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Abstract

In this paper we present a test for the maximal rank of the matrix-valued volatility
process in the continuous Itô semimartingale framework. Our idea is based upon a
random perturbation of the original high frequency observations of an Itô semimartin-
gale, which opens the way for rank testing. We develop the complete limit theory for
the test statistic and apply it to various null and alternative hypotheses. Finally, we
demonstrate a homoscedasticity test for the rank process.
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Itô semimartingales, rank estimation, stable convergence.
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1 Introduction

In the last years asymptotic statistics for high frequency observations has received a lot of
attention in the literature. This interest was mainly motivated by financial applications,
where observations of stocks or currencies are available at very high frequencies. As under
the no-arbitrage condition prices processes must be semimartingales (see e.g. [4]), a lot of
research has been devoted to statistics of high frequency data of semimartingales. We refer
to a recent book [10] for a comprehensive study of infill asymptotic for semimartingales.

This paper is devoted to testing for the maximal rank of the matrix-valued volatility
process in the continuous Itô semimartingale framework, and more specifically for a d-
dimensional continuous Itô semimartingale X which is observed at equidistant times over
a fixed time interval [0, T ]: we observe (Xi∆n)0≤i≤[T/∆n], and the high-frequency approach
consists in assuming ∆n → 0.
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Université Pierre et Marie Curie), Email: jean.jacod@upmc.fr
†Department of Mathematics, Heidelberg University, INF 294, 69120 Heidelberg, Germany, Email:

m.podolskij@uni-heidelberg.de.
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A continuous Itô semimartingale can be written as

dXt = btdt+ σtdWt, (1.1)

where W is a Brownian motion, and there are many representations of this form, with
different Brownian motions W and, accordingly, different volatility processes σ. What
is “intrinsic” is the drift coefficient bt and the diffusion coefficient (“squared volatility”)
ct = σtσ

∗
t , in the sense that they are uniquely determined by X, up to a Lebesgue-null set

of times (throughout the paper σ∗t denotes the transpose of the matrix σ).

For modeling purposes and economical interpretation we would like to find, and often
choose, the smallest possible dimension of the Brownian motion W in the representation
(1.1). Assuming further that t 7→ ct is continuous, this smallest possible dimension is the
supremum in time of the rank of the Rd×d-valued process c over the time interval [0, T ].
We are further interested in homoscedasticity testing for the rank process.

A partial answer to this question was given in [9]. The authors of this paper studied the
problem of testing the null hypothesis supt∈[0,T ) rank(ct) ≥ r0 against supt∈[0,T ) rank(ct) <
r0 for a given number r0. However, their method does not extend to testing null hypotheses
of other types, e.g. supt∈[0,T ) rank(ct) = r0 against supt∈[0,T ) rank(ct) 6= r0 (which is much
more useful). In the classical setting of i.i.d or weakly dependent data various estimation
methods for the rank of an unknown covariance matrix (and related objects) have been
proposed. We would like to mention Gaussian elimination method with complete pivoting
of [3] and the test suggested in [13] among others. Unfortunately, these procedures can
not be applied to our statistical problem as the probabilistic structure of the process X is
more complex and the rank is time-varying.

Our method is based upon a random perturbation of the original data and determinant
expansions. The main idea can be described as follows: if we compute det(ct + het) for
a positive definite d × d matrix et independent of ct and h ↓ 0, then, under appropriate
conditions, its rate of decay to 0 depends on the unknown rank of ct. Hence, the ratio
det(ct + 2het)/det(ct + het) asymptotically identifies the rank of ct. Indeed, our main
statistic is a partial sum of squared determinants of matrices build from d consecutive
increments of the process X and the random perturbation is performed by a properly
scaled Brownian motion W ′, which is independent of all ingredients of X. We remark that
perturbation methods (and matrix expansions as well) find applications in various fields
of mathematics; we refer for instance to [11] whose authors apply matrix perturbation
methods to determine the number of components in a linear mixture model from high
dimensional noisy samples. Furthermore, the methods of [2] also rely upon a generation
of a new Brownian motion W ′ although in a completely different setting.

The paper is structured as follows. Section 2 is devoted to model assumptions, testing
hypotheses and test statistics. We present the asymptotic theory for our estimators and
apply it to maximal rank testing in section 3. In section 4 we develop a test for the null
hypothesis of constant rank. All proofs are deferred to section 5.
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2 Model, assumptions and a random perturbation

2.1 The setting and testing hypotheses

Our process of interest is a d-dimensional continuous Itô semimartingale X, given on
some filtered probability space (Ω,F , (Ft)t≥0,P). In vector form, and with W denoting a
q-dimensional Brownian motion, it can be written as

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σs dWs, (2.1)

where bt is a d-dimensional drift process and σt is a Rd×q-valued volatility process, assumed
to be continuous in time (and indeed much more, see Assumption (H) below). We set

ct = σtσ
∗
t , rt = rank(ct), Rt = sup

s∈[0,t)
rs. (2.2)

We remark that the maximal rank RT is not bigger than the rank of the integrated
volatility

∫ T
0 ctdt, but may be strictly smaller. As already mentioned, it is suitable to use

the smallest possible dimension for W , on the time interval [0, T ]. This is the P-essential
supremum of ω 7→ RT (ω), but, since a single path t 7→ Xt(ω) is (partially) observed,
the only available information is RT itself. So the problem really boils down to finding
the behavior of the process rt, and for this the choice of the dimension of W in (2.1) is
irrelevant.

The rank rt is the biggest integer r ≤ d such that the sum of the determinants of
the matrices (cijt )i,j∈J , where J runs through all subsets of {1, · · · , d} with r points, is
positive (with the convention that a 0× 0 matrix has determinant 1); see e.g. [9, Lemma
3]. Since ct is continuous, this implies that for any r the random set {t : rt(ω) > r} is
open in [0, T ), so the mapping t 7→ rt is lower semi-continuous. In particular, the set
{t ∈ [0, T ) : rt(ω) = RT (ω)} is a non-empty open subset. These properties also yield that
the process rt is predictable and that the following subsets of Ω, which later will be the
“testing hypotheses”, are FT -measurable:

Ωr
T = {ω : RT (ω) = r}

Ω=
T = {ω : rt(ω) = RT (ω) for all t ∈ [0, T ]}

Ω 6=T = {ω : t 7→ rt(ω) has finitely many discontinuities and is
not Lebesgue-a.s. constant on [0, T ]}.

(2.3)

Notice that we impose that rT = RT in Ω=
T , whereas the lower semi-continuity only implies

in general that rT ≤ RT . Observe also that a priori t 7→ rt may be Lebesgue-a.s. constant
and still have discontinuities (even infinitely many) on [0, T ]. So, Ω=

T and Ω 6=T are disjoint

but Ω=
T ∪Ω 6=T 6= Ω in general. The main aim of this paper is testing the null hypothesis Ωr

T

against Ω 6=rT = ∪r′ 6=r,0≤r′≤dΩr′
T (and related hypotheses) and testing the null hypothesis of

Ω=
T against Ω 6=T .
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2.2 Matrix perturbation

In order to explain the main idea of our method, we need to introduce some notation.
Recall that d and q are the dimensions of X and W , respectively. Then M is the set of
all d× d matrices, Mr for r ∈ {0, · · · , d} is the set of all matrices in M with rank r, and
M′ is the set of all d× q matrices. For any matrix A we denote by Ai the ith column of
A; for any vectors x1, . . . , xd in Rd, we write mat(x1, · · · , xd) for the matrix in M whose
ith column is the column vector xi. For r ∈ {0, · · · , d} and A,B ∈M we define

Mr
A,B = {G ∈M : Gi = Ai or Gi = Bi with #{i : Gi = Ai} = r}. (2.4)

In other words, Mr
A,B is the set of all matrices G ∈ M with r columns equal to those of

A (at the same places), and the remaining d− r ones equal to those of B. Let us define

γr(A,B) =
∑

G∈Mr
A,B

det(G). (2.5)

We demonstrate the main ideas for a deterministic problem first. Let A ∈ M be an
unknown matrix with rank r. Assume that, although A is unknown, we have a way of
computing det(A+hB) for all h > 0 and some given matrix B ∈Md. The multi-linearity
property of the determinant implies the following asymptotic expansion

det(A+ hB) = hd−rγr(A,B) +O(hd−r+1), (2.6)

which is the core of our method. Thus, if γr(A,B) 6= 0, we have

det(A+ 2hB)

det(A+ hB)
→ 2d−r as h ↓ 0. (2.7)

and this convergence identifies the parameter r. However, it is impossible to choose a
matrix B ∈ M which guarantees γr(A,B) 6= 0 for all A ∈ Mr. To solve this problem
we can use a random perturbation. As we will show later, for any A ∈ Mr we have
γr(A,B) 6= 0 a.s. when B is the random matrix whose entries are independent standard
normal. This idea will be the core of our testing procedure.

2.3 Assumptions and the test statistic

Before we proceed with the definition of the test statistic, we introduce the main assump-
tions. We need more structure than the mere Equation (2.1), namely that the processes
bt and σt, and also the volatility of σt, are continuous Itô semimartingales. In view of the
previous discussion, it is no restriction to assume that all these are driven by the same
q-dimensional Brownian motion, provided we take q large enough. This leads us to put

Assumption (H): The d-dimensional semimartingale X, defined on (Ω,F , (Ft)t≥0,P),
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has the form
Xt = X0 +

∫ t
0 bs ds+

∫ t
0 σs dWs

σt = σ0 +
∫ t

0 as ds+
∫ t

0 vs dWs

bt = b0 +
∫ t

0 a
′
s ds+

∫ t
0 v
′
s dWs

vt = v0 +
∫ t

0 a
′′
s ds+

∫ t
0 v
′′
s dWs,

(2.8)

where W is a q-dimensional Brownian motion, and bt and a′t are Rd-valued, σt, at and
v′t are Rd×q-valued, vt and a′′t are Rd×q×q-valued, and v′′t is Rd×q×q×q-valued, all those
processes being adapted. Finally, the processes at, v

′
t, v
′′
t are càdlàg and the processes

a′t, a
′′
t are locally bounded. 2

At this stage it is not quite clear why the full force of assumption (H) is required. In
the standard limit theory for high frequency data of continuous Itô semimartingales, see
e.g. [1, 7], only the first two representations of (2.8) are assumed. We will further explain
condition (H) once we introduce the test statistic. When bt = g1(Xt), σt = g2(Xt) with
g1 ∈ C2(Rd) and g2 ∈ C4(Rd), then (H) is automatically satisfied, due to Itô’s formula.

Remark 2.1 Since σt is not uniquely specified, whereas ct is, and since we really are
interested in specific properties of ct, it would be much nicer to replace the structural
assumption on σt (second equation in (2.8)) by a similar assumption on the process ct
itself.

