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Abstract 

This paper uses a two-period overlapping generations model in order to provide a theoretical design 

for an optimal public pension system based on a partial equilibrium analysis. Household preferences 

only depend on two periods consumption and leisure and is homogeneous of degree m  with respect 

to consumption in the working and retired periods. We present characteristic features of an optimal 

public pension system in this paper.  First, differences in the population growth rate do not affect 

the relative level of the optimal net lifetime burden rate of each generation. Second, if 0m  or 

1m , the optimal public pension system can be expressed explicitly. Third, the difference between 

the market time-preference rate and social time-preference rate provides a crucial insight into the 

optimal burden rate of each generation. 

 

Keywords: Overlapping generations model, public pension, optimal burden rate 

JEL codes: D30, D60, D90, H21, H60 

 

1.  Introduction 

Although considerable research exists on public pension plans, such as the studies by Feldstein 

(1995, 1998) of the possibility for social welfare improvement based on a transition process from the 

pay-as-you-go system to the funded system, most work in this area theoretically and empirically 
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examines the effectiveness and fairness of existing and reformed plans. By contrast, few studies have 

been carried out on designing an optimal pension plan (but see Oguro, 2008). The present paper thus 

uses a simplified overlapping generations (OLG) model in order to analyze the characteristics of an 

optimal public pension system that maximizes the sum of indirect utilities of each generation under 

its intertemporal budget constraint. The presented theoretical analysis thus aims to bridge this gap in 

the current body of knowledge on this topic. 

Little research exists specifically on optimal public pension plans owing to analytical 

difficulties. In particular, the characteristics of the two macroeconomic models applied to such 

research, namely the representative household model and OLG model, hinder the analysis of optimal 

taxation. Well-known arguments in favor of the former are offered by Barro (1979, 1999) and Bohn 

(1990) on tax smoothing and by Judd (1999) regarding dynamic optimal taxation. However, as the 

representative household model does not usually involve generation alternation, it is difficult to 

analyze a public pension plan (e.g., a pay-as-you-go system), which is an intergenerational income 

distribution policy. 

The OLG models proposed by Samuelson (1958) and Diamond (1965) assume generation 

alternation and thus facilitate the consideration of public pension plans. However, unlike the 

representative household model, the key agents in these models increase by number of generations, 

further complicating the theoretical analysis. Therefore, most research carried out since the seminal 
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achievements presented by Auerbach and Kotlikoff (1987) tends to adopt a multi-period OLG model 

for the empirical analysis in order to adapt the influence of current pension plans and reforms to the 

utility of each generation. 

To avoid the summation of indirect utilities diverging to infinity it is necessary for the sequence 

of utilities in this paper to be discounted using the time-preference rate. We designate this rate the 

“social time-preference rate” in order to differentiate it from the interest rate, which we term the 

“market time-preference rate.” In the first step of designing our optimal pension plan, we suggest 

three simplifications to the traditional OLG model, which can cope with an infinite number of 

households and goods. First, we ignore the general equilibrium and instead adopt a partial 

equilibrium analysis. Second, although the pay-as-you-go pension systems in most countries consist 

of two parts (e.g., the basic pension and the income proportional pension), we recognize only income 

proportional payments for the sake of simplicity. Third, we use a typical two-period OLG model 

(e.g., working period and retired period) and assume that each household’s utility depends on two 

periods of consumption and labor. Thus, we assume that the utility function is homogeneous of 

degree m  with respect to consumption in the working and retired periods. 

Assuming the first simplification above allows us to set wage income and the interest rate as 

exogenous variables. By contrast, wage income and the interest rate become a function of the 

pension benefit rate and premium rate in the general equilibrium model, rendering optimal pension 
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plan characteristics extremely difficult to analyze. By considering the second simplification, the 

analysis of the optimal pension plan becomes the determination of the net lifetime burden rate of 

each generation, as pension benefits and premiums are a fixed proportion of lifetime wage income 

under the lifetime budget constraint of households. Therefore, the proposed optimal pension plan 

design resembles the discussions of Barro (1979, 1999), Bohn (1990), and Judd (1999). Finally, the 

third simplification clarifies the social welfare function, as shown in Lemmas 1 and 2 in Section 2. 

The following points summarize the characteristics of the optimal pension plan proposed in this 

paper: 

(1) The differences in population growth rates do not affect the relative level of the net lifetime 

burden rate of each generation. 

(2) If 0m  or 1m , 

 (2-1) The optimal pension system can be expressed explicitly. 

 (2-2) The optimal pension plan decreases the net lifetime burden rate of the generation with the 

higher growth rate of lifetime wage income. 

(2-3) If the social time-preference rate is sufficiently larger than the market time-preference rate, 

then an increase in the population growth rate of some generations would reduce the net lifetime 

burden rate of each generation under an optimal pension system. 

(2-4) If the social time-preference rate is larger (smaller) than that of the market, the net lifetime 
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burden rate of future generations would be closer to 100% (increase the current generation’s net 

lifetime burden, while reducing the net lifetime burden of future generations). 

(2-5) If the social time-preference rate is equal to that of the market, the net lifetime burden rate 

of future generations under an optimal pension plan would converge to the same level (i.e., the 

smoothing of the net lifetime burden of each generation holds at a certain point in time). 

(3) If 1m , with the possible exception of one generation, the net lifetime burden of each 

generation would become either 100% or 0%. 

Point (1) is crucial for the pension plan design presented herein. Although Japan’s declining 

birthrate implies an increasing pension burden on future generations from a conventional viewpoint, 

(1) suggests that when comparing the net lifetime burden of one generation to that of another, the 

relative level of the net burden should remain unaffected by a change in the population growth rate 

under an optimal pension system. By contrast, as described in (2-3), the population growth rate 

affects the net lifetime burden rate for all generations. Further, (2-2) indicates that a “regressive” 

plan is desirable for the net lifetime burden of each generation under an optimal pension system. 

