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Abstract

This paper proposes the use of covariate unit root tests and the exploitation of the
information on the cross-sectional dependence when the panel data null hypothesis of a
unit root is rejected or when N is relatively small in order to help the interpretation of
the test results.

In particular, it investigates the optimal point optimal covariate unit root test by
Juhl and Xiao (2003), which is based on the theory by Hansen (1995) and Elliott and
Jansson (2003). We first compare the asymptotic power function of the covariate test
with those of panel unit root tests and show that the covariate unit root test can be
potentially more powerful than panel unit root tests when the cross-sectional dimension
is not so large. We also suggest several methods to choose appropriate covariates. The
Monte Carlo simulations show that some of our methods work fairly well compared with
the simple method of using only one covariate. Using our methods, we investigate the
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1. Introduction

Testing for a unit root has a long history and its application in economics is well under-

stood. A variety of univariate unit root tests have been proposed in the literature. However,

they have been, generally, criticized for their low power, particularly in cases where the series

are close to a unit root. To increase the power of univariate tests, panel data unit root tests

have been proposed and developed (cf. Baltagi (2008) and Breitung and Pesaran (2008)). A

typical example is the investigation of whether the purchasing power parity (PPP) hypothesis

holds among OECD countries using panel data unit root tests. Another aspect when em-

ploying panel data is that, generally, the cross-sections are correlated, particularly, in macro

panel data where T and N are large. O’Connell (1998) was the first to show via simulation

that the panel data unit root tests are considerably distorted when the likely presence of the

cross-section dependency is not accounted for. The necessary treatment of the cross-sectional

dependence has been investigated profusely in the last decade. Bai and Ng (2004) and Moon

and Perron (2004) assumed a common factor structure to model strong cross-sectional de-

pendence. They proposed a method for extracting the common factors in order to make the

panel data cross-sectionally uncorrelated, and be hence able to apply panel unit root tests

such as the IPS test by Im, Pesaran, and Shin (2003), the Fisher test by Maddala and Wu

(1999) and Choi (2001), and the inverse normal test by Choi (2001). In contrast, Pesaran

(2007) proposed to augment the regressions with the cross-sectional averages, while Chang

(2002) and Chang and Song (2009) used nonlinear instrumental variables to mop up the

cross-sectional dependence.

While we may be able to overcome the problem of the low power of univariate unit root

tests by making use of panel data, it has been pointed out in the literature (cf. Pesaran (2012))

that it is difficult to interpret the results when panel unit root tests reject the null hypothesis.

This is because typical panel data tests reject the null of a unit root if some of individuals

are stationary and the others have a unit root; thus the rejection of the null hypothesis

implies that not all individuals have a unit root, but we do not know which individuals

are stationary. In this case, we may partition cross-sectional units into sub-groups and/or

estimate the proportion of stationary units, as suggested by Pesaran (2012) and references
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therein, and we can eventually go back to univariate tests which we shall consider in this

paper. See also Elliott and Pesavento (2006) for the discussion of the problem of the panel

data approach.

There have also been significant efforts to improve the power of univariate tests. For

instance, Hansen (1995) proposed to augment the regression for the ADF test with covariates

correlated with the disturbance term of the process for which we want to test the unit

root hypothesis. This covariate ADF (CADF) test was further extended to a point-optimal

covariate (POC) unit root test by Elliott and Jansson (2003), the power function of which is

tangent to the Gaussian power envelope at some point of the alternative. Juhl and Xiao (2003)

proposed to modify the POC test by introducing the standard of optimality proposed by Cox

and Hinkley (1974). More recently, Fossati (2013) extended covariate unit root tests to models

with strucrural break, while Westerlund (2013) allowed for conditional heteroskedasticity.

These papers showed that the powers of the ADF and the ADF-GLS tests are much improved

if we can find covariates that are highly correlated with the disturbance term. In other words,

the power improvement of these covariate unit root tests crucially depends on whether or not

we can find appropriate covariates.

Although we may naturally find covariates in some cases, such as in the investigation of

a technology shock by Christiano, Eichenbaum, and Vigfusson (2003), it is not always easy

to find them in many practical situations. However, in cases where the null hypothesis of a

unit root is rejected when investigating macro panel data, one possibility open to us is to

test for a unit root in each cross-sectional unit employing covariate tests. In this case, the

natural candidates for covariates are the series of individuals other than the one focused on

because, macro panel data are typically cross-sectionally correlated. To increase the power

of our covariate unit root tests, we must carefully choose the appropriate covariates among

the potential candidates. Sometimes, in empirical analysis, only one covariate is used for

covariate unit root tests such as in Elliott and Pesavento (2006), Amara and Papell (2006),

and Christopoulos and León-Ledesma (2008). However, as was considered by Lee and Tsong

(2011), there is no reason to use only one covariate, and we can expect that the covariate

tests with several covariates would be more powerful than those with only one covariate as

long as we choose an appropriate set of covariates.
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In this paper, we first compare the optimal POC (OPOC) test by Juhl and Xiao (2003)

with panel unit root tests such as the Fisher and the inverse normal tests under various

situations. We do not intend to conclusively determine which test is better than the others;

rather, our power comparison will tell us the case in which the OPOC test is preferred to

the panel data tests with respect to power while helping us understand the extent to which

we can downsize the number of cross-sectional units by keeping the power of the panel tests

higher than that of the OPOC test so that we can effectively use either test in applications.

The second contribution of this paper is that we propose some selection rules to help us to

choose the appropriate covariates from the potential available candidates. In addition to the

factor model approach proposed by Lee and Tsong (2011), we propose two other procedures

based on the asymptotic power functions and the adjusted squared correlation. We will show

that the latter two methods work fairly well in finite samples, while the former approach has

a problem of controlling the size of the test in some cases.

In sum, our paper seeks: (a) To propose the use of univariate covariate unit root tests

that exploit the cross-sectional dependence information contained in panel data when the

null hypothesis of a unit root is rejected in the latter. (b) To compare the power of OPOC

test with some well-known panel data unit root tests. (c) To propose new procedures for

choosing the ”best” covariates from a set of available contenders.

The rest of this paper is organized as follows. We briefly review the covariate unit root

tests in Section 2. The asymptotic powers of the OPOC test and the panel tests are compared

in Section 3. We propose three selection rules for covariates and investigate their finite sample

properties in Section 4. Our methods are applied to the Prebish-Singer hypothesis and the

PPP hypothesis in Section 5. Concluding remarks are given in Section 6.

2. Model and Covariate Unit Root Test

Let us consider the following panel model:

zit = βi,0 + βi,1t+ uit for i = 1, · · · , N and t = 1, · · · , T. (1)

We call model (1) the trend case and the case with no linear trend (βi,1 = 0 for all i) the

constant case.
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Suppose that our interest is whether or not the first variable z1t has a unit root. To focus

on z1t, let yt = z1t and xt = [z2t, · · · , zNt]
′. Stacking variables in the cross-sectional direction,

model (1) can be expressed in vectorized form as

zt = β0 + β1t+ ut, A(L)ut(ρ) = εt, where ut(ρ) =

[
(1− ρL)uy,t

ux,t

]
, (2)

zt = [yt, x
′
t]
′, β0 = [βy,0, β

′
x,0]

′, β1 = [βy, β
′
x,1]

′, ut = [uy,t, u
′
x,t]

′, εt = [εy,t, ε
′
x,t]

′, and A(L)

is a lag polynomial of order p with L being the lag operator. Since A(L) is supposed to

be invertible by Assumption =A1 below, ut(ρ) is assumed to be statonary. Note that the

variables and parameters are decomposed conformably with zt = [yt, x
′
t]
′. For later use, we

define the long-run variance of ut(ρ) and the long-run squared correlation as

Ω = A−1(1)ΣA′−1(1) =

[
ωyy ωyx

ωxy Ωxx

]
and R2 = ω−1

yy ωyxΩ
−1
xxωxy, respectively.

Model (1)-(2) allows for heterogeneity and cross-sectional dependence in uit through the

lag-polynomial A(L) and the innovation variance matrix Σ. Note that the factor structure

is also included as a special case by assuming that A(L)ut(ρ) = εt with εt = Λft + et, where

ft is an r-dimensional common factor, Λ is an N × r loading matrix, and et consists of the

idiosyncratic errors.

The following assumption, which is standard in the time series literature, is made through-

out this paper.

Assumption A1 (a) {εt} is a martingale difference sequence with respect to Ft = σ{εt, εt−1, · · · }
with E[εtε

′
t|Ft−1] = Σ > 0 for all t. (b) suptE‖εt‖2+κ < ∞ for some κ > 0. (c) |A(z)| = 0

implies |z| > 1. (d) u0, u−1, · · · , u−p are Op(1) and independent of T .

