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Abstract

Using a unique and massive data set that contains information on inter�rm transac-
tion relationships, we examine default propagation along the trade credit channel and for
the �rst time provide direct and systematic evidence of its existence and relevance. Not
only do we implement simulations in order to detect prospective defaulters, we also esti-
mate the probabilities of actual �rm bankruptcies and compare the predicted defaults and
actual defaults. We �nd, �rst, that an economically sizable number of �rms are predicted
to fail when their customers default on their trade debt. Second, these prospective de-
faulters are indeed more likely to go bankrupt than other �rms. Third, a certain type of
�rm-bank relationships, in which a bank extends loans to many of the �rms in the same
supply chain, signi�cantly reduces �rms�bankruptcy probability, providing evidence for the
existence and relevance of �deep pockets� as documented in Kiyotaki and Moore (1997).

Keywords: inter�rm networks, trade credit, default propagation

JEL classi�cation: E32, G21, G32, G33

�Preliminary. This study is a product of the project �Design of Inter�rm Networks to Achieve Sustainable
Economic Growth�under the program for Promoting Social Science Research Aimed at Solutions of Near-Future
Problems conducted by the Japan Society for the Promotion of Science (JSPS). The authors are grateful to
Tsutomu Watanabe, Makoto Nirei, Daisuke Miyakawa, Shin-ichi Fukuda, Takatoshi Ito, Kosuke Aoki, Kaoru
Hosono, Arito Ono, Hirofumi Uchida, Peng Xu, Hikaru Fukanuma, Koichi Yoshimura, Ralph Paprzycki, and
participants at the SWET workshop, the RIETI study group, and the DBJ RICF seminar for their helpful
comments and suggestions. The authors are also grateful to Teikoku Data Bank Incorporated, especially, Masahiro
Miyatani, Taro Aihara, Takuro Kitou, Takashi Suzuki, and Goro Komatsuzaki for data provision and research
collaboration.

yGraduate School of Economics, Hitotsubashi University. Email: hit-tdb@ier.hit-u.ac.jp.
zInstitute of Economic Research, Hitotsubashi University. Email: iuesugi@ier.hit-u.ac.jp.



1 Introduction

How do shocks to �rms propagate through inter�rm networks and a¤ect the entire economy?

Many previous studies have tried to answer this question by focusing on a variety of transmission

mechanisms among �rms. For example, Long and Plosser (1983), Horvath (2000), and Shea

(2002) among others show that input-output, or in other words, supplier-customer linkages

of goods and services are important for the transmission of shocks and for the comovement of

performance between industries that are closely linked by transaction relationships. Other types

of transmission mechanisms include those through knowledge spillovers. Ja¤e, Trajtenberg, and

Henderson (1993) and Thompson and Fox-Kean (2005) show that through patent citations,

�rms undertake research activities, transmit their knowledge to other �rms, and thus facilitate

innovation in the entire economy.

Yet, there exists another important transmission mechanism, that is, the trade credit chan-

nel. Trade credit has several unique characteristics, which bear important implications for the

transmission of shocks in the economy. First, trade credit exists only in inter�rm transaction

networks. Firms provide trade credit to other �rms only when they sell goods or services to

them. Unless �rms have transaction relationships, no trade credit will be provided. This dual

nature of trade credit, which is driven by both �nancial and transactional motives, makes it

di¢ cult for �rms to diversify trade credit. Second, �rms not only receive trade credit from other

�rms but also extend trade credit to others. As a result, most �rms simultaneously have ac-

counts payable and accounts receivable on their balance sheets. Based on these characteristics,

Kiyotaki and Moore (1997) and Boissay (2006) theoretically show that trade credit linkages con-

stitute an important transmission mechanism in the economy. Their basic intuition is simple. A

�rm whose customers default may run into liquidity shortages and default on its own suppliers.

This default sequence transmits shocks upward through the supply chain and may eventually

amplify to damage the entire system of inter�rm transactions. Kiyotaki and Moore (1997) label

this default propagation �systemic risk.�

There is abundant anecdotal evidence that default propagation in inter�rm networks is im-

portant. Nonpayment by customers is listed by practitioners as one of the major reasons for
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bankruptcies. Also, the role of trade credit is often mentioned in the press as a source of distress

propagation. In the United States, a newspaper reported that �a bankruptcy �ling by even one

of the Big Three would probably set in motion a cascade of smaller bankruptcies by suppliers of

car parts, as the money the company owed them could not be paid until it exited bankruptcy.�1

In Japan, after the Tohoku Earthquake in 2011, about 150 �rms went bankrupt due to the

bankruptcy or �nancial distress of customer �rms.2

Despite the abundant anecdotal evidence and intuitive appeal of the credit chain mechanism

as a cause of bankruptcies, to date there has only been indirect empirical evidence for its existence

and relevance. For example, Raddatz (2010) examined the transmission mechanisms of trade

credit employing input-output matrices and making use of information on inter-industry linkages

in a number of countries. However, rather than providing direct evidence of default propagation

in inter�rm networks, he takes an indirect approach to show the presence of positive comovements

of output between closely-linked industries. To date, a direct investigation of the existence and

relevance of the default chain mechanism has been impossible mainly because detailed data on

inter�rm transaction relationships as well as the amount of trade credit in the relationships have

been unavailable.

Against this background, the present study seeks to address this issue and provide direct

evidence on the existence and relevance of the default propagation in inter�rm networks for the

�rst time. We do this by making use of a unique and massive data set on inter�rm transaction

relationships of more than 300,000 �rms in Japan. We construct a giant matrix of inter�rm

transaction relationships and distribute the outstanding amount of trade credit of each �rm

to these relationships based on the principle of maximum entropy. This allows us to identify

interconnections among �rms in terms of trade credit and construct a large matrix of trade credit

networks, which provides us with a useful tool for investigating the mechanisms through which

idiosyncratic shocks are transmitted throughout the entire economy. We examine the existence

and the relevance of default chains in the following two ways.

First, we simulate the extent to which �rm defaults propagate in inter�rm transaction net-

1�For Detroit, Chapter 11 would be the �nal chapter,�New York Times, November 24, 2008.
2�Details of bankruptcies caused by the Tohoku Earthquake and their prospects in the future,�Teikoku Data

Bank, Special Report on October 29, 2012.
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works following previous studies on interbank risk exposure, such as Degryse and Nguyen (2007)

and Fur�ne (2003). Based on balance sheet information, we identify credit-constrained �rms that

are likely to default and label them ��rst-stage defaulting �rms.�Starting from these �rst-stage

defaulters that cannot repay their trade debt, we identify the supplier �rms of these �rst-stage

defaulters that su¤er �nancial damage as a result. Firms that newly become short of liquidity

and are expected to default on their own trade debt are labeled �second-stage defaulting �rms.�

We repeat this procedure up to the stage where we �nd no further defaulting �rms. In this way,

we measure the extent of default propagation along trade credit chains.

