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T → ∞, are shown to be standard normals. The effects of serial correlation and cross-

sectional dependence are mopped out via long-run variances. An effective bias correction is

derived which is shown to work well in finite samples; particularly when N is smaller than

T. Our panel tests are robust to possible cointegration across units.
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1. Introduction

Since the seminal work of Engle and Granger (1987), we observe a continuous and pro-

lific stream of publications on estimating and testing long-run relationships amongst non-

stationary economic variables. This literature can be divided into two branches: Single

equation and system approaches (for an old but still relevant review of system equations

cointegration tests cf. Hubrich, Lütkepohl and Saikkonen (2001)).

This paper deals mainly with the former type and in this context, we start by proposing

a new single equation test for the null hypothesis of cointegration based on the sample au-

tocovariance. Analogous tests in the literature include Hansen (1992), Quintos and Phillips

(1993), Shin (1994), Jansson (2005) and Kurozumi and Arai (2008). Hansen (1992) derives

tests for parameter instability with I(1) processes. He shows that these tests can be viewed

as tests of the null hypothesis of cointegration against the alternative of no cointegration.

Similarly, Quintos and Phillips (1993) develop tests for parameter constancy in cointegrating

regressions. Their approach delivers a test of the null hypothesis of cointegration against par-

ticular directions of departure from the null hypothesis. The test proposed by Shin (1994),

which is a residual based test, for testing the null hypothesis of cointegration against the

alternative of no cointegration, is based on the approach adopted by Kwiatkowski, Phillips,

Schmidt, and Shin (1992). Jansson (2005) offers a feasible point optimal test of the null

hypothesis of cointegration whose local asymptotic power function is showed to be close to

the limiting Gaussian power envelope. Finally, a locally best invariant and unbiased test is

proposed in Kurozumi and Arai (2008). They also discuss the relative merits and demerits

of the tests of Shin (1994), Jansson (2005) and theirs.

For all these tests, the limiting distributions of the test statistics are non-standard. On the

contrary our single equation cointegrating tests statistics, which extend Harris, McCabe and

Leybourne (2003, hereafter HML) and Harris, Leybourne and McCabe (2005, hereafter HLM)

results, are shown to have standard normal limiting distributions, which is an advantage on

itself and also when it comes to extend our tests to panels. Like HLM (2005), our tests are

based on the sample autocovariance. We also derive an effective bias correction to improve

the small sample properties of our tests.
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To gain power, we transpose our tests to panels. Baltagi (2008) and Breitung and Pesaran

(2008) provide comprehensive surveys on the subject. As it is well known, now, this improved

power comes, in general, at a price in terms of a more involved asymptotic theory dealing with

two indices simultaneously2 and the need to emend for likely occurrence of cross-sectional

dependence. Instead of using the joint asymptotics to obtain a test whose null limiting

distribution is free of nuisance parameters, we use a simpler asymptotic theory where N is

fixed and T → ∞. This is due to the fact that the limiting distribution of the statistic of each

unit is a standard normal distribution. Therefore, our panel cointegration tests are valid for

any N. The adverse effects of the potential presence of cross-sectional dependence and serial

correlation are corrected via long-run variances.

Banerjee, Marcellino and Osbat (2004 and 2005) have shown through simulations that

panel cointegration tests have severely distorted size in presence of cross units cointegration.

In many empirical applications this is likely the case, because of economic links across regions

and units. However, our tests are immune to possible cointegration across units.

A Monte Carlo investigation of the small sample properties of the tests is conducted. It

shows that our bias correction works well; particularly when N is smaller than T .

The remainder of the paper has the following structure. In Section 2, we review the

autocovariance based test proposed by HLM (2003) and HLM (2005). The new univariate

cointegration test is analysed in the following section. Section 4 investigates the novel panel

cointegration tests. The results of our Monte Carlo simulations are presented in Section

5. Finally, Section 6 offers some concluding remarks, and all proofs are collected in the

Appendix.

2. Review of the Autocovariance Based Test

In this section, we briefly review stationarity tests based on the autocovariance proposed

by Harris, McCabe and Leybourne (2003, hereafter HML) and Harris, Leybourne and Mc-

2Cf. Phillips and Moon (1999) for a theoretical exposition and Hadri, Larsson and Rao (2012) for a
discussion of the different limit theories including the limit theory where T is fixed and N is allowed to go to
infinity.
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Cabe (2005, hereafter HLM). Let us consider the following local level model3:

yt = μ+ zt for t = 1, 2, · · · , T,

and suppose that we want to test for the null hypothesis that zt is stationary whereas it is a

unit root process under the alternative. HML (2003) note the differences in the convergence

order of the sample autocovariance under the null and the alternative hypotheses,

1

T −K

T∑
t=K+1

ẑtẑt−K
p−→ E[(yt − μ)(yt−K − μK)] ≡ CK under the null hypothesis

1

(T −K)2

T∑
t=K+1

ẑtẑt−K
d−→

∫ 1

0
B̃2(r)dr under the alternative

for a given lag orderK, where ẑt = yt−ȳ and B̃(r) is a demeaned Brownian motion. Although

it seems inconvenient to use the sample autocovariance as a test statistic because it converges

to a fixed value CK , HML (2003) notice that CK → 0 as K → ∞ and thus the central limit

theorem (CLT) for the sample autocovariance with a suitable normalization is expected to

hold as K goes to infinity. In fact, they showed that

1√
T−K

∑T
t=K+1 ẑtẑt−K

ω̂zz

d−→ N(0, 1) under the null hypothesis, (1)

where ω̂2
zz is the kernel estimator of the long-run variance based on ẑtẑt−K , whereas the

left-hand side diverges to infinity under the alternative. They also proposed a test for het-

eroskedastic cointegration using a similar principle.

The above stationarity test based on the autocovariance was extended to a panel station-

arity test by HLM (2005). For a panel data model given by

yit = μi + zit for i = 1, 2, · · · , N and t = 1, 2, · · · , T,

we have the regression residuals normalized by the standard deviation; that is,

z̃i,t =
ẑi,t
σ̂i,z

, where σ̂i,z is the sample standard deviation of ẑi,t.

3HML (2003) and HLM (2005) allowed for deterministic regressors in addition to a constant but we restrict
our attention to the local level model in order to simplify the explanation.
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Then, the test statistic for panel stationarity is constructed by pooling the sample autoco-

variances across cross-sections, which is given by

ŜK =
C̃K

ω̂a
, where C̃K =

1√
T −K

T∑
t=K+1

ãK,t with ãK,t =
N∑
i=1

z̃i,tz̃i,t−K

and ω̂2
a is the long-run variance estimator based on ãK,t. HLM (2005) showed that ŜK

d−→
N(0, 1) under the null hypothesis whereas it diverges to infinity under the alternative.

Although the size of the above test can be controlled at least asymptotically, HLM (2005)

showed that ŜK suffers from under-size distortion in finite samples because of the negative

bias of the test statistic. Since ẑi,t = zi,t − z̄i, we can see that

1√
T −K

T∑
t=K+1

z̃i,tz̃i,t−K =
1

σ̂2i,z
√
T −K

T∑
t=K+1

zi,tzi,t−K− 1

σ̂2i,z
√
T −K

(
1√
T

T∑
t=1

zi,t

)2

+op

(
1√
T

)
,

we can see that the negative bias comes from the second term on the right-hand side of

the above equation. Note that this negative bias accumulates when we pool the sample

autocovariances, so that the panel stationarity test tends to be severely undersized as N

gets larger. Because the expectation of (T−1/2
∑T

t=1 zi,t)
2 is approximated by the long-run

variance of its limiting distribution, HLM (2005) proposed the following bias corrected version

of the test statistic:

S̃K =
C̃K + b̃

ω̂a
where b̃ =

1√
T −K

N∑
i=1

ω̂2
i,z

σ̂2i,z

with ω̂2
i,z being the long-run variance estimator based on ẑi,t. Because the bias term is

negligible when T is large, we still have S̃K
d−→ N(0, 1) under the null hypothesis.

3. Univariate Cointegration Test

3.1. Model and assumptions

We start with a univariate cointegrating regression model given by

yt = β′Xt + ut for t = 1, 2, · · · , T, (2)
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where Xt = [1, x′t]′ (constant case) or Xt = [1, t, x′t]′ (trend case), yt and xt are 1- and

px-dimensional processes with

xt = xt−1 + vt and ut = ρut−1 + u∗t .

We make the following assumption for u∗t and vt:

Assumption 1 (a) [u∗t , v′t]′ is a vector linear process given by

[
u∗t
vt

]
=

∞∑
j=0

Φjεt−j with
∞∑
j=0

j2‖Φj‖ <∞,

where {εt} is an (px + 1)-dimensional i.i.d. sequence with mean 0 and variance given by Σε,

which is positive definite, and has the finite fourth order moments.