Since we are interested in whether or not yt is a unit root process, we consider the following

testing problem:

H0 : ρ = 1 vs. H1 : |ρ| < 1.

In this case, the common practice is to consider a univariate model for yt given by

Δyt = βy,0 + βy,1t+ ρyt−1 + ψ1Δyt−1 + · · ·+ ψpΔyt−p + uy,t (3)
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and conduct the ADF test by Dickey and Fuller (1979) and Said and Dickey (1984) and the

ADF-GLS test by Elliott, Rothenberg, and Stock (1996).

While these well-known tests concentrate on a univariate process yt, Hansen (1995) pro-

posed to make use of the covariates xt to improve the power of the ADF tests and considered

augmenting (3) by xt:

Δyt = βy,0 + βy,1t+ ρyt−1 + ψ1Δyt−1 + · · ·+ ψpΔyt−p + γ′xt + ey,t. (4)

The CADF test is based on the t-statistic for ρ in (4). The improvement of power comes

from the fact that the covariate vector xt is correlated with uy,t; part of the fluctuation in

uy,t is explained by xt and the variance of ey,t in (4) becomes smaller than that of uy,t, so we

can estimate ρ more efficiently by (4) than by (3).

For further refinement of the CADF test, Elliott and Jansson (2003) proposed a point

optimal covariate unit root (POC) test by considering the local-to-unity system for (2). More

precisely, they assumed that ρ = 1− c/T for c ≥ 0 and proposed to construct the likelihood

ratio (LR) test statistic Λ(1, ρ̄) assuming that c = c̄ (or ρ̄ = 1 − c̄/T ). This test has been

shown to depend on only c, c̄, and R2 asymptotically, and the asymptotic local power function

can then be written as hpoc(c, c̄, R
2). By the Neyman-Pearson lemma, the LR test is a most

powerful test against c = c̄ under the assumption of normality, and the Gaussian power

envelope, which was also investigated by Hansen (1995), is then given by hpoc(c, c, R
2). We

can see that the power function of the LR test is tangent to the power envelope at c = c̄,

but it is generally lower than the envelope at c �= c̄. Note that we need to prespecify c̄ to

construct the test statistic Λ(1, ρ̄). Elliott and Jansson (2003) recommended using c̄ = 7 in

the constant case and c̄ = 13.5 in the trend case.

Although Elliott and Jansson (2003) showed that the power function of the POC test is

close to the power envelope in a wide range of alternatives for different values of R2, Juhl and

Xiao (2003) pointed out that there are other possibilities for the choice of c̄. This is because

the value of c̄ suggested by Elliott and Jansson (2003) is based on the choice of Elliott,

Rothenberg, and Stock (1996), which implies that the power function of the POC test with

the suggested c̄ is tangent to the 50% point of the power envelope only when R2 = 0, so that

hpoc(c̄, c̄, 0) = 0.5. However, because the power function depends on the true value of R2,
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Juhl and Xiao (2003) concluded that the choice of c̄ should also depend on R2. Moreover,

there is no theoretical reason why we choose the value of c̄ at which the power function is

tangent to the 50% point of the power envelope. Rather, they proposed to choose c̄ at which∫ ∞

0

[
hpoc(c, c, R

2)− hpoc(c, c̄, R
2)
]
dc (5)

is minimized; that is, for a given value of R2, the averaged loss of power compared to the

power envelope is minimized at c̄. This criterion of optimality was originally proposed by Cox

and Hinkley (1974) and also adopted by Kurozumi (2003) in a different situation. Juhl and

Xiao (2003) called the POC test with c̄ minimizing (5) the optimal point optimal covariate

unit root (OPOC) test. The optimal values of c̄ for a given value of R2 are given in Table 1

in Juhl and Xiao (2003).

According to Elliott and Jansson (2003), the OPOC test is constructed as follows. First,

we estimate β = [β′
0, β

′
1]
′ from the quasi-differenced series under the null and alternative

hypotheses, that is,

β̃(r) =

[
S

(
T∑
t=1

dt(r)Ω̂
−1d′t(r)

)
S

]− [
S

T∑
t=1

dt(r)Ω̂
−1zt(r)

]

for r = 1 and r = ρ̄, where z1(r) = [y1, x
′
1]
′ for t = 1 and zt(r) = [(1 − rL)yt, x

′
t]
′ for t > 1,

d′1(r) = [IN , IN ] for t = 1, and

d′t(r) =
[
1− r 0 (1− rL)t 0
0 IN−1 0 tIN−1

]
for t > 1, S = diag{IN , 0} in the constant case and S = I2N in the trend case, B− is the

Moore-Penrose inverse of a matrix B, and Ω̂ is the estimator of the long-run variance Ω under

the null hypothesis. We next construct the detrended series given by

ũt(r) = zt(r)− d′t(r)β̃(r)

for r = 1 and ρ̄. Using ũt(r), we estimate the VAR model of order p and obtain the estimated

residual ε̃t(r) and the estimator of variance Σ̃(r). Then, the test statistic is given by

Λ(1, ρ̄) = T
[
tr

(
Σ̃−1(1)Σ̃(ρ̄)

)
− (N − 1 + ρ̄)

]
.

The rejection region is the left-hand tail of the distribution of Λ(1, ρ̄).

7



3. Asymptotic Power Comparison

As discussed in the introduction, when in panel data the null hypothesis of a unit root

is rejected, we may then rely on univariate unit root tests to ascertain which cross-section

variable is stationary and which one is not. In this situation, we may use for a given cross-

section variable the OPOC test and employ the other cross-sectional variables as covariates

and hence use the information contained in the cross-sectional dependence. We are also

interested in this paper to evaluate the power of the OPOC test and find out if it is potentially

more powerful than panel unit root tests. Theoretically, we expect that the former would

be more powerful than the latter for relatively small N but as N gets larger, the latter

would dominate the former in terms of power. Therefore, the power comparison may help us

understand the extent to which we can decrease the number of cross-sectional units for panel

unit root tests while keeping the power of the panel tests higher than the univariate test as

well as ascertain the maximum number of cross-section units from which we can rely more

on the univariate OPOC test than panel unit root tests.

In particular, we compare the OPOC test with the following panel unit root tests: the

Fisher test by Maddala and Wu (1999) and Choi (2001) and the inverse normal test by

Choi (2001). The most commonly used testing procedures for cross-sectionally dependent

panel data involves first estimating the factor model, as suggested by Bai and Ng (2004),

and then applying the Fisher test or the inverse normal test to the estimated idiosyncratic

errors, which are asymptotically cross-sectionally uncorrelated. These tests are desirable for

the power comparison with univariate unit root tests because their asymptotics do not have

to rely on the joint limit theory. They only need T -asymptotics with a fixed N , so that the

same local-to-unity system can be assumed for the power comparison. 3 In this sense,the

Fisher and the inverse normal tests seem to be suitable as benchmarks.

Before proceeding with the comparison, we should note that the premises for the panel

unit root tests are different from those of the covariate unit root tests; the former assumes

3Exactly speaking, The Fisher and the inverse normal tests can be applied with a fixed N whereas the
factor estimation based on Bai and Ng (2004) requires both N and T go to infinity. Since Bai and Ng’s method
works well even for samll N as reported by Tanaka and Kurozumi (2012), we proceed with the comarison
using the Fihser and the inverse normal tests.
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that all individuals have a unit root under the null hypothesis while at least a part of them

is stationary under the alternative. This implies that the processes for all individuals may

be characterized as a local-to-unity system. On the other hand, only the variable of interest

has a unit root for the covariate unit root tests under the null hypothesis and covariates

must be stationary under both the null and the alternative. These premises are different

and it seems there is no meaning for comparing the powers of these tests. However, we

sometimes encounter the case where both tests can be applied in empirical analysis. Suppose

that we have a set of panel data, z1,t, z2,t, · · · , zN,t, and implement univariate unit root and

stationarity tests for each of individuals to check the I(0)/I(1) property. Typically, we may

find that some individuals are stationary and some others have a unit root, but we cannot

determine the I(0)/I(1) property for the rest of the variables. We denote those groups as z0i,t,

z1i,t, and z∗i,t, respectively. In this case, we may apply panel unit root tests for z∗i,t because

they satisfy the premises for panel unit root tests. On the other hand, if we want to pick up

one variable, y1,t, from z∗i,t and focus on it, we can implement the covariate unit root tests

for y1,t with z0i,t and Δz1i,t as covariates. We may further use the first differences of z∗i,t as

covariates because they are possibly strongly serially correlated. Then, we have a situation

in which both panel unit root tests and the covariate unit root tests are valid and can be

applied in practical analysis.