Note that we examine two polar cases when we measure the extent of propagation. In

one case, we assume that defaulting �rms utilize all the trade credit plus other revenues and

reimburse the amount to their suppliers. Speci�cally, following Eisenberg and Noe (2001), we

presume that defaulting �rms fully utilize trade credit and other revenues in order to repay the

full amount of their outstanding trade credit debt to its claim holders, and uniquely determine

a clearing payment vector that designates the payment amount by all the �rms in inter�rm

transaction networks. In the other case, we assume that defaulters are not able to utilize any

of the trade credit they have extended to their customer �rms or any of their revenue sources.

In the former case, the defaulted trade debt claims are partially reimbursed and the extent of

default propagation is limited, while in the latter, defaults propagate more extensively than in

the former case, since �rms cannot liquidate any trade credit they have extended.

Second, we employ data on actual �rm defaults (which we call �bankruptcies�) and compare

them with defaults we predict through simulations. We construct a dummy variable that is

unity for �second- or later-stage defaulters� and employ this as an explanatory variable to

estimate �rms�bankruptcy probabilities along with other controls. If this dummy variable has

a signi�cantly positive coe¢ cient in the probit model estimation, this provides evidence for the

existence and relevance of default propagation along credit chains.

We also examine the role played by banks in potentially alleviating default propagation by

acting as shock absorbers in the credit chains. Kiyotaki and Moore (1997) call institutions that

can act as shock absorbers, such as bank, �deep pockets.�We hypothesize that banks that have

lending relationships with both a supplier and a customer extend loans and prevent them from
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defaulting due to a liquidity shortage. We construct a variable for each �rm that counts the

number of customer �rms that transact with the same �nancial institution as their primary

bank. If this variable has a signi�cant negative coe¢ cient in the probit model estimation of

bankruptcies, this would provide evidence for the existence and relevance of �deep pockets� in

credit chains.

Our empirical �ndings can be summarized as follows. First, there exist a sizable number

of �rms that are initially �nancially healthy but become short of liquidity and default when

customer �rms default on their trade debt. Depending on our assumption on the extent of

trade credit utilization, the ratios of the number of these �second- and later-stage defaulters�

to that of ��rst-stage defaulters�vary widely between 8 and 87%, although they are less than

100%. Second, these �second- and later-stage defaulting �rms�are actually more likely to go

bankrupt than other �rms after controlling for �rm attributes. Third, a certain type of �rm-

bank relationships, in which a bank extends loans to many of the �rms in the same supply chain,

signi�cantly reduces �rms�bankruptcy probability, which provides evidence for the existence and

relevance of �deep pockets�in inter�rm networks. Further, we �nd that default propagation in

inter�rm trade credit networks is economically signi�cant. In some cases, the total cumulative

sales of second- and later-stage defaulters exceeds that of �rst-stage defaulters, indicating that

initial adverse shocks to the economy indeed propagate through inter�rm trade credit networks.

The rest of the paper proceeds as follows. Section 2 describes the empirical approach for

examining the default propagation mechanism in inter�rm networks. This is followed by a

detailed explanation of our data in Section 3. Section 4 then presents our results, while Section

5 concludes.

2 Empirical Approach

The purpose of the paper is to show direct and systematic evidence on the existence and relevance

of the default propagation Kiyotaki and Moore (1997) and Boissay (2006) predicted theoretically.

We construct a massive matrix of inter�rm transaction networks and employ the following two

approaches: we identify �rms that are predicted to default and investigate the correspondence

between predicted and actual defaults. More speci�cally, the approaches we employ are: (1)
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examining the extent to which defaults propagate in inter�rm networks, and (2) estimating

actual bankruptcy probabilities. We provide detailed accounts of each of these in the following

two subsections.

2.1 Simulating the extent of default propagations

In this subsection, we detail the following procedures in turn: (i) the construction of a matrix of

bilateral trade credit relationships between �rms, (ii) the identi�cation of initial defaulting �rms,

and (iii) the examination of the extent to which defaults propagate in the matrix of trade credit

relationships. For procedure (i), we employ �rms�balance sheet information and information on

the existence of inter�rm transaction relationships in order to construct a matrix of trade credit

relationships L. The (i; j) element of the trade credit relationship matrix represents the amount

of trade debt �rm i owes to �rm j (Lij). We know from the database whether any transaction

relationship exists between two �rms - shown by whether Lij is zero or not, as well as the total

amount of trade credit and trade debt outstanding for each �rm, that is, TRj(�
P
i Lij) and

TPi(�
P
j Lij). However, we do not know the exact amount of Lij . Hence, we estimate Lij

based on the principle of maximum entropy.3 Note that before applying the principle, we can

reduce the number of unknown elements to be estimated. First, all the diagonal elements Lii

are zero, since a �rm cannot own a debt claim to itself. Second, Lij = Lji = 0 in case there

is no transaction relationship between �rms i and j. In practice, the number of transaction

relationships in our data set is approximately 2:8 million for about 300; 000 �rms, while the

number of elements in L is about 9:0 � 1010 (90 billion!). By using the above information, we

can signi�cantly reduce the number of matrix elements to be estimated. Taking into account

that
P
j Lij and

P
i Lij are equal to the total amount of trade debt for �rm i (TPi) and the

total amount of trade credit for �rm j (TRj), respectively, we apply the principle of maximum

entropy.

When applying the principle to our data set, there are several additional issues we need to

address. First, while we are able to identify customers and suppliers for the majority of �rms in

the data set (we label the set of these �rms N3), there are some �rms that have trade debt in
3For a description of the maximum entropy principle, see Fang et al. (1997) and Blien and Graef (1997).
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their balance sheets but we cannot identify their suppliers (we label the set of these �rms N1)

and some other �rms that have trade credit but we cannot identify their customers (we label the

set of these �rms N2). Second, the total amount of trade debt received by �rms in the data set

(
P
i2N TPi) is smaller than the total amount of trade credit provided by �rms in the data set

(
P
j2N TRj). This indicates that trade credit �ows out of the inter�rm transaction networks.

Firms in general tend to extend trade credit to households in the form of installment sales more

frequently than they incur trade debt with them. Also, �rms in the sample do not cover the

entire population of �rms in Japan.

In order to address these issues we introduce an external node (we label it node 0). We

assume that the node 0 extends trade credit to and receives trade credit from �rms in the data

set. We de�ne the amount of trade credit provided by the node 0 to N1 �rms and to N2 and

N3 �rms as TR0 andgTR0, respectively. We also de�ne the amount of trade credit provided to
the node 0 by N2 �rms and by N1 and N3 �rms as TP0 andgTP 0, respectively. We assume that
the equation below is satis�ed:

X
i2N

TPi + TP0 + ~TP 0 =
X
i2N

TRi + TR0 + ~TR0 � S (1)

where N = N 1+N2+N3.4 As a result, the matrix of inter�rm trade credit relationships L can

be decomposed as shown in Table 1.

