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Abstract

Time instability in factor loadings can induce an overfitting problem in forecasting
analyses since the structural change in factor loadings inflates the number of principal
components and thus produces spurious factors. This paper proposes an algorithm to
estimate non-spurious factors by identifying the set of observations with stable factor
loadings based on the recursive procedure suggested by Inoue and Rossi (2011). I
found that 51 out of 132 U.S. macroeconomic time series of Stock and Watson (2005)
have stable factor loadings. Although crude principal components provide eight or
more factors, there are only one or two non-spurious factors. The forecasts using
non-spurious factors significantly improve out-of-sample performance.
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1 Introduction

In macroeconomic and financial forecasting analyses, accounting for time instability or struc-
tural change is an important issue.! Forecasting models often exhibit poor out-of-sample
performance despite an excellent in-sample fit either when they are not stable over time or
when they include irrelevant regressors, i.e. overfitting.? Factor models are introduced to
avoid this overfitting problem when many predictors are available, however, how to account
for time instability in factor models is still an open question. Stock and Watson (2002) and
Bates et al. (2012) argue that as far as the additive instability component in factor loadings
is 0,(1), a common factor space can still be consistently estimated. These results imply that
researchers can use a dynamic factor model in forecasting exercises without worrying too
much about time instability. On the other hand, a growing body of empirical research finds
that many factor or factor-augmented models yield better performance when coefficients are
susceptible to time instability (for example Del Negro and Otrok, 2008; Mumtaz and Surico,
2012). An important ingredient of this discussion is that if factor loadings are subject to
time instabilities, then that model can be written as another factor model with a larger
number of factors having time invariant loadings. Thus, a newly defined set of factors will
include the original factor space as well as the so-called spurious factors (Stock and Watson,
2005). A primary concern is that a model with too many regressors overfits the data and its
forecasting performance deteriorates. Also, other literature emphasizes interpretation of the
factors as an economically meaningful series in the model. Indeed, many macroeconomists
have long considered that few economically meaningful unobservable factors exist in the
economy (See Sims and Sargent, 1977, Boivin and Giannoni, 2006, and Yamamoto, 2012,
for example). Considering this perspective, one also needs to use an exact number of factors
for effective economic analysis.

Keeping this caveat in mind, this paper tackles the question why so many factors exist
in the U.S. economy, raised by Stock and Watson (2005) who found that the information
criteria proposed by Bai and Ng (2002) fit seven dynamic factors and nine static factors in
U.S. macroeconomic time series. To this end, I focus on the fact that time instability in

factor loadings inflates the number of principal components and thus produces spurious fac-

1See Rossi (2011) for a comprehensive survey of recent discussions on forecasting under instability. Stock
and Watson (1996) and Rapach and Wohar (2008), among many others, show major empirical examples.

2In practice, the two problems happen at once. Rossi and Sekhposyan (2011) propose a method to
decompose the difference of in-sample and out-of-sample forecasting performance into time-instability and
overfitting.



tors. I first consider recently proposed structural change tests for factor loadings in dynamic
factor models.® As far as the author knows, a formal test for structural changes in factor
loading was first proposed by Breitung and Eickmeier (2011) (this test is referred to as BE
hereafter) in the context of principal components estimation. Their test is based on the
structural change tests of Andrews (1993) and Andrews and Ploberger (1994) but uses the
factors estimated by principal components under the null hypothesis, that is, they assume
the loadings other than those tested are all stable. Indeed, the test can suffer from serious
size distortions if some loadings exhibit structural changes. This is because the principal
components’ factor estimates can include spurious factors whose pseudo-true factor loadings
exhibit some instabilities. Hence, conducting the BE test on the factor loading of every
observation never provides the set of observations with stable factor loadings. Subsequent
literature provides a structural change collectively test for the factor loadings of all observa-
tions or a subset thereof. For example, Han and Inoue (2012) propose a test (HI hereafter)
that equivalently investigates the stability of the second moments of principal components.
Chen, Dolado, and Gonzalo (2012) suggest a stability test (CDG hereafter) for the regres-
sion coefficients of the first principal component on the remaining principal components.
However, when only a small portion of observations in the hypothesis have unstable factor
loadings, both tests exhibit some power loss. Moreover, conducting a collective test on load-
ings of all possible subsets of observations is infeasible. Hence, what is apparently needed is
a consistent estimator of the non-spurious factors.

This paper proposes an algorithm to estimate non-spurious factors by identifying the
set of observations with stable factor loadings. The algorithm is based on the recursive
procedure suggested by Inoue and Rossi (2011). They proposed a method to identify the
set of stable parameters in standard parametric models where all explanatory variables are
observed. However, the method proposed in this paper updates the factor estimates in every
step to overcome the above problems in existing structural change tests. What makes it
feasible is that one can utilize factor estimates which are the closest to the non-spurious
factors at every step in the procedure. I then applied this procedure to estimate the non-
spurious factors in the U.S. macroeconomic time series used by Stock and Watson (2005). As
a result, I found that 51 out of 152 series have stable factor loadings. The factor loadings for
the “fast variables” such as housing and financial variables are less likely to be stable than

those for the “slow variables.” Although crude estimates provide eight or more non-spurious

3See Perron (2006) for a review of recent theoretical developments of structural change analyses although
it does not cover structural change problems in factor models.



factors, there are only one or two non-spurious factors in the U.S. macroeconomic time series.
Most importantly, the non-spurious factors significantly improve out-of-sample forecasting
performance over forecasts using all the crude factors, especially with long horizons. This
result highlights the usefulness of the non-spurious factors in forecasting analyses.

The rest of the paper is structured as follows. Section 2 provides the model and the exist-
ing structural change tests. Section 3 discusses the problems inherent in these tests. Section
4 proposes an algorithm to identify the set of stable observations and investigates its proper-
ties via Monte Carlo simulations. Section 5 applies this method to the U.S. macroeconomic

time series used by Stock and Watson (2005) and Section 6 concludes.

2 Models and test statistics

Consider a dynamic factor model* with r factors applied to the data of the time dimension
T and the cross-sectional dimension N. The model consists of the first Ny (1 < Ny < N)

observations with stable factor loadings so that
it :)\ioft+uit fOI‘t: 1, ,T (1)

for s =1,---, Ny, whereas the remaining observations may have unstable factor loadings. I
allow for any types of time variations of factor loadings considered in the standard literature.’
For example, consider a one-time structural change at an unknown time 7;, common to all ¢
so that:

it ft + i fort=1,---,T,
e 7 2)
Xoft+uy fort=T,+1,---,T
for i = No+1,---,N. Let x;; be an observation of the ith individual at time ¢, f; be a

r x 1 vector of unobservable factors, \;; (j = 0,1,2) be an 1 x r vector of associated factor

loadings, and wu;; be idiosyncratic errors. Then, a matrix representation of the above models

is available as follows. Let X = [x1, -+ ,xy] be a T x N matrix where z; = [z, -+, 27| s
a T x 1 vector of the ith observation, Ag = [}y, - - - , Ny,0] be a r x Ny matrix of stable factor
loadings, and \; = [Ny, ,1,, - > Ay;] be  x (N — Np) matrices of the factor loadings at the

regime j (j = 1,2). As pointed out in the literature, a model with a structural change in

the loadings (1) and (2) can equivalently be written as another factor model with a larger

4This is alternatively called a static factor representation of a dynamic factor model.
5In other words, any types of time variations are admitted as long as Assumptions 1 and 2 in Appendix
A are satisfied.



number of factors such that

v Fi Oyxr Ao A1 L
Fy Py Orx(N-Ng) A2 — A1

where Fy = [f1,-- -, fr,]" is a T, x r matrix and Fy = [fr,41,- -, fr] is a (T'—=T},) x r matrix.
Since F° = [F|, F3]' = [f1,--- , fr| are the factors in the original model (1) and (2), I call
F* = [0,x7,, F3]' the spurious factors in line with Stock and Watson’s (2005) terminology
and F° the non-spurious factors. When the loadings have other types of variations, a similar
logic goes through and non-spurious factors will show up.

The goal of this paper is to obtain an estimate of the non-spurious factors F° with the
correct number, or in the most thrift form. This can be achieved by using the principal
components of the stable observations ¢ = 1,--- , Ny, if one can sort the observations and
knows Ny. However, researchers have no a priori knowledge on whether one particular
observation follows (1) or (2). To this end, I first consider the following class of hypothesis

testing procedures which pertains to the factor loadings of one particular observation,
HO : /\il = )\2‘2 and H1 : )\il 7é Aig.

For instance, Breitung and Eickmeier (2011) consider structural change tests of Andrews
(1993) and Andrews and Ploberger (1994) using the principal components factor estimates.
They show that the tests have standard asymptotic distributions and exhibit a good size.
They also show that the tests have a good power as T increases. However, these results are
obtained under the assumptions considered in Bai (2003) which include a condition that the
factor loadings other than those tested are all stable.’

Subsequent literature proposes tests that draw an inference on structural changes in the
factor loadings of all or a subset of the observations collectively and I call these collective

tests. Under the model (2), the hypotheses are formulated as
H() . )\il = /\Z'Q for all 7 and H1 . /\il 7é /\Z‘Q for some 3.

These hypotheses can also be tested by the BE test by pooling the individual test statistics

for observations in the hypothesis. However, this approach will be problematic when the

6This is a device commonly used in developing many structural change tests. Kim and Perron (2009)
and Perron and Yamamoto (2012) show that the tests evaluated in this framework may lose power when the
magnitudes of structural changes are moderate or large, although they behave well under the null hypothesis
or under an alternative very close to the null region.



individual test statistics exhibit correlations, that is, when there are cross-sectional corre-
lations in the idiosyncratic errors. Better tests—the HI and CDG tests—are independently
proposed by Han and Inoue (2012) and Chen, Dolado, and Gonzalo (2012), respectively. The
HI test is based on the second moments of the principal components over time and the CDG
test formulates the problem as the stability of the regression of the estimated first principal
component on the remaining principal components. The construction of the above three test
statistics is explained in Appendix B.

These tests formally specify a one-time structural change in the factor loadings at an
unknown timing, however, they are supposed to have non-trivial power even when the factor
loadings have other types of variations. For example, the asymptotic properties of the
SupWald structural change test when the parameters follow multiple breaks, random walk,
and infrequent breaks were studied by Perron and Yamamoto (2012). They show that the
tests are consistent and have standard power functions in finite samples. Hence, this paper
considers not only a one-time break but also multiple breaks and random walk parameters. In
empirical studies, modeling such parameter processes would also be a more popular strategy

than only a simple one-time break.

3 Size and power of existing tests

This section investigates the finite sample properties of the above three tests for structural
changes in the factor loadings. I consider the following data generating processes with two

factors and time-varying factor loadings:

Tip = Aitft + U,
fir = pifi—1+es
for = pafor—1+eas,

with Az = [A1ir A2it]. The errors wy, ey, and ey are generated by the independent standard
normal distributions, and p; and p, are set at 0.4 and 0.0. I assume that the first Ny loadings
are stable so that ;i = Ajo ~ U[0,b] independently for ¢ = 1,---, Ny and for all £. The

remaining N — Ny loadings have the following time variations:”

"The following processes do not include the one described in (2), that is, a one-time break at a date
common to all ¢. It has been found that the BE test does may lose the power when the breaks happen at
the same time and their magnitudes are large. This phenomenon was overlooked in the original paper and
may require further investigations.