The Fisher and the inverse normal tests are constructed as follows. First, we construct the

ADF-GLS test statistic tglsi for i = 1, · · · , N . Then, the asymptotic p-value for tglsi is given

by πi = G0(t
gls
i ), where G0(·) is the distribution function of tglsi under the null hypothesis.

The Fisher and the inverse normal test statistics are defined as

F = −2

N∑
i=1

log(πi) and Z =
1√
N

N∑
i=1

Φ−1(πi),

respectively, where Φ(·) is the distribution function of a standard normal random variable.

Since πi ∼ U(0, 1) asymptotically under the null hypothesis where U(a, b) denotes a uniform

distribution on the interval (a, b), it can be shown that F
d−→ χ2

2N and Z
d−→ N(0, 1) as T →

∞ with a fixed N under the null hypothesis, where
d−→ signifies convergence in distribution.

Note that the Fisher and the inverse normal tests requires cross-sectional independence.
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To compare the asymptotic powers, we consider a simple model (1) with

uit =
(
1− ci

T

)
uit−1 + εit where ci ≥ 0. (6)

Using the above local-to-unity system, Elliott and Jansson (2003) showed that the POC test

statistic Λ(1, ρ̄) weakly converges to hpoc(c, c̄, R
2), where

hpoc(c, c̄, R
2) = (c̄2 − 2cc̄)

∫
(W c

1 )
2 + 2c̄

∫
W c

1dW1

+ (c̄2 − 2cc̄)Q

∫
(W̃ c

1 )
2 + g(W c

1 )− 2c̄
√

Q

∫
W̃ c

1dW2, (7)

where W c
1 (s) is an Ornstein-Uhlenbeck process defined by dW c

1 (s) = −cW c
1 (s)ds + dW1(s)

with W1(s) being a standard Brownian motion, W2(s) is an N − 1-dimensional standard

Brownian motion independent of W1(s), Q = R2/(1 − R2), W̃ c
1 (s) = W c

1 (s) −
∫
W c

1 (r)dr

in the constant case while W̃ c
1 (s) = W c

1 (s) + (6s − 4)
∫
W c

1 (r)dr − (12s − 6)
∫
rW c

1 (r)dr

in the trend case, and g(W c
1 ) = 0 in the constant case while g(W c

1 ) = W c
1 (1)

2 − 1/(1 +

c̄2/3 + c̄)
{
(1 + c̄)W c

1 (1) + c̄2
∫
rW c

1

}2
in the trend case. This power function is calculated

by approximating Brownian motions using the normalized partial sums of 2,000 independent

standard normal random variables.

The asymptotic local power functions of the two panel unit root tests are obtained as

follows. We first note that under the local alternative ρi = 1 − ci/T , t
gls
i ∼ Gci(·), where

Gci(·) is the distribution function of tglsi . Then, we can see that

πi = G0(t
gls
i ) = G0(G

−1
ci (Gci(t

gls
i ))) = G0(G

−1
ci (Ui)),

where Ui ∼ U(0, 1). Hence, the asymptotic power function of the Fisher test at significance

level α can be expressed as

hf (c1, · · · , cN ) = P

(
−2

N∑
i=1

log πi ≥ χ2
2N,α

)

= P

(
N∏
i=1

πi ≤ exp

[
−χ2

2N,α

2

])

= P

(
N∏
i=1

G0(G
−1
ci (Ui)) ≤ exp

[
−χ2

2N,α

2

])
,
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where χ2
2N,α denotes the (1 − α) quantile of a χ2

2N distribution. Similarly, for the inverse

normal test, the power function is given by

hin(c1, · · · , cN ) = P (Z ≤ zα) = P

(
N∑
i=1

Φ−1(G0(G
−1
ci (Ui))) ≤

√
Nzα

)
,

where zα is the α quantile of N(0, 1). Both of these power functions can be calculated by

generating N independent U(0, 1) distributions for given c1, · · · , cN , while the distribution

function of tglsi for a given ci is obtained by the similar approximation to the case of the

OPOC test.

Figures 1 and 2 show the asymptotic limiting powers of the OPOC test when R2 = 0.3,

0.6, and 0.9, and of the Fisher and the inverse normal tests when c1 = · · · = cN = c (referred

to as “all”) and when c1 = · · · = cN/2 = c and cN/2+1 = · · · = cN = 0 (referred to as “half”).

That is, the former corresponds to a case where all individuals do not have a unit root and

hence higher power is expected for the panel unit root tests, while the latter case assumes

that only half the individuals have a unit root. When N = 4 in the constant case as in

Figure 1(i), the OPOC test is more powerful than the panel unit root tests if only half the

individuals are stationary even when the long-run squared correlation is weak (R2 = 0.3),

whereas if none of the individuals has a unit root, the powers of the panel unit root tests

increase dramatically and the OPOC test is superior only when R2 is close to one. When

N = 8, the powers of the panel tests increase, as expected, and they are close to the power

of the OPOC test with R2 = 0.6 and R2 = 0.9 in the half and all cases, respectively. As seen

in Figure 1(iii)-(v), when N ≥ 12, the panel unit root tests in the half case dominate the

OPOC test with moderate and weak long-run correlations, whereas the latter test with large

R2 is still more powerful than the former in the half case.

Figure 2 draws the power functions when a linear trend is included as a regressor. In this

case, the relative performance of the OPOC test becomes better compared to the constant

case. For example, when N = 4, the OPOC test with R2 = 0.6 (R2 = 0.3) is more powerful

in a wide range of alternatives than the panel unit root tests even if all (half of) individuals

are stationary. The OPOC test with the moderate long-run correlation is still preferred even

when N = 16 if half the individuals have a unit root. Moreover, if the long-run squared

correlation is close to one, the OPOC test almost dominates the panel tests even for N = 20.
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On the other hand, if R2 = 0.3, the former test is useful for only small N and the panel unit

root tests are preferred.

To summarize the comparison, the relative performance depends on N , R2, and the

number of I(0) individuals, as expected. Roughly speaking, the OPOC test in the constant

case is useful if N is at most around 8 except for the case of a large value of R2, whereas we

may rely on it in the trend case for a larger N such as 16 and 20.

4. Selection of Covariates

4.1. Three different selection rules

In practice, we need to find the appropriate covariates, but this is not necessarily an easy

task. We may be able to find several candidates for covariates, as in the case of panel unit

root tests, but we need a guideline for choosing the covariates. Intuitively, using as many

covariates as possible may result in the highest R2 (of course, this is not always the case),

but the increase in the number of covariates implies a decrease in the degree of freedom in

a sample, which may result in a loss of power. In this section, we propose three different

approaches to select the appropriate covariates amongst the candidates by taking the degree

of freedom into account.

The first method of choosing the covariates amongst the candidates is basically the same

as in Lee and Tsong (2011), in which a factor model is assumed for a set of variables. Because

the common factors play a key role for cross-sectional dependence, the natural candidates

for covariates are the common factors in this case. We thus propose to estimate the common

factors by the principal component method proposed by Bai (2003) and to use the estimated

common factors as covariates. The advantage of this method is that it is computationally

easy to obtain the covariates even if N is relatively large. However, there is no guarantee

that the factor structure is the correct specification or that the long-run squared correlation

becomes highest when using the selected covariates. We call this selection procedure the

factor model rule.

The second method we propose is to make use of the asymptotic local power of the OPOC

test. From its definition, we can see that when the true value of ρ equals ρ∗ = 1− c∗/T , the
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corresponding limiting power for a given R2 is hpoc(c
∗, c̄, R2). Now suppose that we have a

set of covariates with R2 = R2
1 and that the total number of regressors is k1. In this case, the

effective sample size is T − k1, and ρ∗ can be expressed as ρ∗ = 1− c∗/T = 1− c1/(T − k1),

where c1 = c∗(T −k1)/T . Then, the corresponding asymptotic power against ρ = ρ∗ becomes

p1 = hpoc(c1, c̄1, R
2
1), where c̄1 is the pre-specified value of c̄ required to construct the OPOC

test. Similarly, if we use another set of covariates with R2 = R2
2 and the total number of

regressors equals k2, the asymptotic power is given by p2 = hPOC(c2, c̄2, R
2
2), where c2 =

c∗(T − k2)/T . For these two sets of covariates, we choose the first set (the second set) if

p1 > p2 (p1 < p2). The key feature of this procedure is that even if R2 > R1, it is possible

for p1 to be greater than p2, so that the first set of covariates is preferred. The illustration is

also given in Figure 3. In the figure, even though the power function for R2
2 dominates that

for R2
1, if we use too many covariates to attain R2 = R2

2, then the effective sample size is

decreased, and p2, the corresponding asymptotic power against ρ = ρ∗, can be smaller than

p1.