This study’s analysis is based on the assumption that each generation behaves selfishly without 

displaying dynastic altruism. Barro (1974) argues that when there exist inheritance transfers among 

generations and intergenerational altruism, the utility of each generation is influenced not only by its 

consumption but also by the descendants’ utility, meaning that the OLG model is fundamentally 
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equivalent to the representative household model. However, Takayama, Aso, Miyaji, and Kamiya 

(1996) and Horioka (2002) show that intergenerational altruism is rarely evident in the analysis of 

inheritance distribution. 

The remainder of this paper is organized as follows. Section 2 introduces the model. Section 3 

defines the optimal pension plan as the maximization of social welfare. Section 4 analyzes the 

relationship between the funded system and the net lifetime burden rate of each generation in order 

to demonstrate that the argument for the optimal plan under the pay-as-you-go system can be fully 

applied to that under the funded system. Section 5 concludes. 

 

2. Consumer Choices and Government Budget 

2.1 Consumer Decisions 

Each generation lives for two periods (i.e., working period and retired period). The utility for the 

generation born in period t is as follows: 

RRuhccu
ttt




3

1,2,1
:),,,( 　                                                     (1) 

Here, 
t

c
,1

 and 
1,2 t

c  represent the consumption at period t and at t+1, respectively, while 
t

h  

represents leisure. In addition, we assume that the utility function satisfies Assumption 1: 

 

Assumption 1: u  is continuous in the domain. For interior points, u  is a strictly increasing and 
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strictly quasi-concave function, and homogeneous of degree m  with consumption levels 

),(
1,2,1 tt

cc . 

 

Except for the assumption of homogeneous of degree m  with the consumptions above, the utility 

function is satisfied with the normal desirable characteristics. We also assume 0m . If 10  m , 

the concave function (



c1,t

c2,t1


ht

 , 1  ) in the Cobb–Douglas form can be included in the 

same utility function class. The symbol 
t

  represents the pension premium rate for wage income 

(
t

w ) and 
1t

  represents the pension benefit rate, expressing the pension to be received in multiples 

of the premium rate (
t

 ). The upper limit of leisure provided during the working period is assumed 

to be 1. Further, by representing the interest rate as r , the budget constraint of generation t will be 

the following: 



c1,t  st  (1 t )wt (1 ht ) ;   



c2,t1  (1 r)st t1 twt (1 ht ) , 

where st is the saving. These can be consolidated into a single budget as: 

   



c1,t 
c2,t1

1 r
 (1 t ) twtht  (1 t )wt                                 (2) 

Here, 
t

  represents the net lifetime burden rate of generation t as follows: 



 t  t 
 t1 t

1 r
 

This can be rewritten as 



t1 t  ( t t )(1 r). Under the condition that r , 
t

w , and 
t

 are given, 

each generation maximizes its utility through the selections of 



c1,t , 



c2,t1, and 



ht . Then, if written 
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without the time index t, this becomes the following: 

    max 



u(c1,c2,h) , subject to 



c1 
c2

1 r
 (1)wh  (1)w                           (3) 

We denote the solution of (3) as ),)1((
1

rwc  , ),)1((
2

rwc  , and ),)1(( rwh  . Further, it is 

obvious that the following condition holds: 



t,t'

c1,t ((1)w,r)  c1,t' ((1)w,r)

c2,t1((1)w,r)  c2,t '1((1)w,r)

ht ((1)w,r)  ht' ((1 )w,r)









                                         

(4) 

This means that the functional form is the same when time is also expressed as 



c1,t ((1)w,r), 



c2,t1((1)w,r) , and 



ht ((1)w,r). The papers of Oguro (2008) and Oguro, Nakakarumai, and 

Takama (2007) show that when 1m , the function 



ht  is not dependent on 



wt  and that the 

functions 



c1,t  and 



c2,t1 are separable from 



wt . In the same manner, we also show that a similar 

lemma also holds when 0m . As shown below, this simplifies the formula of the social welfare 

function. 

 

Lemma 1: If the utility function satisfies Assumption 1, then solution 
t

h  becomes a function of the 

interest rate ( r ) alone and the solutions 



c1,t  and 



c2,t1 are separable from 



(1 t )wt . In other 

words, the following holds: 



ht ((1)wt ,r)  ht (1,r)

c1,t ((1)wt ,r)  (1)wtc1,t' (1,r)

c2,t1((1 )wt ,r)  (1)wtc2,t1(1,r)









                                           (5) 
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Proof: In order to solve the problem of (3), we considered the following problem: 



max
1 , 2 ,h

u(1,2,h) , subject to 



1 
2

1 r
 h 1                                     (6) 

Let us denote solutions to the problem (3) and to (6) as 



(c1
*,c2

*,h*)  and 



( ˆ 1, ˆ 2, ˆ h ) , respectively. 

As the pair 



(c1
* /(1)w,c2

* /(1)w,h*) satisfies the budget in (6), the relation 



u( ˆ 1,
ˆ 2, ˆ h )  u(c1

* /(1)w,c2
* /(1)w,h*)  u(c1

*,c2
*,h*) / (1)w 

m
 holds.  

Conversely, as the pair 



((1)w ˆ 1,(1)w ˆ 2, ˆ h )  satisfies the budget in (3),  



u(c1
*,c2

*,h*)  u((1)w ˆ 1,(1)w ˆ 2, ˆ h )  u( ˆ 1, ˆ 2, ˆ h ) (1)w 
m

 holds and, therefore, we can obtain 



u(c1
*,c2

*,h*)  u((1)w ˆ 1,(1)w ˆ 2, ˆ h ). Since the utility function is strictly convex, the solution to 

maximization is unique. Therefore, the following holds: 



c1
*  (1)w ˆ 1, 



c2
*  (1)w ˆ 2 , 



h*  ˆ h  

As (6) does not include 



(1)w  as a parameter, we can confirm the following: 



ci ((1)w,r)  ci
*  (1)w ˆ i  (1)wci (1,r) , i=1, 2 



h((1)w,r)  h*  ˆ h  h(1,r) 

The above establishes the proof for (5).  

