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Abstract

This study attempts to predict the volatility of yield curve factors using informa-

tion on the cross-section of yields. Since a linear relationship between variances and

levels of yields is reported to be inconsistent with recent data, we focus on nonlinear

relationships. Further, rather than employing regression models, we employ dynamic

models, where information on the yield curve is used for specifying factor covariance

matrix as nonlinear functions of yield curve factors. Through such dynamic models,

we uncover both usefulness and limitations of information content of the yield curve

with respect to volatility prediction.
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1 Introduction

It does not seem unreasonable to think that the current yield curve contains some in-

formation on the volatility of changes in interest rates. In making bond portfolios or

managing interest rate risks, investors will take account of conditional second moments

of bond returns or yield changes. The resulting shape of the yield curve will then reflect

investors’ views toward the volatility. This study attempts to predict the volatility by

utilizing such information. This is done by modeling the dynamics of yield curve factors

as diffusion processes, aiming at exploring appropriate underlying models for bonds and

their derivatives.

The idea of relating interest rate volatility to the yield curve is not new. Brown and

Schaefer (1994), Christiansen and Lund (2005), Joslin (2010), Litterman, Scheinkman,

and Weiss (1991), and Phoa (1997) relate the volatility to the curvature, or convexity, of

the yield curve. Time-series studies using long historical data on U.S. interest rates find a

relation between the volatility and the level of a particular yield, especially the short-term

rate, such that high volatility is accompanied by high level; see, e.g., Andersen and Lund

(1997a), Ball and Torous (1999), Chan, Karolyi, Longstaff, and Sanders (1992), Durham

(2003), and Gallant and Tauchen (1998).

This simple level-volatility relationship, however, no longer seems to be a decisive fea-

ture for relatively recent data. Figure 1 shows the time series of the level and realized

volatility (annualized standard deviation) of the first principle component (PC) construct-

ed from U.S. dollar LIBOR and swap rates over 1991–2009: The details of these data are

provided in Section 3. Note that the first PC is interpretable as a level factor of the yield

curve. We notice that the sharp rise in the volatility of changes in the first PC, observed

around 2001–03 and 2008–09, is actually accompanied by the fall in the level of the first

PC.

It is, therefore, not surprising that more recent studies using these data are skeptical

about the possibility of extracting volatility information from the yield curve. Andersen

and Benzoni (2010) test affine spanning conditions that yield variances, both ex ante

and ex post, can be expressed by some linear combinations of yield levels if affine term

structure models are true, and reject these conditions. Consequently, it is implied that the

relationship between the volatility and the curvature of the yield curve up to ten years is

not supported since the curvature is normally measured by a linear combination of yields.
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Collin-Dufresne, Goldstein, and Jones (2009), and Jacobs and Karoui (2009) report that

yield variances extracted from the cross-section of yields through affine term structure

models do not behave similarly to typical variance measures in time series. Due in part to

these difficulties, the recent literature seems to prefer the Gaussian term structure model,

a family of affine models with constant volatility, to the other affine models with stochastic

volatility.

Is the yield curve really of little relevance to the volatility? There seems to be a room

for further discussion. Although information on the cross-section of yields alone may not

be rich enough to identify volatility specific factors, it may still be useful if it is combined

with information on the time-series of yields. Furthermore, nonlinear relationships between

variances and levels of yields may exist even though a linear relationship as implied by the

affine models is not supported.

This study explores these possibilities that are not fully studied by the earlier work.

For this purpose, we employ dynamic models, rather than regression models, aiming at

incorporating both time-series and cross-sectional properties of interest-rate data into

estimation and prediction. This approach will shed new light on adequate underlying

models of the term structure of interest rates that have ability of predicting the volatility

of yields while maintaining the goodness-of-fit to the cross-section of yields.

A clue to finding such dynamic models is to rely on existing models successful in many

ways. The Gaussian model is a candidate with capability of describing and predicting the

level of yields; see, e.g., Dai and Singleton (2003), Duffee (2002), and Joslin, Singleton,

and Zhu (2011). Besides, since all factors in the Gaussian model are naturally interpreted

as yield-curve specific, the misidentification of factors such that ex-ante and ex-post roles

are different can be avoided. An obvious drawback of the model, on the other hand, is

constant volatility despite mounting evidence supporting time-varying volatility.

We then overcome this drawback by making the covariance matrix of the factors level-

dependent, leading to a model in which all factors potentially contribute to time-varying

volatility. This is how the information on the cross-section of yields is used: It is used

not for directly identifying volatility factors, but for specifying volatility functions of the

yield curve factors. The level-dependent covariance matrix, however, cannot be introduced

without caution. It must be positive definite. One simple way to meet this requirement is

to model eigenvalues of the covariance matrix as functions taking positive values. Specif-
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ically, we propose two models for the time-varying eigenvalues: one given by quadratic

functions and the other by exponential functions. Naturally, the relationship between

variances and levels of yields is nonlinear.

Our approach of examining information content of the yield curve with respect to the

volatility is different from the earlier work. Bikbov and Chernov (2011), and Thompson

(2008) change estimation methods while using the affine models. We change models them-

selves. Compared with dynamic models for the yield curve employed by, e.g., Christiansen

(2005), and Pérignon and Smith (2007), the current models are more parsimonious in that

GARCH or regime-switching effect is not taken into consideration. Rather, we broaden

interpretation of the level effect and explore its adequacy, which we think deserves research

attention for the following reasons. First, in developing dynamic models to term structure

models by imposing no arbitrage conditions, less complicated models have advantages of

lower computational cost. Second, since the Gaussian model becomes increasingly popular

in the empirical term structure literature, it may be of interest to examine the degree to

which volatility prediction improves by extending the Gaussian model while holding the

number of factors fixed. Third, even though unspanned volatility factors as proposed by

Collin-Dufresne and Goldstein (2002) may be necessary for fully capturing the behavior

of volatility, it is important to know in advance where to introduce them, as increasing

the number of factors is not costless. To ensure the effective introduction, it seems nec-

essary to clarify what yield curve factors alone can do. The contribution of this study is

to present both usefulness and limitations of information content of the yield curve with

respect to volatility prediction through dynamic models.