This is of course a trivial matter when ct is everywhere invertible: in this case ct is
a continuous Itô semimartingale if and only if σt is. But here we are precisely trying to
describe the rank of the matrix ct, so it is out of the question to assume that it is a priori
invertible. Unfortunately, we were unable to replace the assumption on σ by a similar
(and de facto weaker) assumption on c. 2

Motivated by the matrix perturbation at (2.6), our tests will be based on statistics
involving sums of (squared) determinants. The test function will be the nonnegative map
f on (Rd)d defined as

f(x1, . . . , xd) = det(mat(x1, · · · , xd))2. (2.9)

The authors of [9] used the following statistics

∆n

[t/∆n]−d+1∑
i=1

f
(
∆n
i X/

√
∆n, · · · ,∆n

i+d−1X/
√

∆n

)
, ∆n

i X = Xi∆n −X(i−1)∆n
, (2.10)

to test for the full rank, thus allowing for efficient testing of the null hypothesis Ωd
T . On

the sets Ωr
T with r < d, however, it exhibits complex degeneracies and becomes difficult to

study. In order to be able to analyze the asymptotic behavior of the preceding statistics,
we introduce a random perturbation of the original process X as motivated at the end of
Subsection 2.2 (a somewhat similar idea in a different context was applied in [2]). More
specifically, we choose a non-random invertible d×d matrix σ̃ and generate a new process

X ′t = σ̃W ′t ,
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where W ′ is a d-dimensional Brownian motion independent of all processes in (2.8)(without
loss of generality, for the mathematical treatment below we may assume that it is also
defined on the space (Ω,F , (Ft)t≥0,P)). Following the ideas of section 2.2, we add to
X this new process X ′, with a multiplicative factor going to 0. As a matter of fact we
introduce two such additions, and for κ = 1 or 2 we set

Zn,κt = Xt +
√
κ∆nX

′
t. (2.11)

Hence, with the notation of section 2.2, we use h =
√

∆n, which leads later to the optimal
rate of convergence.

Another problem arises, namely in (2.10) successive summands partly use the same
increments of X, and this causes problems for the Central Limit Theorem. These problems
can actually be overcome, at the expense of quite many additional technicalities, and with
the advantage of a smaller asymptotic variance for our estimators below. However, in our
case the crucial point is the choice of the tuning “parameter” σ̃: this choice has an impact
on the asymptotic variance as well, and since an “optimal” choice of σ̃ seems out of reach,
we will content ourselves with an arbitrary choice of σ̃ and with a version of (2.10) with
no overlapping of increments between the successive summands. This leads us to use the
following two basic statistics:

Sn,1t = 2d∆n

[t/2d∆n]−1∑
i=0

f

(
Zn,1(2id+1)∆n

− Zn,12id∆n√
2∆n

, · · · ,
Zn,1(2id+d)∆n

− Zn,1(2id+d−1)∆n√
2∆n

)
(2.12)

Sn,2t = 2d∆n

[t/2d∆n]−1∑
i=0

f

(
Zn,1(2id+2)∆n

− Zn,1(2id)∆n√
2∆n

, · · · ,
Zn,1(2id+2d)∆n

− Zn,1(2id+2d−2)∆n√
2∆n

)
.

Notice that the statistics Sn,1t and Sn,2t are essentially the same, except Sn,2t is computed
using the frequency 2∆n. At stage n one observes the increments ∆n

i X and simulates the
increments ∆n

i X
′ for i ≤ [t/∆n], so one “observes” all variables incurring in the definition

of these two statistics.

Remark 2.2 Now, let us explain why the assumption (H) and the random perturba-
tion in (2.11) are required. A direct stochastic expansion of the increments ∆n

i Z
n under

assumption (H) implies the decomposition

mat(∆n
i Z

n/
√

∆n, . . . ,∆
n
i+d−1Z

n/
√

∆n) = αni +
√

∆n(βni (1) + βni (2)) +OP(∆n), (2.13)

where the matrices αni = mat(αni,1, . . . , α
n
i,d), β

n
i (k) = mat(βni,1(k), . . . , βni,d(k)), k = 1, 2, in

M are given by

αni,j = ∆
−1/2
n σ(i−1)∆n

∆n
i+j−1W,

βni,j(1) = b(i−1)∆n
+ ∆−1

n v(i−1)∆n

∫ (i+j)∆n

(i+j−1)∆n
(Ws −W(i+j−1)∆n

)dWs

βni,j(2) = ∆
−1/2
n σ̃∆n

i+j−1W
′.

(2.14)

We remark that the matrices αni , β
n
i (1), βni (2) are OP(1). In the case rt ≤ d−1 for all t, the

first order term αni , which depends on the process σt, gives a degenerate limit when plugged
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in into the statistics (2.11) or (2.12). Hence the second order term
√

∆n(βni (1) + βni (2)),
which involves the processes bt and vt, becomes important. Indeed, we will see in section
3 that it affects the limits. Furthermore, it is important to control the error of the above
decomposition, and this is done by using the last two equations in (2.8).

The asymptotic expansion in (2.13) is a stochastic analogue of the perturbation pre-
sented in (2.6) (up to an error term) with A = αni , B = βni (1) + βni (2) and h =

√
∆n.

Under assumption (H) the term βni (1) already constitutes a random perturbation of the
leading matrix αni . However, this perturbation does not guarantee that the quantity
γr(α

n
i , β

n
i (1)) defined in (2.5) does not vanish when rank(σ(i−1)∆n

) = r (which is essential
for our method). To illustrate this problem let us give a simple example. Let d = 3, q = 1
and define the processes

dXj
t = σjt dWt, dσjt = vjt dWt, j = 1, 2, 3.

(so W is a one-dimensional Brownian motion.) Then rank(αni ) = 1, rank(βni (1)) = 1, and
hence γ1(αni , β

n
i (1)) = 0. The presence of the new independent process X ′, and thus of

the term βni (2), regularizes the problem. Indeed, we will show that γr(α
n
i , β

n
i (1) + βni (2))

does not vanish whenever rank(σ(i−1)∆n
) = r. Finally, the perturbation rate h =

√
∆n in

front of the process X ′ is chosen to achieve the best rate of convergence for the normalized
versions of the statistics Sn,1t , Sn,2t . 2

Following the expansion (2.6) we know that that the order of det(αni +
√

∆n(βni (1) +
βni (2)))2 is increasing in r = rank(σ(i−1)∆n

). Consequently, as in (2.7), the ratio Sn,2T /Sn,1T

is expected to identify (asymptotically) the maximal rank RT . The complete asymptotic
theory is presented in the next section.

3 The asymptotic results and test for the maximal rank

3.1 Notation

In order to present the main asymptotic results we need to introduce a few more notation.
We define the function Fr on (R2d)d by

Fr(v1, . . . , vd) = γr(mat(x1, · · · , xd),mat(y1, · · · , yd))2 if vj =

(
xj
yj

)
∈ R2d. (3.1)

Next, let U =M′ ×M× Rdq2 × Rd, whose points are u = (α, β, γ, a), where α ∈M′ and
β ∈M and γ ∈ Rdq2 and a ∈ Rd. Let us denote by W and W ′ two independent Brownian
motions with respective dimensions q and d, defined on some space (Ω,F , (F t),P). If
u ∈ U and κ = 1, 2 and i ≥ 1 we associate the 2d-dimensional variables with the following
components for l = 1, · · · , d:

Ψ(u, κ)li = 1√
κ

∑q
m=1 α

lm(Wm
κi −Wm

κ(i−1))

Ψ(u, κ)d+l
i = al + 1√

κ

∑d
m=1 β

lm(W ′mκi −W ′mκ(i−1)) + 1
κ

∑q
m,k=1 γ

lmk
∫ κi
κ(i−1)W

k
s dW

m
s .

(3.2)
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With the notation (3.1) we can then define the variables

F r(u, κ) = Fr
(
Ψ(u, κ)1, · · · ,Ψ(u, κ)d

)
. (3.3)

The two sequences (Ψ(u, κ))i≥1 are not independent, but they have the same (global) law,
for κ = 1, 2. Therefore if u = (α, β, γ, a) we can set

Γr(u) = E
(
F r(u, 1)

)
= E

(
F r(u, 2)

)
Γ′r(u) = E

(
F r(u, 1)2

)
− Γr(u)2 = E

(
F r(u, 2)2

)
− Γr(u)2

Γ′′r(u) = E
(
F r(u, 1)F r(u, 2)

)
− Γr(u)2.

(3.4)

We then obtain the following crucial properties

Lemma 3.1 Let u = (α, β, γ, a) ∈ U with β ∈Md. Then if r ∈ {0, 1, · · · , d},

rank(α) = r =⇒ Γr(u) > 0, Γ′r(u) > Γ′′r(u) (3.5)

rank(α) < r =⇒ Γr(u) = Γ′r(u) = Γ′′r(u) = 0.

3.2 The limiting results

The key result is the asymptotic behavior of the processes Sn,j as n→∞. These processes
enjoy a Law of Large Numbers and a Central Limit Theorem, the centering being around
one of the following processes, where r is any (fixed) integer between 0 and r:

S(r)t =

∫ t

0
Γr(σs, σ̃, vs, bs) ds . (3.6)

We will in fact have a CLT for the two-dimensional processes U(r)n with components

U(r)n,κ =
1√
∆n

( 1

(κ∆n)d−r
Sn,κ − S(r)

)
. (3.7)

Of course, the centering process S(r) depends on r, so one needs an additional assumption
related with the particular value of r which is chosen below (in contrast, the centering
term is the same for all components):

Theorem 3.2 Assume (H), and also that rt(ω) ≤ r identically for some r ∈ {0, · · · , d}.
Then we have the stable (functional) convergence in law

U(r)n
L−s
=⇒ U(r), (3.8)

where U(r) = (U(r)κ)κ=1,2 is defined on an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of (Ω,F , (Ft)t≥0,P)
and is, conditionally on F , a continuous centered Gaussian martingale with conditional
covariance

Ẽ(U(r)κt U(r)κ
′
t | F) = V (r)κκ

′
t :=

{
2d
∫ t

0 Γ′r(σs, σ̃, vs, bs) ds if κ = κ′

2d
∫ t

0 Γ′′r(σs, σ̃, vs, bs) ds if κ 6= κ′.
(3.9)
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Note that in the above setting, if r < r′ ≤ d, we also have rt ≤ r′ and thus the results
also hold with r′ instead of r everywhere. This does not bring a contradiction because, by
(3.5), in this case the processes S(r′) and U(r′) are identically vanishing.