 

Expressing utility as indirect utility and using Lemma 1, we obtain the following: 

  



Vt ( t ,r)  u(c1,t ((1 t )wt ,r),c2,t1((1 t )wt ,r),ht ((1 t )wt ,r))  (1 t )wt 
m
  

where 



  u(c1(1,r),c2(1,r),h(1,r))                           (7) 
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When 1m , indirect utility is a strictly increasing function of 
t

1  and becomes a strictly 

concave function. In addition, in an environment that regards r as fixed, it becomes a function of 

disposable income (
tt

w)1(  ) alone. 

 

2.2 Government Budget 

An economy starts at period t = 0, when the working and retired generations already exist. In period 

t = 0, the government determines income transfer G  to the retired generation, which is funded by 

tax revenue and the issuance of government bonds (



B0 ). At the same time, the government 

establishes a pay-as-you-go pension system with 



 t and 



 t1(t=0, 1, 2,…). 
t

  represents the 

pension premium rate for the working generation in period t. 



 t1 is the pension benefit rate that the 

working generation t receives upon retiring expressed as a percentage of the pension premium paid 

by this generation. The amount of government bonds issued is an endogenous variable that is 

determined in order to satisfy the government budget constraint. By contrast, a pension plan with 

t
 and 



 t1(t=0, 1, 2,…) is assumed to be given. Thus, denoting the population of generation t as 
t

L , 

the government budget constraint is the following at period t = 0: 



G  0w0(1 h0)L0 B0                                                       (8) 

This can be considered to be the definition of
0

B . When 1t , the government budget constraint is: 



t t1wt1(1 ht1)Lt1 (1 r)Bt1  twt (1ht )Lt Bt                               (9) 
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Each 
t

B  is endogenously determined so that equations (8) and (9) hold. By defining such 

endogenous valuables, we can use 
t

 and 
1t

  as the policy parameters. 

 

Assumption 2: Under the condition that the interest rate ( r ), wage income growth rate (
t

g ), and 

population growth rate (
t

n ) in period t, as well as the initial values (
0

w  and 
0

L ), are given, wage 

income in period t and the population of generation t are represented as follows: 



wt  w0 (1 g j )j0

t1
 ,  



Lt  L0 (1 n j )j0

t1
 . 

In addition, there exists a positive real number ( q ) such that 10  q , and the following condition 

exists: 

    



q(1 r)  (1 gt )(1 nt )  for t=1, 2, 3,… 

 

First, this assumption signifies the following. If )1)(1()1(
tt

ngr   holds at any given time, the 

national income growth rate (
tt

ng  ) is greater than the interest rate ( r ) on government bonds. Thus, 

adopting a pay-as-you-go pension system increases the utility of the current generation without 

decreasing that of the future generation. In addition, the discounted value of national income in the 

future period will diverge to infinity. In this case, it is unnecessary to consider the burden on the 

pension plan; by definition, this type of economy does not require the careful consideration of an 

optimal public pension system. 
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Next, 
t

w  is assumed to converge to a positive value: 



lim
t

wt  w  0.  

This assumption is not considered to be a strict condition, because the price of goods in our model is 

normalized to be unity. 

 

Note: The following relationship holds: 0
t

 if and only if )1/(1 r
t

 , for t=1, 2, 3,….  We 

must consider the case 



1t /(1 r)  when 



 t  0 . 

 

Based on the above considerations, the following lemma is achieved. In this lemma, 
t

h  is the 

demand function of leisure (



ht ((1t )wt ,r)). 

 

Lemma 2: Suppose that the pension premium rate (
t

 , t=1, 2, 3,…) satisfies budgets (8) and (9), and 

that the No Ponzi Game condition holds as follows: 



lim
t

Bt1

(1 r) t1
 0                                                      (10) 

Then, if the government budget constraints (8) and (9) hold, the following also holds: 



 tI t

(1 r)tt0


 G                                (11)                                                       

where 



 t  t 
 t1 t

1 r
 and 



I t  wt (1 ht )Lt  (t=1, 2, 3,…). 

Conversely, if there are values (



 t 1, t=1, 2, 3,…) that satisfy (11), then there exist 
t

  and 
t

B  

(t=1, 2, 3,…) such that (8) and (9) are satisfied, and the No Ponzi Game condition (10) holds.  
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Proof: (Necessity) By rewriting (9), we obtain the following: 



( t1 t1)wt1(1 ht1)Lt1Bt1  twt (1 ht )Lt /(1 r)Bt /(1 r) 

Then, reorganizing by writing the total wage income of generation t as 



I t  wt (1 ht )Lt , we obtain 

the following: 



t1I t1  t1I t1Bt1 tI t /(1 r)Bt /(1 r)  

From the above equations with t=1, 2, 3,…, n and equation (8), we obtain the following: 













































































1

1

1

11

3

3
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2

2

2
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2
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2
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B

r

I
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B
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I

r

I

r

B

r

I

r

B

r

I

r

I

r

B

r

I

r

B

r

I

r

I
r

B

r

I
BII

BIG














                               (12) 

Adding the above results in:  



 tI t

(1 r)tt0

n
 G 

 n1In1

(1 r)n1


Bn1

(1 r)n1
 

In addition, the following also holds: 



 n1In1

(1 r)n1

 n1wn1Ln1

(1 r)n1
 n1w0L0

(1 gt )(1 nt )

(1 r)t0

n
  

Therefore, by Assumption 2 we know 1)1/()1)(1(  qrng
tt

. This implies that the above term 

converges to zero as n tends to infinity. Furthermore, by using the No Ponzi Game condition (10), 

the government budget constraint can be summarized as: 
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

 tI t

(1 r)tt0


 G  

 

(Sufficiency) The initial income transfer G  is given and we set 1
t

  (t=1, 2, 3,…) to satisfy 

equation (11). If 1
t

 , we can satisfy 



t  t t1 t /(1 r) by using 1
t
  and 0

t
 . If 1

t
 , 

we can define 
t

  so as to satisfy 1
t
  and 



t  t t1 t /(1 r), by choosing a sufficiently 

small positive value for 
t

 . 