Section 2 proposes models. Section 3 explains the data and how to construct a real-

ized volatility measure. Section 4 examines the volatility forecasting performance of the

proposed models. Section 5 provides concluding remarks. Appendices collect technical ar-

guments including explanation of an approximation method of conditional moments used

for estimation.

2 Model

The research objective is to examine whether information on the cross-section of yields

is useful for predicting the volatility of yields. To achieve this objective, we use dynamic

models and try nonlinear relationships between the yield curve and volatility. In Section
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2.1, models appropriate for the objective are proposed. Strengths and weaknesses of the

proposed models are then discussed in Section 2.2.

2.1 Specification

In modeling the dynamics of the yield curve, we consider three factors by following a tradi-

tion in the empirical term structure literature. Let Xt be a three dimensional state vector,

the elements of which are all supposed to drive the yield curve. Then, the instantaneous

change in Xt is assumed to follow

dXt ∼ N [(K0 +K1Xt)dt, Σtdt] . (1)

We incorporate information on the yield curve into the specification of the instanta-

neous covariance matrix, Σt. Specifically, we make Σt dependent on Xt. But such level-

dependent specifications cannot be introduced without caution because Σt must be positive

definite. To meet this condition, one simple approach is to take the spectral decomposition

of Σt, and then to specify the eigenvalues as functions of Xt that take positive values for

any Xt while holding the corresponding eigenvectors fixed:

Σt = PLtP
′ , (2)

where Lt is a diagonal matrix consisting of the eigenvalues and P is an orthogonal matrix

having the corresponding eigenvectors of unit length in its columns. The idea of the

spectral decomposition to capture time-varying second moments is not new: It is employed

by, e.g., Fan, Gupta, and Ritchken (2003), Han (2007), Jarrow, Li, and Zhao (2007), and

Longstaff, Santa-Clara, and Schwartz (2001), and supported empirically by Pérignon and

Villa (2006). Here, the idea is combined with level-dependent specifications.

Before specifying eigenvalue functions, we first parameterize P in equation (2). By the

conditions of orthogonality and unit length, the number of free parameters in P is actually

three. Then, it is parameterized using three rotation matrices:

P =


1 0 0

0 cosφP
3 − sinφP

3

0 sinφP
3 cosφP

3




cosφP
2 0 − sinφP

2

0 1 0

sinφP
2 0 cosφP

2




cosφP
1 − sinφP

1 0

sinφP
1 cosφP

1 0

0 0 1

 . (3)

This rotation is called the yaw, pitch, and roll rotation. The parameters to be estimated

are sinφP
i (i = 1, 2, 3). For identification, we restrict φP

i ∈ [−π/2, π/2], so that cosφP
i =√

1− sin2 φP
i .
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Lt in equation (2) is expressed by the following form:

Lt =


L1(Xt) 0 0

0 L2(Xt) 0

0 0 L3(Xt)

 . (4)

To have Li(Xt) > 0 (i = 1, 2, 3) for any Xt, we propose two models.

The first model, abbreviated as SV-Q (Stochastic Volatility with Quadratic specifica-

tion), specifies Li(Xt) as

Li(Xt) = ci +X ′
tΓ

iXt (i = 1, 2, 3) , (5)

where Γi is either a positive definite matrix with ci ≥ 0 or a nonnegative definite matrix

with ci > 0. In the estimation, we impose the latter restriction on Γi and ci as this can

lead to a more parsimonious specification: Γi = 0 is possible as long as the data support.

Similar to Σt, the non-negative definite matrix Γi is parameterized based on the spectral

decomposition:

Γi = QiM iQi′ (i = 1, 2, 3) , (6)

where

M i =


mi

1 0 0

0 mi
2 0

0 0 mi
3

 , with 0 ≤ mi
1 ≤ mi

2 ≤ mi
3 , (7)

and

Qi =


1 0 0

0 cosφQi

3 − sinφQi

3

0 sinφQi

3 cosφQi

3




cosφQi

2 0 − sinφQi

2

0 1 0

sinφQi

2 0 cosφQi

2




cosφQi

1 − sinφQi

1 0

sinφQi

1 cosφQi

1 0

0 0 1

 , (8)

with φQi

j ∈ [−π/2, π/2] (j = 1, 2, 3). It is noted that sinφQi

j cannot be identified for some

mi
j . For example, when mi

j = 0 for all j, sinφQi

j cannot be identified for any j. In such

cases, we set sinφQi

j = 0.

The second model, abbreviated as SV-E (Stochastic Volatility with Exponential spec-

ification), specifies Li(Xt) as

Li(Xt) = exp
{
si0 + s′iXt

}
(i = 1, 2, 3) . (9)
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No parameter restriction is required for the SV-E model. This exponential specification

that naturally avoids negative volatility is popular in time series analysis; see, e,g., An-

dersen and Lund (1997a, b), Ball and Torous (1999), and Gallant and Tauchen (1998).

At first sight, the proposed models may appear odd. However, they can be thought of

as a family of models with level-dependent volatility considered by many studies. The level

dependence is more involved here to achieve the research objective, and the more involved

specification is feasible due to the spectral decomposition of the covariance matrix, which

is also employed by previous studies.