In this procedure, we have to determine a specific value of alternative c∗ as a benchmark.

Note that if c∗ is too small or too large, the difference between power functions for different

values of R2 is small and we may obtain similar results for any set of covariates. Thus, we

propose to choose a c∗ at which the difference between the power functions for R2 = 0 and

0.9 is maximized. According to our calculation, c∗ = 4.0 in the constant case and c∗ = 5.8 in

the trend case. We call this selection procedure the asymptotic power rule.

The third selection rule is to mimic the well-known adjusted R2. That is, we define

R̄2 = 1− T − 1

T − k
(1−R2),

where k is the total number of regressors, and choose a set of covariates that attains the

highest R̄2. Although this is an ad hoc rule and there is no theoretical support, this is the

easiest rule among the three to be applied in empirical analysis.

4.2. Finite sample properties

To see the finite sample properties of the above three selection procedures, we conduct

Monte Carlo simulations. The main purpose of the simulations is to see whether or not the
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selection rules proposed in this paper are more useful than the conventional rule of choosing

only one covariate that attains the maximum value of R2 among the candidates.

In order to apply the common factor rule, we have to determine the number of factors.

According to de Silva, Hadri and Tremayne (2009), we adopt the Hannan-Quinn-type criterion

HQ4 with the maximum number of factors set to 4, which is the modified version of the

information criteria proposed by Bai and Ng (2002). For the asymptotic power rule and the

adjusted long-run squared correlation, we estimate R2 under the null hypothesis as suggested

by Elliott and Jansson (2003) with the order of lag selected by the Bayesian information

criterion with the maximum lag length set to 4. In addition, we need the power functions

for different values of R2 for the asymptotic power rule. The asymptotic power functions

for R2 = 0, 0.1, 0.2, · · · , 0.9, 0.92, 0.94, 0.96, 0.98, 0.99 and c = 0, 1, · · · , 15 are calculated as

in the previous section, and the power corresponding to the given c1 and R2 is obtained by

interpolation.

The first data-generating process (DGP) we consider is the same as (2), where

εt ∼ i.i.d.N(0,Σ) with Σ =

⎡⎢⎢⎢⎢⎣
1 θ · · · θ

θ 1
. . . θ

...
. . .

. . .
...

θ · · · θ 1

⎤⎥⎥⎥⎥⎦ ,

A(L) = diag{1 − a1L, · · · , 1 − aNL}, and β0 = β1 = 0. We set a1 = · · · = aN = 0 because

they do not affect the value of R2. We choose the values of θ so that R2, which depends

on θ and N , equals 0.3, 0.6, and 0.9 for a given N . The null hypothesis corresponds to the

case of ρ = 1, while ρ is set to 0.98, 0.96, 0.94, 0.92, and 0.90 under the alternative. Since

we consider a relatively small number of cross-sectional units, we set N = 5 and 10 while

T = 100 and 200. All simulations are conducted using the GAUSS matrix language with the

number of replications equal to 1,000.

Table 1 shows the empirical sizes and powers of the tests in the constant case. In the table,

Λ1 corresponds to the OPOC test using only one covariate that maximizes the estimate R2

among N−1 variables in xt, whereas the tests with the covariates selected by the factor model

rule, the asymptotic power rule, and R̄2 are denoted by Λfac, Λpow, and ΛR̄2 , respectively.

We also tabulate the rejection frequencies of the ADF-GLS test, tgls, for the purpose of
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comparison. When N = 5, we cannot control the size of Λfac even when T = 200, whereas

the size of this test becomes stable when N = 10. The other OPOC tests are slightly oversized

when T = 100, but the size distortion is mitigated when T = 200. As expected, all the OPOC

tests are more powerful than the ADF-GLS test, particularly, for a large R2 or N . Although

we have to carefully compare the nominal powers because of the size distortion, our selection

rules, except for the factor model rule with N = 5, work well, and are more powerful than

the OPOC test with one covariate. In general, the power differences tend to be larger as

either the true value of R2 or N gets larger. This is a natural result because when R2 or N

is large, there is room to improve the power of Λ1 by using several covariates amongst the

candidates. As in the case where T = 200, N = 10 and R2 = 0.6 or 0.9, the largest power

difference is about 10% in the constant case.

Table 2 reports the simulation results in the trend case. Again, the OPOC test with the

factor model rule fails to control the empirical size when N = 5. As a whole, the relative

performance of the tests is similar to the constant case, but it seems that the power differences

are larger in the trend case than the constant case. For example, the largest power difference

in the trend case is about 20% as in the case where T = 200, N = 10, and R2 = 0.9, whereas

it is about 10% in the constant case.

The second DGP we consider is the factor model given by

zt = β0 + β1t+ ut, A(L)ut(ρ) = λft + εt,

where ft ∼ i.i.d.N(0, σ2
f ) is a one-dimensional common factor, λ = [λ1, λ

′
c]
′, where λ′

c =

[λ2, · · · , λN ]′ is an N -dimensional loading vector and εt ∼ i.i.d.N(0, In) is independent of ft.

In this model, the long-run squared correlation can be expressed as

R2 =
σ4
fλ

2
1(λ

′
cλc)

(1 + σ2
fλ

2
1)
{
1 + σ2

f (λ
′
cλc)

} .

In order to control the value of R2, we set λ1 = 1 and λ′
cλc = N − 1 and choose the value

of σ2
f so that R2 = 0.3, 0.6, and 0.9. More precisely, we first generate λ∗

i ∼ U(0.5, 1.5)

for i = 2, · · · , N independently and normalize them as λc =
√
(N − 1)/(λ∗′

c λ
∗
c)λ

∗
c , where

λ∗
c = [λ∗

2, · · · , λ∗
N ]′, so that the restriction λ′

cλc = N − 1 holds. In this case, σ2
f is the positive

solution of the quadratic function of k given by (N − 1)(1−R2)k2 −NR2k −R2 = 0.
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Tables 3 and 4 report the empirical sizes and powers of the tests in the constant case and

the trend case, respectively. For DGP2 with N = 5, the size distortion of the OPOC test

with the factor model rule is mitigated compared to DGP1, but still it suffers from serious

oversize distortion. Again, we can see from the tables that our selection rules work better

than the OPOC test with the conventional rule of selecting only one covariate; the powers of

the tests are improved by using our selection rules.

5. Empirical Application

5.1. Prebish-Singer hypothesis

We recall that the Prebish-Singer (PS) hypothesis states that real commodity prices follow

a downward secular trend. Prebish (1950) and Singer (1950) claimed that there had been

a downward long-term trend in these prices and that the decline in these prices was likely

to continue. The main theoretical explanations given for this negative long-term trend are:

(a) income elasticities of demand for primary commodities that are lower than those for

manufactured commodities; (b) an absence of differentiation among commodity producers

leading to highly competitive markets; (c) productivity differentials between North and South;

(d) asymmetric market structures: the presence of oligopolistic rents for the North and

zero economic profit for competitive commodity producers in the South; (e) the inability of

wages to grow in the presence of an “unlimited” supply of labor at the subsistence wage

in primary commodity-producing countries (Lewis, 1954), and (f) a decline of demand from

industrial countries. However, recently, this effect has been lessened by the growing demand

from emerging market countries such as China, India, and Brazil. The consequences of this

hypothesis are very important for developing countries because many of them depend on only

a few primary commodities to generate most of their export earnings. If we assume that yit,

the real commodity price i, is generated by a stationary process around a time trend (I(0)):

yit = βi,0 + βi,1t+ uit, t = 1, · · · , T, (8)

where the random variable uit is stationary with mean 0 and variance σ2
i,u. The parameter of

interest is the slope βi,1 which is predicted to be negative under the PS hypothesis. However,
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if commodity prices were generated by a so called difference-stationary (DS or I(1)) model,

implying that yit is non-stationary, then

Δyit = βi1 + ζit, t = 1, · · · , T, (9)

where ζit is stationary. It is now well known that if yit is an I(1) process, then using equation

(8) to test the null hypothesis βi,1 = 0 will result in severe size distortions, leading to a wrong

rejection of the null when no trend is present, even asymptotically. Alternatively, if the true

generating process is given by equation (8) and we base our test on equation (9), then our test

becomes inefficient and less powerful than the one based on the correct equation. Therefore,

when testing the PS hypothesis we must first test the order of integration of our relative

commodity prices in order to use the right equation.