Thus, we can obtain 
t

  and 
t

  for each period that satisfies )1/(
1

r
tttt



 , from the given 

value of 
t

 . In this case, we define 
t

B  as follows: 



B0 G  0I0 



Bt1  ( t  t )I t (1 r) t1I t1 (1 r)Bt ,  t=1, 2, 3,… 

Then, we obtain the following: 



G  0I0 B0 



 tI t  Bt 
Bt1

1 r
 tI t 

 t1I t1

1 r
,  t=1, 2, 3,… 

Therefore, the following also holds: 



 tI t

(1 r)tt0

n
 G 

 n1In1

(1 r)n1


Bn1

(1 r)n1
 

The above equation satisfies the government budget, including bonds, for each period. Then, 

because 



 n1In1 /(1 r)n1  0  holds if n  and 
t

  satisfies 



 tI t /(1 r)t

t0


 G , the No Ponzi 

Game condition is satisfied as follows: 
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

lim
t

Bt1

(1 r) t1
 0 ■ 

 

This lemma does not necessarily guarantee that the set of 



 t 
t0


, which satisfies (11), is non-null. 

Therefore, we propose the following hypothesis: 

 

Assumption 3:  



I t /(1 r)t

t0


 G  holds. 

 

By contrast, as shown below, the series 



I t /(1 r)t

t0


  is finite. 

 

3.  Maximization of Social Welfare 

By using the indirect utility of each generation, we define the social welfare function as follows: 







0210 ),(),,,(
t ttt rVW   , where 



0  L0  and 



t 
L0 (1 n j )j0

t1


(1 R) t
,  t=1, 2, 3,… 

Here, R represents the social time-preference rate. Applying the results from (7) from Section 2, we 

obtain the following: 

 





0210 )1(),,,(
t

m

ttt wW   , 



  u(c1(1,r),c2(1,r),h(1,r))  

In addition, 



I t wt (1 ht ((1 t )wt ,r))Lt wt (1 h(1,r))Lt , t=1, 2, 3,… 

allows us to regard 



I t  as an exogenous variable. Based on this setting, we can consider the 
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following problem:  

),,,(max 210
,,, 210




W


 subject to 



 tI t

(1 r)tt0


 G  

which addresses an optimal public pension system. By using 



 t  I t /(1 r)t  (t=1, 2, 3,…), the 

above problem is rewritten as follows:  

 





0,,,
)1(max

210
t

m

ttt w


 subject to 



 t tt0


 G                          (13) 

For this problem, we allow 



 t  0 . 

 

Assumption 4: There exists the solution 



 t
* 

t0



 in (13). 

 

This assumption requires R  to be an appropriately positive value. We analyze the case with 1m  

and 0m  in Section 3.1 and the case with 1m  in Sections 3.2 and 3.3. 

 

3.1 The case with 1m  and 0m  

First, 



V (t ,r) / t m(1 t )
m1wt

m
holds. As 



lim
 t 1

V ( t ,r) / t   , there are no t ’s satisfying 



 t
* 1.

2
 Therefore, the solution in (13) is an interior solution and must satisfy the following by 

                                                   
2 In the case of 0m , the utility value will be negative because of the monotonic and homogeneous characteristics 

of the utility function. Therefore, we must keep 0  and 0m in mind. A utility function of 0m , for 

example,   



(1)(is) Cs
11/ v

11/vts

n
   , 



 1 

can be used often in a pension simulation.  When 0m , it holds that 0  and 0m . 
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denoting the Lagrange multiplier as  : 



mwtt (1 t )wt 
m1

 t ,  t=1, 2, 3,… 

By canceling out  and , we obtain the following:
3
 



wt

wt1

 t (1 t )wt 
m1

 t1 (1 t1)wt1 
m1


 t

 t1

,  



1 t
*

1 t1
*

 (1 gt )
1 R

1 r











1/(1m)

, t=1, 2, 3,… 

This results in 



 t
*  t1

*  if and only if 



(1 gt )
1 R

1 r











1/(1m)

1                                  (14) 

In general, a comparison of two points in time t  and 't  ( 'tt  ), results in the following: 



1 t
*

1 t'
*


1 R

1 r











(t't )/(1m)

(1 g j )jt

t'1
                                           (15) 

These results signify the following concerning a comparison of generational burdens.  

 

Theorem 1 When 1m  and 0m hold, the following characteristics hold in a comparison of 

optimal generational burdens: 

 (i) Assume that there is no change in the wage growth rate. If R  is larger than r  ( r  is larger 

than R ), the larger the value, a higher (lower) net lifetime burden rate of the relative future 

generation (generation 't ), in comparison to the net lifetime burden rate of the past generation 

                                                   
3 Attention must be paid to the following equalities as well: 



wt

wt1


1

1 gt

 , 



 t

 t1


1 r

(1 gt )(1 nt )

 , 



t

t1


1R

1 nt
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(generation t ), is desirable. 

 (ii) Assume that the interest rate is equal to the social time-preference rate.  A relatively low net 

lifetime burden rate of the generation with the higher wage income increase rate is desirable.  

 (iii) The relative level of the net lifetime burden rate of each generation is not influenced by the 

population growth rate. 