DGP-1) One-time structural change:

{ Njit—1 + U[0,0] if t = T7,
gt —

Ajit—1 otherwise,

where T? = |, T | with p; ~ Ule, 1 —¢] and I set € as equal to the truncation size considered
in the structural change tests to ensure that the model exhibits a structural change in the
permissible dates.

DGP-2) Multiple structural change:

A {A +U.B] =TT TR T
gyt =

Ajit—1 otherwise,

where TP™ = | u"T'| with p" ~ Ule,1 — €] and p! < p? < pd < pf.
DGP-3) Random walk:

)\j%t = )\j}i,tfl + Uj,i,ta Ujit ~ N(O, b/lOO)

I change the magnitude parameter b from 0 to 10 and report the number of factors
estimated in the above DGP as well as size and power of the tests at the nominal 5%
level based on 5,000 replications. After trying several cases of various sample sizes, I found
that the qualitative results remain the same and hence, report the case of T" = 100 and
N =100, whereas I choose Ny as either 0.3V, 0.5N, or 0.7N. I first consider the number of
factors. My conjecture is that this number is overestimated in the presence of breaks since
the model now exhibits spurious factors. The number of factors is selected to maximize the
information criterion (/C,2) proposed by Bai and Ng (2002) with the upper bound at 12.
The mean, median, and mode of the estimated numbers over the replications are reported.
I next consider the properties of the existing structural change tests. I apply the BE test
for stable loadings of the first observation to consider the size (labeled “stable loading”) and
unstable loadings of the (Ny + 1)th observation to evaluate the power (labeled “unstable
loadings”). In doing so, I compare the following two methods. The first method estimates
the number of factors and the associated factors using all the observations. Since this testing
procedure is practical, I call it a “feasible” test. The second method implements the same
test, but using the number of factors and the associated factors estimated based solely on
the observations with stable factor loadings (i = 1,---, Np). Since this factor estimation
procedure utilizes unavailable information, I call it an “infeasible” test. This version is
unrealistic, but matches the framework considered by Breitung and Eickmeier (2011) that

considers all loadings other than the ones tested as stable. I also investigate the properties of



two existing collective tests—Han and Inoue (2012) and Chen, Dolado, and Gonzalo (2012).
For either of these, the “feasible” test gives the results for loadings of all N observations,
that is, including both Ny stable and N — Ny unstable loadings. The “infeasible” test is
solely for the unstable loadings xz; for i = Ny + 1,--- ,N. Again, since the latter method
uses unavailable information that the tested loadings are all unstable, they are unrealistic.
However, the infeasible method is expected to provide a higher power than the feasible
method.

The results are summarized in Table 1. First, the number of factors inflates from the true
number two as the magnitudes of the breaks increase in any designs of the parameter process.
This is consistent with the results of Breitung and Eickmeier (2011) and my conjecture in
the previous section. Second, the size of the BE test is close to the nominal level if the
factors are estimated based only on the stable observations ( “infeasible”), however, it suffers
from significant size distortions when the factors are estimated based on all the observations
(“feasible”). It implies that the BE test concludes that the truly stable loadings are unstable
when the other observations include unstable loadings. Third, the BE test has a good power
when the factors are estimated based on the stable observations, however, the feasible test
shows a power loss. Finally, I consider the two collective tests. Both tests have a good power
when the set only includes unstable factor loadings, however, the power decreases when the
portion of the unstable observations is small. These findings are robust to the sample size
and parameter process, as shown in every case in Table 1. Therefore, the simulation reveals
the difficulties of applying existing methods to obtain the non-spurious factors. What one
needs is the information on the set of observations with stable loadings that makes these

tests work appropriately.

4 Estimating non-spurious factors

Inoue and Rossi (2011) propose a recursive procedure to estimate the set of stable parameters
among the ones attached to the observable variables in linear models with prespecified prob-
ability. They use this approach in a dynamic general equilibrium model to find the source of
instabilities among a large number of parameters loaded in a macroeconomic model. Their
algorithm starts with an a priori assumption that all parameters are stable or in the stable
set and then conducts a structural change test for the null hypothesis that all parameters
are stable in the stable set. If the test rejects the null, then the algorithm calculates the
p-values of the test for every individual parameter in the stable set allowing for the remaining

parameters to be unstable. This procedure moves the parameter with the smallest p-value



from the stable set to the unstable set. This continues until the structural change test for
all the parameters in the stable set becomes insignificant.

This paper proposes a similar algorithm, however, it is different in that the structural
change tests for factor loadings suffer from the problems described in the previous section.
Hence, the method must utilize the tests for the factor loadings but use the factors closest to
the non-spurious factors in every step. This can be implemented by including an estimation
of the number of factors and associated factors out of the set of observations with stable
factor loadings in every step. This method can avoid the size distortions and power loss of
the structural change tests caused by the spurious factors to the extent possible.

To facilitate comparisons of this algorithm with that of Inoue and Rossi (2011), I make
minimal changes to the notations and descriptions given below. Let s € {0, 1}N denote a
selection vector of the loadings. If N = 3 and s = (0,1,0), then the loadings of the second
observation are time invariant. Let A(s) and X (s) be subsets of A and X, which are selected
by s as stable. I also define s*, a vector of the true selection vector. Let e; be the N x 1
vector whose 7th element is 1 and 0 otherwise, 1yy; be the N x 1 vector of ones, and Oyy1
be the N x 1 vector of zeros. Let T (e;, s) be an individual test statistic for stability of the
factor loadings of the ¢th observations using the number of factors and the factors estimated
by the principal components of X (s). Let T (s) be a collective test for stability of all the
loadings of A(s) using X (s). Finally, let pv(e;, s) denote the p-value of the individual test
for Hy(e;) against Hy(e;) using the statistic Tk (e;, s).

The algorithm

e (Step 0) Initially, let sg = 1nx;. Test Héo)(so) against Hl(o)(so) at significance level
o using a collective test TS (sg). If the test does not reject, let § = so. If the test
rejects, calculate individual tests T (e;, so) for i = 1,--+ | N and order them such that
pu(er, so) < pu(eg, so) < -+ < pv(en, so). Without loss of generality, let e; identify the

loading with the smallest p-value. Continue to Step 1.

e (Step 1) Without loss of generality, let s; = [0, 11 (v—1)]". Test H{V(s,) against H" (s1)
at significance level o using a collective test T (s;). If the test does not reject, let
§ = s1. If the test rejects, calculate individual tests T (e;, s1) for i = 2,--- , N and
order them such that pv(es,s;) < pu(es,s1) < -+ < pu(en,s1). Without loss of
generality, let e, identify the loading with the smallest p-value. Continue to Step 2.

()



e (Step j) Without loss of generality, let s; = [01xj, Lixv—j). Test Héj)(sj) against
H 1(j ) (s;) at significance level a using a collective test T (s;). If the test does not reject,
let § = s;. If the test rejects, calculate individual tests Th(e;, s;) for i = j,--- , N and
order them such that pv(e;,s;) < pv(ejs1,s;) < --- < pv(en,s;). Without loss of
generality, let e; identify the loading with the smallest p-value. Continue to Step j+ 1.

()

e (Step N — 1) Without loss of generality, let sy_1 = [O1x(nv—1),1]. Test H(SN_l)(sN_l)
against Hfol)(s ~_1) at significance level « using a collective test 1% (sy_1). If the

test does not reject, let § = sy_;. If the test rejects, let 5 = Onyx;.8

A theoretical justification of the above procedure in line with the discussion in Inoue
and Rossi (2011) is discussed in Appendix A. This section investigates finite sample prop-
erties of the above algorithm by carrying out Monte Carlo simulations. The main focus
is on the coverage ratio of § and the number of factors estimated using the stable set
5. I use the same data generating processes as in section 2 with various sample sizes
(T, N) = (100, 100), (150, 100), (150, 100), and (150, 150). I consider Ny = 0.3N, 0.5N,and
0.7N. The number of replications is 300 and the 95% nominal level is used for the coverage
ratio. Table 2 summarizes the results.

The coverage ratio would not be meaningful when there are no breaks and (b = 0) is thus
not reported in these cases. It is observed that the coverage ratio approaches (1 — «) as b
increases or when b is sufficiently large and 7T increases. The coverage ratio also improves as
N increases. The results are robust with regard to the three parameter processes and the
choice of Ny. Overall, I show that the algorithm can identify the set of observations having
stable factor loadings with its probability close to the significance level. The estimated
number of factors using all the observations (I call these factors “crude factors”) is about
the true number two when b = 0, but increases as the breaks become larger as we have seen
in Table 1. However, when I estimate the number of factors using the stable set (I call these
factors “non-spurious factors”), the simulated mean, median, and mode are very close to
the true number two even in the presence of structural changes. This result is robust with

regard to the sample sizes and parameter processes.

8In practice, one needs to specify an upper bound of the number of factors 7. When the number of
observations in the stable set reaches 7, one can lower 7 to continue the algorithm or can stop to conclude
”almost” all the observations have unstable loadings. In either case, the identified set may be too small to
estimate non-spurious factors precisely.



Finally, I investigate the out-of-sample forecasting performance using the non-spurious
factors. I conjecture that the spurious factors are caused by the factor loading instabilities
and are only related to certain observations. Hence, using these spurious factors may help
in forecasting these observations, but they cause overfitting for the remaining observations.
Therefore, solely using the non-spurious factors can improve forecasting accuracy on average.
To investigate this claim, I generate data on the basis of the same data generating processes as
in section 2; however, such data is of the size (T'+ h, N) where h is the specified forecasting
horizon. 1 consider the cases of b = 5 and 10. The exercise first estimates the set of
observations with stable factor loadings and non-spurious factors out of the estimated stable
set with the number estimated by ICp2. On the other hand, I estimate factors using all
the observations for ¢ = 1,--- 7T with the number estimated by IC,2. Based on these
estimated factors, I compute the forecasting errors and mean squared errors (MSEs) for all

the observations ¢ = 1,--- ;| N over the out-of-sample window:

t=T+1 “it

MSEi:( n e2>/h for i=1,--- N

where
eit:xit_j\ifT fOTtZT+1, ,T+h,

with 1
A= (Zle ftﬂ) <ZtT:1 ftffz‘t) .
Table 3 compares the averages of M SE; over all the observations when { ft} are non-spurious

factors (NS) and when { ft} are crude factors (crude). The non-spurious factors clearly

improve the out-of-sample forecasting MSEs in every case.

5 Non-spurious factors in U.S. macroeconomic time series

Stock and Watson (2005) found that there are seven dynamic factors and nine static factors
in U.S. macroeconomic time series using the IC,2 criterion of Bai and Ng (2002). They
raise a question why so many factors exist in the U.S. economy. It is concerned that too
many factors may cause an overfitting problem and deteriorate the out-of-sample forecasting
performance. Also, the conventional view of macroeconomists would be that there exist only
a few economically meaningful factors in the macroeconomy (Sargent and Sims, 1977). In
this section, I attempt to answer this question using the approach proposed in this paper. My

conjecture is that the factor model best fitting US macroeconomic data sets is one with the

10



factor loadings susceptible to structural changes. Therefore, if one estimates factors by the
principal components method after ignoring these structural changes, then spurious factors
show up. In this section, I use the 132 macroeconomic time series from January 1959 to
December 2003 used by Stock and Watson (2005). The same transformations are applied to
induce stationarity and each series is demeaned and divided by its sample standard deviation
prior to estimating its principal components. Considering the Great Moderation discussed in
existing literature, one is likely to see a change in the common factor structure itself around
the mid-1980s, and hence, I also consider a subsample from January 1985 for the analysis
(the post-1984 subsample hereafter).