In this subsection, we investigate the I(0)/I(1) properties of nine real commodity prices

(zinc, tin, oil, wool, iron, aluminum, beef, coffee, and cocoa) relative to the U.S. CPI index

using the annual data from 1960 to 2007. We first treat the data set as panel data and apply

the PANIC test by Bai and Ng (2004). We assume the common factor structure in ui,t such

that uit = λift+εit, where ft is an r-dimensional common factor, λit is a 1×r loading vector,

and εit is an idiosyncratic error, and we estimate εit by the method of principal component

analysis. We then apply the Fisher test and the inverse normal test to the estimates of εit.

The results are given in Panel (a) in Table 5. The number of common factors is estimated as

4 by the HQ4 proposed by de Silva, Hadri, and Tremayne (2009). Both tests reject the null

hypothesis of a unit root for the idiosyncratic errors using the size-adjusted critical values.

We also apply the panel trend stationarity tests ZAspc and ZAla proposed by Hadri and

Kurozumi (2012) and the test by Harris, Leybourne, and McCabe (2005). The results of the

tests are consistent and imply that some of the prices can be characterized as trend stationary

processes. However, they do not tell us which prices are trend stationary.

We next conduct univariate tests. We test for the null hypothesis of a unit root for each

price by the ADF-GLS test with the lag length selected by the modified AIC by Ng and Perron

(2001), while the null of trend stationarity is checked by the bias-corrected version of the

KPSS test with the boundary condition equal to 0.95, which was developed by Kurozumi and

Tanaka (2010) by correcting the bias in the test statistic previously proposed by Kwiatkowski,
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Phillips, Schmidt, and Shin (1992). The results are given in the second and third columns

in Panel (b) in Table 5. We find strong evidence of stationarity for the prices of wool and

aluminum. The bias-corrected version of the KPSS test rejects the null of trend stationarity

for the price of tin at the 5% significance level and for the prices of petroleum, tin, and

beef at the 10% significance level. However, we should carefully interpret the results of the

KPSS test because this test is known to suffer from size distortions when a process is strongly

serially correlated.

We next apply the OPOC test with the asymptotic power rule to each of the prices except

for wool and aluminum, which have already been found to be I(0). Because the covariates

must be stationary, we take the first difference of the prices except for those of wool and

aluminum when using these variables as covariates. If we reject the null of a unit root for

some of the prices, then we treat those variables as trend stationary, use them in levels as

covariates, and test the other variables again. We repeat the procedure until we cannot find

additional evidence of stationarity. The final results are given in Panel (b) in Table 5. The

fourth column reports the number of covariates chosen by our selection rule, while the fifth

column reports the estimated long-run squared correlation when those covariates are used

for testing. From the results given in the sixth column, we can reject the null of a unit root

for five prices: zinc, tin, petroleum, iron and coffee. In addition to the prices of wool and

aluminum for which we have already rejected the null of a unit root, we find that seven of

the nine commodities have trend-stationary prices, although they might be very persistent

as shown, inter alia, by Cuddington and Jerret (2008). For the prices of beef and cocoa, we

cannot reach a concluding result. Reflecting these results, we test the PB hypothesis based

on equation (8) for the seven trend-stationary prices, whereas we estimate the slope for beef

and cocoa using (9). The final column reports the p-values of the one-sided tests based on the

t-statistics calculated using the autocorrelation-heteroskedasticity consistent standard errors

using the quadratic spectral kernel with the bandwidth selected by the method proposed

by Andrews (1991). We can see that except for the price of petroleum, whose coefficient is

positive, all the estimates of the slope coefficients are significant and negative. We find strong

evidence of the PB hypothesis for seven commodity prices and the weak evidence for cocoa;

the exception is the price of petroleum.
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We also investigated the same data with a shorter sample period from 1960 to 2002,

because a structural change might occurred in the early 2000s, as pointed out by Arezki,

Hadri, Kurozumi, and Rao (2012). The results of the tests are similar to the above case and

we reach the same conclusion.

5.2. PPP hypothesis

The second data set we investigate consists of eight real exchange rates of developed

countries and economies4 relative to the U.S. dollar, spanning from January 2002 to December

2011: the Canadian dollar (CAD), the Danish krone (DKK), the euro (EUR), the Japanese

yen (JPY), the Norwegian krone (NOK), the Swedish krona (SEK), the Swiss franc (CHF),

and the U.K. pound (GBP). We divide the nominal exchange rates by the CPI indices (the

harmonized index for the euro) and take their logarithms. The PPP hypothesis is supported

if the series are stationary.

The results are given in Table 6. The PANIC test rejects the null hypothesis of a unit

root for the estimated idiosyncratic errors, but the panel stationarity tests reject the null of

stationarity, as reported in Panel (a). This happens when some of the cross-sectional units

are stationary but the others have a unit root. Then, from the panel tests, we can say that

the PPP hypothesis does not hold for some currencies.

We next apply the univariate tests. As seen in Panel (b), the ADF-GLS test does not reject

the null of a unit root for any currencies, while the bias corrected version of the KPSS test

strongly rejects the null of stationarity for the CAD, DKK, and EUR at the 1% significance

level, which implies that the PPP hypothesis does not hold for them. The KPSS test also

rejects the null hypothesis for the NOK and CHF at the 5% significance level and for the

SEK at the 10% level. We then test for the null of a unit root for the five currencies using

the OPOC test, but we cannot reject the null of a unit root for any of them. As a whole, we

can say that the PPP hypothesis does not hold in this sample period for the CAD, DKK, and

EUR; the NOK and CHF may not be stationary either. On the other hand, we cannot reach

a conclusion for the JPY, SEK, and GBP; they might be stationary in this period, but if so,

4The data set is obtained from International Financial Statistics. We chose these currencies because the
monthly series for both the nominal exchange rates and the CPI are available for these currencies.

19



they are very persistent, and it is difficult to distinguish between I(0) and I(1). These results

are found to be robust to the Lehman shock by using the sample period before September

2008.

6. Concluding Remarks

In this paper, we have investigated the covariate unit root tests. Our analysis has revealed

that the optimal point optimal covariate unit root test by Juhl and Xiao (2003) has potentially

good power compared to panel unit root tests when N is not so large. Therefore, we can

rely on panel unit root tests for data sets with a moderate to large number of cross-sectional

units N , whereas the covariate tests may be useful for panels with a relatively small N .

When, in panel data the null hypothesis of a unit root is rejected, we propose the use of

the OPOC test and the information contained in the cross-sectional dependence to ascertain

which cross-section variable is stationary and which one is not. We have also suggested three

selection rules for choosing potential covariates. The Monte Carlo simulations have shown

that the rules based on asymptotic power and the adjusted R2 work fairly well, whereas the

common factor rule must be used with caution.

We have considered the covariate unit root tests for panel data with only one type of

variables generated by the cross-sectional dependency. But, if we can find other type of

covariates, then it would be better to include those series as covariates when applying our

selection rules. Moreover, in such a situation, we may be able to consider a panel version

of the covariate unit root test as considered by Chang and Song (2009) and Westerlund

(2012). In any case, combining the use of the covariate test and panel tests could be helpful

in applications as shown above.

References

[1] Amara, J. and D. H. Papell (2006). Testing for Purchasing Power Parity Using Stationary

Covariates. Applied Financial Economics 16, 29-39.

20



[2] Andrews, D. W. K. (1991). Heteroskedasticity and Autocorrelation Consistent Covari-

ance Matrix Estimation. Econometrica 59, 817-858.

[3] Arezki, R., K. Hadri, E. Kurozumi and Y. Rao (2012). Breaking the Prebish Singer

Hypothesis Using Panel Data Stationarity Tests. Forthcoming in Economics Letters.

[4] Bai, J. (2003). Inferential Theory for Factor Models of Large Dimensions. Econometrica

71, 135-171.

[5] Bai, J. and S. Ng (2002). Determining the Number of Factors in Approximate Factor

Models. Econometrica 70, 191-221.

[6] Bai, J. and S. Ng (2004). A Panic Attack on Unit Roots and Cointegration. Econometrica

72, 1127-1177.

[7] Baltagi, B. H. (2008). Econometric Analysis of Panel Data . Chichester, Wiley.

[8] Breitung, J. and Pesaran, M. H. (2008). Unit roots and cointegration in panels. In: L.