(b) The spectral density of [u∗t , v′t]′, denoted by f(λ) ≡ (2π)−1Φ(e−iλ)ΣεΦ
′(eiλ), is nonsingular

and f(λ) ≥ αIpx+1 for some α > 0 for all λ ∈ [0, π].

Assumption 1 implies that [u∗t , v′t]′ is stationary and that there is no cointegrating relation

among xt. The 2-summability of {Φj} is stronger than usual but we need this condition to

derive the bias later. The assumption on the spectral density will be used to derive the leads

and lags expression. We also note that, since {εt} is an i.i.d. sequence with the finite fourth

order moments, exercise 2.13 of Brillinger (1981) implies that [u∗t , v′t]′ satisfies Assumption

2.6.2 of Brillinger (1981). That is, the fourth order cumulants of [u∗t , v′t]′, which are denoted

by κijkl(m1,m2,m3), satisfy

∞∑∑∑
m1,m2,m3=−∞

|κijkl(m1,m2,m3)| <∞.

The testing problem we consider is given by

H0 : |ρ| < 1 vs. H1 : ρ = 1.

That is, yt is cointegrated with xt under the null hypothesis whereas they are not cointegrated

under the alternative. Note that under the null hypothesis, [ut, v
′
t]
′ also satisfies the same

conditions as given by Assumption 1.
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Since it is known that D̃T (β̂ols−β) converges in distribution where β̂ols is obtained by re-

gressing yt on Xt and D̃T = diag{√T , T Ipx} (constant case) or D̃T = diag{√T , T√T , T Ipx}
(trend case), we can see that the same weak convergence holds as given by (1) with ẑt replaced

by ût. However, such a test suffers from under-size distortion as discussed in the previous

section; therefore, we need to construct the bias corrected version of the test. In the case of

cointegration model (2), we have

1√
T −K

T∑
t=K+1

ûtût−K =
1√

T −K

T∑
t=K+1

utut−K

− 1√
T −K

T∑
t=1

utX
′
t

(
T∑
t=1

XtX
′
t

)−1 T∑
t=1

Xtut + op

(
1√
T

)
,(3)

so that the second term in (3) corresponds to the bias term. Under Assumption 1 and the

null hypothesis, we can show that

D̃−1
T

T∑
t=1

XtX
′
tD̃

−1
T

d−→
∫ 1

0
B̃(r)B̃′(r)dr and D̃−1

T

T∑
t=1

Xtut
d−→
∫ 1

0
B̃(r)dBu(r) + λxu,

where B̃(r) = [1, B′(r)]′ (constant case) or B̃(r) = [1, r, B′(r)]′ (trend case) with B(r) being

a px-dimensional Brownian motion, Bu(r) is a 1-dimensional Brownian motion, and λxu is

the so called one-sided long run variance. As a result, the expectation of the bias term

approximately becomes

E

[(∫ 1

0
B̃(r)dBu(r) + λxu

)′(∫ 1

0
B̃(r)B̃′(r)dr

)−1(∫ 1

0
B̃(r)dBu(r) + λxu

)]
. (4)

In this case, the problem is that B(r) is correlated with Bu(r) in general, so that it is too

difficult to evaluate the above expectation in general. Exception is the case when ut is

independent of vt, so that B(r) is independent of Bu(r) and λxu = 0. In such a special case,

(4) reduces to ω2
u(pc + px) where pc = 1 or 2 depending on constant or trend case while ω2

u

is the long-run variance of ut, which can be estimated using ût. In other words, if vt = Δxt

is uncorrelated with the regression error ut for all the leads and lags, then we can evaluate

expectation (4).

In order to establish such a reasonable relation, we exploit the dynamic ordinary least
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squares (DOLS) technique4 considered by Phillips and Loretan (1991), Saikkonen (1991) and

Stock and Watson (1993). Under Assumption 1 and the null hypothesis, we have the following

leads and lags expression by Theorem 8.3.1 of Brillinger (1981):

ut =
∞∑

j=−∞
π′jvt−j + ηt, (5)

where E[vsηt] = 0 for all s and t, and the transfer function associated with {πj} is given

by fuv(λ)f
−1
vv (λ) with fuv(λ) and fvv(λ) being the corresponding blocks of f(λ). Then, the

assumption of the 2-summability of {Φj} implies that {πj} is also 2-summable. In addition,

because [ut, v
′
t]
′ is a linear process with i.i.d. innovations, ηt can be expressed as

ηt =
∞∑

j=−∞
φjξt−j with

∞∑
j=−∞

|j|2|φj | <∞, (6)

where {ξt} is an independent sequence with mean 0, variance σ2ξ and the finite fourth order

moments. By replacing ut in (2) with (5), we have

yt = β′Xt +
∞∑

j=−∞
π′jvt−j + ηt.

By truncating infinite leads and lags at j = ±M , we obtain the DOLS regression as follows:

yt = β′Xt +
M∑

j=−M

π′jvt−j + η∗t , for t =M + 1, · · · , T −M, (7)

where η∗t = ηt +
∑

j>|M | π
′
jvt−j . Note that the truncation points can be different at the leads

and the lags; in fact, the finite sample performance with the different truncation points could

be better in some cases as investigated by Hayakawa and Kurozumi (2008) and Choi and

Kurozumi (2012). In this paper, the same truncation points are used only for notational

convenience.

In the following, we consider constructing a test statistic based on regression (7) and thus

for notational convenience, we re-define T = T − 2M and denote the effective sample period

t =M + 1, · · · , T −M as t = 1, · · · , T .
4We also considered the fully modified (FM) regression proposed by Phillips and Hansen (1990). However,

it can be shown that the tedious bias still remains even if the FM method is applied and thus we do not pursue
the FM technique in this paper.
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As discussed in Saikkonen (1991), the truncation point M must diverge to infinity at a

suitable rate and we make the following assumption on the divergence rate of M :

Assumption 2 As T → ∞,

M4

T
→ 0, (8)

√
T
∑

|j|>M

‖πj‖ → 0. (9)

Conditions (8) and (9) gives the upper and lower bounds for the divergence rate of M ,

respectively. Note that Saikkonen (1991) assumed M3/T → 0, which is weaker than (8) and

sufficient to guarantee the asymptotic normality of πj for a given j. The stronger assumption

2 is required in order to evaluate the bias term in our cointegration test. Note that, as shown

by Kejriwal and Perron (2008), we can relax Assumption 2 as far as the efficient estimation

of β is concerned.

3.2. Cointegration test with DOLS regressions

We construct the test statistic following HML (2003). Let η̂∗t be the regression residuals

from DOLS regression (7) and the standardized version5 is given by

η̃∗t =
η̂∗t
σ̂η
, where σ̂2η =

1

T

T∑
t=1

η̂∗2t .

Then, the test statistic for the null of cointegration is given by

ŜK =
C̃K

ω̂a
where C̃K =

1√
T −K

T∑
t=K+1

ãK,t with ãK,t = η̃∗t η̃
∗
t−K ,

and ω̂2
a is the long-run variance estimator of ãK,t with the Bartlett kernel given by

ω̂2
a = γ̂a,0 + 2

J∑
j=1

(
1− j

J + 1

)
γ̂a,j where γ̂a,j =

1

T −K

T∑
t=K+j+1

ãK,tãK,t−j (10)

5Exactly speaking, it is not necessary for the residuals to be standardized as far as the univariate case is
concerned; the standardization is required only for the panel cointegration test in order for the test statistic
to be scale invariant. We standardize them in the univariate case just because the univariate cointegration
test can be seen as a special case of the panel cointegration test.
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and J is the bandwidth of order o(T 1/2).

We would like to show that the functional central limit theorem (FCLT) holds for C̃K , but

we cannot directly apply theorems in HML (2003) because they assume a causal linear process

for the stochastic term zt whereas ηt in our model is not a causal but a linear process with

leads and lags of the innovations {ξt}. Then, we first have to establish the Beveridge–Nelson

(B–N) decomposition for ηtηt−K . In the following, the coefficients and the lag polynomials

depend on K but we suppress it for notational convenience.