I first estimate the number of factors using the full sample data set assuming that all
the factor loadings are stable. The results are presented in Table 4. The estimated numbers
are eleven by ICpl, eight by ICp2, and twelve by ICp3 and these numbers are in close
agreement with that of Stock and Watson (2005). Applying the recursive procedure to the
same full sample data, I find that 51 out of the 132 series have stable factor loadings. Table
8 provides the stabilities of individual series, whereas Table 5 summarizes the results. I find
that the slow variables defined in Stock and Watson (2005) are more likely stable (35 out of
67 series: 52.2%) than are the fast variables (16 out of 65 series: 24.6%). I also categorize
the series into six groups according to their qualitative nature. According this grouping,
I find that the series related to "housing”, "money / credit”, and ”stock price / interest
rates / exchange rates” are more likely to be unstable. However, since they are not too
concentrated in certain categories, it is deemed that the estimated set of observations with
stable factor loadings still captures the entire information in the macroeconomic time series.
I then estimate the number of factors using the stable observations and find much smaller
numbers: one by I/Cpl, one by ICp2, and two by ICp3. Therefore, they support the fact
that the number of factors in the U.S. macroeconomy is inflated owing to the structural
changes in factor loadings. Using the post-1984 subsample, I roughly get the same results
as in the full sample estimation. This time, I find 47 observations in the stable set, which
consists of all the categories except housing. The number of common factors using the stable
set are two by ICpl, two by ICp2, and twelve by ICp3.

The next interesting question is whether one can give reasonable interpretations of the
estimated non-spurious factors. As is well known, the principal components are merely
consistent estimates of the true factor up to a random rotation, and hence, there is no

theoretical background for the obtained individual factor estimates interpretable.® However,

9See Bai and Ng (2010) and Yamamoto (2012).
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I simply follow an argument given in Stock and Watson (2005). Through the forecast error
variance decomposition of the full sample data, they find that the first factor explains much
of the variation in real variables such as production, capacity utilization, and employment.
The second factor is mostly related to financial variables such as interest rates and stock
prices. The third factor pertains to inflation. Importantly, among the remaining factors, only
the fifth is related to a real variable of long-term unemployment, but the fourth, sixth, and
seventh factors are financial factors. Therefore, it is interesting to investigate the relationship
between these seven crude factors and the first few non-spurious factors estimated by the
proposed procedure. Table 6 shows the correlation coefficients of the seven crude factors
with the first two non-spurious factors in the full sample analysis. Strong and significant
correlations are found within the first two factors and hence, the first two non-spurious
factors (real and financial factors) are interpretable roughly in the same way, again, given
the rotation is resolved. More importantly, the remaining crude factors, except for the
fifth, are significantly correlated with the second non-spurious factor but not with the first.
It is concluded that the most of the “many” crude factors can be generated by the time
instabilities of factor loadings of the second non-spurious factor, that represents, the housing
and financial factor. When I use the post-1984 subsample, I also observe that many of
the crude factors are more correlated to the second non-spurious factor, although we may
possibly now interpret the first and second crude factors in the opposite way because of the
random rotation.

Finally, I compare the out-of-sample forecasting performance using the crude factors and
the non-spurious factors. To this end, I specify the last A months of the sample as the out-
of-sample window and estimate the crude factors and non-spurious factors respectively using
the fixed in-sample data. Then, I compute the MSEs of the forecasts using the crude factors
and using the non-spurious factors respectively for each observation in the out-of-sample
window. Table 7 compares the averages of the MSEs over all the observations for the out-of-
sample period length A = 12,24, and 48.'° The number of factors estimated in-sample by the
IC,2 criterion and used for forecasting is given in the parentheses.!* I find that the NS factor
forecasts give larger MSEs than the crude factor forecasts when h = 12. However, the NS
factor forecasts give lower MSEs for longer horizons h = 24 and 48. To see if these differences

are significant, I conduct a test for equal predictive accuracy by Diebold and Mariano (1995)

10The MSEs of the individual observations are reported in Table 8 in the case of h = 24.
HThe estimated numbers and factors are not exactly the same as in the full sample analysis, since the
sample is now h periods shorter.
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for the pooled observations.!? The results are in the middle column of Table 7. It is suggested
that the NS factor forecast is significantly more accurate than the crude factor forecast for
h = 24 and 48 at the 1% level and the null hypothesis of equal accuracy is not rejected for
h = 12 even at the 10% level. This results are the same when using either full sample and
post-1984 subsample data. These support the fact that the large number of spurious factors
cause overfitting of U.S. macroeconomic time series and deteriorate forecasting performance.
Finally, I present results of a pooled version of the forecast break down test recently proposed
by Giacomini and Rossi (2009) for either forecasting methods in the last column of Table
7.13 The "forecast breakdown” means the situation where the out-of-sample accuracy gets
significantly worse than the in-sample fit so that the researchers may not rely on the usual
measures of the model fit. The results indicate that the NS factor forecasts never breaks
down (they are insignificant at the 10% levels), however, the crude factor forecast may show

forecast breakdowns at the 10% significant level using post-1984 sample for h = 12 and 24.

6 Conclusions

This paper proposes a method to overcome an overfitting problem of dynamic factor mod-
els which are induced by instability in factor loadings. The suggested algorithm estimates
the non-spurious factors by identifying the set of observations with stable factor loadings in
dynamic factor models. Monte Carlo simulations find that the method yields good coverage
ratios, estimates the number of non-spurious factors correctly, and improves out-of-sample
forecasting accuracy. Using this approach, I provide strong evidence in answering to the
question why so many factors exist in the U.S. economy, raised by Stock and Watson (2005).
Most importantly, it significantly improves forecasting performance for the U.S. macroeco-

nomic time series.

12The test statistic pools the individual tests by DM = \/iﬁ Zf\il DM,;, where DM; is the standard Diebold

and Mariano (1995) test for the ith observation using HAC robust standard errors proposed by Andrews’
(1991) data dependent method with AR1 approximation. The test is two-sided and a positive significance
means that the non-spurious factor forecast is more accurate than the crude factor forecast. Note that
the pooled test statistic may over-rejects, since it does not accout for the cross-sectional correlations of the
individual test statistics.

13 Again, the tests applied for individual observations account for serial correlations in the loss using
HAC standard errors proposed by Andrews (1991), but the pooled statistic does not consider cross-sectional
correlations and they may over-reject the null hypothesis.
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Appendix A : A theoretical justification of the procedure

In this appendix, I discuss the asymptotic justification for the fact that the proposed
sequential algorithm finds § which corresponds s* with probability 1 — «. Let the following
assumptions hold:

Assumption 1. The algorithm employs a collective test that satisfies TS (s) < D(s) if
s =s5*as N,T — oo and VT /N — 0. It also satisfies TS (s) — oo if max(|s|,|s*|) > |s*| as
N, T — oo.

Assumption 2. The algorithm employs an individual test that satisfies limy 7. P(T5(ei, s) >
Ti(ej,s)) = 1 for all i and j such that s*(i) = 0 and s*(j) = 1 and for s such that
min(s — s*) > 0.

Both assumptions are high-level, but Assumption 1 is straightforwardly shown to hold
under the standard regularity conditions of Bai (2003) with both HI and CDG tests. As-
sumption 2 requires that the individual test is able to order the observations with stable and
unstable factor loadings asymptotically. This can allow for the size-distortions and for the
tests to be inconsistent, however, involves two requirements. First, there is no alternative
representations of the model (1) and (2) that completely offset the breaks in \;(1 — s) that
loses all the power of the individual tests. Second, the size distortions can be large, but the
test should not explode.

Then, the following theorem holds.
Theorem 1 Under Assumptions 1 and 2,
ImP.(s=5")=1—-« if s* # Onxi, (A.1)
as N,T — oo and VT/N — 0 and
limP,(s=s")=1 if s = 0nxi, (A.2)

as N, T — oo. Also,
lim P,(§ # s* and |3| > |s*|) =0, (A.3)

as N, T — oo.

The proof closely follows the appendix of Inoue and Rossi (2011) and proceeds as follows.
Let k€ (s) denote the critical value of T (s) of the null distribution D(s) at the level of
significance a. Let N* = N — |s*| be the number of observations with unstable loadings.

Because the collective test is consistent by Assumption 1,
lim  P(TE(s;) > k(7)) = 1, (A.4)

N, T—o0
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for any s; such that max(|s,|, |s*|) > |s*| for j =1,2,--- , N—N*—1. Because the individual
test for an observations with unstable loadings is larger than the test for an observation with
stable loadings by Assumption 2,

lim P({i:s"(i) =0} €l;) =1, (A.5)

N, T—o0
for j=1,---,N — N*, where [; = {@ : T (e;) is among the j largest {T%(el)}jil}, if N —
N* > 0. In particular, equation (A.5) implies that
Nl}m P(In_n-={i:5"(i) =0}) = 1. (A.6)

Consider now the three cases (a) N* =0, (b) N* > 0and N —7 > N* and (¢c) N* >0
and N* =N — 1.
(a) If N* =0, then

lim P(TS(so) < kS(s0)) = lim P(TS(s*) < k9(s*)) =1 —a,

N, T—o0 N, T—o0

thus proving equation (A.1) under H(()O)(so). When N* = 0, equation (A.2) does not apply,
and equation (A.3) trivially holds.

(b) Because I eliminate only one stable observation in each step, I have max(|s;|, |s*]) >
|s*| = N — N* for any s; for j =0,1,--- ,N* — 1. Thus it follows from (A.4) that

Jim P(TE(s)) > k(s)), ¥j = 0,1, \N = N* = 1) = 1. (A7)
By equations (A.6) and (A.7), we have
lim P(SN—N* = S*) =1. (AS)
Now
lim P(s = s%)

N,T—00,V/T/N—0
= lim P(TF(3) < kS(3
o dm P (TR <)
| The test rejects at j =0,1,--- ,N — N* — 1)
= lim P (TS (s*) < k¢ (s*
o lm P < K)
| The test rejects at j =0,1,--- N — N* — 1 and sy_n+ = s¥)
= lim P(TE (s*) < kS(s%))
N,T—00,/T/N—0
= 1—-aq,

where the third equality follows from equations (A.7) and (A.8) and the last equation from
Assumption 1. The equation (A.1) holds. The equation (A.3) follows from (A.4).

(c) TS (s;) for j =0,1,--- , N* all rejects by (A.4), and each of the N* observations with
unstable loadings is selected in these steps with probability approaching one by equation
(A.6). Therefore § converges almost surely to s*, and the equations (A.2) and (A.3) hold.
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Appendix B : Description of the test statistics

[ first estimate the number of factors 7 in the factor model (1) and (2) assuming Ay; = Ag;.