Matyas and P. Sevestre (eds): The Econometrics of Panel Data: Fundamentals and

Recent Developments in Theory and Practice. Dordrecht: Kluwer Academic Publishers,

3rd edition, Chapt. 9, pp. 279-322.

[9] Chang, Y. (2002). Nonlinear IV Unit Root Tests in Panels with Cross-Sectional Depen-

dency. Journal of Econometrics 110, 261-292.

[10] Chang, Y. and W. Song (2009). Testing for Unit Roots in Small Panels with Short-Run

and Long-Run Cross-Sectional Dependencies Review of Economic Studies 76, 903-935.

[11] Choi, I. (2001). Unit Root Tests for Panel Data. Journal of International Money and

Banking 20, 249-272.

[12] Christiano, L. J., M. Eichenbaum and R. Vigfusson (2003). What Happens After a

Technology Shock? NBER working paper 769, 1-52.

[13] Christopoulos, D. K. and M. A. León-Ledesma (2008). Time-Series Output Convergence

Tests and Stationary Covariates. Economics Letters 101, 297-299.

21



[14] Cox, D. R. and D. V. Hinkley (1974). Theoretical Statistics. Chapman and Hall, London.

[15] Cuddington, J. and D. Jerret (2008). Super Cycles in Metal Prices? �IMF staff Papers

55(4), 541-565.

[16] de Silva, S., Hadri, K. and Tremayne, A. R. (2009). Panel Unit Root Tests in the Pres-

ence of Cross-Sectional Dependence: Finite Sample Performance and an Application.

Econometrics Journal 12, 340-366.

[17] Dickey, D. A. and W. A. Fuller (1979). Distribution of the Estimators for Autoregressive

Time Series With a Unit Root. Journal of the American Statistical Association 74, 427-

431.

[18] Elliott, G. and M. Jansson (2003). Testing for Unit Roots with Stationary Covariates.

Journal of Econometrics 115, 75-89.

[19] Elliott, G. and E. Pesavento (2006). On the Failure of Purchasing Power Parity for

Bilateral Exchange Rates after 1973. Journal of Money, Credit and Banking 38, 1405-

1430.

[20] Elliott, G., T. J. Rothenberg and J. Stock (1996). Efficient Tests for an Autoregressive

Unit Root. Econometrica 64, 813-836.

[21] Fossati, S. (2013). Unit Root Testing with Stationary Covariates and a Structural Break

in the Trend Function. Journal of Time Series Analysis DOI: 10.1111/jtsa.12020.

[22] Hadri, K. and E. Kurozumi (2012). A Simple Panel Stationarity Test in the Presence of

Serial Correlation and a Common Factor. Economics Letters 115, 31-34.

[23] Hansen, B. E. (1995). Rethinking the Univariate Approach to Unit Root Testing. Econo-

metric Theory 11, 1148-1171.

[24] Harris, D., S. Leybourne and B. McCabe (2005). Panel Stationarity Tests for Purchas-

ing Power Parity with Cross-Sectional Dependence. Journal of Business and Economic

Statistics 23, 395-409.

22



[25] Im, K., M. H. Pesaran and Y. Shin (2003). Testing for Unit Roots in Heterogeneous

Panels. Journal of Econometrics 115, 53-74.

[26] Juhl, T. and Z. Xiao (2003). Power Functions and Envelopes for Unit Root Tests. Econo-

metric Theory 19, 240-253.

[27] Kurozumi, E. (2003). Some Properties of the Point Optimal Invariant Test for the Con-

stancy of Parameters. Journal of the Japan Statistical Society 33, 169-180.

[28] Kurozumi, E. and S. Tanaka (2010). Reducing the Size Distortion of the KPSS Test.

Journal of Time Series Analysis 31, 415-426.

[29] Kwiatkowski, D., P. C. B. Phillips, P. Schmidt and Y. Shin (1992). Testing the Null Hy-

pothesis of Stationarity against the Alternative of a Unit Root. Journal of Econometrics

54, 159-178.

[30] Lee, C. F. and C. C. Tsong (2011). Covariate Selection for Testing Purchasing Power

Parity. Applied Economics 43:15, 1923-1933.

[31] Lewis, A. (1954). Economic Development with Unlimited Supplies of Labour.Manchester

School of Economics and Social Studies 22, 139-191.

[32] Maddala, G. S. and S. Wu (1999). A Comparative Study of Unit Root Tests with Panel

Data and a New Simple Test. Oxford Bulletin of Economics and Statistics 61, 631-52.

[33] Moon, R. and B. Perron (2004). Testing for Unit Roots in Panels with Dynamic Factors.

Journal of Econometrics 122, 81-126.

[34] Ng, S. and P. Perron (2001). Lag Length Selection and the Construction of Unit Root

Tests With Good Size and Power. Econometrica 69, 1519-1554.

[35] O’Connell, P. G. J. (1998). The overvaluation of purchasing power parity. Journal of

International Economics 44, 1-19.

[36] Pesaran, M. H. (2007). A Simple Panel Unit Root Test in the Presence of Cross-Section

Dependence. Journal of Applied Econometrics 22, 265-312.

23



[37] Pesaran, M. H. (2012). On the Interpretation of Panel Unit Root Tests. Economics

Letters, forthcoming.

[38] Prebish, R. (1950). The Economic Development of Latin America and Its Principal

Problems. Economic Bulletin for Latin America 7, 1-12.

[39] Said, E. S. and D. A. Dickey (1984). Testing for Unit Roots in Autoregressive-Moving

Average Models of Unknown Order. Biometrika 71, 599-607.

[40] Singer, H. (1950). The Distribution of Gains between Investing and Borrowing Countries.

American Economic review, Papers and Proceedings 40, 473-485.

[41] Tanaka, S. and E. Kurozumi (2012).Investigating Finite Sample Properties of Estimators

for Approximate Factor Models When N is small. Economics Letters 116, 465-468.

[42] Westerlund, J. (2012). Rethinking the Univariate Approach to Panel Unit Root Test-

ing: Using Covariates to Resolve the Incidental Trends Problem. manuscript, Deakin

University.

[43] Westerlund, J. (2013). A Computationally Convenient Unit Root Test with Covariates,

Conditional Heteroskedasticity and Efficient Detrending. Journal of Time Series Anal-

ysis DOI: 10.1111/jtsa.12025.

24



Table 1: Empirical size and power (constant case, DGP1)

N R2 ρ1 tgls Λ1 Λfac Λpow ΛR̄2 tgls Λ1 Λfac Λpow ΛR̄2

T = 100 T = 200
1.00 0.046 0.077 1.000 0.080 0.080 0.059 0.065 1.000 0.062 0.063
0.98 0.116 0.202 1.000 0.219 0.221 0.267 0.322 1.000 0.359 0.358

0.3 0.96 0.242 0.374 1.000 0.407 0.413 0.542 0.706 1.000 0.759 0.765
0.94 0.382 0.537 1.000 0.579 0.586 0.824 0.912 1.000 0.948 0.948
0.92 0.532 0.691 1.000 0.731 0.739 0.925 0.983 1.000 0.989 0.989
0.90 0.665 0.805 1.000 0.828 0.835 0.960 0.996 1.000 0.998 0.998
1.00 0.046 0.060 1.000 0.065 0.067 0.059 0.056 1.000 0.061 0.061
0.98 0.116 0.243 1.000 0.270 0.270 0.267 0.420 1.000 0.537 0.544

5 0.6 0.96 0.242 0.450 1.000 0.525 0.532 0.542 0.844 1.000 0.920 0.922
0.94 0.382 0.652 1.000 0.734 0.742 0.824 0.975 1.000 0.990 0.991
0.92 0.532 0.803 1.000 0.869 0.876 0.925 0.995 1.000 1.000 1.000
0.90 0.665 0.911 1.000 0.948 0.950 0.960 0.999 1.000 1.000 1.000
1.00 0.046 0.061 1.000 0.074 0.074 0.059 0.052 1.000 0.056 0.056
0.98 0.116 0.462 1.000 0.562 0.563 0.267 0.852 1.000 0.940 0.940

0.9 0.96 0.242 0.843 1.000 0.911 0.913 0.542 0.990 1.000 0.999 0.999
0.94 0.382 0.971 1.000 0.985 0.987 0.824 1.000 1.000 1.000 1.000
0.92 0.532 0.989 1.000 0.995 0.995 0.925 1.000 1.000 1.000 1.000
0.90 0.665 0.994 1.000 1.000 1.000 0.960 1.000 1.000 1.000 1.000
1.00 0.063 0.073 0.072 0.076 0.070 0.069 0.072 0.057 0.062 0.066
0.98 0.131 0.200 0.197 0.195 0.200 0.232 0.300 0.338 0.350 0.359