Now, these processes Sn,j are only tools, and at the end we will be interested, for any
T > 0 fixed, in “estimators” for RT , which are

R̂(n, T ) = d−
log(Sn,2T /Sn,1T )

log 2
. (3.10)

The quantity is a transformed analogue of the term on the left side of (2.7). The following
corollary is then a simple consequence of the previous theorem:

Corollary 3.3 Assume (H), and let r ∈ {0, · · · , d} and T > 0. Then the following stable
convergence in law holds:

1√
∆n

(R̂(n, T )− r) L−s−→ S(T ) on the set Ωr
T , (3.11)

where S(T ) can be realized as S(T ) = 1
log 2 (U(r)1

T − U(r)2
T )/S(r)T and is thus defined on

an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of (Ω,F , (Ft)t≥0,P) and is, conditionally on F , a centered
Gaussian variable whose conditional variance is

Ẽ((S(T ))2 | F) = V (T ),

where V (T ) is a.s. positive and given by

V (T ) =
1

(log 2)2

V (r)1,1
T + V (r)2,2

T − 2V (r)1,2
T

(S(r)T )2
on each set Ωr

T . (3.12)

In order to make this result feasible, we need consistent estimators for V (T ). For the
denominator S(r)2

T we can of course take the square of ∆r−d
n Sn,1T . As for the numerator,

we need estimators for V (r)κ,κ
′

T . Up to normalization, natural ones are as follows:

V n,κκ′

t = 4d2∆n

[t/2d∆n]−1∑
i=0

f

(
Zn,κ(2id+κ)∆n

− Zn,κ2id∆n√
κ∆n

, · · · ,
Zn,κ(2id+κd)∆n

− Zn,κ(2id+κ(d−1))∆n√
κ∆n

)

×f

Zn,κ′(2id+κ′)∆n
− Zn,κ

′

2id∆n√
κ′∆n

, · · · ,
Zn,κ

′

(2id+κ′d)∆n
− Zn,κ

′

(2id+κ′(d−1))∆n√
κ′∆n

 .

(3.13)

Proposition 3.4 Assume (H).

a) If rt(ω) ≤ r identically for some r ∈ {0, · · · , d}, we have for κ, κ′ = 1, 2:

1
(κκ′∆2

n)d−r
V n,κκ′ u.c.p.

=⇒ 2d
∫ ·

0 Θr,κ,κ′
s ds, where

Θr,κ,κ′
s =

{
Γ′r(σs, σ̃, vs, bs) + Γr(σs, σ̃, vs, bs)

2 if κ = κ′

Γ′′r(σs, σ̃, vs, bs) + Γr(σs, σ̃, vs, bs)
2 if κ 6= κ′.

(3.14)
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b) We have

V (n, T ) :=
V n,11
T + 22(R̂(n,T )−d)V n,22

T − 21+R̂(n,T )−dV n,12
T

(Sn,1T log 2)2

P−→ V (T ). (3.15)

Remark 3.5 The numerator of the right side of (3.12) is also 2(V (r)11
T −V (r)12

T ). There-
fore we have

V ′(n, T ) =
V n,11
T − 21+R̂(n,T )−dV n,12

T

(Sn,1T )2

P−→ V (T ) on the set Ωr
T

as well. However, V (n, T ) ≥ 0 by construction (and it is even a.s. positive unless rt = 0
identically on [0, T ]), a property not shared by V ′(n, T ). 2

Now, by the delta-method for stable convergence in law, the two previous results
immediately yield:

Corollary 3.6 Under (H) and for any T > 0 we have

R̂(n, T )−RT√
∆n V (n, T )

L−s−→ Φ, (3.16)

where Φ ∼ N (0, 1) is defined on an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of (Ω,F , (Ft)t≥0,P) and
is independent of F .

3.3 Tests for the maximal rank

So far, it seems that R̂(n, T ) are estimators for the maximal rank RT , which equals r
on the set Ωr

T , and even feasible estimators if we use Corollary 3.6. In particular, this
corollary seems to allow us to easily construct confidence intervals for RT .

However, what precedes does not make much statistical sense: the parameter RT to
be estimated takes its values in {0, 1, · · · , d}, whereas the estimators R̂(n, T ) are of course
not integer-valued and can even be negative, or bigger than d. One could overcome this
problem by taking the integer closest to R̂(n, T ), say R̂′(n, T ), and then use R̂′′(n, Y ) =
0 ∨ (R̂′(n, T ) ∧ d) as the final estimator. Note that R̂′′(n, T ) enjoys the same CLT as
R̂(n, T ) does, on each Ωr

T with 1 ≤ r ≤ d− 1, but of course not when RT = 0 or RT = d,
in which cases the limiting law of the normalized error is “half Gaussian and half a Dirac
mass at 0”. Furthermore, confidence intervals have little meaning in this context, except
perhaps when the dimension of X is very large.

So, it seems more appropriate here to do testing: we can test the null hypothesis that
the path lies in Ωr

T for some r, against the alternative that it is in Ωr′
T for another specific

r′ 6= r, or for all r′ > r or all r′ < r, or all r′ 6= r. We may also use composite null
hypotheses, such as being in Ωr

T for some r smaller, or bigger, than a given value r0.
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We start with the problem of testing the null hypothesis Ωr
T , against the alternative

Ω 6=rT = ∪r′ 6=r,0≤r′≤dΩr′
T . For any α ∈ (0, 1), and with zα being the symmetric α-quantile

of N (0, 1) defined by P(|Φ| > zα) = α when Φ ∼ N (0, 1), we take the critical (rejection)
region

C(α)n,=rT =
{
ω : |R̂(n, T )− r| > zα

√
∆n V (n, T )

}
. (3.17)

Proposition 3.7 Under (H), the tests (3.17) have the asymptotic level α for testing the
null Ωr

T , in the sense that

A ⊂ Ωr
T , P(A) > 0 ⇒ P

(
C(α)n,=rT | A

)
→ α (3.18)

(above, P(. | A) is the usual conditional probability). They are also consistent for the

alternative Ω 6=rT , in the sense that

P
(
C(α)n,=rT ∩ Ω 6=rT

)
→ P(Ω6=rT ). (3.19)

One constructs one-sided tests in the same way. For example, if we want to test the
null hypothesis Ω≤rT = ∪r′≤rΩr′

T against the alternative Ω>r
T = ∪r′>rΩr′

T , and if z′α is the
one-sided α-quantile defined by P(Φ > z′α) = α, we take the critical region

C(α)n,≥rT =
{
ω : R̂(n, T ) > r + z′α

√
∆n V (n, T )

}
. (3.20)

Exactly as above, one obtains the following proposition.

Proposition 3.8 Under (H), the tests (3.20) have the asymptotic level at most α for
testing the null Ω≤rT , and indeed satisfy

A ⊂ Ω≥rT , P(A) > 0 ⇒ P
(
C(α)n,=rT | A

)
→ αP(Ωr

T | A) ≤ α, (3.21)

and are consistent for the alternative Ω>r
T .

The tests for the null Ω≥rT against Ω<r
T are obtained analogously.

Remark 3.9 Let us link our testing procedure with some other statistical problems:

a) In [5, 6] parametric estimation methods for the so called integrated diffusions have
been developed. An integrated diffusion is a process that satisfies the first and the third
equations of assumption (H) with σ = 0, i.e.

dXt = btdt,

where bt is a continuous Itô semimartingale. We refer to [5] for various applications of
these models in natural sciences. Given high frequency observations of X, testing the
null hypothesis of integrated diffusion versus the alternative of a diffusion with a present
volatility part σ is equivalent to testing Ω0

T versus Ω6=0
T .
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b) Another potential application of our method is a test for “perfect correlation” between
the process X and the unobserved volatility σ. The problem can be formulated as follows:
Let X and σ be two one-dimensional continuous Itô semimartingales of the form

dXt = btdt+ σtdWt, dσ2
t = atdt+ vtdBt,

where W and B are one-dimensional Brownian motions with the bracket process [W,B]t =
ρt, |ρ| ≤ 1. For financial applications testing the hypothesis |ρ| = 1 versus |ρ| < 1 is of
certain interest. Note that |ρ| = 1 appears in the SDE case, i.e. when σt = g(Xt) with
g ∈ C2(R). We refer to testing local volatility hypothesis in [12] for a more detailed
discussion (see also [14] for related statistical problems). The aforementioned problem
is equivalent to testing Ω1

T versus Ω>1
T = Ω2

T for the two-dimensional process (X,σ2).
Since the process σ2 is unobserved, it has to be locally estimated from the high frequency
observations of X first (see e.g. [12] for more details). 2

4 A test for a constant rank

This section is devoted to a seemingly different topic, namely whether the a priori time-
dependent rank is constant or not. Our test statistics will be based on a distance measure
between the rank process rt and the maximal rank RT , which vanishes if and only if the
rank is constant almost surely. For the formal testing procedure we will need some limiting
results for the “spot estimators” of the rank. By this, we mean estimators for rt, for any
given t, at least under the assumption that rs is equal to rt for all s in some right or left
neighborhood of t.

To describe these spot estimators we pick a sequence kn ≥ 1 of integers going to infinity,
and such that kn∆n → 0 (as for spot volatility estimators), and precise specifications for
kn will be given later, although we always assume kn ≥ 4d. For any integer i ≥ 1 we set

R̂ni = d− log Ŝni
log 2

, Ŝni =
Sn,22d(i+1)kn∆n

− Sn,22dikn∆n

Sn,12d(i+1)kn∆n
− Sn,12dikn∆n

. (4.22)

Then R̂ni , more or less, plays the role of an estimator of the maximum of rt over an interval
of length 2dkn∆n around the time 2id∆n, and we set for any p > 0:

A(p)nt = 2dkn∆n
∑[t/2dkn∆n]−2

i=0 {|R̂nikn |
p ∧ (d+ 1)p}

B(n, p, T ) = A(p)nT − a(n, T )(R̂(n, T ))p, a(n, T ) = 2dkn∆n

(
[T/2dkn∆n]− 1

)
.

(4.23)

The asymptotic results for the quantity B(n, p, T ) are as follows.

Theorem 4.1 Assume (H), and let T > 0, p > 0 and kn be such that kn∆
3/4
n → ∞ and

kn∆n → 0.

a) If t 7→ rt(ω) is continuous except at finitely many points on [0, T ], hence piecewise
constant, we have

B(n, p, T )
P−→

∫ T

0
(rs)

p ds− T (RT )p. (4.24)
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b) We have the stable convergence in law:

1√
∆n

B(n, p, T )
L−s−→ B(p, T ) in restriction to the set Ω=

T ∩ {RT ≥ 1}, (4.25)

where B(p, T ) is defined on an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of (Ω,F , (Ft)t≥0,P) and is,
conditionally on F , a centered Gaussian variable with conditional variance V (p, T ) =
Ẽ(B(p, T )2 | F) given on each set Ωr

T by

V (p, T ) =

(
prp−1

log 2

)2 ∫ T

0

(
1

Γr(σs, σ̃, vs, bs)
− T

S(r)T

)2 (
dV (r)11

s + dV (r)22
s − 2dV (r)12

s

)
,

(4.26)
with V (r)κκ

′
being defined at (3.9).