Let ft be an 7 x 1 vector of the factor estimates by the principal components method. The
three test statistics used in this paper are defined as follows, where I use the truncation
parameter € = 0.15 for every test.

1. Breitung and Eickmeier (2011)

The test statistic is
sup S7”(7),
TEe,1—¢]

where STBE (7) is either the LM, LR, or Wald statistic for the null hypothesis Aj; = \y;.
In particular, I use the Wald specification so that Sr(7) = T(SSR"—SSR(7))/SSR(7)
where SSR(7) is the sum of squared residuals of the regression of x;; on ft assuming
T, = |7T] and SSR" is the sum of squared residuals of the same regression assuming
A1; = Ag;. However, using the LM or LR versions does not change the qualitative
results in this paper.

2. Han and Inoue (2012)

The test statistic is
sup Ap(1)Vo(r) ' Ap(7),

TE[e,1—¢]
where

Ar(T)= vech (\/_m LTT fifl - T— L T] Zt [T ]+1 ftft>7

and V(1) is an estimate of the long-run covariance matrix of Ay (7). To account for
the serial correlations in f;, I use the Newey and West (1994)’s HAC estimator for
VT (7’ )

3. Chen, Dolado, and Gonzalo (2012)

The test statistic is
sup S5P%(7),

TE[e,1—¢]
where SEPC(7) is either LM, LR, or Wald statistic for the hypothesis C; = Cy where
Cy = [c1a,...,c17] and Cy = [cag, . .., Co7] in the following model

Jie = {leth +tapfr, fort <Ty
8 Coofor + -+ copfrr, fort >T1T,

In particular, I use the Wald specification. However, using LM or LR versions does
not change the qualitative results in this paper.
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Table 1: Estimated number of factors
and empirical powers of structural change tests in factor loadings

DGP-1) One-time structural change

numberoffactors individual igsts collectiveligsts
BE[Iktablelldading |BE[Iuhstableldading HI CDG
b mean median mode feasible infeasible | feasible infeasible| feasible infeasible| feasible infeasible
0.0 1.8 2.0 2.0 0.05 0.03 0.05 0.03 0.05 0.04 0.10 0.04
0.5 1.8 2.0 2.0 0.07 0.03 0.16 0.17 0.08 0.26 0.12 0.05
1.0 1.9 2.0 2.0 0.10 0.03 0.45 0.56 0.19 0.61 0.15 0.14
15 2.0 2.0 2.0 0.18 0.03 0.63 0.78 0.41 0.87 0.22 0.27
2.0 2.0 2.0 2.0 0.28 0.03 0.74 0.87 0.65 0.95 0.30 0.37
3.0 24 2.0 2.0 0.31 0.03 0.84 0.94 0.95 1.00 0.63 0.81
4.0 3.0 3.0 3.0 0.28 0.03 0.88 0.97 1.00 1.00 0.93 0.99
5.0 3.7 4.0 4.0 0.28 0.03 0.90 0.98 1.00 1.00 1.00 1.00
10.0 6.5 6.0 6.0 0.37 0.04 0.95 0.99 1.00 1.00 1.00 1.00
DGP-2) Multiple structural change
numberoffactors individual igsts collectiveligsts
BE[Iktablelldading |BE[Iuhstableldading HI CDG
b mean median mode feasible infeasible | feasible infeasible| feasible infeasible | feasible infeasible
0.0 1.8 2.0 2.0 0.05 0.03 0.06 0.03 0.05 0.04 0.09 0.03
0.5 1.8 2.0 2.0 0.10 0.03 0.26 0.49 0.17 0.58 0.14 0.07
1.0 1.9 2.0 2.0 0.24 0.03 0.51 0.94 0.50 0.88 0.26 0.18
1.5 2.1 2.0 2.0 0.36 0.04 0.62 0.99 0.83 0.97 0.46 0.30
2.0 25 3.0 3.0 0.27 0.03 0.67 1.00 0.97 0.99 0.75 0.43
3.0 2.9 3.0 3.0 0.18 0.03 0.84 1.00 1.00 1.00 0.96 0.82
4.0 3.2 3.0 3.0 0.23 0.02 0.92 1.00 1.00 1.00 1.00 0.99
5.0 3.7 4.0 4.0 0.28 0.03 0.93 1.00 1.00 1.00 1.00 1.00
10.0 6.4 6.0 6.0 0.41 0.03 0.97 1.00 1.00 1.00 1.00 1.00
DGP-3) Random walk
numberoffactors individual fgsts collectiveligsts
BE[[Etablelldading |BE[Iuhstableldading HI CDG
b mean median mode feasible infeasible | feasible infeasible| feasible infeasible| feasible infeasible
0.0 2.0 2.0 2.0 0.05 0.03 0.06 0.03 0.05 0.05 0.15 0.14
0.5 2.0 2.0 2.0 0.06 0.03 0.61 0.54 0.07 0.17 0.17 0.19
1.0 2.0 2.0 2.0 0.09 0.03 0.80 0.76 0.10 0.60 0.17 0.51
1.5 2.1 2.0 2.0 0.10 0.03 0.84 0.83 0.20 0.88 0.24 0.80
2.0 24 2.0 2.0 0.13 0.03 0.85 0.88 0.46 0.97 0.47 0.91
3.0 3.0 3.0 3.0 0.14 0.03 0.85 0.92 0.86 1.00 0.83 0.99
4.0 34 3.0 3.0 0.15 0.03 0.86 0.95 0.97 1.00 0.96 0.99
5.0 37 4.0 4.0 0.16 0.03 0.86 0.96 0.99 1.00 0.99 1.00
10.0 4.5 4.0 4.0 0.19 0.03 0.93 0.99 1.00 1.00 1.00 1.00
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DGP-1) One-time structural change

number[affactors individualfésts collectivelfésts
BE[IstableIdading |BE[Ihstableldading HI CDG
b mean median mode feasible infeasible | feasible infeasible | feasible infeasible| feasible infeasible
0.0 1.8 2.0 2.0 0.06 0.03 0.05 0.03 0.05 0.05 0.11 0.06
0.5 1.9 2.0 2.0 0.09 0.03 0.15 0.19 0.11 0.23 0.12 0.09
1.0 1.9 2.0 2.0 0.17 0.04 0.36 0.55 0.32 0.61 0.18 0.19
1.5 2.0 2.0 2.0 0.29 0.04 0.58 0.78 0.63 0.87 0.25 0.28
2.0 2.0 2.0 2.0 0.39 0.04 0.69 0.86 0.84 0.96 0.31 0.36
3.0 2.6 3.0 3.0 0.37 0.03 0.81 0.93 0.99 1.00 0.75 0.91
4.0 3.6 4.0 4.0 0.37 0.04 0.83 0.96 1.00 1.00 0.99 1.00
5.0 4.4 4.0 4.0 0.41 0.04 0.87 0.97 1.00 1.00 1.00 1.00
10.0 7.6 8.0 7.0 0.52 0.03 0.94 0.99 1.00 1.00 1.00 1.00
DGP-2) Multiple structural change
number[affactors individualigsts collectivelfiésts
BE[IstableIdading |BE[Ihstableldading HI CDG
b mean median mode feasible infeasible | feasible infeasible | feasible infeasible| feasible infeasible
0.0 1.8 2.0 2.0 0.06 0.03 0.06 0.04 0.04 0.05 0.10 0.06
0.5 1.9 2.0 2.0 0.15 0.03 0.18 0.48 0.27 0.53 0.16 0.13
1.0 1.9 2.0 2.0 0.37 0.03 0.37 0.93 0.70 0.87 0.27 0.23
1.5 2.1 2.0 2.0 0.46 0.03 0.55 0.99 0.91 0.97 0.43 0.33
2.0 24 2.0 2.0 0.40 0.03 0.67 1.00 0.99 0.99 0.64 0.45
3.0 3.0 3.0 3.0 0.33 0.03 0.80 1.00 1.00 1.00 0.94 0.92
4.0 3.7 4.0 4.0 0.37 0.03 0.86 1.00 1.00 1.00 1.00 1.00
5.0 4.4 4.0 4.0 0.40 0.03 0.88 1.00 1.00 1.00 1.00 1.00
10.0 74 7.0 7.0 0.53 0.03 0.97 1.00 1.00 1.00 1.00 1.00
DGP-3) Random walk
number[afffactors individualfésts collectiveliésts
BE[Etableldading |BE[Iuhstableldading HI CDG
b mean median mode feasible infeasible| feasible infeasible| feasible infeasible | feasible infeasible
0.0 2.0 2.0 2.0 0.06 0.03 0.06 0.03 0.05 0.04 0.14 0.14
0.5 2.0 2.0 2.0 0.07 0.03 0.62 0.55 0.08 0.17 0.15 0.19
1.0 2.1 2.0 2.0 0.11 0.03 0.75 0.73 0.23 0.72 0.26 0.66
1.5 2.6 3.0 3.0 0.16 0.03 0.76 0.83 0.65 0.96 0.63 0.92
2.0 3.2 3.0 3.0 0.14 0.03 0.75 0.88 0.92 1.00 0.88 0.99
3.0 3.8 4.0 4.0 0.15 0.03 0.77 0.92 1.00 1.00 0.99 1.00
4.0 4.0 4.0 4.0 0.18 0.03 0.81 0.95 1.00 1.00 1.00 1.00
5.0 4.2 4.0 4.0 0.17 0.03 0.85 0.96 1.00 1.00 1.00 1.00
10.0 5.3 5.0 5.0 0.24 0.03 0.90 0.98 1.00 1.00 1.00 1.00
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DGP-1) One-time structural change