Lemma 1 For {ηt} satisfying (6), we have

ηtηt−K =
∞∑
j=1

Gjξtξt−j −Δr̃t −Δ+r̃+t + r1,t + r2,t + r3,t, (11)

where Δ = 1− L and Δ+ = 1− L−1 with L being the lag operator, Gj = G1,j +G2,j with

G1,j =
K−1∑

�=1−(j∧K)

φ�φj+�−K and G2,j =

⎧⎪⎨
⎪⎩

K−j−1∑
�=1

φ�−Kφj+�, (j = 1, · · · ,K − 2),

0, (j > K + 2),

r̃t = r̃1,t + r̃2,t with

r̃1,t =
∞∑
j=1

G̃1,j(L)ξtξt−j where G̃1,j(L) =
K−2∑
�=0

G̃1,�L
� with G̃1,� =

K−1∑
i=�+1

φiφi+j−K ,

r̃2,t =
K−2∑
j=1

G̃2,j(L)ξtξt−j where G̃2,j(L) =

K−j−2∑
�=0

G̃2,�L
� with G̃2,� =

K−j−1∑
i=�+1

φi+jφi−K ,

r̃+t =
∞∑
j=2

G̃+
j (L)ξtξt−j where G̃+

j (L) =
0∑

�=2−(j∧K)

G̃+
� L

� with G̃+
� =

�−1∑
i=1−(j∧K)

φiφi+j−K ,

r1t =
K−1∑
j=1

φjφj−Kξ
2
t−j , r2t =

∞∑
|j|≥K

∞∑
�=−∞

φjφ�ξt−jξt−K−�, r3t =
K−1∑

j=−K+1

−K∑
�=−∞

φjφ�ξt−jξt−K−�.

Lemma 1 implies that ηtηt−K can be decomposed into the first term on the right-hand

side of (11) plus the remaining terms, the former of which is a martingale difference array.

In order to establish the FCLT for the partial sum process of ηtηt−K , we make the following

assumption on the divergence rate of K.
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Assumption 3 The lag order K diverges to infinity at a rate of
√
T .

Strictly speaking, the lag order K can take an order different from
√
T as proved in

HML (2003), as far as the FCLT is concerned. However, HML (2003) and HLM (2005)

recommended K = O(
√
T ) for practical purpose; in addition, we need to requireM4/K → 0,

which is satisfied under Assumptions 2 and 3, in order to evaluate the bias term later. Because

of this reason, we restrict the order of K to O(
√
T ).

From expression (11), the FCLT for a sequence of martingale difference arrays can be

applied to the first term on the right-hand side of (11) by the following Lemma 2 while the

differencing operators Δ = 1 − L and Δ+ = 1 − L−1 avoid from accumulating the effect

of r̃t and r̃
+
t . Intuitively, the partial sums of the remaining terms r1,t, r2,t and r3,t become

negligible because they include φj for j ≥ K, which converges to zero sufficiently rapidly.

Lemma 2 Suppose that Assumptions 1 and 3 hold. Under the null hypothesis, the following

FCLT holds as T → ∞:

1√
T −K

[Tr]∑
t=1

ηtηt−K ⇒ B(r), (12)

where [a] is the largest integer less than a, 0 ≤ r ≤ 1, ⇒ signifies weak convergence of

the associated probability measures, and B(r) is a Brownian motion with the variance ω2
a ≡

σ4ξ limK→∞
∑∞

j=1G
2
j .

Note that (12) holds only when K → ∞ at a suitable rate; otherwise, the left-hand side

apparently goes to infinity.

We are now in a position to apply Lemma 2 to the residuals in DOLS regression (7).

Since

η̂∗t = ηt − (β̂ − β)′Xt − (Π̂−Π)′Vt + et,

where β̂ and Π̂ are the estimators of β and Π in (7) with Π = [πM , πM−1, · · · , π−M ], Vt =

[v′t−M , v
′
t−M+1, · · · , v′t+M ]′, and et =

∑
|j|>M π′jvt−j , we have

1√
T −K

T∑
t=K+1

η̂∗t η̂
∗
t−K =

1√
T −K

T∑
t=K+1

ηtηt−K +
1√

T −K
(Rβ,T +RΠ,T +RT ) , (13)
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where

Rβ,T = (β̂−β)′
T∑

t=K+1

XtXt−K(β̂−β)− (β̂−β)′
T∑

t=K+1

Xt−Kηt− (β̂−β)′
T∑

t=K+1

Xtηt−K , (14)

RΠ,T = (Π̂−Π)′
T∑

t=K+1

VtVt−K(Π̂−Π)−(Π̂−Π)′
T∑

t=K+1

Vt−Kηt−(Π̂−Π)′
T∑

t=K+1

Vtηt−K , (15)

RT =
T∑

t=K+1

etet−K +
T∑

t=K+1

(ηtet−K + ηt−Ket) + (β̂ − β)′
T∑

t=K+1

(XtVt−K +Xt−KVt)(Π̂−Π)

−(β̂ − β)′
T∑

t=K+1

(Xtet−K +Xt−Ket)− (Π̂−Π)′
T∑

t=K+1

(Vtet−K + Vt−Ket). (16)

The following theorem is obtained by applying Lemma 2 to the first term on the right-

hand side of (13) whereas the remaining terms are shown to be negligible by directly applying

the results of Saikkonen (1991), so that ĈK
d−→ N(0, ω2

a) under the null hypothesis. The

consistency of ω̂2
a is also proved similarly to HML (2003). On the other hand, the test statistic

diverges to infinity as proved by HML (2003) and then we omit the details.

Theorem 1 Suppose that Assumptions 1, 2 and 3 hold. Under the null hypothesis, as T →
∞,

ŜK → N(0, 1),

whereas under the alternative, it diverges to infinity.

From Theorem 1, we can test for the null hypothesis of cointegration using the same test

statistic as HML (2003) using the DOLS regression residuals, even though they are not causal

but expressed as the leads and lags of the innovations.

3.3. Bias correction of the cointegration tests

As explained in the previous section, the cointegration test based on the autocovariance

suffers from under-size distortion and we need to construct the bias corrected version of the

test statistic as suggest by HLM (2005). Because the first term on the right-hand side of (13)
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is the leading term, we define the bias of (13) as the expectation of the remaining terms up

to Op(T
−1/2). It is shown in the proof of Lemma 3 that the bias appears only from Rβ,T in

(13) while RΠ,T and RT can be negligible.

Lemma 3 The bias of (13), −b, is given by

−b = −(pc + px)ω
2
η√

T −Kσ2η
, where pc = 1 (constant case) or pc = 2 (trend case).

From the result of Lemma 3, the bias corrected version of the test statistic is defined by

S̃K =
C̃K + b̃

ω̂a
where b̃ =

(pc + px)ω̂
2
η√

T −Kσ̂2η

with ω̂2
η is the long-run variance estimator based on η̂∗t with the Bartlett kernel defined as

(10) with ãK,t replaced by η̂∗t . Then, we have the following corollary:

Corollary 1 Suppose that Assumptions 1, 2 and 3 hold. Under the null hypothesis, as

T → ∞,

S̃K → N(0, 1),

whereas under the alternative, it diverges to infinity.

4. Panel Cointegration Test

In the case of panel cointegration, model (2) becomes

yi,t = β′iXi,t + ui,t for i = 1, 2, · · · , N and t = 1, 2, · · · , T, (17)

where Xi,t = [1, x′i,t]
′ (constant case) or Xit = [1, t, x′i,t]

′ (trend case), yi,t and xit are 1- and

pi,x- dimensional processes with

xi,t = xi,t−1 + vi,t and ui,t = ρiui,t−1 + u∗i,t.

Note that the specification of the non-stochastic term and the dimension of the I(1) regressors

can be different for individuals.

Let u∗a,t = [u∗1,t, u∗2,t, · · · , u∗N,t]
′ and va,t = [v′1,t, v′2,t, · · · , v′N,t]

′ are N - and pa,x ≡ (p1,x +

p2,x + · · · + pN,x)-dimensional vectors, respectively. In the case of panel cointegration, we

make the following assumption:
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Assumption 1’ (a) [u∗′a,t, v′a,t]′ is a vector linear process given by

[
u∗a,t
va,t

]
=

∞∑
j=0

Φa,jεa,t−j with
∞∑
j=0

j2‖Φa,j‖ <∞,

where {εa,t} is a pa-dimensional i.i.d. sequence (pa ≤ pa,x + N) with mean 0 and variance

given by Σa,ε, which is positive definite, and has the finite fourth order moments.

(b) The marginal distribution of [u∗i,t, v
′
i,t] satisfies Assumption 1 for i = 1, 2, · · · , N .

As in the univariate case, we do not allow for cointegration among regressors in each

individual regression (17) by Assumption 1’(b). On the other hand, it is possible for some

xi,t to be cointegrated with xj,t with i �= j. Assumption 1’ implies that [u∗i,t, v
′
i,t]

′ can be

expressed as in Assumption 1 using a (pi,c + pi,x)-dimensional i.i.d. sequence {εi,t} and that

εi,s are independent of εj,t for i �= j and s �= t. The latter property will be used to establish

the joint convergence of the individual test statistics.