Table 1: Composition of trade credit/debt relationship matrix

N1 N2 N3 Node 0
N1 O O O L10 [TPi]i2N1
N2 L21 O L23 L20 [TPi]i2N2
N3 L31 O L33 L30 [TPi]i2N3

node 0 L01 L02 L03 O TP0 + ~TP 0
[TRj ]

T
j2N1 [TRj ]

T
j2N2 [TRj ]

T
j2N3 TR0 + ~TR0 S

For procedure (ii), we de�ne defaulting �rms as those that have negative net trade credit

balances after accounting for other revenue sources. We alternatively proxy these other revenue

sources, which �rms can use for repaying trade debt, by sales pro�ts, cash holdings, or liquid

4The relevance of the transaction relationships between �rms that belong to the data set, especially those that
belong to N1 or N2, and the node 0 will be discussed in Section 3.2.
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assets. We label �rms with a negative trade credit balance ��rst-stage defaulting �rms,�since

these �rms are expected to default as a result of their own �nancial distress.

For procedure (iii), we start from these �rst-stage defaulters and examine the extent of

default propagation. The basic intuition underlying the concept of propagation, which has

been described by Kiyotaki and Moore (1997) and Boissay (2006), among others, is simple. A

�rm whose customer defaults fails to receive the outstanding trade credit from the defaulted

customer. If this causes the �rm to become illiquid, that is, its trade credit balance becomes

negative, the �rm defaults on its own suppliers and becomes �second-stage defaulting �rms.�

Further, the suppliers of these second-stage defaulting �rms then fail to receive the outstanding

trade credit and may become third-stage defaulters. This way, propagation continues until no

further defaults occur in inter�rm networks.

However, the following should be noted. The extent of propagation depends on how much

trade credit and other revenues �rms use for repaying outstanding trade debt to their suppliers.

If defaulters use all the trade credit and other revenue sources they have on the asset side for

repayment (full utilization), the amount of outstanding trade debt to their suppliers that they

default on will be smaller and the extent of default propagation will be limited. In contrast, if

defaulters are not able to use any of their resources for repaying trade debt (no utilization) for

reasons such as court orders that prohibit asset sales during the bankruptcy process or a lack of

resources for collecting debt in a timely manner, the amount these defaulters fail to pay to their

suppliers will be larger, making the default propagation more sizable. We focus on these two

polar cases, full utilization and no utilization, that di¤er in the extent to which trade credit and

other revenue sources are used for debt repayment, in order to compare the extent of default

propagation between these two cases.

For the full utilization case, we follow the algorithm provided by Eisenberg and Noe (2001).

We de�ne the total amount of �rm i�s trade debt as �pi, where �pi =
PN
j=1 Lij . �pi thus is the

liability �rm i has to repay. However, the �rm is not able to repay the full amount if it is short

of funds that it can use for repayment, which we denote by pi. Further, denoting the ratio of

the amount of trade debt �rm i owes to �rm j to the total amount of trade debt �rm i owes by

�ij , we obtain
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�ij =

(
Lij
�pi
if �pi > 0

0 otherwise
(2)

Moreover, we assume that the following three principles apply to the repayment of trade

debt: proportionality, limited liability, and priority.5 By proportionality we mean that the

amount �rm i repays to �rm j is proportional to the amount of outstanding trade debt to �rm j

in �rm j�s total outstanding trade debt. Hence, the actual repayment amount by �rm i to �rm

j is �ijpi. If pi = �pi, then �ijpi = �ij �pi = Lij . Next, by limited liability we mean that borrower

�rms are not obliged to pay more than the amount of trade debt they have on their balance

sheet. Finally, by priority we mean that trade debt has priority over other types of debt, so

that �rms may use trade credit and other revenue sources for repaying trade debt prior to the

repayment of other obligations. Thus, we have the following formula for the repayment amount

of trade debt for each �rm i:

pi = min

0@ NX
j=1

�jipj + ei; �pi

1A ;8i 2 N , (3)

where ei represents the amount of other revenue sources such as sales pro�ts, cash holdings, and

liquid assets. In this case, the amount �rm i has extended as trade credit to other �rms plus

revenues from other sources than trade credit are fully used for repaying the debt if necessary.

Eisenberg and Noe (2001) show that there exists a unique solution p� = (p�1; p
�
2; � � � ; p�N )

T

under the conditions explained above and call p� the clearing payment vector. Firm i defaults

if p�i < �pi and does not default if p�i = �pi. They also show the stepwise algorithm in order to

calculate p�. They prove that starting from what we call the ��rst-stage defaulting �rms�and

identifying what we call the �second- and later-stage defaulting �rms,�6 the clearing payment

vector p� is obtained.

For the �no utilization� case, we start from the �rst-stage defaulting �rms, as we do in

the �full utilization�case. However, the formula for the payment vector p di¤ers from (3) and

instead is
5Eisenberg and Noe (2001) argue that it may be possible to maintain the fundamental characteristics of the

clearing payment vector even when these conditions are relaxed.
6Eisenberg and Noe (2001) use slightly di¤erent terms, which are �rst-order and second-order defaults, but

the principle is the same.
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pi = �imin

0@ NX
j=1

�j�jipj + ei; �pi

1A ;8i 2 N , (4)

where �j = 1 if j is non-defaulting and = 0 if j is defaulting. In this case, the trade credit

defaulting �rm i has extended to other �rms plus other revenues are not used for repaying trade

debt. In other words, �ipi = 0 if �rm i defaults, which in the literature (e.g., Upper, 2011) is

typically referred to as a 100% loss given default (LGD). Since no proof has been provided for

the existence and uniqueness of the solution p� for (4), previous studies have not calculated the

clearing payment vector p� for this case. Rather, they have followed the stepwise algorithm shown

by Degryse and Nguyen (2007) to detect �second- and later-stage defaulting �rms�by starting

from ��rst-stage defaulters.� In this study, we follow the conventions of previous literature for

the case of 100% LGD and employ the stepwise algorithm in order to detect �rms that are

predicted to default, and examine the extent of default propagation.

2.2 Estimating actual bankruptcy probabilities

In this subsection, we explain the probit model estimation of actual bankruptcies used to examine

the correspondence between actual bankruptcies and predicted defaults. In contrast with the

previous subsection on the simulation of the default propagation, we employ data on actual �rm

bankruptcies and examine if �rms that are predicted to become second- or later-stage defaulters

actually go bankrupt. The purpose of this comparison between simulated defaults and actual

defaults is twofold. On the one hand, we focus on consistencies between the simulated defaults

and actual defaults, that is, we examine if prospective defaulters in the simulation are more

likely to go bankrupt than non-prospective defaulters. In other words, we examine the following

hypothesis:

Hypothesis 1: A �rm whose customer goes bankrupt, and which is therefore potentially

exposed to a payment default by that customer, is more likely to go bankrupt than other �rms.

On the other hand, we also focus on inconsistencies between simulated defaults and actual

defaults . There are a number of cases in which prospective defaulters survive in reality and

vice versa. We try to answer why these type I and type II errors occur. Speci�cally, we examine
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what Kiyotaki and Moore (1997) call �deep pockets�that provide liquidity and alleviate default

propagation in inter�rm networks. If there are a number of deep pockets, many prospective

defaulting �rms can in practice avoid a liquidity shortage and avoid bankruptcy. Speci�cally,

we assume that �nancial institutions such as banks can play the role of �deep pockets.�Note,

however, that most of the �rms in the data set have transaction relationships with more than one

bank. Hence, merely having a relationship with a bank is not likely to increase the probability

of liquidity provision by the bank. A bank needs to have considerable economic incentives to

become a deep pocket. One of such incentives is the bene�t a bank may obtain from network

externalities. Suppose that a bank extends loans to �rms that are connected with each other

by commercial transactions. If one of the �rms in the network defaults and repayment failures

following the default trigger defaults of other �rms in the network, the bank loses many customers

at once due to the propagation of defaults. Under these circumstances, the bank may have

su¢ cient incentives to provide liquidity to �rms to which it has extended loans and help them

not to default. Based on this logic, we set the second empirical hypothesis:

Hypothesis 2: A �rm that transacts with the same bank as its customer �rms is more

likely to obtain liquidity from the bank and is less likely to default.