Notice that the right side of (4.24) is 0 on the set Ω=
T , and strictly negative on Ω6=T .

Remark 4.2 The reader will notice that in the definition of A(p)nt the summands are
|R̂ni |p ∧ (d+ 1)d, instead of the more natural |R̂ni |p. We could take this more natural form
for (b) above, but it is useful (and innocuous from a practical viewpoint) to “bound” the
summands, in order to obtain (a). We could bound them by dp instead of (d + 1)p and
still have (4.24), but then (4.25) would then fail in case r = d is the maximal rank: we
would obtain a CLT with a non-Gaussian and non-centered limit. 2

Remark 4.3 In the setting of (b) above, we will in fact prove a joint convergence for the
variables A(p)nT − a(n, T )rp and R̂(n, T )− r, both normalized by 1/

√
∆n (the second one

being as in (3.11)), and from which (4.25) follows. Such a joint CLT even holds under the
assumptions of (a), with a complicated limit, but this refinement is not useful for us in
this paper.

Remark 4.4 One can also prove a joint convergence for the variables A(p)nT − a(n, T )rp

with different values of p, and still normalized by 1/
√

∆n. However, when p > p′ > 0 it
turn out that the difference 1√

∆n
(A(p)nT − a(n, T )1−p′/p (A(p′)nT )p/p

′
) converges to 0, and

no known normalization gives a proper CLT. 2

As before, we need consistent estimators for the conditional variance V (p, T ). Such
estimators are constructed in a way analogous to (3.13). That is, we set with kn as above:

V n,κκ′

t = 4d2∆1+2d−2R̂(n,T )
n

[t/2d∆n]−kn−1∑
i=0

( 2dkn∆n

Sn,12d(i+kn)∆n
− Sn,12id∆n

− T

Sn,1T

)2

× f
(Zn,κ(2id+κ)∆n

− Zn,κ2id∆n√
κ∆n

, · · · ,
Zn,κ(2id+κd)∆n

− Zn,κ(2id+κ(d−1))∆n√
κ∆n

)
(4.27)

× f
(Zn,κ′(2id+κ′)∆n

− Zn,κ
′

2id∆n√
κ′∆n

, · · · ,
Zn,κ

′

(2id+κ′d)∆n
− Zn,κ

′

(2id+κ′(d−1))∆n√
κ′∆n

)
.
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Theorem 4.5 Assume (H), and let T > 0, p > 0 and kn be such that kn∆
3/4
n → ∞ and

kn∆n → 0. Then we have

V (n, p, T ) :=
(
pR̂(n,T )p−1

log 2

)2 (
V n,11
T + 22(R̂(n,T )−d)V n,22

T − 21+R̂(n,T )−dV n,12
T

)
P−→ V (p, T ) on the set Ω=

T .
(4.28)

Moreover, the variables

Z(n, p, T ) =
B(n, p, T )√

∆n (V (n, p, T ) ∧ (1/
√

∆n ))
(4.29)

have the following asymptotic behavior, where Φ ∼ N (0, 1) is as in Corollary 3.6:

Z(n, p, T )
L−s−→ Φ in restriction to the set Ω=

T ∩ {RT ≥ 1}
Z(n, p, T )

P−→ −∞ in restriction to the set Ω 6=T
(4.30)

Having all instruments at hand we proceed with testing. What is easily available is a
family of tests for the null Ω=

T , whereas the alternative is restricted to Ω 6=T . One does not

know how to test the null Ω6=T .

For this purpose we use the statistic B(n, p, T ). In fact, (4.30) gives us the behavior
of this statistic on Ω=

T ∩ {RT ≥ 1}, and this is the null which is tested below. Now, Ω=
T is

the union of Ω=
T ∩ {RT ≥ 1} and Ω0

T , so if we are interested in testing the whole Ω=
T one

can do a double test, using what precedes and Proposition 3.8 with r = 0.

We propose to use the following critical region, where p > 0 is chosen arbitrarily and
z′α is again the one-sided α-quantile of N (0, 1):

C(α)n,≡T =
{
ω : B(n, p, T ) < −z′α

√
∆n (V (n, p, T ) ∧ (1/

√
∆n ))

}
. (4.31)

Exactly as in the previous section we obtain the following result.

Proposition 4.6 Under (H), the tests (4.31) have the asymptotic level α for testing the

null Ω=
T ∩ {RT ≥ 1}, in the sense of (3.18), and are consistent for the alternative Ω 6=T .

5 Proofs

Before we start presenting the formal proofs, let us give the road map. Subsection 5.1
demonstrates some technical results on expansions of determinants. They are applied in
Subsection 5.2 to prove Lemma 3.1. This Lemma implies that the process S(r)t defined
at (3.6) is strictly positive on the set Ωr

T , which is crucial for our method.

The first main result of our paper is Theorem 3.2 whose proof is rather involved. First,
we will show that the standard localization procedure (see e.g. Section 3 in [1]) implies
that all processes in (H) may be assumed to be bounded without loss of generality. This
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first step considerably simplifies the stochastic treatment of various quantities. A second
crucial step is the stochastic expansion explained in Remark 2.2: we have (2.13) and (2.14).
Subsection 5.3 deals with the formal justification of this expansion, for which we will use
slightly different notation.

It turns out that the stochastic order of the error term related to the decomposition
(2.13), namely OP(∆n), is not sufficient to show its asymptotic negligibility. However, we
will prove that the error terms are martingale differences, so they will not affect the stable
central limit theorem at (3.8). A similar treatment will be required for the error term
connected with the stochastic version of the expansion (2.6).

The proof of Proposition 3.4 (consistent estimation of the asymptotic conditional co-
variance matrix) is somewhat easier. Corollary 3.3 follows essentially from Theorem 3.2
by the delta method for stable convergence. The proofs of these results are collected in
Subsection 5.4. In particular, we apply a stable central limit theorem for semimartingales
(see e.g. [8, Theorem IX.7.28]) to prove Theorem 3.2.

The proof of Theorems 4.1 and 4.5, which is presented in Subsection 5.5, is a bit
more involved than one of Theorem 3.2, although the main techniques are similar. The
additional difficulty comes from the fact that we need to use the stable convergence of
Theorem 3.2, but for processes evaluated at random times. Corollary 3.6 and Propositions
3.7, 3.8 and 4.6 are straightforward consequences of the previous results.

5.1 Expansion of determinants.

We first prove some general and easy facts about determinants. Below ‖A‖ denotes the
Euclidean norm of a matrix A ∈M.

For m ≥ 1 we call Pm the set of all multi-integers p = (p1, · · · , pm) with p1 +· · ·+pm =
d, and Ip is the set of all partitions I = (I1, · · · , Im) of {1, · · · , d} such that Ij contains
exactly pj points (so Ij = ∅ if pj = 0). If p ∈ Pm and I ∈ Ip and A1, · · · , Am ∈ M,
we write GI

A1,··· ,Am for the matrix whose ith column is the ith column of Aj when i ∈ Ij .
Letting A,B,C ∈M, we can rewrite (2.5) as

γr(A,B) =
∑

I∈I(r,d−r)

det(GI
A,B), (5.1)

and we set
γ′r(A,B,C) =

∑
I∈I(r,d−r−1,1)

det(GI
A,B,C). (5.2)

In the following two lemmas we present some technical results on determinant expansions.

Lemma 5.1 For any m ≥ 1 and A1, · · · , Am ∈M we have

det(A1 + · · ·+Am) =
∑

p∈Pm

∑
I∈Ip

det(GI
A1,··· ,Am). (5.3)
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Proof. Letting Sd be the set of all permutations of {1, · · · , d} and sign(s) be the signature
of s ∈ S, we have

det(A+B) =
∑
s∈Sd

(−1)sign(s)
d∏
i=1

(as(i),i + bs(i),i)

=
∑

I⊂{1,··· ,d}

∑
s∈Sd

(−1)sign(s)
∏
i∈I

as(i),i
∏
i/∈I

bs(i),i =
∑

I⊂{1,··· ,d}

det(G
(I,Ic)
A,B ).

This readily implies that if (5.3) holds for some m, it also holds for m+ 1. Since (5.3) is
obvious for m = 1, the result follows by induction on m. 2

Lemma 5.2 There is a constant K such that, for all r = 0, · · · , d, all h ∈ (0, 1] and all
A,B,C,D ∈ M with rank(A) ≤ r we have, with Λ = ‖A‖ + ‖B‖ + ‖C‖ + ‖D‖ and with
the convention γ−1(A,B) = 0:∣∣det(A+ hB + h2C + h2D)− hd−rγr(A,B)− hd−r+1(γr−1(A,B) + γ′r(A,B,C))

∣∣
≤ Khr−d+1Λd−1(hΛ + ‖D‖), (5.4)

∣∣ 1
h2d−2r det(A+ hB + h2C + h2D)2 − γr(A,B)2

−2h γr(A,B)(γr−1(A,B) + γ′r(A,B,C))
∣∣ ≤ KhΛ2d−1(hΛ + ‖D‖). (5.5)

Proof. Let p ∈ P4 and I ∈ Ip. Then det(GI
A,hB,h2C,h2D) = hp2+2p3+2p3 det(GI

A,B,C,D))

vanishes when p1 > r, and has absolute value smaller than Khp2+2p3+2p4Λd−p4‖D‖p4 .
Then (5.4) readily follows from (5.3), and by taking squares in (5.4) we deduce (5.5). 2

With the same notation, and if further A′, B′, C ′, D′ ∈ M with rank(A′) ≤ r also and
Λ′ = ‖A′‖+ ‖B′‖+ ‖C ′‖+ ‖D′‖, and h′ ∈ (0, 1], the same argument shows that∣∣ 1

(hh′)2d−2r det(A+ hB + h2C + h2D)2 det(A′ + h′B′ + h′2C ′ + h′2D′)2

−γr(A,B)2 γr(A
′, B′)2

∣∣ ≤ K(h+ h′)(Λ Λ′)2d.
(5.6)

5.2 Proof of Lemma 3.1.

1) The results about Γr(u). We write Vi and V i for the d-dimensional variables
whose components are respectively the d first and the d last components of Ψ(u, 1)i,
for which we can take W = W and W ′ = W ′, and we set A = mat(V1, · · · , Vd) and

B = mat(V 1, · · · , V d). If ∆jW
(′) = W

(′)
j −W

(′)
j−1, we have

V l
i =

q∑
m=1

αlm∆iW
m, V l

i = al +

d∑
m=1

βlm∆iW
′m +

q∑
m,k=1

γlkmhi,km(W ), (5.7)

where each hi,lm is a function of the path of W . Note also that F r(u, 1) = γr(A,B)2.