numberoffactors individualfésts jointEésts
BE[Etableldading |BE[Iuhstableldading HI CDG
b mean median mode feasible infeasible| feasible infeasible| feasible infeasible| feasible infeasible
0.0 1.8 20 2.0 0.06 0.04 0.04 0.03 0.05 0.06 0.10 0.08
0.5 1.9 2.0 2.0 0.10 0.03 0.13 0.18 0.16 0.22 0.12 0.11
1.0 2.0 2.0 2.0 0.23 0.03 0.33 0.53 0.44 0.60 0.19 0.20
1.5 2.0 2.0 2.0 0.37 0.04 0.53 0.74 0.77 0.88 0.27 0.28
2.0 2.0 2.0 2.0 0.47 0.04 0.69 0.84 0.93 0.96 0.33 0.37
3.0 3.0 3.0 3.0 0.45 0.03 0.77 0.92 1.00 1.00 0.88 0.96
4.0 41 4.0 4.0 0.45 0.03 0.81 0.96 1.00 1.00 1.00 1.00
5.0 5.0 5.0 5.0 0.48 0.03 0.85 0.97 1.00 1.00 1.00 1.00
10.0 8.4 8.0 8.0 0.63 0.03 0.94 0.99 1.00 1.00 1.00 1.00
DGP-2) Multiple structural change
number[offactors individualfésts jointésts
BE[[Etableldading |BE[Iuhstableldading HI CDG
b mean median mode feasible infeasible| feasible infeasible| feasible infeasible | feasible infeasible
0.0 1.8 20 2.0 0.05 0.03 0.05 0.03 0.04 0.05 0.09 0.08
0.5 1.9 2.0 2.0 0.21 0.03 0.15 0.48 0.37 0.50 0.17 0.15
1.0 2.0 2.0 2.0 0.41 0.03 0.34 0.92 0.79 0.87 0.28 0.26
1.5 2.0 2.0 2.0 0.56 0.03 0.53 0.99 0.95 0.98 0.35 0.33
2.0 2.2 2.0 2.0 0.56 0.04 0.67 1.00 0.99 0.99 0.50 0.45
3.0 3.2 3.0 3.0 0.47 0.03 0.76 1.00 1.00 1.00 0.95 0.97
4.0 41 4.0 4.0 0.49 0.03 0.82 1.00 1.00 1.00 1.00 1.00
5.0 4.9 5.0 5.0 0.50 0.04 0.86 1.00 1.00 1.00 1.00 1.00
10.0 8.3 8.0 8.0 0.61 0.03 0.96 1.00 1.00 1.00 1.00 1.00
DGP-3) Random walk
number[offactors individualfésts joint{ésts
BE[Etablelldading |BE[Iuhstableldading HI CDG
b mean median mode feasible infeasible | feasible infeasible| feasible infeasible| feasible infeasible
0.0 2.0 20 2.0 0.05 0.03 0.06 0.03 0.06 0.06 0.14 0.13
0.5 2.0 2.0 2.0 0.08 0.02 0.62 0.55 0.11 0.18 0.16 0.21
1.0 25 2.0 2.0 0.15 0.03 0.70 0.73 0.56 0.83 0.54 0.79
1.5 3.3 3.0 3.0 0.17 0.03 0.66 0.82 0.94 0.99 0.91 0.98
2.0 3.7 4.0 4.0 0.15 0.03 0.67 0.87 1.00 1.00 0.99 1.00
3.0 4.0 4.0 4.0 0.17 0.03 0.74 0.92 1.00 1.00 1.00 1.00
4.0 4.3 4.0 4.0 0.20 0.04 0.80 0.95 1.00 1.00 1.00 1.00
5.0 46 5.0 5.0 0.21 0.03 0.82 0.96 1.00 1.00 1.00 1.00
10.0 5.9 6.0 6.0 0.26 0.03 0.88 0.98 1.00 1.00 1.00 1.00
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Ny =0.7TN

Table 2: Coverage ratios of the procedure

DGP-1) One-time structural change

b | coverage [numberlafffactors({$table)| numberloffactors [(all) b | coverage [numberlafffactors(($table)] numberlaffactors [(all)

ratio mean median mode | mean median mode ratio mean median mode | mean median mode

0 O 2.04 2.00 2.00 1.83 2.00 2.00 0 O 2.04 2.00 2.00 1.98 2.00 2.00

% 1 0.710 2.09 2.00 2.00 1.90 2.00 2.00 % 1 0.709 2.03 2.00 2.00 1.99 2.00 2.00

813 0.830 2.03 2.00 2.00 247 2.00 2.00 513 0.847 2.03 2.00 2.00 274 3.00 3.00
o wn

A ) 0.944 229 2.00 2.00 3.71 4.00 4.00 Il5 0.944 2.07 2.00 2.00 4.18 400 4.00

10 0.909 3.48 2.00 1.00 6.48 6.00 6.00 10 0.919 3.29 2.00 2.00 713 7.00 7.00

0 O 2.10 2.00 2.00 1.98 2.00 2.00 0 O 2.08 2.00 2.00 2.00 2.00 2.00

? 1 0.720 211 2.00 2.00 1.99 2.00 2.00 % 1 0.727 2.08 2.00 2.00 2.00 2.00 2.00

g- 3 0.887 1.99 2.00 2.00 278 3.00 3.00 ';’» 3 0.889 1.99 2.00 2.00 2.95 3.00 3.00

|15 0.965 2.07 2.00 2.00 4.16 4.00 4.00 Ils 0.963 213 2.00 2.00 450  4.00 4.00

10 0.993 2.60 2.00 2.00 7.34 7.00 7.00 10 0.994 2.31 2.00 2.00 7.69 8.00 8.00

DGP-2) Multiple structural change

b | coverage |numberlaffactors(($table)] numberdffactors [(All) b | coverage |numberdffactors(($table)] numberlaffactors [(all)

mean median mode | mean median mode mean median mode | mean median mode

0 O 1.99 2.00 2.00 1.85 2.00 2.00 0 O 2.01 2.00 2.00 1.97 2.00 2.00

? 1 0.751 2.03 2.00 2.00 1.89 2.00 2.00 % 1 0.751 2.03 2.00 2.00 1.99 2.00 2.00

g 3 0.968 2.20 2.00 2.00 292 3.00 3.00 g 3 0.967 2.06 2.00 2.00 2.99 3.00 3.00

1l5 0.993 225 2.00 2.00 3.70 4.00 4.00 1]5 0.994 2.08 2.00 2.00 4.10 400 4.00

10 0.946 2.87 2.00 1.00 6.37 6.00 6.00 10 0.937 2.89 2.00 2.00 7.14 7.00 7.00

0 O 2.08 2.00 2.00 1.98 2.00 2.00 0 O 2.15 2.00 2.00 2.00 2.00 2.00

? 0.795 2.09 2.00 2.00 2.00 2.00 2.00 % 1 0.803 2.10 2.00 2.00 2.01 2.00 2.00

g— 3 0.983 1.99 2.00 2.00 3.01 3.00 3.00 g 3 0.982 2.06 2.00 2.00 3.02 3.00 3.00

1l5 0.998 213 2.00 2.00 4.20 400 4.00 A I 0.997 2.07 2.00 200 | 452 5.00 5.00

10 1.000 2.41 2.00 2.00 7.20 7.00 7.00 10 1.000 2.01 2.00 2.00 7.57 8.00 8.00

DGP-3) Random walk

b | coverage |numberlaffactors(($table)] numberdffactors [(all) b | coverage |numberdffactors(($table)] numberlaffactors [(all)

mean median mode | mean median mode mean median mode | mean median mode

0 O 2.26 2.00 2.00 2.00 2.00 2.00 0 O 2.28 2.00 2.00 2.00 2.00 2.00

% 1 0.705 218 2.00 2.00 2.01 2.00 2.00 % 1 0.706 248 2.00 2.00 2.03 2.00 2.00
B 5|

s | 3 0.806 222 2.00 2.00 3.02 3.00 3.00 s | 3 0.830 2.30 2.00 2.00 3.40 3.00 3.00

115 0.891 247 2.00 2.00 3.73 4.00 4.00 1l5 0.905 2.32 2.00 2.00 3.96 400 4.00

10 0.955 2.95 2.00 2.00 4.50 4.00 4.00 10 0.962 2.52 2.00 2.00 4.89 5.00 5.00

0 O 2.30 2.00 2.00 2.00 2.00 2.00 0 O 224 2.00 2.00 2.00 2.00 2.00

? 0.726 220 2.00 2.00 2.28 2.00 2.00 % 1 0.728 2.30 2.00 2.00 2.37 2.00 2.00
5] 5|

s | 3 0.914 2.39 2.00 2.00 3.92 4.00 4.00 s | 3 0.917 223 2.00 2.00 4.00 4.00 4.00

115 0.957 2.62 2.00 2.00 4.40 400 4.00 115 0.964 243 2.00 200 | 4.65 5.00 5.00

10 0.987 3.16 2.00 2.00 5.79 6.00 6.00 10 0.988 2.54 2.00 2.00 6.07 6.00 6.00
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DGP-1) One-time structural change

b | coverage [numberlaffactors{$table)| numberaffactors [(all) coverage |numberdffactors ($table)) numberlafffactors [(@ll)

ratio mean median mode | mean median mode ratio mean median mode | mean median mode

0 O 200 200 2.00 1.81 2.00 2.00 0 O 202 200 2.00 1.97 200 2.00

% 1 0.518 2.35 2.00 2.00 1.94 2.00 2.00 % 1 0.518 2.28 2.00 2.00 1.99 2.00 2.00

g- 3 0.745 2.07 2.00 2.00 2.63 3.00 3.00 g 3 0.765 223 2.00 200 | 3.04 3.00 3.00

g 5 0.911 2.95 2.00 2.00 4.41 4.00 4.00 ; 5 0.895 2.46 2.00 2.00 5.03 5.00 5.00

10 0.752 5.67 6.00 1.00 | 7.61 8.00 8.00 10 0.793 4.71 2.00 1.00 8.41 8.00 9.00

0 O 2.04 2.00 2.00 1.98 2.00 2.00 0 O 2.09 2.00 2.00 2.00 2.00 2.00

? 1 0.549 222 200 2.00 199  2.00 2.00 % 1 0.546 219 200 2.00 2.00 2.00 2.00

g— 3 0.843 2.07 2.00 200 | 312 3.00 3.00 g 3 0.843 2.04 200 200 3.33 3.00 3.00

g 5 0.945 2.34 2.00 2.00 5.04 5.00 5.00 ; 5 0.947 217 2.00 2.00 5.30 5.00 5.00

10 0.986 3.21 2.00 1.00 | 852 8.00 8.00 10 0.987 275 200 2.00 8.88 9.00 9.00
DGP-2) Multiple structural change

b | coverage |numberlaffactors(($table)] numberldffactors [(all) coverage [numberlafffactors($table)] numberldffactors [(@ll)

mean median mode | mean median mode mean median mode | mean median mode

0 O 1.88  2.00 2.00 1.83 2.00 2.00 0 O 2.06 2.00 2.00 198 200 200

? 1 0.528 6.04 2.00 2.00 1.92 2.00 2.00 % 1 0.546 5.65 2.00 2.00 2.01 2.00 2.00

81 s 0.933 4.39 2.00 1.00 297  3.00 3.00 813 0.954 2.99 2.00 1.00 3.21 3.00 3.00

i 5 0.984 3.39 1.00 100 | 443 400 4.00 ﬁ 5 0.959 254 200 1.00 | 497 500 5.00

10 0.812 412 2.00 1.00 7.45 7.00 7.00 10 0.851 3.16 2.00 2.00 8.32 8.00 8.00

0 O 208 200 2.00 1.98 200 2.00 0 O 2.06 2.00 200 | 200 2,00 200

? 0.632 6.80 4.00 12.00 | 2.00 2.00 2.00 % 1 0.665 5.34 2.00 2.00 2.01 2.00 2.00

813 0.981 2.58 2.00 1.00 3.19 3.00 3.00 813 0.981 207 200 2.00 3.36 3.00 3.00

i 5 0.997 222 200 200 | 497 500 5.00 ﬁ 5 0.998 211 2.00 200 [ 530 500 5.00

10 0.999 2.45 1.00 1.00 8.33 8.00 8.00 10 1.000 235 200 2.00 8.90 9.00 9.00

DGP-3) Random walk

b | coverage |numberlafffactors(($table)] numberldffactors [(all) coverage [numberlafffactors(($table)] numberldffactors [(@ll)