2.2 Strengths and weaknesses of the proposed models, and possible

remedies for the weaknesses

Time-varying covariance matrix must be positive definite in the first place. The affine

models satisfy this requirement by placing constraints on factor processes driving this

matrix. These constraints, however, often result in reduction of the goodness-of-fit to the

cross-section of yields or misidentification of volatility factors. On the other hand, the

proposed models satisfy this requirement by placing constraints on eigenvalue functions.

There is no sign constraint on factor processes here, as is the case for the original Gaussian

model. Therefore, the modeling of the market prices of risk, which is required for deriving

no-arbitrage bond prices, can also be made as flexibly as the Gaussian model. It is noted

that this flexibility is one of the major strengths of the Gaussian model especially in terms

of predicting the level of yields. In short, the proposed models inherit empirical strengths

of the Gaussian model.

At the same time, the proposed models have obvious weaknesses. We mention three

that seem to be particularly crucial in using them as underlying models for the term

structure of interest rates. First, there is no closed-form expression for no-arbitrage bond

prices. Second, negative interest rates cannot be avoided as for the original Gaussian

model. Third, there is no unspanned factor that affects derivative prices but not bond

prices in spite of the earlier work pointing out the existence and significance of such factors;

see, e.g., Collin-Dufresne and Goldstein (2002), Han (2007), Heidari and Wu (2003, 2009),

Jarrow et al. (2007), and Li and Zhao (2006).

There are possible remedies for these weaknesses, however. A remedy for the lack of

closed-form expression is to rely on analytical approximations of no-arbitrage bond prices.
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Takamizawa and Shoji (2009) propose one such method, the accuracy of which is sufficient

as long as reasonable parameter and state variable values are used. The second weakness of

generating negative interest rates can virtually be avoided. As originally proposed by Aı̈t-

Sahalia (1996), the key is to add to the risk-neutral drift of the instantaneous risk-free rate

process, rt, a term such that it increases sufficiently rapidly as rt approaches zero. If the

coefficient of this term is set to a very small number, the impact of this term is negligible

at, e.g., rt = 0.0001, a level lower than the minimum in our sample. Hence, estimation

and prediction results using real data do not change between with and without it. At

least from an empirical point of view, we can work as if it is added though it is actually

not. Resolving the third weakness of not accommodating unspanned factors may not be as

difficult as it appears. As suggested by Joslin (2010) using affine models and Takamizawa

(2011) using non-affine models, a factor that is nearly, if not completely, unspanned can be

introduced by adding it to the covariance matrix but not to the risk-neutral drift vector.

3 Data and realized variance measure

3.1 Dataset

We use data on U.S. dollar LIBOR with maturities of 6 and 12 months and swap rates

with maturities of 2, 3, 4, 5, 7, and 10 years. The sample period is from January 4, 1991

to May 27, 2009. The LIBOR and swap rates are transformed to zero-coupon bond yields

on a continuously compounded basis using a bootstrap method with linear interpolation

applied to discount functions. The maturities of the zero yields used for the analysis are

0.5, 1, 2, 3, 5, and 10 years.

Weekly data consist of Wednesday observations. The in-sample data for estimation

cover up to April 9, 2003 (641 observations), and the out-of-sample data for prediction

contain 320 observations. This division allows for incorporating information on the lowest

range of interest rates into model estimation as well as reserving sufficient out-of-sample

observations. Other divisions are also tried, and the differences in the results are not large

enough to change the conclusions of this study.

Reasons for selecting this dataset are as follows. First, we can make more challenging

the purpose of predicting the volatility using information on the cross-section of yields.

As shown in Figure 1, a simple level-volatility relationship disappears in the recent data.
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Second, we can focus on volatility prediction without introducing an additional complexity

of regime switching. As documented by Dai, Singleton, and Yang (2007), this sample

period can be regarded as a single regime when viewed from the history of U.S. interest

rates.

3.2 Factor identification

As the yield curve factors, we choose the first three PCs, which are interpretable as level,

slope, and curvature factors of the yield curve, respectively. A rotation matrix to obtain

the PCs is calculated from the covariance matrix of changes in yields, which is estimated

using the in-sample weekly data. This rotation matrix is fixed over the entire period to

make the PCs identical between the in-sample and out-of-sample periods.

This choice of factors has advantages relative to others. First, it allows for focusing

on the volatilities of PCs without paying much attention to the covariances between PCs.

Second, it allows for a more intuitive understanding of the results. Specifically, since P in

equation (2) is expected to be nearly the identity matrix, as is empirically the case shown

in Section 4.1, Li(Xt) corresponds to the instantaneous variance of the i-th PC, xt,i. Still,

a nonlinear relationship between the yield curve and the volatility can be detected based

on the PCs. Since the PCs are obtained by linear combinations of yields, if the volatility

of PCs is nonlinear in the level of PCs, the volatility of yields is also nonlinear in the level

of yields.

3.3 Realized measure

Using daily data, we construct a realized measure of the conditional variance of changes

in PCs. We first transform the daily series of zero yields into those of PCs. This is

done using the same rotation matrix as calculated with the weekly data to make the PCs

identical between the weekly and daily data. Then, a realized measure of the one-week

ahead conditional variance of xt,i is computed as

RVt,t+∆,i =

mt+∆∑
k=1

(xt+ ∆
mt+∆

k,i − xt+ ∆
mt+∆

(k−1),i)
2 , (10)

where ∆ is a week interval, set to 1/52, and mt is the number of observations during a week

ending at time t (usually mt = 5). A realized measure of the h-week ahead conditional
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variance is computed as

RVt,t+h∆,i =
h∑

j=1

RVt,t+j∆,i . (11)

The annualized realized variance is obtained by dividing RVt,t+h∆,i by h∆.