0.3 0.96 0.251 0.362 0.365 0.371 0.390 0.546 0.682 0.711 0.739 0.744
0.94 0.405 0.535 0.550 0.551 0.569 0.801 0.889 0.914 0.920 0.920
0.92 0.555 0.681 0.701 0.710 0.702 0.906 0.969 0.973 0.977 0.974
0.90 0.643 0.805 0.805 0.817 0.813 0.950 0.995 0.994 0.999 0.998
1.00 0.063 0.060 0.058 0.062 0.067 0.069 0.056 0.057 0.054 0.055
0.98 0.131 0.207 0.228 0.239 0.244 0.232 0.389 0.503 0.492 0.491

10 0.6 0.96 0.251 0.415 0.500 0.535 0.531 0.546 0.797 0.896 0.902 0.907
0.94 0.405 0.624 0.739 0.738 0.738 0.801 0.953 0.980 0.979 0.977
0.92 0.555 0.785 0.862 0.876 0.872 0.906 0.989 0.996 0.995 0.995
0.90 0.643 0.864 0.933 0.934 0.933 0.950 0.998 0.999 1.000 1.000
1.00 0.063 0.054 0.057 0.058 0.058 0.069 0.049 0.043 0.048 0.048
0.98 0.131 0.377 0.556 0.516 0.517 0.232 0.806 0.936 0.906 0.906

0.9 0.96 0.251 0.775 0.908 0.878 0.881 0.546 0.986 0.996 0.993 0.993
0.94 0.405 0.931 0.985 0.977 0.977 0.801 0.998 1.000 0.999 0.999
0.92 0.555 0.984 0.997 0.995 0.995 0.906 1.000 1.000 1.000 1.000
0.90 0.643 0.994 1.000 1.000 1.000 0.950 1.000 1.000 1.000 1.000



Table 2: Empirical size and power (trend case, DGP1)

N R2 ρ1 tgls Λ1 Λfac Λpow ΛR̄2 tgls Λ1 Λfac Λpow ΛR̄2

T = 100 T = 200
1.00 0.041 0.065 1.000 0.068 0.069 0.036 0.053 1.000 0.063 0.063
0.98 0.044 0.086 1.000 0.104 0.106 0.066 0.121 1.000 0.151 0.151

0.3 0.96 0.072 0.138 1.000 0.162 0.163 0.171 0.288 1.000 0.360 0.361
0.94 0.110 0.213 1.000 0.255 0.254 0.347 0.531 1.000 0.637 0.636
0.92 0.166 0.307 1.000 0.366 0.366 0.547 0.752 1.000 0.818 0.818
0.90 0.241 0.397 1.000 0.480 0.480 0.720 0.873 1.000 0.924 0.924
1.00 0.041 0.061 1.000 0.072 0.074 0.036 0.056 1.000 0.067 0.068
0.98 0.044 0.112 1.000 0.148 0.149 0.066 0.193 1.000 0.279 0.278

5 0.6 0.96 0.072 0.206 1.000 0.289 0.292 0.171 0.484 1.000 0.682 0.684
0.94 0.110 0.342 1.000 0.465 0.468 0.347 0.777 1.000 0.897 0.898
0.92 0.166 0.492 1.000 0.609 0.614 0.547 0.937 1.000 0.968 0.970
0.90 0.241 0.611 1.000 0.737 0.744 0.720 0.972 1.000 0.989 0.989
1.00 0.041 0.064 1.000 0.076 0.077 0.036 0.045 1.000 0.063 0.063
0.98 0.044 0.285 1.000 0.371 0.379 0.066 0.596 1.000 0.799 0.801

0.9 0.96 0.072 0.605 1.000 0.748 0.752 0.171 0.961 1.000 0.987 0.988
0.94 0.110 0.845 1.000 0.931 0.933 0.347 0.994 1.000 0.999 0.999
0.92 0.166 0.954 1.000 0.978 0.978 0.547 0.998 1.000 1.000 1.000
0.90 0.241 0.981 1.000 0.993 0.993 0.720 1.000 1.000 1.000 1.000
1.00 0.048 0.057 0.051 0.055 0.059 0.041 0.055 0.046 0.053 0.053
0.98 0.049 0.076 0.089 0.108 0.108 0.086 0.118 0.128 0.145 0.147

0.3 0.96 0.073 0.118 0.158 0.167 0.170 0.177 0.277 0.359 0.333 0.341
0.94 0.123 0.191 0.243 0.230 0.231 0.324 0.505 0.600 0.601 0.602
0.92 0.180 0.289 0.356 0.347 0.345 0.538 0.709 0.799 0.800 0.799
0.90 0.265 0.382 0.471 0.443 0.448 0.727 0.841 0.899 0.907 0.907
1.00 0.048 0.055 0.052 0.055 0.058 0.041 0.049 0.046 0.058 0.058
0.98 0.049 0.100 0.128 0.135 0.138 0.086 0.178 0.259 0.259 0.269

10 0.6 0.96 0.073 0.196 0.248 0.272 0.274 0.177 0.448 0.654 0.624 0.635
0.94 0.123 0.307 0.452 0.442 0.453 0.324 0.719 0.882 0.862 0.868
0.92 0.180 0.424 0.612 0.617 0.616 0.538 0.875 0.968 0.958 0.959
0.90 0.265 0.551 0.748 0.732 0.731 0.727 0.951 0.989 0.985 0.985
1.00 0.048 0.042 0.050 0.061 0.059 0.041 0.052 0.044 0.058 0.058
0.98 0.049 0.229 0.349 0.316 0.318 0.086 0.529 0.779 0.737 0.737

0.9 0.96 0.073 0.535 0.763 0.697 0.699 0.177 0.930 0.987 0.978 0.978
0.94 0.123 0.762 0.932 0.883 0.885 0.324 0.989 1.000 0.998 0.998
0.92 0.180 0.905 0.982 0.971 0.971 0.538 0.999 1.000 1.000 1.000
0.90 0.265 0.961 0.994 0.988 0.988 0.727 1.000 1.000 1.000 1.000



Table 3: Empirical size and power (constant case, DGP2)

N R2 ρ1 tgls Λ1 Λfac Λpow ΛR̄2 tgls Λ1 Λfac Λpow ΛR̄2

T = 100 T = 200
1.00 0.042 0.071 0.695 0.071 0.072 0.059 0.072 0.596 0.060 0.061
0.98 0.119 0.182 0.722 0.176 0.180 0.252 0.341 0.682 0.361 0.361

0.3 0.96 0.241 0.362 0.762 0.387 0.388 0.572 0.715 0.777 0.745 0.744
0.94 0.388 0.543 0.799 0.577 0.576 0.833 0.926 0.837 0.944 0.950
0.92 0.548 0.693 0.827 0.731 0.737 0.946 0.986 0.873 0.989 0.989
0.90 0.672 0.810 0.859 0.831 0.830 0.978 0.998 0.903 0.997 0.997
1.00 0.058 0.066 0.489 0.066 0.067 0.064 0.062 0.430 0.056 0.057
0.98 0.138 0.200 0.532 0.224 0.233 0.260 0.448 0.573 0.526 0.529

5 0.6 0.96 0.249 0.467 0.619 0.510 0.522 0.572 0.887 0.725 0.928 0.930
0.94 0.401 0.683 0.683 0.744 0.750 0.845 0.979 0.786 0.987 0.985
0.92 0.569 0.822 0.728 0.876 0.885 0.947 0.996 0.830 0.998 0.998
0.90 0.700 0.914 0.774 0.938 0.939 0.981 0.999 0.862 1.000 0.999
1.00 0.066 0.060 0.317 0.060 0.062 0.045 0.038 0.234 0.043 0.043
0.98 0.146 0.479 0.366 0.557 0.562 0.257 0.882 0.516 0.939 0.939

0.9 0.96 0.277 0.836 0.461 0.885 0.892 0.604 0.994 0.660 0.996 0.998
0.94 0.418 0.956 0.536 0.982 0.985 0.846 1.000 0.688 1.000 1.000
0.92 0.582 0.985 0.602 0.997 0.996 0.953 1.000 0.728 1.000 1.000
0.90 0.735 0.994 0.635 0.999 0.999 0.984 1.000 0.780 1.000 1.000
1.00 0.053 0.073 0.073 0.073 0.078 0.064 0.064 0.057 0.067 0.066
0.98 0.140 0.196 0.189 0.192 0.200 0.245 0.336 0.378 0.374 0.383