mean median mode | mean median mode mean median mode | mean median mode

0 O 240 2.00 2.00 2.00 2.00 2.00 0 O 2.16 2.00 2.00 2.00 2.00 2.00

% 1 0.520 226 200 200 | 214 200 2.00 % 1 0.527 222 200 200 | 230 2.00 2.00

E 3 0.780 2.64 2.00 2.00 3.79 4.00 4.00 E» 3 0.803 2.38 2.00 2.00 3.98 4.00 4.00

E 5 0.879 290 200 2.00 [ 419 400 4.00 ﬁ 5 0.896 248 200 200 | 450 4.00 4.00

10 0.941 443 2.00 2.00 5.31 5.00 5.00 10 0.939 3.08 2.00 2.00 5.88 6.00 6.00

0 O 2.18 2.00 2.00 2.00 200 2.00 0 O 228 2.00 200 | 200 200 200

? 0.639 224 200 2.00 3.14 3.00 3.00 % 1 0.680 220 200 2.00 3.47 3.00 4.00

81 s 0.900 2.52 2.00 200 | 435 400 4.00 813 0.914 235 200 200 | 451 400 4.00

i 0.954 276 200 2.00 5.36 500 5.00 ﬁ 5 0.959 2.37 2.00 200 | 567 6.00 6.00

10 0.985 4.58 2.00 2.00 6.78 7.00 7.00 10 0.987 3.24 2.00 2.00 7.20 7.00 7.00




DGP-1) One-time structural change

DGP1 DGP1
b | coverage [numberlaffactors{$table)| numberaffactors[(all) b | coverage [numberlaffactors(($table)] numberlaffactors [(all)
ratio mean median mode | mean median mode ratio mean median mode | mean median mode
0 O 2.01 200 200 1.81 2.00 2.00 0 O 2.03 2.00 2.00 1.97 200 2.00
% 1 0.316 3.24 200 2.00 199 200 200 % 1 0.318 295 200 2.00 | 200 2.00 2.00
81 s 0.626 365  2.00 2.00 3.00 3.00 3.00 813 0.653 2.95 2.00 200 | 354 400 4.00
i 5 0.731 7.10 1200 12.00 | 4.93 5.00 5.00 ﬁ 5 0.705 5.56 2.00 12.00 | 5.56 6.00 6.00
10 0.519 8.39 9.00 1200 | 839 8.0 8.00 10 0.558 7.61 9.00 12.00 | 9.30 9.00 9.00
0 O 2.06 2.00 2.00 1.97 2.00 2.00 0 O 2.1 2.00 2.00 2.00 2.00 2.00
? 1 0.350 360 200 200 | 200 200 2.00 % 1 0.359 322 200 200 2.00 2.00 2.00
E 3 0.743 3.15 2.00 2.00 3.58 4.00 4.00 E» 3 0.770 2.31 2.00 2.00 3.89 4.00 4.00
E 0.899 465 200 1.00 557 6.00 6.00 ﬁ 5 0.904 3.66 2.00 1.00 | 591 6.00 6.00
10 0.951 550  4.00 1.00 9.36 9.00 9.00 10 0.968 4.41 2.00 1.00 9.89 10.00 10.00
DGP-2) Multiple structural change
b | coverage |numberlaffactors(($table)] numberldffactors [(all) b | coverage |numberdffactors(($table)] numberlaffactors [(all)
mean median mode | mean median mode mean median mode | mean median mode
0 O 1.91 2.00 2.00 1.81 2.00 2.00 0 O 2.03 2.00 2.00 196 200 200
|§ 1 0.289 8.23 12.00 12.00 1.98 2.00 2.00 % 1 0.297 8.18 1200 12.00 | 2.00 2.00 2.00
813 0.702 1022 1200 12.00 | 3.21 3.00 3.00 813 0.797 849 1200 1200 | 358 4.00 4.00
i 5 0.818 789 1200 12.00 | 4.90 500 5.00 ﬁ 5 0.769 517 2.00 1.00 | 553 6.00 6.00
10 0.600 7.51 9.00 12.00 | 8.31 8.00 8.00 10 0.670 4.96 2.00 1.00 9.30 9.00 9.00
0 O 2.07 2.00 2.00 198 200 200 0 O 2.03 200 200 | 200 200 200
? 1 0.296 11.04 12.00 12.00 [ 2.00 2.00 2.00 % 1 0.309 1059 12.00 12.00 | 2.00 2.00 2.00
813 0.893 6.82 800 1200 | 363 400 4.00 813 0.959 432 200 1.00 3.88 400 4.00
i 5 0.983 4.47 1.00 1.00 | 551 6.00 6.00 ﬁ 5 0.985 297 1.00 1.00 5.89 6.00 6.00
10 0.993 3.72 1.00 1.00 9.22 9.00 9.00 10 0.989 2.68 1.00 1.00 974 10.00 10.00
DGP-3) Random walk
b | coverage |numberlaffactors(($table)] numberldffactors [(all) b | coverage |numberdffactors(($table)] numberlaffactors [(all)
mean median mode | mean median mode mean median mode | mean median mode
0 O 2.32 2.00 2.00 2.00 2.00 2.00 0 O 2.32 2.00 2.00 2.00 2.00 2.00
% 1 0.355 240 200 200 | 254 200 2.00 % 1 0.383 236 200 200 | 291 3.00 3.00
E 3 0.715 4.52 2.00 2.00 4.01 4.00 4.00 E» 3 0.762 3.28 2.00 2.00 4.26 4.00 4.00
E 5 0.826 537 200 200 | 457 5.00 5.00 ﬁ 5 0.870 373  2.00 2.00 511 500 5.00
10 0.862 6.79 4.00 2.00 5.91 6.00 6.00 10 0.886 4.86 2.00 2.00 6.55 7.00 7.00
0 O 2.38 2.00 2.00 2.00 200 2.00 0 O 234 2.00 200 | 200 2,00 200
? 0.573 248 2.00 2.00 3.72 4.00 4.00 % 1 0.622 2.29 2.00 2.00 3.93 4.00 4.00
813 0.880 3.53 2.00 200 | 4.96 5.00 5.00 813 0.899 295 200 2.00 5.26 5.00 5.00
i 0.942 444 200 2.00 5.96 6.00  6.00 ﬁ 5 0.950 3.31 2.00 200 | 630 6.00 6.00
10 0.972 6.27 4.00 2.00 7.62 8.00 8.00 10 0.984 4.36 2.00 2.00 8.10 8.00 8.00
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Table 3. Out-of-sample MSEs

No=0.7 No=0.5 No=0.3

NS crude NS crude NS crude

DGP1 h=1 9.08 10.84 15.09 18.92 19.45 23.40
h=12 11.93 14.73 17.41 22.08 22.03 27.22

h=24 12.68 15.59 18.24 22.87 23.20 28.50

h=48 13.42 16.41 18.77 23.52 24.62 30.05

DGP2 h=1 17.39 22.15 32.17 42.11 39.51 45.41
h=12 22.65 29.62 39.19 51.38 54.69 64.40

h=24 24.60 31.56 42.24 54.59 60.13 70.45

h=48 27.13 34.15 45.42 58.07 66.23 76.78

DGP3 h=1 8.29 9.39 11.25 13.15 14.83 17.46
h=12 10.06 11.43 13.73 16.56 16.73 19.85

h=24 10.26 11.59 14.36 17.28 17.30 20.46

h=48 10.75 12.08 14.82 17.70 18.56 21.79

No=0.7 No=0.5 No=0.3

NS crude NS crude NS crude

DGP1 h=1 28.51 36.18 40.42 51.44 58.34 75.69
h=12 32.16 41.89 49.03 63.06 73.11 93.45

h=24 33.00 42.58 53.72 67.85 76.66 97.27
h=48 35.09 44.84 56.20 70.37 80.96 101.80
DGP2 h=1 65.58 85.90 89.10 118.01 136.02 149.25
h=12 74.37 102.65 128.71 173.73 193.88 222.48
h=24 82.31 111.52 140.40 187.63 215.90 242.79
h=48 92.31 122.55 156.89 204.05 238.06 265.85

DGP3 h=1 12.24 14.71 17.77 21.99 23.89 28.56
h=12 13.89 16.84 21.11 26.77 29.32 36.28

h=24 14.78 17.96 21.85 27.55 31.01 38.22

h=48 15.71 18.94 23.31 29.08 3342 40.78
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Table 4. Number of common factors in U.S. macroeconomic time series
1)[Eullisemple

#[of ICp1 ICp2 ICp3
factors NS crude NS crude NS crude
1 [0.0929 [0.1463 [@0.0909 [@.1441 [0.0984 [0.1534
2 [@.0902 [@.1904 [0.0862 [0.1861 [@.1011 [@.2046
3 [3.0880 [@.2204 [@.0820 [@.2141 [@.1044 [@.2418
4 [0.0802 [0.2551 [@.0723 [0.2467 [@.1020 [0.2836
5 [0.0657 [0.2796 [0.0558 [0.2690 [0.0931 [@.3152
6 [0.0461 [0.2966 [0.0342 [0.2839 [@.0789 [@.3394
7 [@.0272 [0.3089 [@.0133 [@.2941 [0.0655 [0.3588
8 [@.0011 [0.3147 0.0148 [0.2978 [0.0448 [@.3718
9 0.0244 [@.3162 0.0422 [@.2972 [0.0248 [0.3804
10 0.0515 [@.3181 0.0713 [@.2970 [@.0032 [0.3895
11 0.0769 [0.3206 0.0987 [@.2974 0.0168 [0.3991
12 0.1023 [0.3194 0.1261 [0.2941 0.0368 [0.4051
2)[Bost[1984[subsample
#lof ICp1 ICp2 ICp3
factors NS crude NS crude NS crude
1 [0.3474 [0.2698 [0.3428 [0.2646 [0.3589 [0.2850
2 [0.4089 [@.3318 [0.3998 [@.3215 [@.4319 [@.3622
3 [@.4073 [0.3674 [0.3936 [@.3520 [@.4417 [@.4130
4 [@.3967 [0.3934 [0.3785 [@.3728 [@.4427 [@.4542
5 [0.3887 [0.4146 [0.3659 [0.3889 [0.4461 [0.4906
6 [0.3862 [0.4313 [0.3589 [@.4004 [@.4551 [@.5225
7 [0.3814 [@.4511 [0.3496 [@.4151 [@.4619 [@.5575
8 [0.3669 [0.4648 [@.3305 [@.4236 [@.4589 [0.5864
9 [0.3567 04792 [@.3157 [0.4329 [0.4601 [0.6160
10 [0.3486 [@.4870 [@.3031 [@.4355 [0.4636 [@.6390
11 [0.3434 [0.4931 [@.2933 [@.4365 [0.4698 [0.6603
12 [0.3455 [@.5007 [@.2909 [@.4390 [0.4834 [0.6831

Note:[Mhelcoloredcellifdicate fhe Mumber Whichminimizes e [Mformation[Criterion.

Table 5. Number of observations with stable factors by category

total stableldbservations

fulllslample post[1984
slowMariables 67 35 32
fastiariables 65 16 15
a) incomelltonsumptionemployment 39 20 18
b) productionlNew [arders [idventories 25 11 8
c) housing 10 1 0
d) money [credit 11 3 1
e) stocklpricellidterestlrates [lekchangelrates 26 6 7
f) consumerlprice[producerl(price 21 10 13
total 132 51 47

Note:Mhelcategories [Gf"$ low Mariables"@nd MastMariables " fbllow Stock [End Watson [2005).
Thelchtegories flom(a) fo ) @re [defined by he [Euthor [@nd [provided [d Mable 8.
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Table 6. Correlation coefficients among non-spurious and crude factors

1) Bulllsbmple
crudelfactors
fi1 f2 fs fa fs fe fr fs
NS f1 [@o13*** 0.172*** 0.093** [@032 0.235*** 0.077* [0.044 [@.049
factors fz @174 [@597*** [@.321*** [0.392** [0.115*** [0.216*** 0.229*** 0.310***
2)[Bost[1984[subsample
crudelfactors
f1 f2 fs fa fs fe fr fs
NS f1 0.461*** 0.658*** 0.577*** [0.001 0.006 [@.004 [0.004 [@.012
factors f2 [@.784*** 0.432** 0.126** [@.150** 0.219*** 0.184*** 0.160** [@.109*

Note: [, [™*", [@nd " [show [{hat fhe féstréjects fhe [MullldfZerocorrelationCoefficient @t fhe (1%, 5%, [@nd (0% [Significant[Bvels.

