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Abstract. Irreducible exchange economies in which consumers’ preferences are satiable and non-ordered

are considered. A general existence theorem of dividend quasi-equilibrium is proved and by the theorem

the existence of Walras equilibrium is proved under weaker assumptions of non-satiation.
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The purpose of this note is to prove the existence of Walras equilibrium in an economy with possibly

satiated consumers under a set of weaker assumptions. We consider a bounded model of exchange

economy where consumers’ preferences are non-ordered.*1

Our main generalization has two new features. First, we do not necessarily assume that the initial

endowment of each consumer belongs to the interior of his consumption set. We shall show that only

the irreducibility is required even in the case that there are some satiable consumers. Second, our

assumptions of non-satiation are weaker and admit that satiation may unexceptionally occur in feasible

allocations.

We consider an exchange economy with L commodities and N consumers. The set of consumers

is denoted by I = {1, · · · , N}. The commodity space is an L-dimensional Euclidean space RL. The

consumption set of each consumer i ∈ I is denoted by Xi ⊂ RL and the initial endowment is by ei ∈ Xi.

The preference of each consumer i ∈ I is denoted by a mapping by Pi : Xi → 2Xi .

∗ In this note we show only a sketch of proofs of theorems. For details, please refer to the original discussion paper

of Miyazaki and Takekuma (2012). The authors are grateful to Ezra Einy for his helpful comments to the original

version.
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dress: ed081009@g.hit-u.ac.jp.
‡ Faculty of Economics, Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo 186-8601, Japan. E-mail address:

takekuma.econ.hit-u@jcom.home.ne.jp.
*1 Unbounded economies with ordered preferences have been studied in recent papers. For example, see Sato (2010b)

which includes a good survey on those studies.

1

takekuma
タイプライターテキスト

takekuma
テキストボックス
Discussion Paper No.2013-14



An allocation is an N -tuple of vectors, x = (x1, · · · , xN ), where xi ∈ Xi is an amount of commodities

allotted to consumer i ∈ I. An allocation x = (x1, · · · , xN ) is said to be feasible if
∑N

i=1 xi =
∑N

i=1 ei.

The set of all feasible allocations is denoted by A. Since ei ∈ Xi for each i ∈ I, set A is non-empty.

A dividend vector is a non-negative vector, d = (d1, · · · , dN ) ∈ RN
+ , where di is an extra income given

to consumer i ∈ I.

A dividend quasi-equilibrium is a triplet {x̂, p̂, d̂} of a feasible allocation x̂ = (x̂1, · · · , x̂N ) ∈ A, a price

vector p̂ ∈ RL \ {0}, and a dividend d̂ = (d̂1, · · · , d̂N ) ∈ RN
+ such that for each i ∈ I,

(1) p̂ · x̂i ≤ p̂ · ei + d̂i,

(2) p̂ · yi ≥ p̂ · ei + d̂i for all yi ∈ Pi(x̂i).

A dividend equilibrium is a dividend quasi-equilibrium {x̂, p̂, d̂} such that, instead of condition (2),

p̂ · y > p̂ · ei + d̂i for all y ∈ Pi(x̂i).

Moreover, a Walras equilibrium (resp. quasi-equilibrium) is a pair {x̂, p̂} of a dividend equilibrium

(resp. dividend quasi-equilibrium) {x̂, p̂, d̂} such that d̂ = 0.

Throughout this paper, for each consumer i ∈ I, we assume the following:

(A.1) Xi is a closed and convex subset of RL.

(A.2) Pi : Xi → 2Xi is lower hemi-continuous, i.e., if y0 ∈ Pi(x
0) and a sequence {xn} converges to x0,

then there is a sequence {yn} converging to y0 such that yn ∈ Pi(x
n) for all n sufficiently large.

(A.3) For every xi ∈ Xi, Pi(xi) is convex and xi /∈ Pi(xi).

In addition, we assume the boundedness of the economy:

(A.4) The set A is bounded, i.e., there is a number b̄ > 0 such that for any x = (x1, · · · , xN ) ∈ A,

∥xi∥ ≤ b̄ for all i ∈ I.

For each x = (x1, · · · , xN ) ∈ A, we define two sets of consumers as follows:

IS(x) := {i ∈ I|Pi(xi) = ∅} and INS(x) := I \ IS(x).