0.3 0.96 0.262 0.342 0.363 0.360 0.364 0.582 0.716 0.729 0.729 0.737
0.94 0.401 0.516 0.554 0.543 0.555 0.829 0.902 0.933 0.924 0.924
0.92 0.548 0.670 0.730 0.701 0.697 0.937 0.985 0.977 0.984 0.983
0.90 0.688 0.792 0.843 0.783 0.788 0.981 0.997 0.994 0.997 0.996
1.00 0.058 0.061 0.058 0.064 0.064 0.060 0.054 0.058 0.066 0.064
0.98 0.131 0.211 0.225 0.232 0.241 0.247 0.467 0.533 0.532 0.534

10 0.6 0.96 0.264 0.436 0.508 0.514 0.519 0.592 0.842 0.901 0.895 0.904
0.94 0.426 0.657 0.765 0.727 0.735 0.827 0.971 0.986 0.982 0.982
0.92 0.588 0.812 0.893 0.860 0.858 0.947 0.995 0.999 0.998 0.998
0.90 0.704 0.900 0.946 0.932 0.930 0.990 0.999 1.000 1.000 1.000
1.00 0.062 0.069 0.060 0.066 0.074 0.044 0.045 0.050 0.059 0.059
0.98 0.141 0.429 0.555 0.548 0.568 0.269 0.866 0.940 0.913 0.920

0.9 0.96 0.241 0.820 0.929 0.904 0.897 0.588 0.991 0.999 0.997 0.997
0.94 0.432 0.947 0.981 0.979 0.980 0.857 0.999 1.000 1.000 1.000
0.92 0.599 0.987 0.996 0.993 0.991 0.946 1.000 1.000 1.000 1.000
0.90 0.714 0.996 1.000 1.000 1.000 0.986 1.000 1.000 1.000 1.000



Table 4: Empirical size and power (trend case, DGP2)

N R2 ρ1 tgls Λ1 Λfac Λpow ΛR̄2 tgls Λ1 Λfac Λpow ΛR̄2

T = 100 T = 200
1.00 0.033 0.050 0.715 0.056 0.056 0.053 0.053 0.599 0.060 0.059
0.98 0.038 0.070 0.738 0.081 0.082 0.091 0.127 0.651 0.152 0.150

0.3 0.96 0.060 0.112 0.756 0.131 0.129 0.190 0.315 0.711 0.355 0.356
0.94 0.091 0.186 0.775 0.218 0.218 0.369 0.557 0.757 0.601 0.599
0.92 0.147 0.272 0.802 0.314 0.313 0.552 0.755 0.802 0.807 0.807
0.90 0.221 0.369 0.832 0.455 0.458 0.716 0.895 0.840 0.924 0.924
1.00 0.033 0.058 0.510 0.062 0.065 0.043 0.060 0.436 0.058 0.058
0.98 0.040 0.110 0.542 0.126 0.127 0.080 0.212 0.507 0.279 0.280

5 0.6 0.96 0.064 0.207 0.573 0.240 0.248 0.201 0.550 0.621 0.660 0.660
0.94 0.089 0.325 0.618 0.440 0.446 0.373 0.817 0.697 0.901 0.902
0.92 0.150 0.485 0.657 0.601 0.608 0.569 0.933 0.742 0.967 0.967
0.90 0.226 0.639 0.701 0.731 0.735 0.744 0.978 0.779 0.991 0.992
1.00 0.035 0.061 0.320 0.061 0.061 0.046 0.054 0.252 0.055 0.053
0.98 0.038 0.288 0.366 0.352 0.360 0.082 0.693 0.414 0.791 0.798

0.9 0.96 0.067 0.637 0.425 0.739 0.744 0.184 0.973 0.569 0.985 0.985
0.94 0.106 0.862 0.488 0.907 0.911 0.385 0.998 0.609 0.999 1.000
0.92 0.168 0.941 0.522 0.964 0.965 0.583 1.000 0.638 1.000 1.000
0.90 0.259 0.972 0.570 0.988 0.988 0.749 1.000 0.696 1.000 1.000
1.00 0.043 0.070 0.067 0.070 0.070 0.036 0.056 0.054 0.052 0.052
0.98 0.059 0.095 0.098 0.102 0.101 0.076 0.116 0.153 0.151 0.153

0.3 0.96 0.087 0.146 0.164 0.164 0.161 0.173 0.297 0.367 0.377 0.378
0.94 0.138 0.188 0.238 0.244 0.239 0.362 0.521 0.606 0.601 0.598
0.92 0.199 0.263 0.342 0.352 0.354 0.550 0.739 0.810 0.782 0.781
0.90 0.266 0.366 0.468 0.457 0.455 0.734 0.879 0.914 0.898 0.901
1.00 0.041 0.064 0.061 0.073 0.080 0.037 0.050 0.052 0.049 0.050
0.98 0.060 0.117 0.134 0.141 0.148 0.072 0.204 0.287 0.287 0.283

10 0.6 0.96 0.086 0.196 0.279 0.289 0.288 0.172 0.523 0.668 0.633 0.641
0.94 0.140 0.308 0.460 0.468 0.473 0.361 0.782 0.890 0.864 0.871
0.92 0.202 0.454 0.636 0.616 0.616 0.565 0.916 0.972 0.962 0.962
0.90 0.285 0.606 0.774 0.754 0.749 0.728 0.967 0.997 0.995 0.997
1.00 0.042 0.068 0.071 0.085 0.087 0.034 0.060 0.056 0.053 0.052
0.98 0.060 0.254 0.364 0.352 0.364 0.059 0.669 0.796 0.780 0.780

0.9 0.96 0.093 0.610 0.779 0.736 0.740 0.166 0.955 0.993 0.988 0.990
0.94 0.133 0.828 0.925 0.912 0.911 0.365 0.994 1.000 1.000 1.000
0.92 0.199 0.935 0.971 0.970 0.968 0.564 1.000 1.000 1.000 1.000
0.90 0.297 0.962 0.990 0.990 0.989 0.745 1.000 1.000 1.000 1.000



Table 5: Prebish-Singer hypothesis

(a) Panel unit root and stationarity tests

estimated # of the common factors: 4
PANIC test for the idiosyncratic errors

(Fisher test) 33.783∗∗

(inverse normal test) −2.821∗∗∗

panel stationarity tests
(ZAspc) −1.892
(ZAla) −2.518
(HLM test) −0.707

(b) univariate unit root and stationarity tests

ADF-GLS KPSS OPOC test tβi1
　

# of cov. R2 test stat. p-value
zinc −2.416 0.070 6 0.779 −0.143∗∗ 0.000
tin −1.573 0.148∗∗ 2 0.954 −6.905∗∗ 0.000

petro. −1.675 0.129∗ 4 0.981 −0.300∗∗ 1.000
wool −3.467∗∗∗ 0.076 - - - 0.000
iron −1.384 0.136∗ 5 0.862 −2.306∗∗ 0.000

aluminum −3.905∗∗∗ 0.061 - - - 0.000
beef −1.536 0.122∗ 5 0.998 7.797 0.000
coffee −2.495 0.113 2 0.919 −3.388∗∗ 0.000
cocoa −2.082 0.112 4 0.979 −0.273 0.058

Note: Rejections at 10%, 5%, and 1% significance level are denoted by ∗, ∗∗, and ∗∗, respectively.



Table 6: PPP hypothesis

(a) Panel unit root and stationarity tests

estimated # of the common factors: 4
PANIC test for the idiosyncratic errors

(Fisher test) 55.017∗∗∗

(inverse normal test) −4.697∗∗∗

panel stationarity tests
(ZAspc) 3.606∗∗∗

(ZAla) 1.008
(HLM test) 3.261∗∗∗

(b) univariate unit root and stationarity tests

ADF-GLS KPSS OPOC test 　
# of cov. R2 test stat.

CAD −0.037 0.968∗∗∗ - - -
DKK −0.502 0.771∗∗∗ - - -
EUR −0.320 0.751∗∗∗ - - -
JPY −0.370 0.298 1 0.310 14.768
NOK −0.736 0.734∗∗ 1 0.813 9.263
SEK −0.919 0.366∗ 1 0.860 8.949
CHF −0.268 0.478∗∗ 1 0.786 23.249
GBP −1.308 0.172 1 0.792 4.703

Note: Rejections at 10%, 5%, and 1% significance level are denoted by ∗, ∗∗, and ∗∗, respectively.
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Figure 1: The limiting power functions (constant case)
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Figure 2: The limiting power functions (trend case)
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Figure 3: The selection rule of covariates