Assuming first that the rank of α is (strictly) smaller than r, we observe that the rank
of A is also smaller than r, implying by (5.1) that γr(A,B) = 0, hence Γr(u) = 0.
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Next we assume that the rank of α is r, and proceed to prove Γr(u) > 0. We first
simplify the problem as follows. The matrix β is invertible and the rank of β−1αα∗β−1,∗

is r, so we can write β−1α = ΠΛ, where Π ∈ M is an orthonormal matrix and Λ ∈ M is
a diagonal matrix whose diagonal entries λj satisfy λj 6= 0 if j ≤ r and λj = 0 otherwise.
Then, setting V ′j = Π∗β−1Vj and V ′j = Π∗β−1V j , the sequence (V ′j , V

′
j) has the form

(5.7), upon replacing W ′ by Π∗W ′ (another Brownian motion) and u = (α, β, γ, a) by
u′ = (α′, J, γ′, a′), where J is the identity in M and α′ = Π∗β−1α = Λ and γ′ijl =∑d

m=1(Π∗β−1)jmγmjl and a′ = Π∗β−1a. Furthermore, A′ = mat(V ′1 , · · · , V ′d) = Π∗β−1A
and B′ = mat(V ′1, · · · , V ′d) = Π∗β−1B, implying γr(A

′, B′) = det(Π∗β−1)γr(A,B), which
in turn yields Γr(u) = 1

det(β)2
Γr(u

′), because det(Π) = 1.

In other words, it is enough to prove the result when β = J and α = Λ is diagonal as
above, and below we assume this. The two matrices A and B can thus be realized as

A =


λ1Φ1

1 · · · λ1Φ1
d

· · · · ·
· · · · ·

λdΦ
d
1 · · · λdΦ

d
d

 , B =


Υ1

1 + Θ1
1 · · · Υ1

d + Θ1
d

· · · · ·
· · · · ·

Υd
1 + Θd

1 · · · Υd
d + Θd

d

 , (5.8)

where all Φi
j and Υi

j are i.i.d. N (0, 1) and the variables Θi
j are independent of the Υl

m’s

(note that we have incorporated the constant ai in each variable Θi
j).

Let Jr be the class of all subsets of {1, · · · , d} with r points. Since λj 6= 0 if j ≤ r
and λj = 0 otherwise, we see that, if I = (I, Ic) with I = {j1 < · · · < jr} ∈ Jr and
Ic = {j′1 < · · · < j′d−r}, we have det(GI

A,B) = εI det(AI) det(BI), where AI and BI are

the r× r and (d− r)× (d− r) matrices with entries Al,mI = Ajl,m and Bl,m
I = Bj′l ,r+l, and

εI takes values in {−1, 1}. Thus

γr(A,B) =
∑
I∈Jr

εI det(AI) det(BI).

In this sum we single out the I’s which contain d, and those which do not, and for the
former ones the product det(AI) det(BI) does not depend of the vector Υd. For those
which do not contain d, we develop det(BI) along the last column, which involves the
determinants of the matrices BI,i which are the restrictions of B to the last d − r lines
except i, and to the column indexed by the complement Ic of I, except d. We thus get

γr(A,B) = Z +
d−r∑
i=1

(−1)i
(
Υr+i
d + Θr+i

d

)
Z ′i, Z ′i =

∑
I∈Jr, d/∈I

εI det(AI) det(BI,i), (5.9)

where Z and all Z ′i and Θr+i
d are independent of the vector Υd. Since this random vector

Υd has a density, it follows that the variable γr(A,B) also has a density, provided Z ′i 6= 0
a.s. for at least one value of i.

At this stage, we observe that Z ′i has exactly the same structure as γr(A,B), except
that the dimension of each BI,i is (d − r − 1) × (d − r − 1) instead of (d − r) × (d − r),
and that the last column of the original problem has totally disappeared. We can repeat
the argument, to obtain that Z ′i has a density and is thus a.s. non-vanishing, as soon as
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some similar quantity (where the last two columns of the original problem no longer show
up) is a.s. non-vanishing. Then, after an obvious induction, we deduce that γr(A,B) has
a density as soon as det(AI) 6= 0 a.s. for I = {1, · · · , r}.

However, since the entries of this last AI are λiΦ
i
j for i, j = 1, · · · , r, and all those λi

are non zero, it is well known (and also a simple consequence of the previous proof, in
which we develop det(AI) according to its last column and perform the same induction
procedure) that det(AI) has a density. This indeed shows us that γr(A,B) has a density,
hence E(γr(A,B)2) > 0 and the proof of the first part of (3.5) is complete. 2

2) The results about Γ′r(u) and Γ′′r(u). When the rank of α is smaller than r, we have
seen that, with the previous notation, γr(A,B) = 0, hence also Γ′r(u) = Γ′′r(u) = 0.

Next, we turn to the case when the rank of α is r. Exactly as in the previous proof, it
suffices to show the result when u = (Λ, J, γ, a). Recalling that F r(u, 1) and F r(u, 2) have
the same law, we have E((F r(u, 1) − F r(u, 2))2) = 2(Γ′r(u) − Γ′′r(u)) and thus the second
part of (3.5) holds unless F r(u, 1) = F r(u, 2) a.s.

With the previous notation, we have F r(u, 1) = γr(A,B)2, and also F r(u, 2) =
γr(A,B)2, where A and B are given again by (5.8) with the same λj ’s, and random
vectors (Φj ,Υj ,Θj) having globally the same distribution as (Φj ,Υj ,Θj) (which may of
course be defined for j > d): these two families of vector are not independent, and we
have in fact

Φj =
1√
2

(Φ2j−1 + Φ2j), Υj =
1√
2

(Υ2j−1 + Υ2j), (5.10)

plus a more complicated relation relating Θj with the Θj′ for j′ ≤ 2j and the vector a.
What we need to prove is then P(|γr(A,B)| 6= |γr(A,B)|) > 0.

We have (5.9), and also, by the same argument,

γr(A,B) = Z +
d−r∑
i=1

(−1)i
(Υr+i

2d+1 + Υr+i
2d√

2
+ Θr+i

d

)
Z ′i, Z ′i =

∑
I∈Jr, d/∈I

εI det(AI) det(BI,i),

where we have also used the second part of (5.10). Here, the vector Υ2d has a density and
is independent of all other terms showing in the above expression, and also independent of
γr(A,B). Therefore, |γr(A,B)| 6= |γr(A,B)| almost surely on the set {Z ′i 6= 0}. Now, Z ′i
is the same as Z ′i, upon replacing (A,B) by (A,B) everywhere, hence the previous proof
shows that indeed Z ′i 6= 0 a.s. This shows that in fact P(|γr(A,B)| 6= |γr(A,B)|) = 1, thus
ending the proof of the second part of (3.5). 2

5.3 Some stochastic calculus preliminaries.

We assume (H) and, by localization (see e.g. section 3 in [1]), we may also assume that all
processes Xt, σt, bt, at, vt, a

′
t, v
′
t, a
′′
t , v

′′
t are uniformly bounded in (ω, t). The constants

are always written as K, or Kp if we want to stress the dependency on an additional
parameter p, and never depend on t, i, n, j. For any process Y , we use the following
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simplifying notation:
Fni = F2id∆n , Y n

i = Y2id∆n . (5.11)

For all p, t, s > 0, we have by Burkholder-Gundy inequality

E
(

sup
u∈[0,s]

|Yt+u − Yt|p | Ft
)
≤ Kqs

q/2 if Y = X,σ, b, v. (5.12)

We set

ηt,s = sup
u∈[0,s], Y=a,v′,v′′

‖Yt+u − Yt‖2, ηni =
√
E(η2id∆n,2d∆n | Fni ). (5.13)

Lemma 5.3 For all t > 0 we have ∆nE
(∑[t/2d∆n]−1

i=0 ηni
)
→ 0.

Proof. It suffices to prove the result separately when Y = a or Y = v′ or Y = v′′. Set
γnt = sups∈(0,4d∆n] ‖Yt+s − Yt‖2, so E((ηni )2) is smaller than E(γn0 ) when i = 0 and than

1
2d∆n

∫ 2id∆n

2(i−1)d∆n
E(γns ) ds when i ≥ 1. Hence by the Cauchy-Schwarz inequality,

∆nE
( [t/2d∆n]−1∑

i=1

ηni

)
≤
√
t√

2d

(
E
(

∆n

[t/2d∆n]−1∑
i=0

(ηni )2
))1/2

≤ Kt

(
E
(
γn0 +

∫ t

0
γns ds

))1/2
.

We have γns ≤ K, whereas the càdlàg property of Y yields that γns (ω) → 0 for all ω, and
all s except for countably many strictly positive values (depending on ω). Then, the claim
follows by the dominated convergence theorem. 2

The proof of Theorem 3.2 is based on a decomposition of the increments Zn(2id+κj)∆n
−

Zn(2id+κ(j−1))∆n
. In order to understand better this decomposition, we first deduce from

(2.8) that, for any z ≤ t ≤ s, and with vector notation,∫ s

t
bu du = α1 + α2 + α3 + α4,

∫ s

t
σu dWu = α5 + α6 + α7 + α8 + α9 + α10 + α11,

where

α1 = bz(s− t), α2 =
∫ s
t

( ∫ u
z a
′
w dw

)
du α3 = v′z

∫ s
t (Wu −Wz) du,

α4 =
∫ s
t

( ∫ u
z (v′w − v′z) dWw

)
du

α5 = σz(Ws −Wt), α6 = az
∫ s
t (u− z)dWu, α7 =

∫ s
t

( ∫ u
z (aw − az) dw

)
dWu

α8 = vz
∫ s
t (Wu −Wz) dWu, α9 =

∫ s
t

( ∫ u
z

( ∫ w
z a′′r dr

)
dWw

)
dWu

α10 = v′′z
∫ s
t

( ∫ u
z (Ww −Wz) dWw

)
dWu, α11 =

∫ s
t

( ∫ u
z

( ∫ w
z (v′′r − v′′z ) dWr

)
dWw

)
dWu.