Forecasting horizons are set to 4, 8, 16, and 32 weeks, i.e., h = {4, 8, 16, 32}, which are

longer than those considered in the earlier work. This is aimed at matching the horizon

of the volatility forecast with that of the level forecast including the test for the efficient

hypothesis of the term structure, which is usually longer than a month; see, e.g., Bekaert

and Hodrick (2001), Campbell and Shiller (1991), and Fama and Bliss (1987).

4 Empirical Analysis

4.1 In-sample estimation

The proposed models are estimated by the quasi-maximum likelihood method, where the

conditional first and second moments of the factors are substituted into the multivariate

normal density function. This method might be justified by a relatively short interval, ∆ =

1/52. The conditional moments to be substituted are computed using a method proposed

by Shoji (2002), which approximates a vector of conditional moments as the solution to an

ordinary differential equation: Appendix A provides a brief explanation of this method.

Note that the conditional moments for the SV-Q model can be computed exactly, as the

drift vector is linear and the covariance matrix is quadratic in Xt, respectively.

Fully-parameterized models are first estimated, but estimates of some parameters are

not significant. We set such parameters to zero, and re-estimate the models to obtain

t-values all exceeding 1.5 in absolute value. In addition, parameters in the SV-Q model

that do not satisfy the sign constraints are fixed as follows: ci = 10−8 and mj
i = 0.

Table 1 presents parameter estimates of the covariance matrix, Σt. Since our primary

interest is in the volatility, parameter estimates of the drift vector are omitted for saving

space. First, we report the estimates for the SV-Q model provided in Panel A. All pa-

rameters in P , sinφP
i (i = 1, 2, 3), are not significant at the first round of estimation as

expected, and thus they are set to zero, i.e., P = I, at the final round. Hence, Li(Xt)

can be regarded as the instantaneous variance of the i-th PC. The constant terms, ci

(i = 1, 2, 3), and the smallest eigenvalues in M i, mi
1 (i = 1, 2, 3), are all fixed to make Σt

positive definite. The second largest eigenvalue in M1, m1
2, is also fixed at zero. Conse-
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quently, sinφQ1

1 and sinφQ1

2 are unidentified, so they are set to zero. Hence, L1(Xt), the

instantaneous variance of the first PC, has a simpler driving force than do L2(Xt) and

L3(Xt).

Panel B of Table 1 presents the parameter estimates for the SV-E model. As with the

SV-Q model, sinφP
i (i = 1, 2, 3) in P are all set to zero. A notable feature is that none

of the coefficients of the first PC, si1 (i = 1, 2, 3), is estimated significantly, so that they

are set to zero at the final round of estimation. That is, the most persistent level factor

is the least relevant to the volatility of yields, which is consistent with the earlier work

and Figure 1 of this study showing that the level factor alone is difficult to capture the

behavior of volatility. Also, the result implies a limitation of affine models: A prespecified

volatility factor, when identified from the cross-section of yields, often has the highest

correlation with the level factor.

4.2 Setup for volatility prediction

To make a more intuitive interpretation of the results, we predict the standard deviation,

not the variance. The predictive power of the models is evaluated by the root mean squared

error (RMSE) criterion using both in-sample and out-of-sample data. The RMSEs are

computed from the residuals of the following equations:√
RVt,t+h∆,i

h∆
=

√
vart[xt+h∆,i]

h∆
+ ut+h∆,i , (12)√

RVt,t+h∆,i

h∆
= ah,i + bh,i

√
vart[xt+h∆,i]

h∆
+ uregt+h∆,i , (13)

where vart[·] stands for conditional variance.

The out-of-sample predictive power is evaluated in two approaches. In the first ap-

proach, both the model parameters in (1) and the regression parameters in (13) are held

fixed at the in-sample estimates throughout the out-of-sample period to examine whether

the models can produce a long-run predictive relation. In the second approach, a part of

the parameters are estimated every time the prediction is made in a rolling window fash-

ion with the sample size fixed at the same as the in-sample data. More specifically, the

model parameters in (1) are held fixed at the in-sample estimates whereas the regression

parameters in (13) are re-estimated. This treatment is consistent with the idea behind

model estimation that the structural parameters are stable overtime. This idea will be

supported by looking at Figures 2 and 3, the details of which are provided in Section 4.3.
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It is noted that vart[Xt+h∆] has no analytical expression for the SV-E model, and thus

is computed by the same approximation method as used for the estimation. But here, the

interval is extended up to 32∆, which raises concern on the accuracy of the approximation.

In Appendix A, it is shown that the accuracy is maintained given reasonable parameter

and state variable values.

To evaluate the predictive power of the proposed models, we prepare several competing

models. First, we select the Gaussian model, which is given by (1) with Σt replaced by Σ, a

constant positive definite matrix. Since, given h, the Gaussian model produces a constant

forecast independently of the current state, it serves as a benchmark, as does Random

Walk for predicting the level of yields. The RMSEs are computed based on equation (12)

alone.

Second, we select the GARCH(1,1) model. Although there are a number of variants

of the GARCH model, it is selected because more complicated models do not necessarily

beat the simplest one in out-of-sample tests; see Hansen and Lunde (2005). The model is

fitted to weekly data on each xt,i:

xt+∆,i = αi + βixt,i +
√
Vt+∆,i zt+∆,i , (14)

Vt+∆,i = ωi + ϕiVt,iz
2
t,i + ρiVt,i , (15)

where it is assumed for simplicity that zt,i ∼ i.i.d.N(0, 1). It is noted that since we work

with the PCs, the estimation with each, but not joint, series seems to be justified.

The h-week ahead conditional variance can be computed by iteration, an explanation of

which is provided in Appendix B. The RMSEs are computed based on both equations (12)

and (13). More specifically, the out-of-sample RMSEs in the varying parameter approach

are computed in a similar way to those for the SV-Q and SV-E models, where the model

parameters in equations (14) and (15) are fixed at the in-sample estimates whereas the

regression parameters in equation (13) are re-estimated.