The null hypothesis in the panel case is that all the individuals are cointegrated whereas

at least one individual is not cointegrated under the alternative. That is,

H0 : ρi < 1 for all i vs. H1 : ρi = 1 for i = 1, · · · , N1 with 1 ≤ N1 ≤ N.

Note that because the cross-sectional dimension N is fixed in our model, we can reject the

null hypothesis even if only one individual is not cointegrated. However, it is not difficult to

expect that the test against small N1 is less powerful than that against large N1.

As in the univariate case, individual regression (17) is augmented by the leads and lags

of the first differences of the I(1) regressors and we obtain the DOLS regression given by

yi,t = β′iXi,t +

M∑
j=−M

π′i,jvi,t−j + η∗i,t (18)

where η∗i,t is defined as before and the standardized regression residuals are defined as

η̃∗i,t =
η̂∗i,t
σ̂i,η

where σ̂2i,η =
1

T

T∑
t=1

η̂∗2i,t .

Note that the truncation point M can be different over cross-sections but we proceed with

the same M for notational convenience.
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In this case, the test statistic for panel cointegration is given by

ŜK =
C̃K

ω̂a
where C̃K =

1√
T −K

T∑
t=K+1

ãK,t with ãK,t =
N∑
i=1

η̃∗i,tη̃
∗
i,t−K ,

while the bias corrected version of the test statistic is defined as

S̃K =
C̃K + b̃

ω̂a
where b̃ =

1√
T −K

N∑
i=1

(pi,c + pi,x)ω̂
2
i,η

σ̂2i,η
.

Theorem 2 Suppose that Assumptions 1’, 2 and 3 hold. Under the null hypothesis, as

T → ∞,

ŜK , S̃K → N(0, 1),

whereas under the alternative, they diverge to infinity.

As discussed in the introduction, the advantage of using HLM (2005) test is that we do

not have to rely on the joint limit theorem in order to obtain a test statistic whose null

limiting distribution is free of nuisance parameter. This is because the test statistic in the

univariate case has the limiting normal distribution. As a result, we can apply our test even

for panel data with small N .

5. Monte Carlo Simulations

In this section, we investigate the finite sample performance of the panel cointegration

tests proposed in this paper. Under the null hypothesis that all the individuals are cointe-

grated in the panel, the data generating process is as follows:

yi,t = αi + βixi,t + ei,t, (19)

or

yi,t = αi + γit+ βixi,t + ei,t, (20)

where

ei,t = ui,t + λift,

xi,t = xi,t−1+υi,t,
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ui,t = φiui,t−1 + εui,t,

υi,t = ψiυi,t−1 + ευi,t,

Both constant and deterministic trend models are considered which are generated by equa-

tion (19) and (20), respectively. We assume αi = 0, βi = 1, γi = 1 for all i, and
[
εui,t, ε

v
i,t

]′
�

i.i.d.N(0,Σ) with vech(Σ) = [1, 0.5, 1]′. The AR coefficients are generated by φi � U(−0.4, 0.4)

and ψi � U(−0.4, 0.4). The error term ui,t and υi,t are correlated for the same individual i,

but they are cross-sectionally independent. The error term ei,t consist of the idiosyncratic

errors ui,t and the common component λift with common factor ft and loading factors λi. We

generate ft � i.i.d.N(0, 1), λi � U(0, 1). Therefore, both serial correlation and cross-sectional

dependence are considered in our models. In the case where there is no cross-sectional depen-

dence, λi = 0, so the error term is simply ui,t.Under the alternative hypothesis that not all

the individuals are cointegrated, we generate φi = 1 for i = 1, ..., N1 and φi � U(−0.4, 0.4)

for i = N1 + 1, ..., N.

Throughout the simulations, the bandwidth for the long-run variance estimation, the

leads-lags truncation parameter, and the time difference parameter are set to

bandwidth =
[
12(T/100)1/4

]
,

M =
[
2(T/100)1/5

]
,

K = [
√
3T ].

Tables 1 and 2 summarize the size and power results from the simulations. For all

the simulations, we replicate 5000 times. We choose the following combinations of T =

{100, 300, 500} and N = {1, 10, 25, 50, 100}. These tables give the results for the model with

a constant and the model with a constant and a trend, respectively. We first consider the

case where there is no cross correlation and the results are shown on the left panel of the

tables. For both models and with or without cross correlation the statistic Ŝk, without the

bias correction, is grossly undersized except for N = 1 and T large. On the contrary, for both

models and with or without cross correlation the statistic S̃k has an empirical size, generally,
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close to the nominal one except when T is not sufficiently large compared to N. The size gets

better in presence of cross correlation which indicates the effectiveness of our bias correction.

Because of the size distortion there is no need to discuss the power of the statistic Ŝk. The

power of the statistic S̃k is generally good, it increases with the size of the sample and the

ratio N1/N as expected.

In summary, our statistics S̃k has very good performance in finite samples especially when

T is relatively larger than N.

6. Conclusion

In this paper we have proposed tests assuming a null hypothesis of cointegration. Contrary

to the single equation cointegration tests in the literature where the limiting distributions are

non-standard, we show that our tests have a standard normal asymptotic distribution. Our

tests are transposed to panel data cointegration tests allowing for cross-section dependence

and serial correlation. We prove for N fixed and T → ∞ that the limiting distributions of

our statistics are standard normals. We have derived a bias correction which is shown to

work well in finite sample via a small scale Monte Carlo simulations, particularly when T is

larger than N. Finally, our tests are robust to the likely presence of cointegration across units

which is often the case in macroeconomic data.

Appendix

In this appendix, c̄ signifies a generic positive constant that may differ from place to place.

Proof of Lemma 1

Using expression (6), we decompose ηtηt−K into 5 parts as follows:

ηtηt−K =
∞∑

j=−∞
φjξt−j

∞∑
�=−∞

φ�ξt−K−�

=

K−1∑
j=1

∞∑
�=0

gt(j, �) +

K−1∑
j=1

−1∑
�=1−K

gt(j, �) +

0∑
j=1−K

∞∑
�=1−K

gt(j, �)

+
∞∑

|j|≥K

∞∑
�=−∞

gt(j, �) +
K−1∑

j=1−K

−K∑
�=−∞

gt(j, �)
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≡ C1,t + C2,t + C3,t + r2,t + r3,t, say, (21)

where gt(j, �) = φjφ�ξt−jξt−K−�.

For C1,t, we can see that

C1,t =
K−1∑
j=1

j−1∑
�=0

gt(j, �) +
K−1∑
j=1

∞∑
�=j

gt(j, �).

The first term becomes
K−1∑
j=1

j−1∑
�=0

gt(j, �) = [gt(K − 1, 0)] + [gt(K − 2, 0) + gt(K − 1, 1)]

+ · · ·+ [gt(1, 0) + gt(2, 1) + · · ·+ gt(K − 1,K − 2)]

=
K−1∑
j=1

j−1∑
�=0

gt(K − j + �, �)

=
K−1∑
j=1

K−1∑
�=K−j

gt(�, j + �−K)

=
K−1∑
j=1

K−1∑
�=K−j

φ�φj+�−Kξt−�ξt−�−j , (22)

where the third equality holds by re-defining � as K − j + �. Similarly, we have

K−1∑
j=1

∞∑
�=j

gt(j, �) =
∞∑
j=0

K−1∑
�=1

gt(�, j + �)

=
∞∑

j=K

K−1∑
�=1

gt(�, j + �−K)

=
∞∑

j=K

K−1∑
�=1

φ�φj+�−Kξt−�ξt−�−j , (23)

where the second equality is obtained by re-defining j as j +K.