Table 7. Comparisons of the out-of-sample forecast MSEs

1) [Eulllsbmple
b MSE Diebold Giacomini[Rossi
NS crude (Mariano NS crude
12 1.167[Q) 0.977[11) @73 [@.26 0.91
24 0.9411) 1.144[031) 5.42FF* [@.40 1.28
48 1.497[) 1.583[(9) 478 0.06 0.46
2)[Bost[1984[subsample
h MSE Diebold Giacomini[Rossi
NS crude [Mariano NS crude
12 1.105[(2) 0.985[(12) 1.31 0.70 1.77(]
24 0.908[2) 1.287[01) 5.84F* 0.30 1.66
48 1.462[(2) 1.72719) 6.32F* 0.26 0.83

Note: [l Mheumber Qffactors [Estimated i [Sample [@nd s ed fbr fdrecasting @ fhe [darenthesis.
(IR, Diebold MarianoféstEnd [Giacominiland Rossilfésts [Ere fivo[sidedand [, [3*", [ [denotes (1%, B%, [@nd 0% [Significant.
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Table 8. Stability of the factor loadings for individual observations

1) Full sample

category | stability | MSE(NS) |MSE(crude) description

s a 1 0.571 0.976 |Personalidcomel(AR,bil.[chain 2000 F)

s a 0 0.731 1.027 |Personalcome@ss(idansferfpayments{AR, bil.[chain 2000 F)

s a 1 0.786 0.741 Real[@onsumption[AC)[A0mM224/gmdc

s a 1 1.288 0.910 [Manufacturingland fade Shles[(inil. Bhain 1996 [F)

s a 1 1.237 1.147  |Salesflrétail Stores((inil.Bhain 2000 F)

£ b 0 1.546 1.535 INDUSTRIALBRODUCTIONINDEXMMOTALINDEX

S b 1 1.683 1.471 INDUSTRIALBRODUCTIONINDEXMBRODUCTS,MOTAL

S b 1 1.531 1.333 INDUSTRIALBRODUCTION MNDEXMEINAL[BRODUCTS

S b 1 1.235 1.168 INDUSTRIALBRODUCTIONINDEXTKIONSUMERBOODS

S b 0 0.793 0.713 INDUSTRIALBRODUCTIONINDEXTMURABLECQONSUMERBOODS

s b 1 1.703 1.727 INDUSTRIALIBRODUCTIONINDEXMMONDURABLE[QONSUMERBOODS

s b 1 1.753 1.407 INDUSTRIALBRODUCTIONINDEXMBUSINESSEQUIPMENT

s b 0 1.058 1.230 INDUSTRIAL[BRODUCTIONINDEXMMATERIALS

S b 0 0.790 0.884 INDUSTRIALBRODUCTIONINDEXMMURABLEGOODSMATERIALS

K b 1 1.325 1.303 INDUSTRIALBRODUCTIONINDEXTMONDURABLEGOODSMATERIALS

£ b 0 1.489 1.288 INDUSTRIALBRODUCTIONINDEXTMANUFACTURINGI(BIC)

S b 0 1.467 1.631 INDUSTRIALBRODUCTIONMNDEXMIRESIDENTIALMTILITIES

S b 1 0.852 0.882 INDUSTRIALBRODUCTIONINDEXMRUELS

s b 1 1.610 2.342 [NAPMBRODUCTIONINDEXIPERCENT)

s b 0 1.209 0.990 |Capacitytilization [(Mfg)

s a 0 1.733 2.425 INDEXIOFHELPWANTED BDVERTISINGINNEWSPAPERSI[(A967=100;SA)
S a 1 1.389 2.142 EMPLOYMENT:[RATIO; HELPWANTEDADS:NO.MNEMPLOYEDIOLF

s a 1 1.582 1.138  |CIVILIAN[DABORIEORCE:[BMPLOYED,MOTAL{THOUS.,SA)

£ a 1 2.263 1.845 CIVILIAN[DABORI[EORCE:[BMPLOYED, NONAGRIC.INDUSTRIES[THOUS.,SA)
S a 1 1.078 1.124 UNEMPLOYMENTRATE:[ALLWORKERS, 16 YEARSRIOVER[%,SA)

S a 0 0.981 0.909 UNEMPLOY.BY[MURATION:[BVERAGE(MEAN)DURATION [N WEEKS[(BA)

S a 1 0.891 1.031 UNEMPLOY.BYMURATION:BERSONSNEMPL.LESSTHAN BWKS[THOUS.,SA)
S a 1 1.246 1.289 UNEMPLOY.BYMURATION:BERSONSINEMPL.5MOM4 WKS{THOUS.,SA)
s a 0 0.969 0.753 |UNEMPLOY.BYMDURATION:BERSONSMNEMPL.15MWKSHTHOUS.,SA)

s a 0 0.709 0.586 |UNEMPLOY.BY[DURATION:BERSONSMNEMPL.15MOR6WKS(THOUS. SA)
s a 0 1.114 1.016 |UNEMPLOY.BY[MURATION:BERSONSINEMPL.27 WKSH[THOUS,SA)

s a 1 1.164 1.100 |Average Weekly[itialGlaims,dnemploy.Msurance [hous.)

S a 0 2.205 1.526 EMPLOYEESIONNONFARMBAYROLLSIMOTAL BRIVATE

K a 0 1.774 1.402 EMPLOYEESONNONFARMBAYROLLSIBOODS[EBRODUCING

S a 1 0.048 0.047 EMPLOYEESONNONFARMPBAYROLLSIMINING

S a 1 0.420 0.117 EMPLOYEES[ONNONFARMPBAYROLLSTDONSTRUCTION

s a 0 2.217 2.468 |EMPLOYEESIONINONFARMPAYROLLSMMANUFACTURING

s a 0 1.715 2.065 |EMPLOYEESIONNONFARMPBAYROLLSMDURABLEGOODS

s a 0 2.506 2.221 EMPLOYEESIONNONFARMBAYROLLSMNONDURABLEGOODS

S a 1 2.429 1.837 EMPLOYEESIONNONFARMIBAYROLLSIBERVICEBROVIDING

K a 1 2.357 1.552 EMPLOYEESONNONFARMIBAYROLLSIMIRADE,MRANSPORTATION, ANDMTILITIES
£ a 0 2.718 2.463 EMPLOYEESONNONFARMBAYROLLSIWHOLESALEMRADE

S a 0 1.694 1.066 EMPLOYEESONNONFARMBAYROLLSMRETAILTRADE

S a 0 1.765 1.517 EMPLOYEESONNONFARMPBAYROLLSIEINANCIALACTIVITIES

S a 1 1.492 1.620 EMPLOYEESONNONFARMPBAYROLLSIBOVERNMENT

s a 1 0.986 0.414  |[EmployeeMoursiMonag.Establishments[AR,Hil. Hours)

s a 0 0.648 0.572 |AVERAGEMWEEKLYHOURSIOFIBRODUCTIONORINONSUPERVISORYWORKERSIONBRIVATENONFAR
s a 1 0.784 0.809 |AVERAGEMWEEKLYHOURSIOFIBRODUCTIONORINONSUPERVISORYWORKERSONBRIVATENONFAR
s a 0 0.521 0.499  |AverageeeklyHours, mfg.[hours)

s a 0 1.554 2.178 |NAPMIEMPLOYMENTINDEX[PERCENT)

f c 0 0.163 0.148 HOUSINGISTARTS:NONFARM(1947 [88); TOTALIEEARM&NONFARM(1959[{THOUS.,SA
f c 1 0.684 1.124 HOUSINGISTARTS:NORTHEASTITHOUS.U.)S.A.

f c 0 0.182 0.194 HOUSINGISTARTS:MIDWEST(THOUS.U.)S.A.

f c 0 0.305 0.382 |HOUSINGISTARTS:SOUTHITHOUS.U.)S.A.

f c 0 0.234 0.214 [HOUSINGISTARTS:WESTITHOUS.U.)S.A.

f c 0 0.338 0.296 |HOUSINGAUTHORIZED:MOTALNEWEBRIVIHOUSINGONITS[THOUS.,SAAR)
f c 0 0.413 0.880 HOUSESAUTHORIZED BYBUILD.BERMITS:NORTHEAST(THOU.U.)S.A

f c 0 0.200 0.098 HOUSESAUTHORIZEDBYBUILD.BERMITS:MIDWEST(THOU.U.)S.A.

f c 0 0.752 0.985 HOUSESAUTHORIZED BYBUILD.BERMITS:SOUTH(THOU.U.)S.A.

f c 0 0.217 0.201 HOUSESAUTHORIZED BYBUILD.BERMITS:WEST(THOU.U.)S.A.

f b 0 1.356 2.062 PURCHASINGMANAGERS'INDEX[(BA)

f b 0 1.586 2.349 NAPMNEWORDERSINDEXPERCENT)

f b 0 0.253 0.387 NAPMMENDORDELIVERIESINDEXPERCENT)

f b 0 0.861 1.316  |NAPMINVENTORIESINDEXIPERCENT)

f b 1 1.311 1.189  |Mfrs'mew(arders,[cbnsumerigoods@nd Materials [bil.hain 1982 [F)

f b 1 2.215 2.194 Mfrs'[Dew(arders, [durable [goodsindustries [bil..chain 2000 )

f b 1 0.719 0.811 Mfrs'[Mew@rders, Mondefense Chpital [@oods [inil. chain (1982 [F)

f b 0 1.705 2.064  |Mfrs'nfilled@rders,durable [goodsifdus. [bil.[chain 2000 )

f b 0 1.319 1.408  |Manufacturing@nd fBadeMventories[bil.Chain 2000 )

f b 0 1.090 0.944  |Ratio,[mfg.End fdade [Mventoriesid Shles[basedGh Ehain 2000 [

Note: “stability=0" denotes unstable factor loadings and “1” denotes stable factor loadings.