In order to empirically test the above two hypotheses, we employ a probit model to estimate

the determinants of the probability of going bankrupt focusing on actual bankruptcies that

occurred between 2008 and 2011. We use the following speci�cation:

Pr(bankruptcyi = 1) = �(�1Simulated_def1i + �2Simulated_def2i + �3Firmi

+�4Banki + �5Relationshipi + "i) (5)

The variables of interest here are Simulated_def2 and Relationship. For the �rst hypothe-

sis, we focus on Simulated_def2, which is unity if the �rm is predicted to default in the second

or later stages in the simulation and zero otherwise. We expect �2 > 0. For the second hypoth-

esis, we focus on Relationship, which is the share of the number of customer �rms that transact

with the same bank as the �rm itself in the number of all customer �rms for the �rm. Based on
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the conjectures above, we expect �5 < 0.

3 Data

3.1 Construction of the data set

In this subsection, we explain the data set used for our empirical analysis. We use the database

collated by one of the largest credit information companies in Japan, Teikoku Data Bank Incor-

porated (TDB). The database, which includes both large and small- and medium-sized �rms,

combines three di¤erent datasets: one on �rm characteristics, one on inter�rm and �rm-bank

relationships, and one on �rm defaults. Necessary information for the database is collected by

�eld researchers of TDB, who not only utilize public sources such as �nancial statements, cor-

porate registrations, and public relations documents, but also carry out face-to-face interviews

with �rms, their customers and suppliers, and banks that transact with them.

Based on these three data sets, we construct a matrix of bilateral transaction relationships

among �rms, which represents inter�rm supplier-customer networks. For the analysis of default

propagation, we have information on �rm characteristics and �rm defaults for each node (�rm)

in the networks. Firm characteristics include a �rm�s geographical location, industry, year of

establishment, items in the �nancial statement, and banks a �rm has a transaction relationship

with. Firm default information includes the year and month of default and type of default, such

as whether a �rm applied for legal rehabilitation or suspended transacting with its banks.

In total, the three datasets by TDB contain about 1.3 million �rms. Given that the Estab-

lishment and Enterprise Census 2006 (the latest census available) published by the Ministry of

Internal A¤airs shows that there are about 1.51 million �rms in Japan, the TDB database covers

a signi�cant portion of the population of Japanese �rms. Of these 1.3 million �rms, information

on their major suppliers and customers is available for about 400,000. Taking these 400,000 �rms

together with the supplier and customer �rms they report, there are total of 840,000 �rms that

make up a massive web of inter�rm transaction networks. However, su¢ cient information on

�rm characteristics and defaults necessary for our analysis are available for only 300,853 �rms,

which constitute our data set that we employ for our empirical analysis. Based on this data set

and adding the external node 0, which we introduced in Section 2.1, we examine the extent of
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default propagations in the next section.

3.2 Summary statistics

In this subsection, we present summary statistics for the �rms included in the data set as well

as for the matrix of transaction relationships between �rms. Table 2 shows �rms�attributes,

consisting of various indicators of �rm size, the amount of trade credit (trade receivables, TR)

and trade debt (trade payables, TP ), proxies for �rm revenues that can be used for repaying

trade debt (e1, e2, and e3, explained below), the industry �rms belong to, and the region in

which they are located. The table shows not only the means and standard deviations, but also

the percentiles of the variables in order to give detailed information on their distributions.

Regarding the �rm size variables, the mean and median of the number of employees are 49.5

and 10, respectively. Given that the 95 and 99 percentile points are 154 and 647, respectively,

more than 95% of �rms in the data set are small and medium �rms. The means and medians of

the other �rm size variables, i.e., total assets and sales, are 3,569 million and 217 million (total

assets) and 3,147 million and 336 million yen (sales), respectively. Due to the existence of a

small number of very large �rms, the means of the �rm size variables are much larger than their

medians.

Turning to the trade credit variables, the means and medians are 475 million and 14 million

(trade receivables) and 374 million and 12 million yen (trade payables), respectively. Each

of these trade credit and trade debt variables comprises more than 10% of the total assets

outstanding. Also, note that the mean of trade credit (trade receivables) is larger than that

of trade debt (trade payables), which is the reason we need to assume additional transaction

relationships between �rms in the data set and the �ctitious external node 0 in order to make

the entire networks self-contained.

For the variables on a �rm�s revenue sources other than trade credit, we employ sales pro�ts

(e1), cash and deposits holdings (e2), and net liquid assets other than trade credit (e3). Their

means and medians are 618 million and 71 million (e1), 287 million and 36 million (e2), and 336

million and 27 million yen (e3), respectively.

Regarding the industry distribution, construction has the largest share with 44%, followed by
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wholesale (17%), manufacturing (14%), and services (13%). Note that the share of construction

businesses in the data set is considerably higher than the industry�s share in the entire population

of �rms in the country, while the shares of retail and restaurant �rms are smaller than their shares

in the population. The bias in the data set regarding the industry distribution is presumably

caused by di¤erent levels of availability of �nancial statement data across industries.7 As for

the regional distribution of �rms, about one-third of the �rms in the data set are located in

the Kanto area, the area including the Tokyo metropolitan area. A further 17% and 13% of

�rms respectively are located in the Chubu & Tokai and Kinki areas, which are the other main

population centers of Japan.

We also present summary statistics for the networks constructed from the bilateral trans-

action relationships between �rms in the data set. Table 3 shows several characteristics of the

transaction networks, namely, the distributions of the degree of a �rm with suppliers/customers

(the number of a �rm�s relationships with suppliers/customers), a distribution of component

sizes (the number of �rms in a group in which all the �rms can be reached by inter�rm transac-

tion relationships) in networks. Starting with the numbers of supplier and customer transaction

relationships for each �rm, we �nd that the means and medians are 16.5 and 9 (all transaction

partners) and 8.26 and 4 (either suppliers or customers), respectively. There exist a large num-

ber of �rms that have only a few commercial transaction links with other �rms, but there are

also some that have a large number of transaction connections with other �rms. The maximum

number of suppliers and customers for a �rm is 6,668 and 3,578, respectively. Regarding the

component size in the network, which is the number of �rms in a distinct group in which all the

�rms can be reached by transaction relationships, there exists one giant network that comprises

300,128 of the 300,853 �rms in the data set. Apart from this, there are nine small networks that

include four �rms and 330 networks that include only two or three �rms.