A repeated use of the Burkholder-Gundy and Hölder inequalities shows that, in view of
our assumptions on the various coefficients, and for any p ≥ 1:

E(|αj |p | Fz) ≤


Kp(s− z)p/2 if j = 5
Kp(s− z)p if j = 1, 8

Kp(s− z)3p/2 if j = 3, 6, 10
Kp(s− z)2p if j = 2, 9

Kp(s− z)3p/2 E(ηpz,s−z | Fz) if j = 4, 7, 11.
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We can then apply the previous decomposition with z = 2id∆n, t = (2id+κ(j−1))∆n

and s = (2id+ κj)∆n, and add the increment of the process X ′, to obtain

Zn,κ(2id+jκ)∆n
− Zn,κ(2id+(j−1)κ)∆n√
κ∆n

= αn,κi,j +
√
κ∆n β

n,κ
i,j + κ∆n γ

n,κ
i,j + ∆n δ

n,κ
i,j (5.14)

for κ = 1, 2, and where (explicitly writing the components)

αn,κ,li,j = 1√
κ∆n

q∑
m=1

σn,lmi (Wm
(2id+κj)∆n

−Wm
(2id+κ(j−1))∆n

)

βn,κ,li,j = bn,li + 1
κ∆n

q∑
m,k=1

vn,lmki

∫ (2id+κj)∆n

(2id+κ(j−1))∆n
(W k

s −W k
2id∆n

) dWm
s

+ 1√
κ∆n

d∑
m=1

σ̃lm(W ′m(2id+κj)∆n
−W ′m(2id+κ(j−1))∆n

)

γn,κ,li,j = 1
(κ∆n)3/2

( q∑
m=1

an,lmi

∫ (2id+κj)∆n

(2id+κ(j−1))∆n

(
s− 2id∆n

)
dWm

s

+
q∑

m=1
v′n,lmi

∫ (2id+κj)∆n

(2id+κ(j−1))∆n
(Wm

s −Wm
2id∆n

) ds

+
q∑

m,l,k=1

v′′n,mlki

∫ (2id+κj)∆n

(2id+κ(j−1))∆n

( ∫ s
(2id+κ(j−1))∆n

(W k
u −W k

2id∆n
) dW l

u

)
dWm

s

)
and δn,κi,j is a remainder term, and for p ≥ 1 we have the estimates when j ≤ 2d if κ = 1
and j ≤ d when κ = 2 (recalling ηt,s ≤ K):

E
(
‖αn,κi,j ‖p + ‖βn,κi,j ‖p + ‖γn,κi,j ‖p | Fni

)
≤ Kp

E
(
‖δn,κi,j ‖p | Fni

)
≤ Kp (∆

p/2
n + (ηni )2∧p) ≤ Kp.

(5.15)

We end these preliminaries with a lemma which compares Sn,κ for κ = 1, 2 with the
following processes:

S(r)n,κt = 2d∆n

[t/2d∆n]−1∑
i=0

γr(A
n,κ
i , Bn,κ

i )2, where

An,κi = mat(αn,κi,1 , · · · , α
n,κ
i,d ), Bn,κ

i = mat(βn,κi,1 , · · · , β
n,κ
i,d ).

(5.16)

It also compares V n,κ,κ′ of (3.13) with

V (r)n,κ,κ
′

t = 4d2∆n

[t/2d∆n]−1∑
i=0

γr(A
n,κ
i , Bn,κ

i )2 γr(A
n,κ′

i , Bn,κ′

i )2. (5.17)

Lemma 5.4 If rt(ω) ≤ r identically for some r ∈ {0, · · · , d}, we have for κ, κ′ = 1, 2:

1√
∆n

( 1

(κ∆n)d−r
Sn,κ − S(r)n,κ

)
u.c.p.
=⇒ 0 (5.18)

and
1

(κκ′∆2
n)d−r

V n,κ,l − V (r)n,κ,κ
′ u.c.p.

=⇒ 0 (5.19)
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Proof. We denote by ξn,κi the ith summand in the definition (2.12) of Sn,κt . Besides the
matrices in (5.16), we also define

Cn,κi = mat(γn,κi,1 , · · · , γ
n,κ
i,d ), Dn,κ

i = mat(δn,κi,1 , · · · , δ
n,κ
i,d ).

We start with (5.18). Applying (5.5) with h =
√
κ∆n, the fact that each An,κi has at

most rank r (because rt ≤ r), and the estimates (5.15) plus the Cauchy-Schwarz inequality,
we obtain

1
(κ∆n)d−r

ξn,κi = γr(A
n,κ
i , Bn,κ

i )2 + 2
√
κ∆n ζ

n,κ
i + ζ̃n,κi , where

ζn,κi = γr(A
n,κ
i , Bn,κ

i )(γr−1(An,κi , Bn,κ
i ) + γ′(An,κi , Bn,κ

i , Cn,κi ))

E(|ζ̃n,κi |) ≤ K∆n +K
√

∆n E(ηni ).

In view of Lemma 5.3,
√

∆n
∑[t/2d∆n]−1

i=0 ζ̃n,κi
u.c.p.
=⇒ 0. Since Sn,κt = 2d∆n

∑[t/2d∆n]−1
i=0 ξn,κi ,

it remains to prove that ∆n
∑[t/2d∆n]−1

i=0 ζn,κi
u.c.p.
=⇒ 0.

For this purpose we use the decomposition ζn,κi = ζ ′n,κi + ζ ′′n,κi , where ζ ′n,κi = E(ζn,κi |
Fni ). By Doob’s inequality, (5.15) and the fact that ζ ′′ni is Fni+1-measurable, we have

E
(

sup
s≤t

( [s/2d∆n]−1∑
i=0

ζ ′′n,κi

)2)
≤ 2d+1 E

( [t/2d∆n]−1∑
i=0

|ζni |2
)
≤ Kt

∆n
.

Thus ∆n
∑[t/2d∆n]−1

i=0 ζ ′′n,κi
u.c.p.
=⇒ 0, and the result will hold if we can prove that ζ ′n,κi = 0.

We even prove the stronger statement that E(ζn,κi | GW ′ ∨ Fni ) = 0, where GW ′ is the
σ-field generated by the whole process W ′, and this is implied by

I ∈ I(r,d−r), I′ ∈ I(r−1,d−r+1), I′′ ∈ I(r,d−r−1,1) =⇒

E
(

det(GI
An,κi ,Bn,κi

) det(GI′

An,κi ,Bn,κi
) | GW ′ ∨ Fni

)
= 0

E
(

det(GI
An,κi ,Bn,κi

) det(GI′′

An,κi ,Bn,κi ,Cn,κi
) | GW ′ ∨ Fni

)
= 0.

(5.20)

The variables αn,κ,li,j , βn,κ,li,j and γn,κ,li,j have the form Φ(ω, (W (ω)2id∆n+t −W (ω)2id∆n)t≥0),

with Φ a (GW ′ ∨Fni )⊗Cd-measurable function on Ω×C(R+,Rd), where C(R+,Rd) is the
set of all continuous Rd-valued functions on R+ and Cd is its Borel σ-field for the local
uniform topology. When Φ = αn,κ,li,j or Φ = γn,κ,li,j , the map x 7→ Φ(ω, x) is odd, in the

sense that Φ(ω,−x) = Φ(ω, x), and it is even when Φ = βn,κ,li,j .

In (5.20), the three variables det(GI
An,κi ,Bn,κi

), det(GI′

An,κi ,Bn,κi
), det(GI′′

An,κi ,Bn,κi ,Cn,κi
) are

associated with three functions Ψ, Ψ′, Ψ′′ of the same type. What precedes yields that Ψ
is even (resp. odd) if r is even (resp. odd), and both Ψ′ and Ψ′′ are even (resp. odd) if r
is odd (resp. even). Consequently, the products ΨΨ′ and ΨΨ′′ are odd in all cases. Since
the GW ′ ∨Fni -conditional law of (W2id∆n+t −W2id∆n)t≥0 is invariant by the map x 7→ −x
on C(R+,Rd), we deduce (5.20), hence (5.18) holds.
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Finally, we turn to (5.19). Let θni be the ith summand in the right side of (3.13), for
κ, κ′ fixed. We can apply (5.6) with h =

√
κ∆n and h =

√
κ′∆n, and (5.14) and (5.15)

again, to get

E
(∣∣∣ 1

(κκ′∆2
n)d−r

θni − γr(A
n,κ
i , Bn,κ

i )2 γr(A
n,κ′

i , Bn,κ′

i )2
∣∣∣) ≤ K√∆n.

(5.19) follows, and the proof is complete. 2

5.4 Proof of Theorem 3.2, Corollary 3.3, and Proposition 3.4.

1) Observe that, with the notation (3.2) and (3.3), and upon taking

uni = (σni , σ̃, v
n
i , b

n
i ), W t =

W(2id+t)∆n
−W2id∆n√

∆n
, W ′t =

W ′(2id+t)∆n
−W ′2id∆n√

∆n
, (5.21)

we have γr(A
n,κ
i , Bn,κ

i )2 = F (uni , κ). We consider the two-dimensional variables ξni with
components

ξn,κi = 2d
√

∆n

(
γr(A

n,κ
i , Bn,κ

i )2 − Γr(u
n
i )
)
, κ = 1, 2. (5.22)

Since uni is Fni -measurable, whereas the processes W and W ′ above are independent of
Fni , we deduce from (3.4), and from (5.15) for the estimate below, that

E(ξn,κi | Fni ) = 0, E(‖ξni ‖4 | Fni ) ≤ K∆2
n

E(ξn,κi ξn,κ
′

i | Fni ) =

{
4d2∆n Γ′r(u

n
i ) if κ = κ′

4d2∆n Γ′′r(u
n
i ) if κ 6= κ′

(5.23)

2

2) By (5.18), for Theorem 3.2 it is enough to prove the stable convergence U ′(r)n
L−s
=⇒ U(r),

where U ′(r)n is the two-dimensional process with components U ′(r)n,κ = 1√
∆n

(S(r)n,κ −
S(r)) and the quantity S(r)n,κ is defined in (5.16). We have U ′(r)n = Y n + Y ′n, where

Y n
t =

[t/2d∆n]−1∑
i=0

ξni

Y ′nt = 1√
∆n

(
2d∆n

[t/2d∆n]−1∑
i=0

Γr(σ
n
i , σ̃, v

n
i , b

n
i )−

∫ t
0 Γr(σs, σ̃, vs, bs) ds

)
,

and ξni is given in (5.22). Since the three processes σ, v, b are Itô semimartingales, whereas
Γr is a C∞ function, it is well known that Y ′n

u.c.p.
=⇒ 0 (see e.g. section 8 in [1]). We are

thus left to prove that

Y n L−s
=⇒ U(r). (5.24)

By virtue of the first two parts of (5.23), a standard CLT for triangular arrays of martingale
(see [8, Theorem IX.7.28]) increments shows that, for (5.24) to hold, it suffices to show
the next two properties:

[t/2d∆n]−1∑
i=0

E(ξn,κi ξn,κ
′

i | Fni )
P−→ V (r)κκ

′
t (5.25)
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[t/2d∆n]−1∑
i=0

E
(
ξni (N(2(i+1)d∆n

−N2id∆n) | Fni
) P−→ 0 (5.26)

for all t > 0 and for any bounded martingale N orthogonal to (W,W ′) and also for
N = Wm or N = W ′m for any m.

The last part of (5.23) and the càdlàg property of σ, v, b, plus the fact that Γ′r and Γ′′r
are polynomials, immediately gives us (5.25) by Riemann integration.