Similarly, we have

C2,t =
K−1∑
j=1

−1∑
�=1−K

gt(j, �)

=

K−1∑
j=1

K−1∑
�=1

φjφ�−Kξt−jξt−�

=
K−1∑
j=1

φjφj−Kξ
2
t−j +

K−2∑
j=1

K−1∑
�=j+1

(φjφ�−K + φ�φj−K)ξt−jξt−�
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= r1,t +
K−2∑
j=1

K−j−1∑
�=1

(φ�φj+�−K + φj+�φ�−K)ξt−�ξt−�−j . (24)

Then, we have, from (22)-(24),

C1,t + C2,t = r1,t +
∞∑
j=1

K−1∑
�=1

φ�φj+�−Kξt−�ξt−�−j +
K−2∑
j=1

K−j−1∑
�=1

φj+�φ�−Kξt−�ξt−�−j . (25)

For C3,t,

C3,t =
0∑

j=1−K

∞∑
�=1−K

gt(j, �)

=
0∑

j=1−K

j∑
�=1−K

gt(j, �) +
0∑

j=1−K

∞∑
�=j+1

gt(j, �)

=
K∑
j=1

j∑
�=1

gt(−j + �, �−K) +
∞∑
j=1

K∑
�=1

gt(�−K, j + �−K)

=
K∑
j=1

0∑
�=1−j

gt(�, j + �−K) +
∞∑
j=1

0∑
�=1−K

gt(�, j + �)

=
K∑
j=1

0∑
�=1−j

gt(�, j + �−K) +
∞∑

j=K+1

0∑
�=1−K

gt(�, j + �−K)

=
∞∑
j=1

0∑
�=(1−j)∨(1−K)

gt(�, j + �−K)

=
∞∑
j=1

0∑
�=(1−j)∨(1−K)

φ�φj+�−Kξt−�ξt−�−j , (26)

and then from (25) and (26), we have

C1,t + C2,t + C3,t

= r1,t +
∞∑
j=1

K−1∑
�=(1−j)∨(1−K)

φ�φj+�−Kξt−�ξt−�−j +
K−2∑
j=1

K−j−1∑
�=1

φj+�φ�−Kξt−�ξt−�−j

= r1,t + Ca,t + Cb,t, say. (27)

We next apply the B–N decomposition to Ca,t and Cb,t. For Ca,t, we consider three cases

where � = 0, � ≥ 1 and � ≤ −1. For � = 0, we have

Ca,t =
∞∑
j=1

φ0φj−Kξtξt−j , (28)
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while for � ≥ 1,

Ca,t =
∞∑
j=1

K−1∑
�=1

φ�φj+�−KL
�ξtξt−j

=
∞∑
j=1

K−1∑
�=1

φ�φj+�−K [1− (1− L�)]ξtξt−j

=
∞∑
j=1

K−1∑
�=1

φ�φj+�−Kξtξt−j −Δ
∞∑
j=1

K−1∑
�=1

φ�φj+�−K

�−1∑
i=0

Liξtξt−j

=
∞∑
j=1

K−1∑
�=1

φ�φj+�−Kξtξt−j −Δ
∞∑
j=1

K−2∑
i=0

(
K−1∑
�=i+1

φ�φj+�−K

)
Liξtξt−j

=

∞∑
j=1

K−1∑
�=1

φ�φj+�−Kξtξt−j −Δr̃1,t. (29)

For � ≤ −1, it is sufficient to consider the case where j ≥ 2. For j = 2, · · · ,K − 1, the

summand of Ca,t becomes

−1∑
�=1−j

φ�φj+�−KL
�ξtξt−j

=
−1∑

�=1−j

φ�φj+�−K [1− (1− L�)]ξtξt−j

=
−1∑

�=1−j

φ�φj+�−Kξtξt−j −Δ+
−1∑

�=1−j

φ�φj+�−K

0∑
i=�+1

Liξtξt−j

=
−1∑

�=1−j

φ�φj+�−Kξtξt−j −Δ+
0∑

i=2−j

⎛
⎝ i−1∑

�=1−j

φ�φj+�−K

⎞
⎠Liξtξt−j , (30)

where Δ+ = (1− L−1) and we used the relation (1− L�) = (1− L−1)(1 + L−1 + · · ·+ L�+1)

for � < 0, while for j ≥ K, it can be expressed as

−1∑
�=1−K

φ�φj+�−KL
�ξtξt−j

=
−1∑

�=1−K

φ�φj+�−Kξtξt−j −Δ+
−1∑

�=1−K

φ�φj+�−K

0∑
i=�+1

Liξtξt−j

=
−1∑

�=1−K

φ�φj+�−Kξtξt−j −Δ+
0∑

i=2−K

(
i−1∑

�=1−K

φ�φj+�−K

)
Liξtξt−j . (31)
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From (30) and (31), Ca,t for � ≤ −1 becomes

Ca,t =
∞∑
j=2

−1∑
�=1−(j∧K)

φ�φj+�−Kξtξt−j −Δ+
∞∑
j=2

0∑
i=2−(j∧K)

⎛
⎝ i−1∑

�=1−(j∧K)

φ�φj+�−K

⎞
⎠Liξtξt−j

=
∞∑
j=2

−1∑
�=1−(j∧K)

φ�φj+�−Kξtξt−j −Δ+r̃+t . (32)

Combining (28), (29) and (32), we can see that

Ca,t =
∞∑
j=1

K−1∑
�=1−(j∧K)

φ�φj+�−Kξtξt−j −Δr̃1,t −Δ+r̃+t

=
∞∑
j=1

G1,jξtξt−j −Δr̃1,t −Δ+r̃+t . (33)

In exactly the same way, we have

Cb,t =
K−2∑
j=1

K−j−1∑
�=1

φj+�φ�−Kξtξt−j −Δ
K−2∑
j=1

K−j−1∑
�=1

φj+�φ�−K

�−1∑
i=0

Liξtξt−j

=
K−2∑
j=1

G2,jξtξt−j −Δ
K−2∑
j=1

K−j−2∑
i=0

(
K−j−1∑
�=i+1

φj+�φ�−K

)
Liξtξt−j

=

K−2∑
j=1

G2,jξtξt−j −Δr̃2,t. (34)

Combining (21), (27), (33) and (34), we obtain (11).�

Proof of Lemma 2

From (11) in Lemma 1, we can see that

1√
T

[Tr]∑
t=1

ηtηt−K =
1√
T

[Tr]∑
t=1

∞∑
j=1

Gjξtξt−j +
1√
T

(
r̃0 − r̃[Tr] − r+1 + r+[Tr]

)

+
1√
T

[Tr]∑
t=1

(r1,t + r2,t + r3,t). (35)

We will show that the FCLT holds for the first term on the right-hand side while the other

terms are negligible, using the following lemma:
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Lemma A.1 For {φj}∞j=−∞ satisfying the condition given by (6), (i)

∞∑
|j|≥K

|φj | = o

(
1

K2

)

and
∞∑

|j|≥K

|φj |2 = o

(
1

K4

)
, (ii)

∞∑
j=1

|Gj | <∞, (iii)
∞∑
j=1

K−2∑
�=0

|G̃1,�| <∞, (iv)
K−2∑
j=1

K−j−2∑
�=0

|G̃2,�| <

∞, (v)
∞∑
j=2

0∑
�=2−(j∧K)

|G̃+
� | <∞. The relations (ii)–(v) hold uniformly over K.

Proof of Lemma A.1: (i) is shown by
∞∑

|j|≥K

|φj | ≤ 1

K2

∞∑
|j|≥K

|j|2|φj | = o

(
1

K2

)
,

∞∑
|j|≥K

|φj |2 ≤ 1

K4

∞∑
|j|≥K

|j|4|φj |2 = o

(
1

K4

)
.

For (ii)-(v), we have

∞∑
j=1

|Gj | ≤
∞∑
j=1

|G1,j |+
K−2∑
j=1

|G2j |

≤
∞∑
j=1

K−1∑
�=1−(j∧K)

|φ�||φj+�−K |+
K−2∑
j=1

K−j−1∑
�=1

|φj+�||φ�−K |

≤
K−1∑

�=1−K

|φ�|
∞∑
j=1

|φj+�−K |+
K−2∑
�=1

|φ�−K |
K−2∑
j=1

|φj+�|

≤
( ∞∑

�=−∞
|φ�|
)2

+
∞∑

�=−∞
|φ�|

∞∑
j=1

|φj | <∞.

∞∑
j=1

K−2∑
�=0

|G̃1,�| ≤
∞∑
j=1

K−2∑
�=0

K−1∑
i=�+1

|φi||φi+j−K |

≤
K−2∑
�=0

K−1∑
i=�+1

|φi|
∞∑

j=−∞
|φj |

=
K−1∑
i=1

i|φi|
∞∑

j=−∞
|φj | <∞.

K−2∑
j=1

K−j−2∑
�=0

|G̃2,�| ≤
K−2∑
j=1

K−j−2∑
�=0

K−j−1∑
i=�+1

|φi+j ||φi−K |
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=
K−2∑
j=1

K−j−1∑
i=1

i|φi+j ||φi−K |

≤
K−2∑
i=1

i|φi−K |
K−2∑
j=1

|φi+j |

≤
∞∑

i=−∞
i|φi|

∞∑
j=1

|φj | <∞.

∞∑
j=2

0∑
�=2−(j∧K)

|G̃+
� | ≤

∞∑
j=2

0∑
�=2−(j∧K)

�−1∑
i=1−(j∧K)

|φi||φi+j−K |

≤
0∑

�=2−K

�−1∑
i=1−K

|φi|
∞∑
j=2

|φi+j−K |

≤
−1∑

i=1−K

|i||φi|
∞∑

j=−∞
|φj | <∞.�

Note that the absolute summability in Lemma A.1(ii)–(v) implies the square summability

of the corresponding terms. Using Lemma A.1, we show that all the term on the right hand

side of (35), except for the first term, are negligible.