Next, we turn to the amount of trade credit and debt between �rms, denoted by Lij . Follow-

ing the principle of maximum entropy, we obtain the distribution of Lij shown in Table 4. The

mean and median values are 52.1 million and 1.97 million yen, respectively. The composition

7 It is often pointed out that many construction �rms prepare �nancial statements in order to qualify for public
construction bidding.
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of the matrix of trade credit and debt which we introduced in Section 2.1 is presented in Table

4. Recalling that we grouped our �rms into those for which we know both the customers and

suppliers (N3), those for which we could not identify their suppliers (N1), and those for which

we could not identify their customers (N2), the number of �rms in each group is 193,837, 45,803,

and 61,213, respectively. As mentioned, we also have the external node 0 to ensure that this

system of inter�rm networks is �self-contained.� The transaction relationships among �rms in

N1, N2, and N3 and the external node 0 are presented in the table both in terms of the num-

ber of links and the amount of trade credit outstanding. The total number of inter�rm trade

credit relationships is 2,786,310 and the total amount of trade credit outstanding within the

network is about 145 trillion yen. Most of the inter�rm relationships are among �rms in N3,

whose customers and suppliers we were able to identify in the data set. About 1.9 million of

the total of roughly 2.8 million relationship links and 106 trillion yen of the 145 trillion of trade

credit outstanding are among the �rms in N3. In contrast, transaction relationships that involve

external node make up a relatively small proportion of total trade debt and credit. The total

amount of trade debt that �rms in N1 owe to the external node 0 is 2.2 trillion yen (1.5% of

the total trade credit outstanding), while the total amount of trade credit that �rms in N2 have

extended to the external node 0 is 3.4 trillion yen (2.3% of the total trade credit outstanding).

4 Results

This section presents the empirical results based on the two di¤erent approaches explained in

Section 2; that is, the simulation of default propagation and the estimation of actual bankruptcy

probabilities.

4.1 Simulation results on the extent of default propagation

Since we introduce two cases for the degree of asset utilization when defaulting �rms repay trade

credit (full utilization and no utilization) and three alternative variables that proxy for revenues

from other sources than trade credit (sales pro�ts, cash holdings, and net liquid assets), we

implement simulations and examine the extent of default propagation for six (= 2� 3) di¤erent

cases.
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4.1.1 Identifying �rst-stage defaulters

We start by identifying �rst-stage defaulting �rms that satisfy the following condition based on

the matrix of bilateral trade credit relationships between �rms:

NX
j=1

�jipj + ei < �pi (6)

Table 5 shows the results. Depending on the variable we employ for e, the number of �rst-stage

defaulters di¤er somewhat.8 In Model 1, where we use sales pro�ts (e1) for e, there are 9,392

�rms that are predicted to default. In Models 2 and 3, where we use cash holdings (e2) and net

liquid assets (e3), there are 25,352 and 29,365 prospective defaulters. Based on these �gures,

the ratios of �rst-stage defaulters to the total number of �rms in the data set are 3.1%, 8.4%,

and 9.4%, respectively. A possible reason why the default rates are higher in Models 2 and 3

than in Model 1 is that the size of e2 and e3 tends to be smaller than that of e1, which makes

inequality (6) more likely to hold.

4.1.2 Examining default propagation

Next, we identify second- and later-stage defaulting �rms and examine the extent of default

propagation. Beginning with the case of full utilization (Table 5(a)), there are 837 second-stage

defaulters in Model 1, 1,756 in Model 2, and 10,432 in Model 3. The number of defaulters

decreases rapidly for the third-, fourth-, and �fth-stage, with no defaults occurring in the �fth-

stage in Model 1 and no defaults occurring beyond the sixth stage in any of the models. The

ratios of the number of second- and later-stage defaulters to �rst-stage defaulters are 9.0%

(Model 1), 7.6% (Model 2), and 36.6% (Model 3). These numbers represent the extent of

default propagation in the large inter�rm trade credit networks that we examine.

Let us now turn to the no utilization case, in which defaulting �rms do not use their own trade

credit or other revenue sources in order to repay their trade debt (Table 5(b)). There are 2,031

second-stage defaulters in Model 1, 5,618 in Model 2, and 14,607 in Model 3. These numbers

are considerably larger than those in the case of full utilization. In addition, the numbers of

8However, as can be seen by comparing the �gures for Stage 1 in panels (a) and (b) of Table 5, the results of
the three models are identical for di¤erent degrees of asset utilization (full utilization and no utilization) because
�rst-stage defaulters fail as a result of their own �nancial distress and not due to the failure of one or more of
their customers.
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stages in which �rms default along supply chains in the network are larger than in the full

utilization case. As a result, the ratios of the number of second- and later-stage defaulters to

that of �rst-stage defaulters, at 29.2%, 57.8%, and 87.0%, respectively, are considerably greater

than those in the case of full utilization. Note, however, that the ratios are still less than 100%,

indicating that the number of initial defaulting �rms that fail as a result of their own �nancial

problems is larger than the number of �rms that fail as a result of the default of other �rms.

4.1.3 Economic signi�cance of default propagation

In order to measure the economic signi�cance of default propagation, simply counting the number

of �rms may not be appropriate, since �rms are heterogeneous in their size. To gauge the

economic signi�cance of default propagation, it is therefore necessary to take �rm size into

account, such as the number of employees, sales, or total assets. Here, we focus on sales and

multiply the average amount of sales of all the �rms at a particular default stage by the number

of �rms at that default stage.9 Table 6 shows the results. In contrast with the results for the

number of �rms, the total cumulative sales of second- and later-stage defaulters are in some

cases larger than those of the �rst-stage defaulters. Overall, the ratios of the cumulative sales

of second- and later-stage defaulters to that of �rst-stage defaulters tend to be larger than the

ratios based on �rm numbers. Speci�cally, for the full utilization case, the ratios in terms of

cumulative sales are 10.8% (Model 1), 20.6% (Model 2), and 31.6% (Model 3). For the no

utilization case, the ratios are even higher: 56.7% (Model 1), 206% (Model 2), and 227% (Model

3). We �nd that most of the ratios weighted by the sales amount are higher than the equivalent

ratios using only the number of �rms. Moreover, in the no utilization case, some exceed 100%,

indicating that the economic impact of second-stage defaults is more sizable than the impact of

�rst-stage defaulters.

As we have seen in Tables 5 and 6, �rms are not only more likely to default but also more

likely to keep defaulting along supply chains in the no utilization case than in the case of full

utilization. In order to gain a better understanding of the di¤erence between the two, we examine

the relationship between pi and �pi among defaulters in the full utilization case. The amount

9The results using other �rm size variables such as the number of employees or total assets are qualitatively
similar to those presented here and are not reported to conserve space.
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defaulters are able to allocate for repayment is smaller than their repayment obligations, that is,

0 � pi < �pi. Figure 1 shows a scatter plot of pi and �pi, in which deviations from the 45 degree

line represent the LGD ratios for each defaulter. Note that we assume in the no utilization case

pi = 0 and that all defaulters are on the x-axis in the scatter plot, meaning that the LGD ratios

are always 100%.