Third, we consider forecasting regressions directly applied to the realized volatility

series. We select the HAR-RV model employed by Andersen and Benzoni (2010) and the

mixed data sampling (MIDAS) approach developed by Ghysels, Santa-Clara, and Valkanov

(2005, 2006). In this research, the HAR-RV model is given by

HAR-RV:

√
RVt,t+h∆,i

h∆
= ah,i +

∑
j={4,8,16,32}

bh,i,j

√
RVt−j∆,t,i

j∆
+ uhart+h∆,i . (16)
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The MIDAS regression is given by

MIDAS:

√
RVt,t+h∆,i

h∆
= ah,i

+bh,i

√∑nt
j=1(xt−L∆(j−1)/nt,i − xt−L∆j/nt,i)

2 wh,i(j)

(L∆/nt)
+ umt+h∆,i , (17)

where following Ghysels et al. (2005, equation (3)), the weighting function, wh,i(j), is

given by

wh,i(j) =
exp{wh,i,1j + wh,i,2j

2}∑nt
k=1 exp{wh,i,1k + wh,i,2k2}

, (18)

and nt stands for the number of daily observations over the past L weeks: Usually nt =

L×5. We set L = 32 to make the amount of information equal between the HAR-RV and

MIDAS regressions: The difference between the two is in the weighting structure to past

observations. It is noted that the data of the first 32 weeks are not used in equations (16)

and (17). To make competitive conditions equal, these data are not used in equations (12)

and (13). To compute the out-of-sample RMSEs in the varying parameter approach by the

MIDAS regression, (wh,i,1, wh,i,2) in equation (18) are fixed at the in-sample estimates,

while (ah,i, bh,i) in equation (17) are re-estimated. For the HAR-RV regression (16), all

parameters are re-estimated.

It is noted that volatility prediction is not the only purpose for the proposed models:

They can be a basis for term structure models that are expected to explain both time-series

and cross-sectional properties of the data. Nevertheless, we consider the GARCH model

as a competitor, in contrast to Jacobs and Karoui (2009) where it is treated as a model

generating the true volatility. Furthermore, an information gap exists against the HAR-

RV and MIDAS regressions which are constructed directly from the realized volatility.

By considering such a challenging setup, we uncover both possibilities and limitations of

dynamic models composed solely of yield curve factors from a point of view of volatility

prediction.

4.3 In-sample results

To obtain an intuition about the model performance, we first look at Figures 2–4, which

display the time series of the four-week-ahead forecast of the volatility (annualized stan-

dard deviation) by the GARCH, SV-Q, and SV-E models, respectively, together with the

corresponding realized series. First, comparing Figure 3 with Figure 2, we notice that

the SV-Q model cannot predict the volatility of PC1 (the first PC) as accurately as the
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GARCH model: The sample correlation over 1991–2009 is 0.35, which is smaller than that

for the GARCH model, 0.57. Still, the trend of the realized series appears to be tracked.

On the other hand, the SV-Q model generates forecasts of PC2 (the second PC) that are

more highly correlated with the realized series than does the GARCH model. Moreover, it

seems successful in capturing the intensive variation of the realized series during 2008–09,

even though this period is out-of-sample. For PC3 (the third PC), the SV-Q model is

again outperformed by the GARCH model judged by the sample correlation, however, it

still appears to work in the out-of-sample period.

Next, looking at Figure 4, we notice that while the forecast series of PC1 generated by

the SV-E model is similar to that generated by the SV-Q model, those of PC2 and PC3 are

quite different. In particular, the SV-E model fails to generate sufficient variation relative

to the realized series. A reason for these differences is that an exponential function can

be well approximated by a linear function in a narrow range where the eigenvalues of the

covariance matrix of changes in yields are involved and that the linear specification is not

sufficient for capturing the intensive variation in the realized volatility.

Having these figures in mind, we compare the in-sample model performance. Table 2

presents the RMSEs, which are multiplied by 104 and thus interpretable in units of basis

points (1 bp = 0.0001). For the proposed and GARCH models, the name alone indicates

the results based on equation (12), whereas the name “+ Reg” indicates the results based

on equation (13). In reporting the results, we focus on the comparison first without then

with the forecasting regression.

First, compared with the RMSEs for the benchmark Gaussian model, those for the

proposed models are smaller in most of the cases: Exceptions are PC1 at h = 32 for

the SV-Q model and PC3 at h = {16, 32} for the SV-E model. Between the proposed

models, the SV-E model is better at predicting the volatility of PC1, whereas the SV-Q

model is better at predicting the volatility of PC2 and PC3. Second, compared with the

GARCH model, the performance of the proposed models is similar with respect to PC2.

Specifically, the RMSEs for the SV-Q model range from 33.1 bps at h = 4 to 25.2 bps at

h = 32, which are all smaller than the corresponding RMSEs for the GARCH model. For

PC1 and PC3, however, the GARCH model forecasts better than the proposed models.

Third, compared with the HAR-RV and MIDAS regressions, the proposed models are

clearly outperformed. But for PC1, the performance gap tends to narrow with h. Fourth,
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the forecasting regression (13) is helpful for the proposed models. In particular, for PC1,

the SV-E + Reg model exhibits the best performance at longer horizons, h = {16, 32},

followed by the SV-Q + Reg model. For PC3, the differences in the RMSE between the

SV-Q/E + Reg models and HAR-RV/MIDAS regressions shrink to around 1 bp or less

by extending the horizon to h ≥ 8. For PC2, however, the performance gap against the

HAR-RV/MIDAS regressions still remains even after introducing the forecasting regression

(13).