 

The significance of (iii) is critical, as it asserts that a change in the population growth rate should not 

affect the relative burden of the public pension system compared with the net lifetime burdens for 

each generation. In addition, (ii) argues that the burden on the generation that has a low wage income 

increase rate should be increased and affirms that “a regressive system for pension burden is 

desirable.” 

 

Two items need to be noted concerning Theorem 1. First, it indicates that population growth does not 

influence the relative value of optimal burden rates. In other words, it implies that population growth 

may influence the absolute value of the burden. Second, Theorem 1 indicates that (i) holds if there 

exists an optimal solution; therefore, it cannot be determined at this point whether the inequality 

“ Rr  ” itself is consistent or not with a configuration of the problem. 
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The relative level of the net lifetime burden rate does not always clarify the degree of influence from 

the change in the population growth rate or explain what the results of (i) reveal about optimization. 

Let us thus pursue an explicit form of solution in order to clarify these factors. We know that (15) 

holds for t=1, 2, 3,…. Then we obtain the following: 

 



1 t
* t (10

*),  



t 
1

(1 g j)j0

t -1


1 r

1 R











t /(1m)


w0

wt

1 r

1 R











t /(1m)

 

Here, 1
0
 . Using the constraints of an optimized pension plan, we define α as follows: 



   t t

t0



  

In this case, we have 



 t

t0



 G   t

t0



 (1 t
*)   t

t0



 t (10
*) 

and, therefore, we have the explicit solution of the optimal burden: 



0
* 1

 j G
j0





                                                       (16) 



 t
* 1t

 j G
j0





   , t=0, 1, 2, 3,…                                      (17) 

At this point, we assume that values for   and  j
  exist. Subsections 3.1.1 and 3.1.2 

consider the existence of   and  . By setting )1/(1))1/()1(( mRrx  , we can obtain:  

























 





  2

0

1

0

0

1

1

1

1

1

ii

j

jii

j

j

ii

x
r

n
x

r

n

n

I

n


 


























 


i

j

jji

j
ii r

ng

rn

I

n 00

jj0

1

)1)(1(

1

)n)(1g(1

1


 

Compared with the corresponding entries, we find: 
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

1 n j

1 r
x t

j0

t1

 
(1 g j )(1 n j )

1 r


j0

t1


1 n j

1 r
x t  (1 g j )

j0

t1
















j0

t1

  

We assume for each t = i + 1, i + 2,…  



x  (1 g j )
j0

t1
















1/ t

 (1 g t ) 

Here, 



g t  represents the average growth rate of t years of real wages. In this case, we obtain the 

following: 



0 


ni




ni

 

Specifically, assume that x is not large and that the growth rate of wage income for generation i + 1 

and later is high.  Then, an increase in 
i

n  enlarges   more than it enlarges , which boosts 



( G) / . Accordingly, the burden rate is comprehensively reduced. The following theorem 

summarizes these results: 

 

Theorem 2 When 1m  and 0m  hold, the following characteristics hold for the net lifetime 

burden rate of each generation. 

(iv) The optimal net lifetime burden rates of the public pension system for each generation are 

expressed in equations (16) and (17). 

(v) Let



x  ((1 r) /(1R))1/(1m)and 



g i1  be the average real wage growth rate from period 0 to 

generation i. If 



x 1 g i j , j = 1, 2, 3,… hold, the growth rate increase for generation i will reduce 
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each net lifetime burden rate. 

   

Theorems 1 and 2 allow us to perform a relative generational comparison of an optimal pension 

system with the characteristics of the net lifetime burden rate. Next, we shall examine movements of 

the optimal pension system through time. 

 

3.1.1 Value of  j j
  

Here, we consider the value of 



 jj
  which appears in equations (16) and (17). According to 

Assumption 2, we have 













 q

Lw
qqLw

r

I

r

I
I

j

j
1

)1(
)1(1

002

00

0
2

21
0   

and thus we know



 jj
 G  is a finite number. 

 

3.1.2 Values of   and 
t

  

As the solution 



 t
* 

t0



 satisfies budget (11), 



 j G 
j0



 lim
t

(10
*)  j j

j0

t

  

is valid and 1*

0
  holds. Suppose 1*

0
 . The right-hand side of the equation is zero. As the 

left-hand side is a positive value, this is a contradiction. Accordingly, 1*

0
  must be valid. In 

addition, when 



   tt t


 , the right-hand side becomes an infinite value and contradicts 
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Assumption 2. Thus, 



  must also be valid. 

Next, we confirm the conditions that validate  . To begin with,  



  t t  I0 1
1 r

1 R











t /(1m ) 1 n j

1 rj0

t1


t1


















t0



  

Now, putting 



x  ((1 r) /(1R))1/(1m), 



a0 1 , 



at  (1 n j ) /(1 r)
j0

t1
 , t = 1, 2, 3,… we can 

rewrite the above equality as follows:  

 2

210

0

xaxaa
I


 

The right-hand side of this equation is a power series. According to Cauchy–Hadamard’s theorem, 

the convergence radius k of this power series can be expressed as:
4
  



1

k
 limsup

t

| at |1/ t
 

In addition, the inequality 

q
r

nn
a

t

t

tt

t 











 

/1

10/1

)1(

)1()1( 
 

holds for a sufficiently large t.
5
 Therefore, 



k 1/q(1) . Two cases can be distinguished as follows: 

(A)  if kx  , then 



 . 

(B)  if kx  , then 



0 . 