In the table, there appears to be a considerable di¤erence in LGD ratios between �rst-

stage defaulters and second- and later-stage defaulters. Circle markers, which represent the pi

values for �rst-stage defaulters are farther from the 45 degree lines in all models than triangular

markers, which represent the pi values for second- and later-stage defaulters. The LGD ratios

among �rst-stage defaulters are larger than those for the other defaulters. This is consistent

with our �nding that default propagation rapidly disappears in the case of full utilization after

the second stage.

4.1.4 Geographical distribution of default propagation

Lastly, we examine the geographical pattern of the extent of default propagation. If second- and

later-stage defaulters are located in close proximity to �rst-stage defaulters, default propagation

may cause a number of defaults in narrowly con�ned areas and thus result in regional adverse

shocks. In contrast, if these defaulters are located far from each other, the shocks initiated by

the �rst-stage defaulters spread across regions and dissipate soon. Nakajima, Saito, and Uesugi

(2012) examined the localization of inter�rm transaction relationships using a similar data set to

ours to �nd a weak but signi�cantly positive correlation between industry agglomeration and the

localization of inter�rm transaction relationships. In a very primitive manner, we examine if a

similar positive correlation is observed between �rms�locational proximity and the localization of

default propagation. Figure 2 maps �rst-stage defaulters (red dots) and second-stage defaulters

(blue dots) for the full utilization case. In order to show the linkages between the �rst-stage and

the second-stage defaulters more clearly, we focus only on �rst-stage defaulters who owe trade

debt to second-stage defaulters. Each of the three maps in the �gure appears to show that the

second-stage defaulters are located in close proximity to their �rst-stage counterparts, suggesting

that the default propagation mechanism we have identi�ed may contribute to regional adverse
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shocks.10

4.2 Estimation results for bankruptcy probabilities

In this subsection, we compare the simulated defaults calculated in the previous subsection and

actual defaults and examine how much and why they di¤er from each other. More concretely,

we examine Hypotheses 1 and 2 presented in Section 2.2.

4.2.1 Examining Hypothesis 1

To examine Hypothesis 1, we �rst categorize the �rms in the data set according to their predicted

status (non-default, �rst-stage default, second-stage default, and so on) and to their actual

status (non-bankrupt and bankrupt). We do this exercise for the two cases, full utilization and

no utilization.

Table 7 shows the results. We examine �rms in each stage of predicted defaults in each row

of the table. For example, in Model 1 of the full utilization case, we �rst focus on the 290,614

�rms that were predicted not to default from the simulation results. Among these 290,614 non-

defaulters in the simulation, 282,546 did not actually bankrupt and 8,068 did bankrupt during the

years 2008-2011. Therefore, in the group of �rms that were predicted not to default, the actual

default ratio in 2008-2011 is 2.78%. Second, among the 9,392 �rst-stage prospective defaulters

there are 8,476 �rms that did not actually bankrupt and 916 that did actually bankrupt, in which

case the default ratio in the �rst-stage defaulter group is 9.75%. In a similar manner, we calculate

the actual default ratios among higher-stage prospective defaulting �rms including the one for

the second-stage defaulters which is 5.02%. In both cases, the �rst-stage prospective defaulters

from the simulation results are more likely to actually go bankrupt than the prospective non-

defaulters in all Models. In contrast, we do not always have this inequality when we compare

second- and later-stage prospective defaulters and prospective non-defaulters. The second- and

later-stage prospective defaulters based on Models 1 and 2 are more likely to go bankrupt than

non-defaulters, while the second- and later-stage prospective defaulters based on Model 3 are

less likely to go bankrupt than non-defaulters. It may be the case that Models 1 and 2 provide

a better prediction of actual defaults than those based on Model 3.

10Admittedly, we need to examine the data in more detail in order to con�rm this statement.
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Second, we conduct a probit estimation of default probabilities using dummies for predicted

defaults as explanatory variables. The advantage of this probit estimation approach is that

we are able to control for other factors that may a¤ect defaults such as �rm attributes and

the characteristics of banks that �rms transact with. Table 8 shows the results for the full

utilization case. We employ Models 1 and 2 and generate three di¤erent sets of dummies for the

�rst-stage and second- and later-stage defaulters. In the baseline estimation, we employ only

�rm attributes as explanatory variables.

Our main interest is in the coe¢ cients on the dummies for predicted defaults, especially those

on second- and later-stage defaults. These correspond to �2 in (5). The results are presented in

Table 8 and show that in Models 1, 2, and 3, we have signi�cantly positive parameters for �2 for

Models 1 and 2. The coe¢ cients are 0.028 and 0.021, indicating that, depending on the model,

the probability of �rms that are predicted to default in the second stage to actually default is 2.8

and 2.1 percentage points higher than that of �rms that are not predicted to default. In contrast,

we have signi�cantly negative parameter for �2 for Models 3. The coe¢ cients are -0.01, which

is smaller in absolute value than those in Models 1 and 2, but still signi�cant. This indicates

that the probability of �rms that are predicted to default in the second stage to actually default

is 1.0 percentage points lower than that of �rms that are not predicted to default. Note that

other coe¢ cients are in general consistent with our priors in all of the models: the dummy for

�rst-stage default and the variables on �rm size, pro�tability, and �rm age which is opposite in

sign to �rm�s establishment year all have signi�cantly positive coe¢ cients.

4.2.2 Examining Hypothesis 2

Hypothesis 2, which is on the role of �deep pockets,� posits that they provide liquidity and

alleviate default propagation in inter�rm networks. In order to examine the hypothesis, we

add variables on the banks which �rms transact with to the baseline speci�cation of the probit

model. We focus on the coe¢ cients on the variable Relationship in (5), which is the share of the

number of customer �rms that transact with the same bank as the �rm itself in the total number

of customer �rms for the �rm. We expect that the parameters for �5 < 0. In all the models,

we have signi�cantly negative parameters for �5. The marginal e¤ect of -0.01 indicates that a
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10 percentage point increase in the share reduces the bankruptcy probability by 0.1 percentage

points. In sum, the results are consistent with the hypothesis in that banks that are exposed to

�rms in the same supply chain have incentives to provide liquidity and prevent them from going

bankrupt.

5 Conclusion

In this study, we examined the default propagation mechanism in inter�rm trade credit networks

using two di¤erent but complementary approaches, that is, the simulation of default propagation

and the estimation of actual default probabilities. Using a unique and massive data set, we

found the following: (1) in the simulations, there exist a sizable number of �rms that are

initially �nancially healthy but become short of liquidity and are predicted to default when

their customer �rms default; (2) in the estimation of actual default, �rms that are predicted

to su¤er from a liquidity shortage and default as a result of a default by one or more of their

customers are more likely to go default themselves in practice; and (3) also in the estimation, a

certain type of �rm-bank relationships, in which a bank extends loans to many of the �rms in

the same supply chain, signi�cantly reduce �rms�default probability, providing evidence for the

existence and relevance of �deep pockets� as argued by Kiyotaki and Moore (1997). Further,

we �nd that default propagation in inter�rm trade credit networks is economically signi�cant.

In some cases, the total cumulative sales of second- and later-stage defaulters exceeds that of

�rst-stage defaulters, indicating that initial adverse shocks to the economy indeed propagate

through inter�rm trade credit networks.