4.4 Out-of-sample results

Table 3 presents the out-of-sample RMSEs in basis points in the fixed-parameter approach,

where all parameter values are fixed at the in-sample estimates throughout the out-of-

sample period. First, compared with the RMSEs for the benchmark Gaussian model,

those for the proposed models are smaller except PC3 for the SV-E model. Between the

proposed models, the SV-Q model is better at predicting the volatility of PC2 and PC3

while both exhibit a similar performance for PC1.

Second, compared with the GARCH model, the proposed models are outperformed

largely with respect to PC1. For example, the differences in the RMSE between the SV-E

and GARCH models reach 18 bps at h = 8. In fact, the GARCH model is the best at

predicting the out-of-sample volatility of PC1 at h ≥ 8, showing its robust performance.

Looking at PC2, the SV-Q model is comparable to the GARCH model with the former

(latter) exhibiting a superior performance at shorter (longer) horizons. The SV-E model,

on the other hand, is outperformed by the GARCH model with the gap being around 4

bps for all h. Throughout the sample period, therefore, the level-dependent covariance

matrix with quadratic specification is at least as effective as the GARCH(1,1) specification

in predicting the volatility of PC2. Also for PC3, only the SV-Q model is comparable to,

or slightly worse than, the GARCH model.

Third, introducing the forecasting regression (13) to the proposed models does not

necessarily improve the out-of-sample performance when the regression parameters are

held fixed. Specifically, the RMSEs of PC1 for the SV-Q/E + Reg models are 83–84 bps

at h = 4, which increase from those without the forecasting regression, 79–80 bps. Such

differences disappear at h = 32, however. For PC2 and PC3, the forecasting regression is

generally favorable for the SV-E model while it is not for the SV-Q model.
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Fourth, the proposed models, in both cases with and without the forecasting regres-

sion, are outperformed by the HAR-RV/MIDAS regressions. By extending the forecasting

horizon, the performance gap tends to narrow for PC1 while it does not for PC2 or PC3.

Table 4 presents the out-of-sample RMSEs in basis points in the varying-parameter

approach, where the regression parameters are re-estimated every time the prediction

is made. First, for both PC1 and PC3, the proposed models are clearly outperformed.

Between the proposed models, the SV-Q (SV-E) model is slightly better at predicting

the volatility of PC1 (PC3). The GARCH model exhibits a comparable performance to

the HAR-RV/MIDAS regressions for PC1 at h = 32. Second, for PC2, the SV-Q model

is comparable to the GARCH model while the SV-E model is not. Compared with the

HAR-RV/MIDAS regressions, the SV-Q model is slightly worse at h ≤ 8 with the gap

being around 2 bps, but it reaches more than 5 bps at h = 32.

5 Concluding remarks

We have predicted the volatility of yield curve factors with the purpose of examining

information content of the yield curve. The information is used for specifying the instan-

taneous covariance matrix of yield curve factors. Specifically, the eigenvalues are modeled

by quadratic (model SV-Q) and exponential (model SV-E) functions of the factors. We

find that the quadratic specification has potential to capture the intensive variation in the

realized volatility. Furthermore, it exhibits a comparable, or even superior, performance

to the GARCH(1,1) specification in predicting the volatility of the second principle com-

ponent of the yield curve that is interpretable as a slope factor. That is, the yield curve

can be considered to have predictive power for the volatility of the slope factor. Against

forecasting regressions constructed directly from the realized volatility series, however, a

performance gap inevitably exists.

At the same time, the empirical results also uncover limitations of the role of the yield

curve in predicting the volatility of the first and third principle components. Information

on the yield curve alone is not sufficient, and therefore, it is for the prediction of their

volatility that the introduction of unspanned volatility factors is effective. It is then of

interest to examine how unspanned volatility factors introduced for capturing time series

properties are linked to those extracted from the cross-section of option prices, which is

left for future research.
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Appendix A: An approximation method of conditional mo-

ments

A1. Outline of the method

The method is originally developed by Shoji (2002) and applied to the pricing of bonds

by Takamizawa and Shoji (2009). The method generally allows for the computation of up

to n-th conditional moments, if they exist, for a d-dimensional diffusion process. To ease

the explanation, we limit our attention to the case of (n, d) = (2, 2), i.e., the conditional

first and second moments of a two-dimensional diffusion process. As seen below, n can be

considered as the order of approximation.

Let Xt = (xt,1 xt,2)
′ be a two-dimensional diffusion process, which evolves according

to the following SDE:

dxt,i = fi(Xt)dt+ ξi(Xt)
′dWt (i = 1, 2) , (19)

where Wt is two-dimensional Brownian motion, and the drift and diffusion functions, fi

and ξi (i = 1, 2), satisfy certain technical conditions for the solution to equation (19) to

exist for an arbitrary X0.

Let Ψs,t be a vector consisting of the first and second moments of an increment of Xt

conditioned on time s < t:

Ψ′
s,t = Es

(
xt,1 − xs,1 xt,2 − xs,2 (xt,1 − xs,1)

2 (xt,2 − xs,2)
2 (xt,1 − xs,1)(xt,2 − xs,2)

)
.

The goal is to obtain an approximation of Ψs,t, which will turn out to be the solution to

an ordinary differential equation.