The possibility of  , which was excluded from Theorem 2. This indicates that (A) above must 

also be eliminated. Furthermore, we have 

                                                   
4 See Yoshida (1965, p. 15). 
5 We are grateful to Ryo Ishida for pointing out that the sufficiently large t restriction is essential. 
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)(

)/(
2

2100

0




xaxaaI

xww t

tt




 

Assuming wt converges to w, and using the results from (B), we have three differing cases of 

parameters that determine the temporal value of an optimal pension, 

    (case 1) If 1 xk , then 



t / 

    (case 2) If x1 ，then 



 t /  w(1 h) a j

j0










1





 

    (case 3) If 01  x , then 



t / 0 

By expressing the average value of period t as 



n t  for the change in the population growth rate from 

period 0 to t–1, we obtain the following: 

t

t

t nnn   1))1()1(( /1

10  , t = 1, 2, 3,… 

If tn


, t = 1, 2,…  converges to 


n , we obtain the following: 



k 
1 r

1 n 


1

q
 

 

3.1.3 Value of 
*

t  

The burden rates for each generation in (case 1) to (case 3) above are described below. r is the 

market interest rate, which thus expresses the market time-preference rate. Accordingly, x is the ratio 

of the market to social time-preference rates. 

Let us consider (case 1) 1 xk . Here, the following apply: 
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0*

0
 , 



 ttt : , 



 t
*  0 , 



lim
t

 t
*   

Since 



x1m  (1 r) /(1R) , 1x  indicates Rr  . At this point, the social time-preference rate is 

lower than the market time-preference rate and the market may be more short-sighted than society. 

In this case, the results show that it is preferable to place a larger burden on the current generation 

and reduce the burden on future generations by offering subsidies. 

 

Next, let us consider (case 2) 1x . This case implies the market and social time-preference rates 

coincide and that society trusts the market. The burden rate 
*

t
  for each generation is as follows: 



0
* 1

(1 n j )(1 g j )

(1 r)
G / I0j0

i1


i1




(1 n j )

(1 r)j0

i1


i1




 



 t
* 1

1

(1 g j )j0

t1


(1 n j )(1 g j )

(1 r)
G / I0j0

i1


i1




(1 n j )

(1 r)j0

i1


i1




 

Based on this, according to the cases 0
t

g , 0
t

g , or 0
t

g , the following  



 t
*  t1

*
, 



 t
*  t1

*
, 



 t
*  t1

*
 

must hold respectively. Furthermore, 



 t
*
converges to a positive value 

* . 



 * 1
1

(1 g j )j0




(1 n j )(1 g j )

(1 r)
G / I0j0

i1


i1




(1 n j )

(1 r)j0

i1


i1



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Finally, let us consider (case 3) 01  x . This indicates that the social time-preference rate is higher 

than that of the market and that society is more short-sighted than the market. The burden rate 



 t
*
 

for each generation is as follows. At this point, 



 t
* 1 as 



t  

and it is thus preferable to place the burden on future generations. 

 

Theorem 3 When 1m  and 0m  hold, the following characteristics hold for the time series 

value of the optimal burden rate for each generation. 

(vi) When the market time-preference rate exceeds the social time-preference rate, a negative value 

is preferable for the net lifetime burden rate after a certain generation in order to increase future 

consumption. 

(vii) When the market and social time-preference rates match, the optimal burden rates will converge 

at a certain value.  

(viii) When the market time-preference rate falls below the social time-preference rate, a nearly 

100% burden rate is preferable for future generations. 

 

Of the above results, (vii) can be considered to extend the tax smoothing theorems proposed by 

Barro (1979, 1999) and Bohn (1990). First, their research assumes rR  , which is equivalent to the 
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assumption in (vii) of x = 1. Second, G is assigned to the initial period in the current model, which is 

completely plausible in this discussion even when G is considered to be the total public expenditure 

of each period (discounted value). Finally, if the limit rate of burden 



1 (  j G) w(1 h) a jj0


 

1

  is a 

positive value and time t is sufficiently large, the value of *

t
  lies in a small positive interval, 

signifying burden smoothing. 

 

3.2 The case with 1m  

Until this subsection, the constraint proposed in equation (13) was 



 t 1, but here we presume a 

series of t for 



0  t 1. First, let us consider the case in which 1m . Here, we define the 

following: 



bt 
twt

m

 t

, t = 1, 2,… 

Let 



 t , t = 0, 1, 2, 3,… be burden rates satisfying constraint (13). We also assume 



0  t 1 and 



0  t' 1 for 
t

  and 
t'

 , respectively. Thus, without any loss of generality, we can assume 



bt (1 t )
1m  bt' (1 t')

1m ( 0)  

holds. At this time, we assume a series of sufficiently small positive numbers for 0 , based on 

the following: 



˜ t  t 
 t '

 t



˜ t '  t ' 
˜ j  j if j  t, t 













                                                        (18) 

This operation is called ε-conversion. Then, because  
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

 t
 ̃t  t'

 ̃t'   t  t 
 t'

 t










  t'  t'    t t  t' t' ,  



˜ t , j=0, 1, 2, 3,… satisfies the constraint in (13). According to Taylor’s theorem, some form of 

10   exists, resulting in the following: 

})1()/1({)),,(),
~

,
~

((
1 1

ｩｩ
1

ｩtｩ1010

  m

tt

m

tttt bbmWW 


  

Because we already have 1m  then the relation 

    



bt' (1 t' )m1  bt' (1 t')
m1  bt (1 t )

m1  bt (1 t  t' / t )
m1

 

holds for a sufficiently small 0 . Therefore, since “



  0” holds in this case, we also obtain 

0),,(),
~

,
~

( 1010    WW  

The solution in (13), 



 t
* , t = 0, 1, 2, 3,…, must satisfy

6
: 



#{i |1 i
*  0} 1 

This indicates that, with one possible exception, the optimal net lifetime burden rates are either 1 or 

0, implying that the solution is an end-point solution. 

 

Theorem 4 When 1m holds, generational optimal burden rates *

t
 , t = 0, 1, 2,…, with the 

possible exception of one, are either 1 or 0. 

 

3.3 The case with 1m    

                                                   
6 Let A be a set. The symbol “#A” represents the number of elements in the set A.  
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Next, we presume a series of t for １
t

0  . Define 



bt 
twt

 t

, t =0, 1, 2,… 

Below, we study this case from two perspectives: Rr   and Rr  . 