The research in this study could be extended in a number of directions. First, we could focus

on longer time horizons in order to examine the propagation of shocks in a more comprehensive

manner. In this paper, we focused on �instantaneous�default propagation, taking �rms�debt

structure as well as the network structure of inter�rm trade credit relationships as �xed. As a

result, propagation occurs only in one direction, from customer �rms to their suppliers. However,

over a longer time horizon, shocks may also propagate downward along the supply chain, if

suppliers facing shocks reduce trade credit to their customers over time. Further, the structure

of the network may change over time in response to �rm defaults, which may a¤ect the way

21



shocks propagate in the economy. Second, it might be instructive to examine how default

propagation in inter�rm trade credit networks has developed over time, which would allow us to

determine whether the current pattern of trade credit networks increases or decreases systemic

risk.
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Note: e1 represents sales profits, i.e., sales - sales cost, e2 represents cash and deposits outstanding, 
and e3 represents liquid assets net of liquid liabilities except for trade credit and debt. 

 
 

 
 
  

Table 2(a): Summary statistics on firm attributes

Employees Assets Sales TR TP e1 e2 e3

N 300853 300853 300853 300853 300853 300853 300853 300853
mean 49.5 3569450.0 3146691.0 474765.0 374450.8 618469.4 286949.6 335640.7
sd 390.4167 8.43E+07 5.35E+07 8397273 6355149 9627521 3869213 7392605
min 0 2 3 0 0 0 0 0
p1 0 8248 19181.2 0 0 3085 556 0
p5 1 20607.5 46102 0 0 10699 2258.5 0
p25 4 79093.33 144420 1037.5 0 31198.75 11692.14 1046.422
p50 10 216699.6 336403.5 14313.36 12023.1 70958.63 36065.17 26527.67
p75 25 687022.8 930994.8 84924.4 70091.63 197091 112376.2 97565.72
p95 154 5239213 6564422 914555.3 782390.3 1373942 704531.6 647698.9
p99 647 3.20E+07 3.79E+07 6257431 5121712 7003500 3377703 3504424
max 69125 1.32E+10 1.00E+10 1.43E+09 1.04E+09 2.07E+09 6.60E+08 1.56E+09

Table 2(b): Summary statistics on firm industry Table 2(c): Summary statistics on firm location

Sector Freq. Percent Region Freq. Percent

Agriculture and
fishery

682 0.23% Hokkaido 16822 5.59%

Mining 613 0.20% Tohoku 20242 6.73%
Construction 133580 44.40% Hokuriku 14741 4.90%
Manufacturing 40645 13.51% Kanto 103542 34.42%
Wholesale 49981 16.61% Chubu and Tokai 38701 12.86%
Retail and
restaurants

14099 4.69% Kinki 50958 16.94%

Finance and
insurance

1147 0.38%
Chugoku and
Shikoku

26839 8.92%

Real estate 12187 4.05%
Kyushu and
Okinawa

28311 9.41%

Transportation and
communication

9718 3.23% N.A. 697 0.23%

Electricity, gas,
water, and heat
supply

228 0.08% Total 300853 100.00%

Services 37961 12.62%

N.A. 12 0.00%
Total 300853 100.00%
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Table 3(a): Summary statistics on degrees in network

Number of
relationships
with suppliers
and customers

Number of
relationships
with suppliers

Number of
relationships
with customers

N 300853 300853 300853
mean 16.52273 8.261367 8.261367
sd 61.55271 42.12425 29.55601
min 3 1 1
p1 3 1 1
p5 3 1 1
p25 4 2 2
p50 9 4 4
p75 17 8 9
p95 42 21 23
p99 125 64 67
max 7001 6668 3578

Table 3(b): Summary statistics on network components

Number of nodes
(firms) in each
component

Freq. Percent
Total number of
nodes (firms)

Percent

2 301 88.53 602 0.2
3 29 8.53 87 0.03
4 9 2.65 36 0.01
300128 1 0.29 300128 99.76
Total 340 100 300853 100
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Table 4(a): Summary statistics on network matrix elements

L_{ij}

N 2786310
mean 52057.32
sd 863585.9
min 5.60E-167
p1 2.20E-163
p5 9.40E-159
p25 2.452565
p50 1968.917
p75 15660.8
p95 161623.1
p99 756226.4
max 5.95E+08

Table 4(b): Decomposition of network matrix
Number of links

N_1 N_2 N_3 Node 0 Total
N_1 0 0 0 45,803 45,803
N_2 10,984 0 181,512 61,213 253,709
N_3 83,265 0 1,908,843 193,837 2,185,945

Node 0 45,803 61,213 193,837 0 300,853
Total 140,052 61,213 2,284,192 300,853 2,786,310

Table 4(c): Decomposition of network matrix
Amount of trade credit (unit: thousand yen)

N_1 N_2 N_3 Node 0 Total
N_1 0 0 0 2.21E+09 2.21E+09
N_2 4.74E+07 0 3.89E+09 0 3.94E+09
N_3 3.95E+08 0 1.06E+11 0 1.07E+11

Node 0 2.74E+09 3.35E+09 2.60E+10 0 3.21E+10
Total 3.18E+09 3.35E+09 1.36E+11 2.21E+09 1.45E+11
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Table 5(a): Default propagation (full utilization) 

Stage Model 1 Model 2 Model 3

- 290,612 96.6 273,563 90.9 260,732 86.7
1 9,392 3.1 25,352 8.4 29,365 9.8
2 837 0.3 1,756 0.6 10,432 3.5
3 11 0 161 0.1 289 0.1
4 1 0 19 0 31 0
5 0 2 0 4 0

Total 300,853 100 300,853 100 300,853 100

Table 5(b): Default propagation (no utilization)

Stage Model 1 Model 2 Model 3

- 288,722 95.97 260,843 86.7 245,951 81.75
1 9,392 3.12 25,352 8.43 29,365 9.76
2 2,031 0.68 5,618 1.87 14,607 4.86
3 351 0.12 2,739 0.91 3,801 1.26
4 203 0.07 1,836 0.61 2,898 0.96
5 84 0.03 1,394 0.46 1,923 0.64
6 61 0.02 915 0.3 1,267 0.42
7 9 0 1,095 0.36 593 0.2
8 591 0.2 348 0.12
9 470 0.16 100 0.03

Total 300,853 100 300,853 100 300,853 100
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Table 6(a): Sum of sales amount for each default stage (full utilization)

Model 1 Model 2 Model 3

Stage
Number of
firms

Total Sales
Number of
firms

Total Sales
Number of
firms

Total sales

- 290612 8.84E+11 273563 7.81E+11 260732 7.64E+11
1 9392 4.32E+10 25352 1.25E+11 29365 1.28E+11
2 837 4.44E+09 1756 2.30E+10 10432 3.65E+10
3 11 6.67E+07 161 2.61E+09 289 3.38E+09
4 1 1.49E+08 19 1.03E+08 31 3.91E+08
5 2 5.53E+05 4 9.52E+07
First-stage defaulters 9392 4.32E+10 25352 1.25E+11 29365 1.28E+11
Second+ defaulters 849 4.66E+09 1938 2.57E+10 10756 4.03E+10
Second+/first 9.0% 10.8% 7.6% 20.6% 36.6% 31.6%