By integrating equation (19) and taking the conditional expectation,

Es[xt,i − xs,i] = Es

[∫ t

s
fi(Xu)du

]
. (20)

By applying the Taylor expansion to fi(Xu) around Xs up to the second order

fi(Xu) = fi(Xs)

+f
(1,0)
i (Xs)(xu,1 − xs,1) + f

(0,1)
i (Xs)(xu,2 − xs,2) +

1

2
f
(2,0)
i (Xs)(xu,1 − xs,1)

2

+
1

2
f
(0,2)
i (Xs)(xu,2 − xs,2)

2 + f
(1,1)
i (Xs)(xu,1 − xs,1)(xu,2 − xs,2) + ei , (21)
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where f (k,l) = ∂k+lf
∂xk

1∂x
l
2
, and ei is a residual term. By substituting equation (21) into

equation (20) and expressing the resulting equation in a vector form

Es[xt,i − xs,i] = fi(t− s)

+

(
f
(1,0)
i f

(0,1)
i

1

2
f
(2,0)
i

1

2
f
(0,2)
i f

(1,1)
i

)∫ t

s
Ψs,udu+Ri , (22)

where Xs is omitted for notational convenience, and Ri = Es[ei].

Next, by applying the Ito formula to (xt,1 − xs,1)
2 and taking the conditional expecta-

tion,

Es[(xt,1 − xs,1)
2] = Es

[∫ t

s
{2f1(Xu)(xu,1 − xs,1) + g11(Xu)}du

]
, (23)

where g11 = ξ′1ξ1. By applying the Taylor expansion to f1(Xu) and g11(Xu) around Xs

up to the first and second orders, respectively, the integrand of equation (23) becomes

2f1(Xu)(xu,1 − xs,1) + g11(Xu)

= g11(Xs) + {2f1(Xs) + g
(1,0)
11 (Xs)}(xu,1 − xs,1) + g

(0,1)
11 (Xs)(xu,2 − xs,2)

+{2f (1,0)
1 (Xs) +

1

2
g
(2,0)
11 (Xs)}(xu,1 − xs,1)

2 +
1

2
g
(0,2)
11 (Xs)(xu,2 − xs,2)

2

+{2f (0,1)
1 (Xs) + g

(1,1)
11 (Xs)}(xu,1 − xs,1)(xu,2 − xs,2) + e11 , (24)

where g(k,l) is defined analogously with f (k,l), and e11 is a residual term. By substituting

equation (24) into equation (23),

Es[(xt,1 − xs,1)
2] = g11(t− s)

+

(
2f1 + g

(1,0)
11 g

(0,1)
11 2f

(1,0)
1 +

1

2
g
(2,0)
11

1

2
g
(0,2)
11 2f

(0,1)
1 + g

(1,1)
11

)
×

∫ t

s
Ψs,udu+R11 , (25)

where R11 = Es[e11]. A similar manipulation is applied to Es[(xt,2−xs,2)
2] and Es[(xt,1−

xs,1)(xt,2 − xs,2)]. Expressing the resulting equations together in a vector form leads to

Ψs,t = A(Xs)

∫ t

s
Ψs,udu+ b(Xs)(t− s) +R , (26)

where

A =



f
(1,0)
1 f

(0,1)
1

1
2f

(2,0)
1

1
2f

(0,2)
1 f

(1,1)
1

f
(1,0)
2 f

(0,1)
2

1
2f

(2,0)
2

1
2f

(0,2)
2 f

(1,1)
2

2f1 + g
(1,0)
11 g

(0,1)
11 2f

(1,0)
1 + 1

2g
(2,0)
11

1
2g

(0,2)
11 2f

(0,1)
1 + g

(1,1)
11

g
(1,0)
22 2f2 + g

(0,1)
22

1
2g

(2,0)
22 2f

(0,1)
2 + 1

2g
(0,2)
22 2f

(1,0)
2 + g

(1,1)
22

f2 + g
(1,0)
12 f1 + g

(0,1)
12 f

(1,0)
2 + 1

2g
(2,0)
12 f

(0,1)
1 + 1

2g
(0,2)
12 f

(1,0)
1 + f

(0,1)
2 + g

(1,1)
12


,
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b = (f1 f2 g11 g22 g12)
′ ,

R = (R1 R2 R11 R22 R12)
′ .

Equation (26) can be solved as

Ψs,t =

∫ t

s
eA(Xs)(t−u)b(Xs)du+ R̂ . (27)

If, in addition, A is invertible, we obtain

Ψs,t = A−1(Xs){eA(Xs)(t−s) − I}b(Xs) + R̂ . (28)

It is noted that equations (26)–(28) hold for any (n, d) with modification to A(Xs) and

b(Xs). In general, Ψs,t consists of
(n+d

n

)
−1 = (n+d)!/(n!d!)−1 elements when up to n-th

conditional moments for a d-dimensional diffusion process are computed. Correspondingly,

up to n-th derivatives of fi and gij (i, j = 1, ..., d) are taken to compute the elements

of A(Xs). Omitting the residual vector, R or R̂, leads to the approximation formula.

According to Shoji (2002), both R and R̂ have order of O((t − s)(n+3)/2). Thus, n can

be considered as the order of approximation. In computing conditional first and second

moments of the proposed models, we consider n = 2.

It is also noted that R contains the conditional expectation of derivatives of fi higher

than the first order and derivatives of gij higher than the second order. Then, if fi and

gij are linear and quadratic in Xs, respectively, there is no residual term. In other words,

the conditional moments computed by the formula are exact. The SV-Q model applies to

this case. Even in this case, the use of this formula may be beneficial when the derivation

of closed-form conditional moments is demanding.

A2. Accuracy to the conditional standard deviation under the SV-E

model

Under the SV-E model, the conditional standard deviation calculated from equation

(28) contains approximation error. We check the accuracy of the approximation to√
vart[Xt+h∆]/h∆ by the Monte Carlo (MC) method. The parameter values for the SV-E

model are given in Panel B of Table 1. The starting values for the MC simulations, at

which the accuracy is evaluated, are selected from the actual data. Specifically, we pick
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up three dates from the entire sample when PC1 takes the minimum, median, or maxi-

mum value. The same is applied to PC2 and PC3, which produces in total nine sets of

observations. The accuracy is thus evaluated at not only usual but also unusual times.