 

3.3.1 When Rr   

The relation 



twt

 t


L0

(1n j )
j 0

t1


(1R )t
w0 (1 g j )j0

t1


I t /(1 r) t


1 r

1 R











t
1

1 h
 

holds. In other words, tttt wb  / , t=0, 1, 2,… is strictly monotonic. Through monotonic 

increases (decreases), the result diverges to infinity (converges to zero). In addition, the fact 

1)1/()1)(1(  qrgn
tt

 assumed in Assumption 2 leads us to 



 t   t1

(l  nt1)(1 gt1)

1 r
  t1 

Accordingly, t , t = 1, 2,… is strictly decreasing. At the same time, 0lim 


t
t

 . 

 

Lemma 3 Let 
t

 ; t=0, 1, 2,… be a series of burden rates that satisfy the budget 



 t t G
t1


 . If 

the relation 



bt 
twt

 t

 bt' 
 t'wt'

 t'

, 10
t
 , 10

t'
  

holds for two distinct periods t and t’, then welfare will increase as the   of  -conversion is 

increased until either 



 ̃t  0or 



 ̃t' 1 holds. 
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Proof Assuming 
t

 ; t = 0, 1, 2,… satisfies the budget 



 t t G
t1


 , t and t’ can be expressed by 

    



bt 
twt

 t

 bt' 
 t'wt'

 t'

, 



0  t 1, 



0  t' 1 

Because 0' tb , we define 



˜ k ; k =0, 1, 2,… according toε-conversion. These 



˜ k ; k =0, 1, 2,… 

satisfy the budget in the same manner as previously explained. We also obtain 

 



twt (1-  ̃t ) t'wt' (1-  ̃t') - {twt (1- t ) t'wt' (1- t')}  



 twt ( t -  ̃t )t'wt' ( t' -  ̃t')  



 t' (bt - bt')  0  

Therefore, welfare will increase as   increases until either 



 ̃t  0  or 



 ̃t' 1 holds. 

 

According to Lemma 3, in order to maximize welfare, the range of burden rates to be studied should 

be limited to generations that have a burden rate of either 1 or 0, with one possible exception. 

According to Assumption 3, for any natural number n,  



G   t 
t0

n

  t

tn1



  

holds. The sets of natural numbers U and Z together with number 


t , are defined below. 

First, we look at 
t

b ; t=0, 1, 2,… that is monotonically increasing: 



I  n  N |  t G
t0

n

  

I ≠φ is self-evident. Let the first element of Set I be 



t . U and Z are defined as follows: 
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},,1,0{ tU  , },2,1{  ttZ . 

Next, we examine 
t

b ; t=0, 1, 2, 3,… that is monotonically decreasing: 



J  n  N |  t G
tn



  

As I ≠φ, we denote the last element of set J as 



t . The last element exists since a sequence, 



sn   ttn


 , n=0, 1, 2,…, is monotonic and converging to zero and since Gs 

0
. Z and U are 

defined as



Z  {0,1,...,t 1}and 



U  {t ,t 1,...}, respectively. 

The following then holds for the U and Z defined above:  

if Ut and 



t' Z  then 



bt  bt'                                               (19) 

if 



t U \  {t }, then 



bt  b
t 
                                                    (20) 

 

Lemma 4 Using the U, Z, and 


t  obtained above, we define  



ˆ j  0,                if Zj  

1 ,               if 



j U \ {t } 




G   hh U \  {t }



 j

,     if 



j  t  

This is the solution for equation (13). 

 

Proof for Lemma 4 

Step 1 



( ˆ j ) j0
  satisfies the budget constraint. 
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Based on the definitions of U, Z, and 


t , 



 j G 
j U

  j

j U \  {t }

  

holds. Therefore, the definition of 



ˆ  t  results in: 



G   j 
ˆ tj U \  {t}

  t , 10 t

^

  

Accordingly, 



( ˆ t ) j0


 satisfies the budget constraint. 

 

Step 2 Assume the solution to welfare maximization is 



 t
*
and t=0, 1, 2, 3,…. If 



P  {t | t
*  0} , 

then either 



PU or 



U  P holds.  

From Lemma 3, we know that 



( j
*) j0


 has a value of 0 or 1, with one possible exception. We 

assume that t and Nt '  exist and that 



t U \  P and 



t' P \  U  are valid. Here, since 



t U  

and 



t' Z , we obtain the following using equation (19): 

tt
bb 

' , 



1 t'
*  0, 



 t'
*  0  

Welfare can be increased by focusing on t and t’, and creating 



 k
*
; k = 0, 1, 2,… to 



˜ k
*
; k = 0, 1, 

2,…according toε-conversion. This results in a contradiction. Accordingly, the following must be 

valid:  



PU  or 



U  P 

 

Step 3  



PU holds.  
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If U = P then UP  holds.  Then, it suffices for us to examine the case 



U  P and 



U  P. 

   It is clear that 



 t 
ˆ t tt U \  {t }

  ˆ t t G 
tU

  t
* ttP

                                 (21) 

A certain Ut  exists and satisfies 



1 ˆ t  t
*  0 . When 



t' P \  Uholds, then Ut  and 

Zt ' , and thus we obtain the following using equation (19): 



bt'  bt  and 



1 t
*  0 and 



1 t'
*  0 

According to Lemma 3, this contradicts optimization. 

 

Step 4  P = U 

Suppose UP  . The case 



PU \  {t } leads us to 



 t
* t G

tP
 . This is also a contradiction.  

Then 



t  P.  Furthermore, if }{\ tUP  and Ut  hold for some t, we obtain 



 t
*  0  and 




t 
*  ˆ 

t . When considering 



t , 



t  



b
t 
 bt , 



1
t 
*  0 and 



 t
*  0  

is confirmed using equation (20). According to Lemma 3, this contradicts optimization. 

