0.2

0.3

0.4

KS Densities: Business Cycle Frequencies
(8 to 2 years per cycle)

Non-Habit: CIC = 0.00

Habit: CIC = 0.03

8 4 2 1
0

5

10

15

20

Δ
Y

  
w

/r
/t

T
ra

n
si

to
ry

 S
h

o
ck

0 8 16 24
0

1

2

Non-Habit: CIC = 0.00

Habit: CIC = 0.23

0 8 16 24
0

0.2

0.4

0.6

Non-Habit: CIC = 0.09

Habit: CIC = 0.30

8 4 2 1
0

4

8

12

Δ
C

  
w

/r
/t

P
er

m
a
n

en
t 

S
h

o
ck

0 7 14 21 28
0

0.7

1.4

2.1

Non-Habit: CIC = 0.00

Habit: CIC = 0.03

0 18 36 54
0

0.1

0.2

0.3

0.4

0.5

Non-Habit: CIC = 0.00

Habit: CIC = 0.11

8 4 2 1
0

2

4

6

8

10

Years per cycle

Δ
C

  
w

/r
/t

T
ra

n
si

to
ry

 S
h

o
ck

0 3 6 9
0

0.5

1.0

1.5

Non-Habit: CIC = 0.00

Habit: CIC = 0.14

0 16 32 48 64
0

0.1

0.2

0.3

0.4

Non-Habit: CIC = 0.09

Habit: CIC = 0.30

Empirical

Non-Habit

Habit



Figure A24: Mean Structural P and T SDs and KS Densities

for NKDSGE Models with the Taylor Rule and only Sticky Wages Using a VAR(4)
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Figure A25: Mean Structural P and T SDs and CvM Densities

for Baseline NKDSGE Models with the Money Growth Rule
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Figure A26: Mean Structural P and T SDs and CvM Densities

for Baseline NKDSGE Models with the Taylor Rule
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Figure A27: Mean Structural P and T SDs and CvM Densities

for NKDSGE Models with the Money Growth Rule and Only Sticky Prices
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Figure A28: Mean Structural P and T SDs and CvM Densities

for NKDSGE Models with the Taylor Rule and only Sticky Prices
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Figure A29: Mean Structural P and T SDs and CvM Densities

for NKDSGE Models with the Money Growth Rule and Only Sticky Wages
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Figure A30: Mean Structural P and T SDs and CvM Densities

for NKDSGE Models with the Taylor Rule and only Sticky Wages
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