The subsequent realizations are generated from (1) with dt replaced by ∆/20, an interval

corresponding to 20 observations per week or 4 observations per day. The length of a path

is up to 32 weeks. The number of repetition is 10,000 with antithetic variates.

Panels A and B of Table A present forecasts of the 32-week ahead volatility (annualized

standard deviation in units of basis points) computed by the approximation and MC

methods, respectively. Panel C presents percentage differences between the two methods,

which range between −1.1% and 1.4%. The accuracy seems to be of little concern in the

current setup.

Appendix B: Computation of the conditional variance under

the GARCH(1,1) model

The variance of xt+∆,i (i = 1, 2, 3) conditioned on time t is simply Vt+∆,i, which is ob-

served at time t. The variance of xt+k∆,i (k = 2, ..., h) conditioned on time t is computed

iteratively as follows. In equation (14), by substituting t+ (k − 1)∆ for t and taking the

variance conditioned on time t,

vart[xt+k∆,i] = vart[αi + βixt+(k−1)∆,i +
√
Vt+k∆,izt+k∆,i]

= β2
i vart[xt+(k−1)∆,i] + vart[

√
Vt+k∆,izt+k∆,i]

+2βi covt[xt+(k−1)∆,i,
√
Vt+k∆,izt+k∆,i]

= β2
i vart[xt+(k−1)∆,i] + Et[Vt+k∆,i] (k = 2, ..., h) . (29)

On the other hand, in equation (15), by substituting t + (k − 1)∆ for t and taking the

expectation conditioned on time t,

Et[Vt+k∆,i] = Et[ωi + ϕiVt+(k−1)∆,iz
2
t+(k−1)∆,i + ρiVt+(k−1)∆,i]

= ωi + (ϕi + ρi)Et[Vt+(k−1)∆,i] (k = 2, ..., h) . (30)

Then, vart[xt+h∆,i] is obtained by iteratively solving equations (29) and (30) starting from

vart[xt+∆,i] = Vt+∆,i.
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Parameter / Index i = 1 i = 2 i = 3

Panel A: Estimates for the SV-Q model

ci 1e−8 1e−8 1e−8

mi
1 0.000 0.000 0.000

mi
2 0.000 0.036 (0.009) 0.006 (0.002)

mi
3 1.598 (0.108) 2.933 (0.569) 0.990 (0.179)

sinϕQi

1 0.000 −0.202 (0.023) −0.259 (0.037)

sinϕQi

2 0.000 −0.129 (0.002) −0.129 (0.002)

sinϕQi

3 0.295 (0.034) −0.154 (0.027) −0.112 (0.023)

Panel B: Estimates for the SV-E model

si0 × 10−2 −0.088 (0.005) −0.114 (0.004) −0.136 (0.004)

si1 × 10−2 0.000 0.000 0.000

si2 × 10−2 0.296 (0.049) 0.187 (0.051) 0.241 (0.046)

si3 × 10−2 −0.617 (0.245) −0.731 (0.224) −1.255 (0.235)

Table 1: Parameter estimates (standard errors) of Li(Xt) for the SV-Q and

SV-E models

The instantaneous covariance matrix of changes in the first three PCs, Xt, is decomposed

as Σt = PLtP
′, where Lt is the diagonal eigenvalue matrix and P is the orthogonal

eigenvector matrix parameterized in equation (4): Actually, P = I in the final estimation

for both models. The SV-Q model specifies the i-th diagonal element of Lt as Li(Xt) =

ci + X ′tΓ
iXt (i = 1, 2, 3), where ci > 0 and Γi is a non-negative definite matrix. Γi is also

parameterized based on the spectral decomposition as Γi = QiM iQi′ (i = 1, 2, 3), where

M i is the diagonal eigenvalue matrix with its elements satisfying 0 ≤ mi
1 ≤ mi

2 ≤ mi
3, and

Qi is the orthogonal eigenvector matrix parameterized in equation (8). The SV-E model

specifies the i-th diagonal element of Lt as Li(Xt) = exp{si0 + s′iXt} (i = 1, 2, 3). The

in-sample data from January 4, 1991 to April 9, 2003 are used for the estimation.
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(a) Level
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(b) Realized Standard Deviation
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Figure 1: Time-series of the level and realized volatility of PC1 over 1991{2009

Panels (a) and (b) present the time-series of the level and realized volatility (annualized

standard deviation) of the �rst prin
iple 
omponent (PC1). The verti
al dotted line

separates the in-sample and out-of-sample periods.
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(a) PC1
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(b) PC2

0.000

0.005

0.010

0.015

0.020

0.025

91 93 95 97 99 01 03 05 07 09


���������� � ����

(
) PC3

0.000

0.005

0.010

0.015

91 93 95 97 99 01 03 05 07 09

������� !�" # $%&'

Figure 2: Time series of the four-week ahead volatility fore
ast by the GARCH

(1,1) model

The model fore
ast (the thi
k line) and the 
orresponding realized measure (annualized

standard deviation, the thin line) are displayed, with the verti
al dotted line separating

the in-sample and out-of-sample periods.
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(b) PC2
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Figure 3: Time series of the four-week ahead volatility fore
ast by the SV-Q

model

The model fore
ast (the thi
k line) and the 
orresponding realized measure (annualized

standard deviation, the thin line) are displayed, with the verti
al dotted line separating

the in-sample and out-of-sample periods.
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(b) PC2
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Figure 4: Time series of the four-week ahead volatility fore
ast by the SV-E

model

The model fore
ast (the thi
k line) and the 
orresponding realized measure (annualized

standard deviation, the thin line) are displayed, with the verti
al dotted line separating

the in-sample and out-of-sample periods.
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