These steps indicate 



 t
*  ˆ t , t = 0, 1, 2,….■ 

 

3.3.2  When r = R 

The following holds: 
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

twt

 t

 b; t = 1, 2, 3,… , where b =1/(1-h).  

Let 



 t , t = 0, 1, 2,… be arbitrary burden rates satisfying the constraint 



 t t G
t0


 .  We obtain 

the following result: 











0

t

0

t10 )1()1(),,(
t

t

t

tt bwW    



 b t 
t0



 b t t  b
t0



  t bG
t0



  

This implies social welfare reaches a constant level. Accordingly, regardless of the burden rate used, 

social welfare does not change. Finally, we summarize the above results into one theorem. 

 

Theorem 5 If 1m , the optimal net lifetime burden rate shows the following characteristics. 

When the social time-preference rate and interest rate match ( rR  ), any resulting burden rate is 

optimal. When the social time-preference rate and interest rate differ ( rR  ), it is desirable to 

satisfy the budget by assigning a burden rate of zero to the generation that has the highest current 

income value 



twt / t  compared with its contribution to welfare (when the burden rate is zero) and 

a burden rate of 100% to the generation that has the lowest such income, while sequentially 

increasing the rate. 

 

4.  Application to a Funded System 

Until this section, we have focused on the pay-as-you-go approach that is used to manage the 
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Japanese pension plan system. In this section, we consider the consequences of introducing a funded 

system into the current structure. 

 

First, the household budget constraint is depicted as follows: 

)1()1(
1 ttttt

hwsc   , 



c2t1  (1 r)st  (1 r dt1) twt (1 ht )  

Although pension assets are represented by )1(
ttt

hw  , this system only allows a pension to be 

received from the principal and interest after a certain burden amount 



dt1 twt (1 ht ) has been 

deducted. These various factors can be summarized in one budget using the following expression: 



c1t 
c2t1

1 r
 1

 tdt1

1 r









wtht  1

 tdt1

1 r









wt  

 

Define 



t  tdt1 /(1 r) . The parameter 



 t  is a substantial net lifetime burden rate of the 

public pension. For a given r, t
w , and t

 , a generation maximizes its utility by selecting t
c

1 , 12 t
c , 

and t
h . In other words, by dropping the index, the expression becomes 

max 



u(c1,c2,h) , subject to 



c1 
c2

1 r
 1 w h  1 w . 

Thus, this maximization problem is similar to problem (3) in the pay-as-you-go pension system. The 

difference between the pay-as-you-go and funded systems lies in that of government budget.  The 

government budget in funded system can be financed by two agencies, namely government bonds 

agency and pension funds agency. The process of the former works as follows: 
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

G0  B0 



(1 r)Bt1  Bt  dt t1wt1(1 ht1)Lt1,  t=1,2,3,… 

First, in period 0 government bonds 0
B  are issued and the amount of 0

G  is transferred to the 

pension agency. From this point onwards, new bonds are issued up to the amount Bt and the pension 

agency uses the returns on these funds 



dt t1wt1(1 ht1)Lt1 as income to pay the principal and 

interest from the previous bond issuance 



(1 r)Bt1 . 

On the other hand, the pension agency’s budget is shown in the following expression, 



P0  A0 G0  0w0(1 h0)L0  



(1 r) t1wt1(1 ht )Lt1 At  (1 r)At1 twt (1ht )Lt , t=1, 2, … 

In period 0, we assume that the government pays pension benefits 0
P  and funds 0

A  using 0
G  

from the government bond financing program and the revenue derived from pension premiums 

)1(
000

hw  . In subsequent periods, the pension agency incurs expenditure in the form of pension 

benefits and investment profits, which it must repay to the government, as well as asset returns 



(1 r  dt ) t1wt1(1 ht ) dt t1wt1(1 ht ) At , which it pays from the asset investments and 

pension premiums 



(1 r)At1  twt (1 ht ) . 

 

Combining these budgets into a single undifferentiated sum, we have the following: 



P0  A0  B0  0w0(1 h0)L0  
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

(1 r  dt ) t1wt1(1 ht1)Lt1 At  (1 r)Bt1 

                     



 (1 r)At1 twt (1 ht )Lt Bt  t=1, 2, … 

We can rewrite the expression to show the net debt as 



ˆ B t  Bt  At , t = 0, 1, 2,…, which results in  



P0 
ˆ B 0  0w0 (1 h0)L0 



(1 r  dt ) t1wt1(1 ht1)Lt1  (1 r) ˆ B t1  twt (1 ht )Lt  (1 r) ˆ B t  


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which finally results in  



 tI t

(1 r)t
t0

n

  P0 
 n1In1

(1 r)n1


ˆ B n1

(1 r)n1  

This is the same equation as obtained in the proof Theorem 2. And thus we know that the same result 

as in Theorem 2 holds in the funded system.  Accordingly, the argument put forward earlier can 

also be applied to a funded system. 

 

5.  Conclusion 



38 

 

This paper used a two-period OLG model in order to put forward a theoretical design for an optimal 

public pension system based on a partial equilibrium analysis. Household preferences only depended 

on consumption and leisure. The following findings suggest that an optimal public pension system 

shares similar characteristics if the utility function of households is homogeneous of degree m  with 

respect to consumption in the working and retired periods. First, differences in the population growth 

rate do not affect the relative level of the optimal net lifetime burden rate of each generation. Second, 

if 0m  or 1m , the optimal public pension system can be expressed explicitly. Thus, the 

difference between the market time-preference rate and social time-preference rate provides a crucial 

insight into the optimal burden rate of each generation. 

One limitation of this study is that we make assumptions based on certain preferences, such as 

homogeneity. The presented findings would be more worthwhile if it were possible to show these 

results more generally. We will carry out this task in subsequent research. 
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