28



1) Full sample (continued)
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UNITEDSTATES;EFFECTIVEEEXCHANGERATE(MERM)(INDEXINO.)
FOREIGNEXCHANGERATE:[SWITZERLAND [(BWISS[ERANC[BERMD.S.$)
FOREIGNEXCHANGERATE:[JAPAN{YENEBERMD.S.$)
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FOREIGNEXCHANGERATE:[QANADA{CANADIANFBERMD.S.$)
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U.[OFMICH.MNDEXIOFIOONSUMERIEXPECTATIONS(BCD[83)

Note: “stability=0" denotes unstable factor loadings and “1” denotes stable factor loadings.
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2) Post-1984 subsample

category [ stability | MSE(NS) [MSE(crude)
S a 1 0.330 4.201 Personalifcome[[AR,Ril.[chain 2000 )
s a 0 0.432 5.263 |Personalcomel@ssffiansferlpayments{AR, [il.lchain 2000 )
s a 0 0.682 1.045 |Real[@onsumption[[AC)AOmM224/gmdc
s a 1 0.947 0.817  |Manufacturingland fadeshles({inil.Chain (1996 )
s a 0 1.160 1.202  |Sales[Oflrétail [Stores{inil. @hain 2000 )
s b 1 1.269 1.685 INDUSTRIALBRODUCTIONINDEXMIMOTAL INDEX
s b 1 1.559 2.163 INDUSTRIALBRODUCTIONINDEXMERODUCTS,MOTAL
S b 1 1.496 2.116 INDUSTRIALBRODUCTIONMNDEXMEINALBRODUCTS
S b 1 1.264 1.594 INDUSTRIALIBRODUCTION INDEXMEIONSUMERIBOODS
S b 0 0.806 0.823 INDUSTRIALIBRODUCTIONMNDEXMMURABLEQONSUMERIGOODS
S b 0 1.739 2.183 INDUSTRIALIEBRODUCTIONMNDEXMNONDURABLEQONSUMERIGOODS
s b 0 1.561 2.206 INDUSTRIALIEBRODUCTION INDEXMBUSINESSBQUIPMENT
s b 1 0.772 0.936 INDUSTRIALIBRODUCTIONMNDEXMMATERIALS
s b 0 0.600 0.834 INDUSTRIAL[BRODUCTIONMNDEXMIMURABLEGBOODSMATERIALS
s b 1 0.937 0.590 INDUSTRIALBRODUCTIONINDEXMMNONDURABLEGBOODSMATERIALS
s b 1 1.161 1.314 INDUSTRIALBRODUCTIONINDEXMMANUFACTURINGI(BIC)
s b 0 1.513 2.090 INDUSTRIAL[BRODUCTIONMNDEXMRESIDENTIALDOTILITIES
s b 0 0.928 0.852 INDUSTRIAL[BRODUCTIONMNDEXMBUELS
s b 0 1.324 1.846 NAPMBRODUCTIONINDEXPERCENT)
s b 0 0.932 0.871 |CapacityDtilization(Mfg)
s a 1 1.901 3.178 INDEXIOF[HELPWANTEDADVERTISINGINNEWSPAPERS[1967=100;SA)
s a 0 1.306 2.219 EMPLOYMENT:[RATIO; HELPWANTEDADS:NO.UNEMPLOYEDGLF
s a 1 1.312 1.306 |CIVILIANIDABORIEORCE:BMPLOYED,TMOTALITHOUS.,SA)
s a 0 1.982 1.993 |CIVILIANIDABORIEHORCE:[BMPLOYED,[NONAGRIC.INDUSTRIESI[THOUS.,SA)
s a 1 0.960 1.143 UNEMPLOYMENTRATE:ALL WORKERS, 16 MEARSRIOVER[Y%,SA)
S a 0 1.092 0.907 UNEMPLOY.BY DURATION:[AVERAGE(MEAN)DURATION N WVEEKS[[BA)
S a 1 0.847 0.937 UNEMPLOY.BY DURATION:BERSONSINEMPL.LESSMHAN BWKSITHOUS.,SA)
S a 1 1.215 1.246 UNEMPLOY .BY DURATION:[BERSONSUNEMPL .5MOM4 WKSITHOUS.,SA)
S a 1 1.169 0.926 UNEMPLOY.BY DURATION:BERSONSNEMPL.15/KSEH{THOUS.,SA)
s a 1 0.950 0.627 UNEMPLOY .BY DURATION:BERSONSUNEMPL.15MOZ6WKSTHOUS.,SA)
s a 0 1.099 1.168 UNEMPLOY .BYDURATION:BERSONSMNEMPL.27 WWKSEITHOUS,SA)
s a 1 0.976 1.053  |AverageMeeklyitial[Glaims,@nemploy.surance(hous.)
s a 1 1.422 1.761 EMPLOYEESIONINONFARMBAYROLLSMMOTALBRIVATE
s a 0 1.093 1.216 EMPLOYEESIONINONFARMBAYROLLSMBOODSERODUCING
S a 0 0.047 0.047 EMPLOYEESIONINONFARMBAYROLLSIMINING
S a 0 0.236 0.215 EMPLOYEESIONNONFARMBAYROLLSIWONSTRUCTION
S a 0 1.450 1.641 EMPLOYEESIONNONFARMPBAYROLLSOMANUFACTURING
S a 0 1.115 1.379 EMPLOYEESIONNONFARMPAYROLLSIDURABLEBOODS
s a 0 1.703 1.475 EMPLOYEESION[NONFARMIBAYROLLSMNONDURABLEGOODS
s a 0 1.976 2.218 EMPLOYEESION[NONFARMIBAYROLLSMBERVICERBROVIDING
s a 1 1.973 1.955 EMPLOYEESIONINONFARMBAYROLLSIMRADE,TRANSPORTATION, ANDMTILITIES
s a 0 2.572 3.085 EMPLOYEESIONINONFARMIBAYROLLSIWHOLESALEMRADE
S a 0 1.430 1.163 EMPLOYEESIONINONFARMBAYROLLSMRETAILIRADE
S a 0 1.466 1.371 EMPLOYEESIONINONFARMBAYROLLSMHEINANCIALACTIVITIES
S a 0 1.469 1.409 EMPLOYEESIONNONFARMBAYROLLSIBOVERNMENT
s a 1 0.725 0.738  |EmployeeRoursliMonag.Establishments[AR, Hil.Hours)
s a 0 0.632 2.055 AVERAGEWEEKLYHOURSOFBRODUCTIONORNONSUPERVISORY WORKERSIONEBRIVATENONFAR
s a 1 0.779 0.824 |AVERAGEWEEKLYHOURSIOFBRODUCTIONORMNONSUPERVISORYWORKERSIONBRIVATEINONFAR
s a 0 0.502 1.814  |AverageMeeklyRours,mfg.[hours)
s a 0 1.225 1.612 NAPMEMPLOYMENTINDEXIIPERCENT)
f c 0 0.224 0.176 HOUSINGISTARTS:NONFARM(1947[88); TOTALIEHEARM&NONFARM(1959[{THOUS.,SA
f c 0 0.416 0.120 HOUSINGISTARTS:NORTHEASTITHOUS.U.)S A.
f c 0 0.244 0.197 HOUSINGSTARTS:MIDWEST(THOUS.U.)S.A.
f c 0 0.357 0.198 HOUSINGSTARTS:SOUTHITHOUS.U.)S.A.
f c 0 0.297 0.202 HOUSINGISTARTS:WESTITHOUS.U.)S A.
f C 0 0.437 0.195 HOUSINGAUTHORIZED:MOTALNEWBRIVHOUSINGONITS[THOUS. ,SAAR)
f c 0 0.255 0.083 HOUSESAUTHORIZEDBYBUILD.BERMITS:NORTHEAST(THOU.U.)S.A
f c 0 0.357 0.151 HOUSESAUTHORIZEDBYBUILD.BERMITS:MIDWEST(THOU.U.)S.A.
f c 0 0.709 0.216 HOUSESAUTHORIZEDBYBUILD.BERMITS:SOUTH(THOU.U.)S A.
f c 0 0.307 0.211 HOUSESAUTHORIZEDBYBUILD.BERMITS:WEST(THOU.U.)S.A.
f b 0 1.078 1.536 PURCHASINGIMANAGERS'INDEX[(BA)
f b 0 1.345 1.933 NAPMINEWIORDERSINDEXPERCENT)
f b 0 0.176 0.260 NAPMMENDORMDELIVERIESINDEX{PERCENT)
f b 0 0.738 0.714 NAPMINVENTORIESINDEXIPERCENT)
f b 0 1.063 0.912  [Mfrs'mew@rders,Cbnsumerlgoods@nd Materials(bil. chain 1982 F)
f b 0 2.113 2.210 Mfrs'Dew [arders,[durable [goodsindustries [bil..chain 000 [{)
f b 1 0.761 1.225 Mfrs'Dew [arders, Mondefense [Chpital [@oods{inil.[chain (1982 [F)
f b 0 1.538 1.606  |Mfrs'nfilled@rders,durable goodsdus.[bil.Ehain 2000 F)
f b 0 1.096 1.407  |Manufacturing@ndfade Mventories(bil.chain 2000 )
f b 0 0.962 0.982 |Ratio,mfg.@Endfade Mventoriesfd Shles[based @nchain 2000 &

Note:

“stability=0" denotes unstable factor loadings and “1” denotes stable factor loadings.
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2) Post-1984 subsample (continued)
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0.436
0.423
2.831
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FOREIGNEXCHANGE RATE:[JAPAN{YENBERMD.S.$)
FOREIGNEXCHANGERATE:[UNITED KINGDOM{TCENTSBERBOUND)
FOREIGNBEXCHANGE RATE:[DANADACANADIAN BBERM.S.$)
PRODUCERBRICEMNDEX:EINISHED BOODS[(82=100,SA)
PRODUCERBRICEINDEX:FINISHEDIOONSUMERIBOODS[(B2=100,SA)
PRODUCERBRICEMNDEX:INTERMEDMAT.SUPPLIESBICOMPONENTS(82=100,SA)
PRODUCERBRICEMNDEX:CRUDEMATERIALS[(82=100,SA)
SPOTMARKETERICEMNDEX:BLSRIORB:ALLAOMMODITIES(1967=100)
INDEXOFSENSITIVEMATERIALS[BRICESI(A990=100)(BCI[@9A)
NAPMIQOMMODITY BRICESINDEXPERCENT)
CPIM:ALLITEMS[(32[84=100,SA)

CPID:[BPPARELRIUPKEEP[B2[B4=100,SA)
CPIM:MRANSPORTATION[(82[84=100,SA)
CPIM:MEDICALCARE[(32[84=100,SA)

CPIM:COMMODITIES[(B2[B4=100,SA)

CPIM:MURABLES[B284=100,SA)

CPIM:[SERVICES[(82[84=100,SA)

CPIM:ALLITEMSLCESSEHOOD [(B2[84=100,SA)
CPIM:ALLITEMSTESSSHELTERI[(B2[84=100,SA)
CPIM:ALLITEMSTCESSMEDICALCAREB2[84=100,SA)
PCE,IMPLBRIDEFL:PCE[1987=100)
PCE,IMPLBRIDEFL:PCE;DURABLESI[3987=100)
PCE,IMPLIBRIDEFL:PCE;INONDURABLESI[3996=100)
PCE,IMPLIBRIDEFL:PCE;SERVICESI1987=100)

AVERAGEHOURLYBARNINGSIOFIBRODUCTIONIORINONSUPERVISORY WORKERSIDNBRIVATENO
AVERAGEHOURLYBARNINGSIOFIBRODUCTIONIORINONSUPERVISORY WORKERSIDNBRIVATENO
AVERAGEHOURLYBARNINGSIOFIBRODUCTIONIORINONSUPERVISORY WORKERSIDN[BRIVATENO
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Note:

“stability=0" denotes unstable factor loadings and “1” denotes stable factor loadings.
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