Lemma A.2 For r̃t, r̃
+
t , r1,t, r2,t and r3,t in (35), (i) sup

0≤r≤1

∣∣∣∣ 1√
T
r̃[Tr]

∣∣∣∣ = op(1) and sup
0≤r≤1

∣∣∣∣ 1√
T
r̃+[Tr]

∣∣∣∣ =
op(1). (ii) sup

0≤r≤1

∣∣∣∣∣∣
1√
T

[Tr]∑
t=1

ri,t

∣∣∣∣∣∣ = op(1) for i = 1, 2 and 3.

Proof of Lemma A.1: (i) We first note that r̃t = r̃1,t + r̃2,t as defined in Lemma 1. Since

P

(
sup

0≤r≤1

∣∣∣∣ 1√
T
r̃i,t

∣∣∣∣ ≥ ε

)
≤ TP

(
1√
T
|r̃i,t| ≥ ε

)
≤ 1

ε4T
E[r̃4i,t]

for i = 1 and 2, it is sufficient to prove that E[r̃4i,t] <∞ for i = 1 and 2. Noting that non-zero

terms of E[r̃4i,t] are related to the products among E[ξ2t ], E[ξ3t ] and E[ξ4t ], all of which are

bounded by assumption, we can see that

E[r̃41,t] ≤ c̄

⎛
⎝ ∞∑

j=1

K−2∑
�=0

|G̃1,�|
⎞
⎠

4

<∞,

E[r̃42,t] ≤ c̄

⎛
⎝K−2∑

j=1

K−j−2∑
�=0

|G̃2,�|
⎞
⎠

4

<∞
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uniformly over K by Lemma A.1(iii) and (iv). The second statement of (i) for r̃+t is proved

in exactly the same manner.

(ii) For i = 1, we first show that E[r1,t] = o(1/
√
T ). From the definition of r1,t, we have

E[|r1,t|] ≤ σ2ξ

∞∑
j=−∞

|φj ||φj−K |. (36)

Noting that

∞∑
K=−∞

|K|
∞∑

j=−∞
|φj ||φj−K | ≤

∞∑
K=−∞

∞∑
j=−∞

(|j −K|+ |j|)|φj ||φj−K |

≤ 2

∞∑
K=−∞

|K||φK |
∞∑

j=−∞
|j||φj | <∞,

we can see that |K|∑∞
j=−∞ |φj ||φj−K | is a convergence sequence over K. In other words,

K
∑∞

j=−∞ |φj ||φj−K | is o(1) as K → ∞ and then from (36), E[|r1,t|] = o(1/K) = o(1/
√
T )

because K = O(
√
T ) by Assumption 3. Using this result, since

sup
0≤r≤1

∣∣∣∣∣∣
1√
T

[Tr]∑
t=1

r1,t

∣∣∣∣∣∣ ≤
1√
T

T∑
t=1

|r1,t| ,

we obtain

E

⎡
⎣ sup
0≤r≤1

∣∣∣∣∣∣
1√
T

[Tr]∑
t=1

r1,t

∣∣∣∣∣∣
⎤
⎦ ≤ 1√

T

T∑
t=1

E [|r1,t|] = o(1).

For i = 2, by Cauchy-Schwarz inequality, we have

E[|r2,t|] ≤
⎧⎨
⎩E

⎡
⎣
⎛
⎝ ∞∑

j=K

φjξt−j

⎞
⎠

2⎤
⎦E

⎡
⎣( ∞∑

�=−∞
φ�ξt−K−�

)2
⎤
⎦
⎫⎬
⎭

1/2

≤
⎧⎨
⎩σ4ξ

∞∑
j=K

φ2j

∞∑
�=−∞

φ2�

⎫⎬
⎭

1/2

= o

(
1

K2

)
= o

(
1

T

)

by Lemma A.1(i). Then, we have E[supr |T−1/2
∑[Tr]

t=1 r2,t|] = o(1) in exactly the same manner

as the proof for i = 1.

The case with i = 3 is shown similarly and we omit the proof.�
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From Lemma A.2, the rest we have to show is that the FCLT holds for the first term on

the right-hand side of (35). From Theorem 27.14 of Davidson (1994), it is sufficient to show

that

T∑
t=1

m2
t

T∑
t=1

E[m2
t ]

p−→ 1, (37)

max
1≤t≤T

|mt|

(
T∑
t=1

E[m2
t ])

1/2

p−→ 0, (38)

lim
T→∞

[Tr]∑
t=1

E[m2
t ]

T∑
t=1

E[m2
t ]

→ r ∀ 0 ≤ r ≤ 1, (39)

where mt =
∑∞

j=1Gjξtξt−j .

The condition (37) holds if we show that T−1
∑T

t=1(m
2
t −E[m2

t ]))
p−→ 0, which is proved

using Chebyshev inequality by showing that

E

⎡
⎣{ 1

T

T∑
t=1

(m2
t − E[m2

t ])

}2
⎤
⎦ =

1

T 2

T∑
t=1

E
[
(m2

t − E[m2
t ])

2
]

+
2

T 2

T−1∑
s=1

T∑
t=s+1

E
[
(m2

t − E[m2
t ])(m

2
t−s − E[m2

t−s])
]

→ 0. (40)

For the first term on the right-hand side of (40),

1

T 2

T∑
t=1

E
[(
m2

t − E[m2
t ]
)2]

=
1

T 2

T∑
t=1

E

⎡
⎣
⎧⎨
⎩

∞∑
i=1

∞∑
j=1

GiGj

(
ξ2t ξt−iξt−j − σ2ξE[ξt−iξt−j ]

)⎫⎬⎭
2⎤
⎦

≤ c̄

T

⎛
⎝ ∞∑

j=1

|Gj |
⎞
⎠

4

→ 0. (41)
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For the second term, note that for s > 0,

E[(m2
t − E[m2

t ])(m
2
t−s − E[m2

t−s])]

=
∞∑

i1=1

∞∑
j1=1

∞∑
i2=1

∞∑
j2=1

Gi1Gi2Gi3Gi4E
[
(ξ2t ξt−i1ξt−j1 − σ2ξE[ξt−i1ξt−j1 ])

(ξ2t−sξt−s−i2ξt−s−j2 − σ2ξE[ξt−s−i2ξt−s−j2]])
]
.

The expectation becomes

E
[
(ξ2t ξt−i1ξt−j1 − σ2ξE[ξt−i1ξt−j1 ])(ξ

2
t−sξt−s−i2ξt−s−j2 − σ2ξE[ξt−s−i2ξt−s−j2]])

]
= E

[
σ2ξ (ξt−i1ξt−j1 − E[ξt−i1ξt−j1 ])(ξ

2
t−s − σ2ξ )ξt−s−i2ξt−s−j2

]
+E
[
σ2ξ (ξt−i1ξt−j1 − E[ξt−i1ξt−j1 ])σ

2
ξ (ξt−s−i2ξt−s−j2 − E[ξt−s−i2ξt−s−j2]])

]
.

Since {ξt} is an i.i.d. sequence, the first expectation takes non-zero values when i) i1 = j1 = s

and i2 = j2, ii) i1 = s + i2 and j1 = s + j2, (iii) i1 = s + j2 and j1 = s + j2, while for the

second expectation, it is sufficient to consider either iv) i1 = s + i2 and j1 = s + j2 or (v)

i1 = s+ j2 and j1 = s+ j2. Therefore, we can see that

∣∣E[(m2
t − E[m2

t ])(m
2
t−s − E[m2

t−s])]
∣∣ ≤ c̄

⎡
⎣G2

s

∞∑
j2=1

G2
j2 +

( ∞∑
i2=1

|Gs+i2 ||Gi2 |
)2
⎤
⎦ ,

and thus,∣∣∣∣∣ 1T 2

T−1∑
s=1

T∑
t=s+1

E
[
(m2

t − E[m2
t ])(m

2
t−s − E[mt−s])

2
]∣∣∣∣∣ (42)

≤ c̄

T

⎡
⎣T−1∑

s=1

G2
s

∞∑
j2=1

G2
j2 +

T−1∑
s=1

( ∞∑
i2=1

|Gs+i2 ||Gi2 |
)2
⎤
⎦ ≤ c̄

T

⎡
⎣
⎛
⎝ ∞∑

j2=1

G2
j2

⎞
⎠

2

+

( ∞∑
i2=1

|Gi2 |
)4
⎤
⎦→ 0.

Then, (40) holds from (41) and (42).

To prove (38), we note that E[m2
t ] = σ4ξ

∑∞
j=1G

2
j <∞ and then the denominator of (38)

is O(
√
T ). On the other hand,

P

(
max
1≤t≤T

1√
T
|mt| ≥ ε

)
≤ T P

(
1√
T
|mt| ≥ ε

)

≤ 1

ε4T
E[m4

t ] = O

(
1

T

)
,

because E[m4
t ] is bounded uniformly in t, T and M . Therefore, we obtain (38).