Table 6(b): Sum of sales amount for each default stage (no utilization)

Model 1 Model 2 Model 3

Stage
Number of
firms

Total Sales
Number of
firms

Total Sales
Number of
firms

Total sales

- 288722 8.64E+11 260843 5.50E+11 245951 5.15E+11
1 9392 4.32E+10 25352 1.25E+11 29365 1.28E+11
2 2031 1.21E+10 5618 7.81E+10 14607 9.58E+10
3 351 5.58E+09 2739 4.77E+10 3801 7.98E+10
4 203 4.04E+09 1836 3.47E+10 2898 5.27E+10
5 84 1.76E+09 1394 2.79E+10 1923 2.81E+10
6 61 1.04E+09 915 3.91E+10 1267 1.89E+10
7 9 5.61E+07 1095 1.38E+10 593 8.30E+09
8 591 1.24E+10 348 2.83E+09
9 470 3.17E+09 100 3.72E+09
First-stage defaulters 9392 4.32E+10 25352 1.25E+11 29365 1.28E+11
Second+ defaulters 2739 2.45E+10 14658 2.57E+11 25537 2.90E+11
Second+/first 29.2% 56.7% 57.8% 205.6% 87.0% 227.4%
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Table 7(a): Comparison between predicted defaulters and actual defaulters (full utilization)

Model 1 Model 2 Model 3

actual defaulters/non-defaulters actual defaulters/non-defaulters actual defaulters/non-defaulters

Stage
non
defaulters

defaulters Total
non
defaulters

defaulters Total
non
defaulters

defaulters Total

- 282,546 8,068 290,614 266,747 6,818 273,565 253,569 7,165 260,734
(2.78) (2.49) (2.75)

1 8,476 916 9,392 23,219 2,133 25,352 27,734 1,631 29,365
(9.75) (8.41) (5.55)

2 795 42 837 1,686 70 1,756 10,214 218 10,432
(5.02) (3.99) (2.09)

3 11 0 11 156 5 161 277 12 289
(0.00) (3.11) (4.15)

4 1 0 1 19 0 19 31 0 31
(0.00) (0.00) (0.00)

5 2 0 2 4 0 4
(0.00) (0.00)

Total 291,829 9,026 300,855 291,829 9,026 300,855 291,829 9,026 300,855
(3.00) (3.00) (3.00)

Table 7(b): Comparison between predicted defaulters and actual defaulters (no utilization) 

Model 1 Model 2 Model 3

actual defaulters/non-defaulters actual defaulters/non-defaulters actual defaulters/non-defaulters

Stage
non
defaulters

defaulters Total
non
defaulters

defaulters Total
non
defaulters

defaulters Total

- 280,759 7,965 288,724 254,425 6,420 260,845 239,147 6,806 245,953
(2.76) (2.46) (2.77)

1 8,476 916 9,392 23,219 2,133 25,352 27,734 1,631 29,365
(9.75) (8.41) (5.55)

2 1,923 108 2,031 5,393 225 5,618 14,274 333 14,607
(5.32) (4.00) (2.28)

3 331 20 351 2,660 79 2,739 3,698 103 3,801
(5.70) (2.88) (2.71)

4 194 9 203 1,774 62 1,836 2,832 66 2,898
(4.43) (3.38) (2.28)

5 80 4 84 1,364 30 1,394 1,879 44 1,923
(4.76) (2.15) (2.29)

6 58 3 61 894 21 915 1,242 25 1,267
(4.92) (2.30) (1.97)

7 8 1 9 1,063 32 1,095 585 8 593
(11.11) (2.92) (1.35)

8 573 18 591 339 9 348
(3.05) (2.59)

9 464 6 470 99 1 100
(1.28) (1.00)

Total 291,829 9,026 300,855 291,829 9,026 300,855 291,829 9,026 300,855
(3.00) (3.00) (3.00)
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Table 8: Probit model estimation results

Dependent variable: Actual default dummy in 2008-2011

Model 1 Model 2 Model 3
dF/dx P>|z| x-bar dF/dx P>|z| x-bar dF/dx P>|z| x-bar dF/dx P>|z| x-bar dF/dx P>|z| x-bar dF/dx P>|z| x-bar

Simulated_def1 0.074 0 0.032 0.075 0 0.032 0.06 0 0.088 0.06 0 0.088 0.27 0 0.1 0.027 0 0.099
Simulated_def2 0.028 0 0.003 0.029 0 0.003 0.021 0 0.007 0.022 0 0.007 -0.01 0 0.031 -0.009 0 0.032
ln(Employees) -0.011 0 1.118 -0.011 0 1.118 -0.01 0 1.118 -0.01 0 1.118 -0.01 0 1.118 -0.01 0 1.118
Est_year 0 0 1979.54 0 0.003 1979.54 0 0.001 1979.54 0 0.008 1979.54 0 0.001 1979.54 0 0.011 1979.54
Cap_ratio -0.002 0 0.155 -0.002 0 0.155 -0.001 0 0.155 -0.001 0 0.155 -0.002 0 0.155 -0.002 0 0.155
ROA -0.019 0 0.078 -0.019 0 0.078 -0.014 0 0.078 -0.015 0 0.078 -0.018 0 0.078 -0.019 0 0.078
Rate 0 0.636 0.058 0 0.636 0.058 0 0.613 0.058 0 0.607 0.058 0 0.73 0.058 0 0.72 0.058
Liq_liab/Liq_asset 0 0.853 0.995 0 0.843 0.995 0 0.906 0.995 0 0.904 0.995 0 0.93 0.995 0 0.797 0.995
Relationship -0.01 0 0.153 -0.01 0 0.153 -0.013 0.002 0.159
Ind_dum Yes Yes Yes Yes Yes Yes
Bank_type_dum No Yes No Yes No Yes
N 265949 265949 265949 265949 265949 265949
LR chi2 1560.77 1769.23 2379.87 2591.86 1137.79 1178.04
P>chi2 0 0 0 0 0 0
Log likelihood -37502.5 -37398.2 -37092.9 -36986.9 -37714 -35490.1
Pseudo R2 0.02 0.023 0.031 0.034 0.0149 0.0163
Obs. P 0.033 0.033 0.033 0.033 0.033 0.033
Pred. P (at x-bar) 0.031 0.03 0.03 0.029 0.03 0.029
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Figure 1: Payment obligation amount (p_bar along the x-axis) and clearing payment amount (p along the y-axis) for defaulting 

firms (full utilization) 

 
Note: Circle markers represent first-stage defaulters, while triangular markers represent second- and later-stage defaulters.  

  

Model 2 Model 1 

Model 3 
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Figure 2: Geographical locations of first-stage and second-stage defaulters (full utilization) 

 

 
Note: Red dots are for first-stage defaulters, while blue dots are for second-stage defaulters. Only first-stage defaulters who are 
customers of second-stage defaulters are shown in the figures.  

Model 2 Model 1 

Model 3 
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