The proof of (5.26) is also standard: By construction, ξni is a two-dimensional variable
of the form Φ(ω, (W2id∆n+t(ω) − W2id∆n(ω))t≥0, (W

′
2id∆n+t(ω) − W ′2id∆n

(ω))t≥0) similar
to the functions occurring in Lemma 5.4, and since in the definition of ξni one takes
squared determinants, all these functions Φ are globally even in the sense that Φ(ω, x, y) =
Φ(ω,−x,−y) for any two d-dimensional functions x, y on R+. So, on the one hand,
after multiplying the function Φ corresponding to ξni by xm(2d∆n) or ym(2d∆n), one
gets an odd function, and (5.26) when N = Wm or N = W ′m follows. On the other
hand, by the representation theorem one can write ξni as the sum of two integrals over
(2id∆n, 2(i+ 1)d∆n] with respect to W and W ′, for suitable predictable integrands; thus
when N is orthogonal to W and W ′, the increment N(2(i+1)d∆n

−N2id∆n has Fni -conditional
correlation 0 with both those integrals, thus yielding (5.26) again.

Therefore, the proof of Theorem 3.2 is complete. 2

3) A simple calculation shows that

R̂(n, T )− r =
1

log 2
log

1 +
√

∆n U(r)n,1T /S(r)T

1 +
√

∆n U(r)n,2T /S(r)T
if S(r)T > 0,

hence on the set Ωr
T . Since the sequence U(r)nT is tight, it follows from a Taylor expansion

that
1√
∆n

(R̂(n, T )− r)− 1

S(r)T log 2

(
U(r)n,1T − U(r)n,2T

) P−→ 0 (5.27)

on Ωr
T again. Then Corollary 3.3 follows from Theorem 3.2, upon observing that the

F-conditional variance of U(r)1
T − U(r)2

T is the numerator of the right side if (3.12). 2

4) Now we turn to the proof of (3.14), and by (5.19) it suffices to prove the convergence
of V (r)n,κ,κ

′
. We suppose that κ = κ′, the proof in the case κ 6= κ′ being analogous. We

set
ηni = γr(A

n,κ
i , Bn,κ

i )4, η′ni = E(ηni | Fni ), η′′ni = ηni − η′ni .

As for (5.23), we deduce from (3.4) and (5.15) that

η′ni = 2d
(
Γ′r(u

n
i )− Γr(u

n
i )2
)
, E(|η′′ni |2) ≤ K.

On the one hand, the same argument as for proving (5.25) shows that 4d2∆n
∑[t/2d∆n]−1

i=0 η′ni
converges in the u.c.p. sense to the right side of (3.14) (for κ = κ′). On the other hand,
since η′′ni is a martingale increment relative to the filtration (Fni )i≥0, we deduce from

Doob’s inequality that 4d2∆n
∑[t/2d∆n]−1

i=0 η′′ni
u.c.p.
=⇒ 0. We then deduce (3.14). 2
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5) Finally, for (3.15) it is enough to show the convergence in probability in restriction to
each set Ωr

T , for r = 0, · · · , d. For this we use the following convergence properties, which
readily follow from (3.8), (3.11), in restriction to the set Ωr

T :

1

∆d−r
n

Sn,1
P−→ S(r)T > 0, R̂(n, T )

P−→ r,

together with (3.14) applied at time T , which also holds on Ωr
T . Then (3.15) follows after

a (slightly tedious) calculation, in view of the form (3.12) of V (T ) on Ωr
T : the proof of

Proposition 3.4 is complete. 2

5.5 Proof of Theorems 4.1 and 4.5.

We begin with a lemma. Its setting apparently extends the setting of the theorem to be
proved, but this will be useful for the proof itself. The extension concerns the fact that we
replace the non-random terminal time T by a stopping time, still denoted by T , which is
positive and bounded. In this case, the notation (2.3) still makes sense, as well as A(p)nT
and a(n, T ) and V n,κκ′

T , as given by (4.23) and (4.27).

Lemma 5.5 Assume (H) and rt = r for all t ≤ T with T a positive finite stopping time

and r ∈ {0, · · · , d}. Then for all p > 0, κ, κ′ ∈ {1, 2} and Θr,κκ′
s as in (3.14) we have

A(p)nT
P−→ T rp (5.28)

1

(κκ′∆2
n)d−r

V n,κκ′

T
P−→ 2d

∫ T

0

( 1

Γr(σs, σ̃, vs, bs)
− T

S(r)T

)2
Θr,κκ′
s ds. (5.29)

Moreover, if r ≥ 1, the following stable convergence in law holds, where U(r) is defined in
Theorem 3.2:(

U(r)nT ,
1√
∆n

(A(p)nT − a(n, T ) rp)
)
L−s−→(

U(r)T ,
prp−1

log 2

∫ T
0

1
Γr(σs,σ̃,vs,bs)

(dU(r)1
s − dU(r)2

s)
)
.

(5.30)

Proof. 1) Let γt = Γr(σt, σ̃, vt, bt), which is a continuous process, positive on [0, T ] by
Lemma 3.1. Thus Tm = m∧T ∧ inf(t : γt < 1/m) satisfies P(Tm = T )→ 1 as m→∞ and,
if any one of the claimed convergence holds for each Tm (instead of T ), it also holds for T .
In other words, we can assume T ≤ A and 1/γt ≤ A for some constant A and all t ∈ [0, T ].
Moreover, Γr is a polynomial, so the process γt is a continuous Itô semimartingale, and
by localization again one can assume that for some other constant A′,

E(|γt+s − γt|2) ≤ A′ s. (5.31)

The sequence U(r)n converges in law toward a continuous process, so the moduli of continu-
ity ρ(n, x) = sup(‖U(r)nt+s − U(r)nt ‖ : t ≤ A′, |s| ≤ x) satisfy limx↓0 lim supn P(ρ(n, x) >
1) = 0, and thus with the simplifying notation wn = 2dkn∆n we have

P(Ωn)→ 1, where Ωn = {‖U(r)nt+s − U(r)nt ‖ ≤ 1 ∀ t ≤ A′, s ≤ wn
}
. (5.32)
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2) Observe that

R̂ni = r + 1
log 2 log

ζni +
√

∆n η
n,1
i

ζni +
√

∆n η
n,2
i

, where

ζni = S(r)2id∆n+wn − S(r)2id∆n , ηn,ki = U(r)n,k2id∆n+wn
− U(r)n,k2id∆n

.

Recalling 1/γt ≤ A, and since ζni = wn(γ2id∆n + ρni ), where E(|ρni |2) ≤ A′′wn by (5.31),
one has

0 ≤ wn
ζni
≤ A, E

(∣∣∣wn
ζni
− 1

γ2id∆n

∣∣∣2) ≤ A2A′′wn. (5.33)

Moreover, take α ∈ (0, 1/2) such that 2| log(1−α)|
log 2 ≤ 1/2. For n large enough we have

A
√

∆n /wn ≤ α because kn∆
3/4
n → ∞. In this case, in restriction to the set Ωn, for all

i ≤ [T/2d∆n]− kn − 1 we have with a constant K (varying from place to place below):∣∣∣√∆n η
n,k
i

ζni

∣∣∣ ≤ A
√

∆n

wn
≤ 1

2 ,
∣∣∣R̂ni − r − √∆n

log 2
ηn,1i −η

n,2
i

ζni

∣∣∣ ≤ K ∆n
w2
n

r ≥ 1 ⇒
∣∣∣ R̂nir − 1

∣∣∣ ≤ K
√

∆n

wn

∧ 1
2 , r = 0 ⇒ |R̂ni | ≤

K
√

∆n

wn

∧ 1
2 .

(5.34)

3) Recalling (4.23) and T ≤ A, when r = 0 the last estimate above yields

E(A(p)nT 1Ωn) ≤ KA ∆
p/2
n

wpn
,

which goes to 0 because kn
√

∆n →∞. Thus in view of (5.32) one gets (5.28) when r = 0.

4) At this stage, we start proving (5.30), and thus assume r ≥ 1. We observe that

Yn :=
1√
∆n

(A(p)nT−a(n, T ) rp) = wn

[T/wn]−2∑
i=0

ξni , where ξni =
1√
∆n

(
|R̂nikn |

p∧(d+1)p−rp
)
.

(5.34) implies that for n large enough, |R̂ni | ≤ d+1 (recall r ≤ d), hence a Taylor expansion
of the function x 7→ |r + x|p − rp imply, again for n large enough:

∣∣∣ξni − prp−1

log 2

ηn,1ikn
− ηn,2ikn

ζnikn

∣∣∣ ≤ K√∆n

w2
n

on Ωn and for i ≤ [T/wn]− 2.

Upon using (5.33), and by the Cauchy-Schwarz inequality, it follows that

E
(∣∣∣ξni − prp−1

log 2

ηn,1ikn
− ηn,2ikn

wn γ(i−1)wn

∣∣∣ 1Ωn

)
≤ K

√
∆n

w2
n

+K
√
wn,

hence

E
(
|Yn − Y ′n| 1Ωn

)
→ 0, where Y ′n =

prp−1

log 2

[T/wn]−2∑
i=0

ηn,1ikn
− ηn,2ikn

γ(i−1)wn

,
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because kn∆
3/4
n →∞. Recall also (5.27). Then, by virtue of (5.32), the convergence (5.30)

will follow from(
U(r)nT , Y

′
n)

L−s−→ (U(r)T ,Y), Y =
prp−1

log 2

∫ T

0

1

Γr(σs, σ̃, vs, bs)
(dU(r)1

s − dU(r)2
s). (5.35)

5) By Theorem VI.6.15 of [8] it follows from (5.23) and (5.25) that not only does the
sequence of processes U(r)n converge in law, but it also enjoys the so-called P-UT prop-
erty (predictable uniform tightness). By a trivial extension of Theorem VI.6.22 in [8],
this implies that if a sequence Hn of adapted càdlàg two-dimensional processes on Ω

is such that the pair (U(r)n, Hn)
L−s
=⇒ (U(r), H) (functional convergence for the Sko-

rokhod topology), the bi-dimensional processes
(
U(r)n,

∫ t
0 H

n
s− dU(r)ns

)
converge stably

in law to
(
U(r),

∫ t
0 Hs− dU(r)s

)
, and since U(r) is continuous and T is F-measurable,

this in turn implies the stable convergence of the variables
(
U(r)nT ,

∫ T
0 Hn

s− dU(r)ns
) L−s−→(

U(r)T ,
∫ T

0 Hs− dU(r)s
)
. At this point, (5.35) follows, by taking the processes Hn and H

with components

Hn,1
t = −Hn,2

t =
prp−1

γ(i−1)wn log 2
if t ∈ ((i−1)wn, (iwn)∧T ], H1

t = −H2
t =

prp−1

γt log 2
1{t≤T}.