Finally, we can see that (39) holds even in finite samples because of stationarity of mt.�
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Proof of Lemma 3

Let D̃T = diag{√T , T Ipx} (constant case) or D̃T = {√T , T√T , Ipx} (trend case), ‖B‖ =

[tr(B′B)]1/2 and ‖B‖1 = sup{‖Bx‖ : ‖x‖ ≤ 1} for a matrix B. We will show that only Rβ,T

yields the non-zero bias whereas RΠ,T and RT are negligible, using the following lemma:

Lemma A.3 Suppose that Assumptions 1, 2 and 3 hold. Under the null hypothesis, as T →
∞, (i) D̃−1

T (β̂ − β)
d−→
(∫ 1

0 B̃(r)B̃′(r)dr
)−1 ∫ 1

0 B̃(r)dBη(r), (ii) ‖Π̂−Π‖2 = Op(M/T ), (iii)

D̃−1
∑T

t=K+1Xt−Kηt
d−→ ∫ 1

0 B̃(r)dBη(r) and D̃−1
∑T

t=K+1Xtηt−K
d−→ ∫ 1

0 B̃(r)dBη(r), (iv)

‖T−1/2
∑T

t=K+1 Vt−Kηt‖ = ‖T−1/2
∑T

t=K+1 Vtηt−K‖ = Op(M
1/2), (v) ‖∑T

t=K+1 ηtet−K‖ =

‖∑T
t=K+1 ηt−Ket‖ = op(1), (vi) D̃−1

∑T
t=K+1XtX

′
t−KD̃

−1 d−→ ∫ 1
0 B̃(r)B̃′(r)dr,

(vii) ‖D̃−1
T

∑T
t=K+1XtV

′
t−K‖ = ‖D̃T

∑T
t=K+1Xt−KV

′
t ‖ = Op(M

1/2),

(viii) ‖D̃T
∑T

t=K+1Xtet−K‖ = ‖D̃T
∑T

t=K+1Xt−Ket‖ = op(1), (ix) ‖T−1/2
∑T

t=K+1 VtV
′
t−K‖ =

Op(M), (x) ‖
(
T−1

∑T
t=K+1 VtV

′
t

)−1 − Γ−1
x ‖1 = Op(M/

√
T ), (xi) ‖∑T

t=K+1 Vtet−K‖ =

‖∑T
t=K+1 Vt−Ket‖ = op(M

1/2), (xii) ‖∑T
t=K+1 etet−K‖ = op(1), where B̃(r) = [1, B′(r)]′

(constant case) or B̃(r) = [1, r, B′(r)]′ (trend case) with B(r) being a px-dimensional Brown-

ian motion with the variance given by limT→∞E[T−1/2xT ], Bη(r) is a one-dimensional Brow-

nian motion independent of B(r) with the variance given by ω2
η = limT→∞E[(T−1/2

∑T
t=1 ηt)

2]

and Γx = E[VtV
′
t ].

Proof of Lemma A.3: All the results, except for (v), (ix) and (xi), are obtained by Saikkonen

(1991) using the FCLT with K going to infinity slower than T . For (v), we can see that∣∣∣∣∣
T∑

t=K+1

ηtet−K

∣∣∣∣∣ ≤ sup
1≤t≤T

|et|
T∑
t=1

|ηt|.

Note that
∑T

t=1 |ηt| = Op(T ) while

P

(
sup

1≤t≤T
|et| ≥ ε

)
≤ TP (|et| ≥ ε)

≤ T

ε4
E[e4t ]

≤ c̄T

ε4

⎛
⎝∑

|j|≥K

‖πj‖
⎞
⎠

4
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=
c̄T

ε4
o

(
1

T 2

)
= o

(
1

T

)
, (43)

where the last inequality is obtained by (9).We thus obtain (v).

For (ix), each block element is expressed as T−1/2
∑T

t=K+1 vt−iv
′
t−K−j for i, j = −M, · · · ,M .

Since (t−i)−(t−K−j) = K−i+j ≥ K−2M , we can see that the time difference diverges to

infinity at a rate of K because M4/K → 0 by Assumptions 2 and 3. Because the conditions

for the FCLT given by HML (2003) are satisfied, we can see that each element is Op(1), which

implies (ix).

(xi) is proved by noting that

E

[∥∥∥∥∥
T∑

t=K+1

Vtet−K

∥∥∥∥∥
]
≤ sup |et|

T∑
t=1

E[‖Vt‖] = op(
√
M),

because supt |et| = op(1/T ) by (43).�

We first evaluate Rβ,T . Using Lemma A.3(i), (iii) and (vi), we have

Rβ,T
d−→ −

(∫ 1

0
B̃(r)dBη(r)

)′(∫ 1

0
B̃(r)B̃′(r)dr

)−1(∫ 1

0
B̃(r)dBη(r)

)
. (44)

Since
∫ 1
0 B̃(r)dBη(r)|B̃(·) ∼ N

(
0, ω2

η

∫ 1
0 B̃(r)B̃′(r)dr

)
, we can see that the right-hand side

of (44) is distributionally equal to −ω2
η times a chi-square distribution with (pc + px) degrees

of freedom. As a result, E[Rβ,T ] can be approximated by −ω2
η(pc + px).

For RΠ,T , the first term becomes∥∥∥∥∥(Π̂−Π)′
T∑

t=K+1

VtVt−K(Π̂−Π)

∥∥∥∥∥ ≤
∥∥∥Π̂−Π

∥∥∥2
∥∥∥∥∥

T∑
t=K+1

VtVt−K

∥∥∥∥∥
= Op

(
M2

√
T

)
= op(1),

using Lemma A.3 (ii) and (ix) and Assumption 2.

For the second term of RΠ,T , since it can be shown that∥∥∥∥∥∥
√
T (Π̂−Π)−

(
1

T

T∑
t=1

VtV
′
t

)−1(
1√
T

T∑
t=1

Vtηt

)∥∥∥∥∥∥ ≤ Op

(√
M

T

)
,

while∥∥∥∥∥∥
(

1√
T

T∑
t=1

ηtV
′
t

)⎡⎣( 1

T

T∑
t=1

VtV
′
t

)−1

− Γ−1
x

⎤
⎦( 1√

T

T∑
t=1

Vt−Kηt

)∥∥∥∥∥∥ = Op

(
M2

√
T

)
= op(1)
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by Lemma A.3 (iv) and (x), it is sufficient to evaluate∣∣∣∣∣E
[(

1√
T

T∑
t=1

ηtV
′
t

)
Γ−1
x

(
1√
T

T∑
t=1

Vt−Kηt

)]∣∣∣∣∣
≤ sup |Γ−1

x (i, j)| 1
T

T∑
t=1

t−1∑
�=t−T

∣∣E [V ′
t Vt−K−�ηtηt−�

]∣∣ . (45)

To evaluate the right-hand side of (45), we express ηt using εt such that

ηt =
∞∑

j=−∞
ψ′
jεt−j , where

∞∑
j=−∞

|j|2‖ψj‖ ≤ ∞

with {ψj}∞j=−∞ is a sequence of px + 1-dimensional coefficient vectors, because

ηt = ut −
∞∑

j=−∞
π′jvt−j with ut =

∞∑
j=0

Φ1,jεt−j and vt =

∞∑
j=0

Φ2,jεt−j ,

where Φj is partitioned into Φj = [Φ′
1,j ,Φ

′
2,j ]

′. Then, by focusing on the term v′tvt−K−� in

V ′
t Vt−K−�, we can see that

R̃Π,� ≡ E
[
v′tvt−K−�ηtηt−�

]
= E

⎡
⎣
⎛
⎝ ∞∑

j1=0

Φ2,j1εt−j1

⎞
⎠

′⎛
⎝ ∞∑

j2=0

Φ2,j2εt−K−�−j2

⎞
⎠( ∞∑

i1=−∞
ψ′
i1εt−i1

)( ∞∑
i2=−∞

ψ′
i2εt−�−i2

)⎤⎦ .
We note that the expectation takes non-zero values when (i) j1 = K + �+ j2, i1 = �+ i2 and

i2 �= K + j2, (ii) i1 = j1, i2 = K + j2 and j1 �= K + � + j2, (iii) i1 = K + � + j2, i2 = j1 − �

and j1 �= K + �+ j2 , and (iv) i1 = K + �+ j2, i2 = K + j2 and j1 = K + �+ j2.