(Note that the joint stable convergence (U(r)n, Hn)
L−s
=⇒ (U(r), H) holds because 1/γt is

continuous.) This ends the proof of (5.30).

6) Since (5.30) implies (5.28) when r ≥ 1, we are left to prove (5.29). We fix κ, κ′. Our

first observation is that, since U(r)nT
L−s−→ U(r)T follows from (3.8) as seen before, the proof

of (3.11) carries over to the case T is a stopping time. Therefore (R̂(n, T )−r) log ∆n
P−→ 0

because here Ωr
T = Ω, and thus ∆

R̂(n,T )−r
n

P−→ 1. It follows that (5.29) amounts to proving

the same result for the variable Ṽ n,κκ′

T which is the same as V n,κκ′

T except that in front of

the sum we substitute ∆
1+2d−2R̂(n,T )
n with ∆1+2d−2r

n .

With θni being as for Proposition 3.4, the ith summand in the right side of (3.13), we
have

Ṽ n,κκ′

T =
2∑
j=0

(
T∆d−r

n

Sn,1T

)j
B(j)nT , where B(j)nT = 4d2∆n

[T/2d∆n]−kn−1∑
i=0

υ(j)ni θ
n
i

υ(0)ni =
(

wn
ζni +
√

∆n η
n,1
i

)2
, υ(1)ni = −2 wn

ζni +
√

∆n η
n,1
i

, υ(2)ni = 1.

(5.36)

Combining (5.33) and (5.34), we obtain for i ≤ [T/2d∆n]− kn− 1 and all n large enough:

E
(∣∣∣υ(0)ni −

1

(γ2id∆n)2

∣∣∣2 1Ωn

)
+ E

(∣∣∣υ(1)ni +
2

γ2id∆n

∣∣∣2 1Ωn

)
≤ K

(∆n

w2
n

+ wn

)
.

Since by localization we may assume that the processes σt, vt, bt are bounded, we may also
assume θni ≤ K, and upon using (5.32) once more, we then deduce that B(j)nT as the same
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asymptotic behavior as B′(j)nT which is given by the same formula, with υ(j)ni substituted
with the following variables υ′(j)ni :

υ′(0)ni =
1

(γ2id∆n)2
, υ′(1)ni = −2

1

γ2id∆n

, υ′(2)ni = 1.

This allows us to get, with Υ(0) = 1
γ2

, Υ(1) = 1
γ and Υ(2) = 1:

1

(κκ′∆2
n)d−r

B(j)nT
P−→ 2d

∫ T

0
Υ(j)sΘ

r,κκ′
s ds (5.37)

(indeed, the case j = 2 is (3.14), and the other two cases follow from a standard argument,
similar to Step 5 above, but simpler because the integrand is a càdlàg bounded process not

depending on n, and θni ≥ 0). Using further T∆d−r
n /Sn,1T

P−→ T/S(r)T and recalling (5.36),
and upon expanding the square in the right side of (5.29), we obtain this convergence and
the lemma is proved. 2

Proof of (a) of Theorem 4.1. Since R̂(n, T )
P−→ RT by (3.11), it suffices to prove that

A(p)nT
P−→ A(p)T :=

∫ T

0
(rs)

p ds. (5.38)

The assumption implies the existence of a sequence of stopping times τj increasing to
infinity, such that τ0 = 0 and τj < τj+1 if τj < ∞, and such that the process rt takes a
constant (random) value ρ(j) on the time interval Jj = (τj−1, τj), with ρ(j) 6= ρ(j + 1) if
0 < τj <∞. In view of the discussion preceding (2.3), the values rτj is necessarily smaller
than or equal to ρ(j)∧ ρ(j+ 1), but is irrelevant to our discussion. We also denote by NT

the biggest j such that τj ≤ T .

With an empty sum being set to 0, we have

A(p)nT =

NT∑
j=1

Y (j)n + Zn, Y (j)n = wn

[(τj∧T )/wn]−2∑
i=[τj−1/wn]+1

|R̂ni |p,

and where Zn is the sum of at most 3NT terms of the form wn(|R̂ni |p∧ (d+ 1)p). Since NT

is finite and wn → 0, we have Znt → 0 (pointwise), and it suffices to show that for each
j ≥ 1 we have

Y (j)n
P−→ Y (j) :=

(
(T ∧ τj)− (T ∧ τj−1)

)
ρ(j)p. (5.39)

We then fix j. The variable Y (j)n is the process A(p)n evaluated at time Tj = T ∧τj−τj−1

relative to the underlying process X(j)t = Xτj−1+t, up to at most two border terms. We
thus might be tempted to apply (5.28) right away, and indeed X(j) satisfies (H) for the
filtration F(j)t = Fτj−1+t, relative to which Tj is a positive bounded stopping time. There
are, however, a few problems to overcome:

1. The rank rt(X(j)) associated with X(j) is equal to ρ(j) for all t ∈ (0, Tj), but not
necessarily for t = 0, nor for t = Tj ;
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2. This rank ρ(j) is random, albeit F(j)0-measurable;

To solve these problems we fix ε > 0 and consider the process X(j, ε)t = Xτj−1+ε+t,
satisfying (H) for the filtration F(j, ε)t = Fτj−1+ε+t, and the F(j, ε)t-stopping time
T (j, ε) = T ∧ τj − T ∧ τj−1 − 2ε. The associated rank is thus ρ(j) for all t ∈ [0, T (j, ε)],
and we will show that if A(p, j, ε) is associated with X(j, ε) by (4.23), we have

A(p, j, ε)nT (j,ε)
P−→ T (j, ε) ρ(j)p = (T ∧ τj − T ∧ τj−1 − 2ε) ρ(j)p. (5.40)

Indeed, it suffices to prove this in restriction to each set Ω′r = {ρ(j) = r} satisfying
P(Ω′r) > 0. If Pr denotes the (usual) conditional probability P(· | Ω′r), the process X(j, ε),
on the space (Ω′r,F ∩ Ω′r, (F(j, ε)t ∩ Ω′r),Pr), still satisfies (H) and the associated rank
is now r on the time interval [0, T (j, ε)]. Then Lemma 5.5 yields the convergence (5.40)
under Pr, hence under P in restriction to each Ω′r, hence under P on Ω itself.

Finally, the difference Y (j)n − A(p, j, ε)nT (j,ε) is a sum of at most 2[ε/wn] terms, each

one smaller than wn(d + 1)p, so this difference is smaller than Kε, as is the difference
between the two right sides of (5.39) and (5.40). Hence (5.39) follows from (5.40), by
taking first n→∞ and then ε→ 0. This completes the proof. 2

Proof of (b) of Theorem 4.1. Exactly as in the previous proof, it is enough to prove
the result when rt = r ≥ 1 identically, for some non-random r ∈ {1, · · · , d}. By a standard
localization procedure we can assume that Γr(σt, σ̃, vt, bt), which is positive everywhere, is
bounded from below by a constant 1/A with A > 0, so the assumptions of Lemma 5.5 are
satisfied. Therefore, (5.27) and (5.30) yield that, with Yn and Y as in the proof of Lemma
5.5 and with Zn = 1√

∆n
(R̂(n, T )− r) and Z = 1

S(r)T log 2 (U(r)1
T − U(r)2

T ), we have

(Yn, Zn)
L−s−→ (Y,Z). (5.41)

Then we obtain

1√
∆n

B(n, p, T ) = Yn +
a(n, T )√

∆n

(
rp −

∣∣r +
√

∆n Zn
∣∣p).

On the one hand, a(n, T ) → T . On the other hand, since Zn converges in law and
r ≥ 1, we have by the mean value theorem

1√
∆n

(
rp −

∣∣r +
√

∆n Zn
∣∣p)+ prp−1 Zn

P−→ 0.

Hence (5.41) yields

1√
∆n

B(n, p, T )
L−s−→ B(p, T ) = Y − Tprp−1Z.

The pair (Y,Z) being F-conditionally centered Gaussian, the same is true of B(p, T ), and
the form (4.26) of its conditional variance is easily checked, by virtue of (3.9). 2
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Proof of Theorem 4.5. It is easy to construct a process X ′ which satisfies the assump-
tions of (a) of Theorem 4.1 and such that X ′t = Xt for all t ≤ T on the set Ω6=T . Then
on this set B(n, p, T ) is the same, when constructed upon X or upon X ′, and thus it
converges in probability on this set to a strictly negative variable. On the other hand,

Z(n, p, T ) is B(n, p, T ) divided by a quantity which by construction is smaller than ∆
1/4
n .

Then the convergence Z(n, p, T )→ −∞ on Ω 6=T is clear.

It suffices to prove (4.28) on the set Ω=
T ∩Ωr

T for any r ∈ {0, · · · , d} such that P(Ωr
T ) >

0. For this we can argue under the conditional probability Pr = P(· | {r0 = r}), or
equivalently suppose that we have in fact r0 = r. As above, one can construct a process
X ′ which satisfies the assumptions of Lemma 5.5 for some stopping time T ′ which satisfies
T ′ ≥ T on the set Ω=

T , and we can apply (5.29) to X ′ and the stopping time T ′ ∧ T . This
gives us (5.29) for X, in restriction to the set Ω=

T .

At this point, (4.28) follows from (5.29) by exactly the same calculations as (3.15)
follows from (3.14).

Finally, since V (n, p, T )
P−→ V (p, T ) on Ω=

T , we have Z(n, p, T ) = B(n, p, T )/
√

∆nBV (n, p, T )
on a set Ω′′n whose probability goes to 1. The first part of (4.30) than follows from (4.25)
and (4.28) by delta method for stable convergence. 2

5.6 Proof of Corollary 3.6.

The same stopping argument as in Step 2 of the previous proof allows us to show that,
without assumptions on the rank process rt, the stable convergence in law (3.8) holds in
restriction to the set Ωr

T , as soon as we restrict our attention to the time interval [0, T ].

At this stage, the claim of Corollary 3.6 follows from (3.11), an application of the delta
method, (3.15) and classical properties of stable convergence in law. 2

5.7 Proof of Propositions 3.7, 3.8 and 4.6.

(3.18) is an obvious consequence of the stable convergence (3.16). For the alternative-
consistency, it suffices to prove that for any r′ 6= r we have

P
(
C(α)n,=rT ∩ Ωr′

T

)
→ P(Ωr′

T ). (5.42)

On the set Ωr′
T we have S(n, T )

P−→ 2d−r
′
, and by (3.15) the variables V (n, T ) converge

in probability to a limit which is [0,∞)-valued (actually, it is a.s. positive, but we do not

use this fact here), so that ∆n V (n, T )
P−→ 0. Since r′ 6= r, (5.42) readily follows from the

definition of C(α)n,=rT .

Propositions 3.8 and 4.6 are proved analogously, the alternative-consistency in the
latter case following from the second part of (4.30). 2
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