In case (i), for � ≥ 0, RΠ,t becomes∣∣∣∣∣
∞∑
�=0

R̃Π,�

∣∣∣∣∣ ≤ c̄
∞∑
�=0

∞∑
j2=0

‖Φ2,K+�+j2‖‖Φj2‖
∞∑

i2=−∞
‖ψ�+i2‖‖ψi2‖

≤ c̄
∞∑
�=0

∞∑
j2=0

‖Φ2,K+�+j2‖
⎛
⎝ ∞∑

j=0

‖Φ2,j‖
⎞
⎠( ∞∑

i2=−∞
‖ψi2‖

)2

≤ c̄
∞∑

j2=K

(j2 −K + 1)‖Φ2,j2‖ = o

(
1

K

)
, (46)

because {Φj} is 2-summable.
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On the other hand, for � = −1,−2, · · · ,−K, we have

∣∣∣∣∣
−1∑

�=−K

R̃Π,�

∣∣∣∣∣ ≤ c̄

[−K/2]∑
�=−K

∞∑
j2=0

‖Φ2,K+�+j2‖‖Φj2‖
∞∑

i2=−∞
‖ψ�+i2‖‖ψi2‖

+c̄
−1∑

�=[−K/2]+1

∞∑
j2=0

‖Φ2,K+�+j2‖‖Φj2‖
∞∑

i2=−∞
‖ψ�+i2‖‖ψi2‖

≤ c̄

⎛
⎝ ∞∑

j2=0

‖Φj2‖
⎞
⎠

2
[−K/2]∑
�=−K

∞∑
i2=−∞

‖ψ�+i2‖‖ψi2‖

+c̄

⎛
⎝ −1∑

�=[−K/2]+1

∞∑
j2=0

‖Φ2,K+�+j2‖
⎞
⎠
⎛
⎝ ∞∑

j2=0

‖Φj2‖
⎞
⎠( ∞∑

i2=−∞
‖ψi2‖

)2

= o

(
1

K

)
+ o

(
1

K

)
, (47)

where the last relation holds because

∞∑
K=−∞

|K|2
∞∑

i2=−∞
‖ψi2−K‖‖ψi2‖ ≤ 2

∞∑
K=−∞

∞∑
i2=−∞

(|i2|2 + |i2 −K|2)‖ψi2−K‖‖ψi2‖

≤ 4
∞∑

K=−∞
‖ψK‖

∞∑
i2=−∞

|i2|2‖ψi2‖ <∞,

which implies |K|2∑∞
i2=−∞ ‖ψi2−K‖‖ψi2‖ = o(1) or, equivalently,

∑∞
i2=−∞ ‖ψi2−K‖‖ψi2‖ =

o(1/K2), while

−1∑
�=[−K/2]+1

∞∑
j2=0

‖Φ2,K+�+j2‖ ≤
[
K

2

] ∞∑
j2=[K/2]

‖Φ2,j2‖ = o

(
1

K

)

because of 2-summability of {Φ2,j}.
For � ≤ −K − 1,∣∣∣∣∣

−K+1∑
�=−∞

R̃Π,�

∣∣∣∣∣ ≤ c̄
−K−1∑
�=−∞

∞∑
j1=0

‖Φ2,j1‖‖Φj1−K−�‖
∞∑

i2=−∞
‖ψ�+i2‖‖ψi2‖

≤ c̄
−K−1∑
�=−∞

∞∑
j1=0

‖Φj1−K−�‖
⎛
⎝ ∞∑

j1=0

‖Φ2,j1‖
⎞
⎠( ∞∑

i2=−∞
‖ψi2‖

)2

≤ c̄
∞∑

j1=K

j1‖Φj1‖ = o

(
1

K

)
. (48)
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From (46)–(48), we have
∣∣∣∑∞

�=−∞ R̃Π,�

∣∣∣ = o(1/K) in case (i).

In case (ii), we first note that

E[vsηt] =
∞∑
j=0

Φ2,jΣεψj+� = 0 ∀� = 0,±1,±2, · · · . (49)

Then, we have for � ≥ 0,

∣∣∣∣∣
∞∑
�=0

R̃Π,�

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∞∑
�=0

∞∑
j2=0

∞∑
j1=0

j1 �=K+�+j2

ψ′
j1ΣεΦ

′
2,j1Φ2,j2ΣεψK+j2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑
�=0

∞∑
j2=0

ψ′
K+�+j2ΣεΦ

′
2,K+�+j2Φ2,j2ΣεψK+j2

∣∣∣∣∣∣
≤ c̄

∞∑
�=0

∞∑
j2=0

‖ψK+�+j2‖‖Φ2,K+�+j2‖‖Φ2,j2‖ψK+j2‖

≤ c̄

⎛
⎝ ∞∑

j2=0

j2‖ψK+j2‖
⎞
⎠
⎛
⎝ ∞∑

j2=0

j2‖Φ2,K+j2‖
⎞
⎠
⎛
⎝ ∞∑

j2=0

‖Φ2,j2‖
⎞
⎠
⎛
⎝ ∞∑

j2=0

‖ψK+j2‖
⎞
⎠

= o

(
1

K2

)
,

where the second equality holds using (49).

Similarly for � = −1, · · · ,−K,∣∣∣∣∣
−1∑

�=−K

RΠ,t

∣∣∣∣∣ ≤ c̄
−1∑

�=−K

∞∑
j2=0

‖ψK+�+j2‖‖Φ2,K+�+j2‖‖Φ2,j2‖ψK+j2‖

≤ c̄

⎛
⎝ −1∑

�=−K

∞∑
j2=0

‖Φ2,K+�+j2‖
⎞
⎠
⎛
⎝ ∞∑

j2=−∞
‖ψj2‖

⎞
⎠
⎛
⎝ ∞∑

j2=0

‖Φ2,j2‖
⎞
⎠
⎛
⎝ ∞∑

j2=0

‖ψK+j2‖
⎞
⎠

≤ c̄

⎛
⎝K−1∑

j2=0

(j2 + 1)‖Φ2,j2‖+K
∞∑

j2=K

‖Φ2,j2‖
⎞
⎠
⎛
⎝ ∞∑

j2=0

‖ψK+j2‖
⎞
⎠ = o

(
1

K

)
,

while for � ≤ −K − 1,

∣∣∣∣∣
−K−1∑
�=−∞

RΠ,t

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
−K−1∑
�=−∞

∞∑
j2=0

∞∑
j1=0

j2 �=j1−K−�

ψ′
j1ΣεΦ

′
2,j1Φ2,j2ΣεψK+j2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
−K−1∑
�=−∞

∞∑
j1=0

ψ′
j1ΣεΦ

′
2,j1Φ2,j1−K−�Σεψj1−�

∣∣∣∣∣∣
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≤ c̄

⎛
⎝ ∞∑

j1=0

‖ψj1‖
⎞
⎠
⎛
⎝ ∞∑

j1=0

‖Φ2,j1‖
⎞
⎠
⎛
⎝ ∞∑

j1=0

j1‖Φ2,j1‖
⎞
⎠
⎛
⎝ ∞∑

j1=K+1

(j1 −K)‖ψj1‖
⎞
⎠

= o

(
1

K

)
.

We then have
∣∣∣∑∞

�=−∞ R̃Π,�

∣∣∣ = o(1/K) in case (ii).

In exactly the same way, we have the same order in cases (iii) and (iv), so that
∣∣∣∑∞

�=−∞ R̃Π,�

∣∣∣ =
o(1/K) in general. Then, we can see that the right-hand side of (45) is o(M/K) = o(1) by

Assumptions 2 and 3, so that the second term of RΠ,T is op(1). Similarly, we can show that

the third term of RΠ,T is op(1).

Using Lemma A.3, it is not difficult to see that RT = op(1). As a result, we obtain the

bias.�

Proof of Theorem 2

As given by Lemma 1, we can apply the B–N decomposition to each ηi,tηi,t−K . We can

also see from Theorem 1 that ηi,tηi,t−K is the dominate term in η̂∗i,tη̂
∗
i,t−Kwhile the other terms

are negligible and the bias becomes as given in Lemma 3 for each i. The rest we have to

show is that the FCLT holds for
∑N

i=1 ηi,tηi,t−K . Note that because ηi,t is obtained by linear

transformations of εi,t, ηi,t is independent of ηj,s for all i, j and s �= t. Thus, we can see that∑N
i=1 ηi,tηi,t−K is a martingale difference sequence with respect to the sigma-field constructed

from η1,t, η2,t−1, · · · , η2,t, η2,t−1, · · · , ηN,t, ηN,t−1, · · · . Because Gi,j for i = 1, · · · , N satisfy

Lemma A.1(ii), we can see that the conditions of the FCLT given by Theorem 27.14 of

Davidson (1994) are satisfied as in the proof of Theorem 1. We then have the theorem.�
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