To exclude trivial cases in which every consumer is simultaneously satiated and a dividend equilibrium

always exists, we assume the following condition which is the weakest non-satiation assumption.

(A5) For any x ∈ A, INS(x) ̸= ∅.

Step 1. We shall prove an existence theorem of dividend quasi-equilibrium under a most general setting.

Let us modify consumers’ preference relations. For each i ∈ I and each xi ∈ Xi, we define a convex

cone Ki(xi) by
Ki(xi) := {λ(yi − xi)|yi ∈ Pi(xi), λ > 0} .

Set Ki(xi) indicates the desirable directions from xi ∈ Xi for consumer i ∈ I. Moreover, for each i ∈ I,

a set X̄i and a mapping P̄i : X̄i → 2X̄i are defined in the following way:

X̄i :=
{
xi ∈ Xi|∥xi∥ ≤ b̄+ 1

}
.

P̄i(xi) := {zi + xi|zi ∈ Ki(xi)} ∩ X̄i for each xi ∈ X̄i.

2



Consider a modified economy in which the consumption set and the preference relation of each consumer

i ∈ I are replaced by X̄i and P̄i : X̄i → 2X̄i . It should be noted that for any x = (x1, · · · , xN ) ∈ A,

P̄i(xi) = ∅ if and only if Pi(xi) = ∅. Therefore, we can easily show that any dividend quasi-equilibrium

for the modified economy is a dividend quasi-equilibrium for the original economy. Thus, in order to

prove the existence of a dividend quasi-equilibrium, it suffices only to prove the existence of a dividend

quasi-equilibrium for the modified economy.

In addition, it is easy to show that mapping P̄i has the same properties as mapping Pi has, that is, it

is lower hemi-continuous, convex-valued, and xi /∈ P̄i(xi) for every xi ∈ X̄i. Thus, in what follows, we

shall identify Xi with X̄i and Pi : Xi → 2Xi with P̄i : X̄i → 2X̄i .

The following theorem on the existence of dividend quasi-equilibrium is a basic and key theorem for

our argument.

Theorem 1. Under assumptions (A.1)-(A.5), there exists a dividend quasi-equilibrium. More precisely,

there exists a dividend quasi-equilibrium {x̂, p̂, d̂} such that p̂ · x̂i = p̂ · ei + d̂i for all i ∈ INS(x̂) and

d̂1 = · · · = d̂N .

To prove the above theorem, we shall follow a standard process that was innovated by Gale and Mas-

Colell (1975). Let us confine prices to the closed unit ball, B = {p ∈ Rn|∥p∥ ≤ 1}. For each i ∈ I, define

a mapping βi : B → 2Xi by:

βi(p) := {yi ∈ Xi|p · yi < p · ei + 1− ∥p∥} for each p ∈ B.

Moreover, define mappings F0 : B× RL → 2B and Fi : B×Xi → 2Xi (i ∈ I) by:

F0(p, z) := {q ∈ B|q · z > p · z} for each (p, z) ∈ B× RL,

Fi(p, xi) :=

{
{yi ∈ Xi|p · yi < p · xi} when p · xi > p · ei + 1− ∥p∥
βi(p) ∩ Pi(xi) otherwise

for each (p, xi) ∈ B × Xi. This mapping Fi is a modification of the mapping originally constructed

by Gale and Mas-Colell (1975). The modification is slight, but crucial since we do not assume that

ei ∈ intXi for each i ∈ I.*2 Our mapping can be applied to cases where consumers’ budget sets do not

always have interior. We can check easily that mappings F0 : B× RL → 2B and Fi : B×Xi → 2Xi for

each i ∈ I are convex-valued and lower hemi-continuous.

Then, applying the fixed point theorem in Gale=Mas-Colell (1975, 1979), there exist x̂ = (x̂1, · · · , x̂N )

and p̂ such that

F0

(
p̂,
∑
i∈I

x̂i −
∑
i∈I

ei

)
= ∅ and Fi(p̂, x̂i) = ∅ for each i ∈ I.

Since Fi(p̂, x̂i) = ∅ for each i ∈ I, it follows from the definition of Fi that

p̂ · x̂i ≤ p̂ · ei + 1− ∥p̂∥ and βi(p̂) ∩ Pi(x̂i) = ∅ for each i ∈ I (1)

Furthermore, suppose that
∑

i∈I x̂i ̸=
∑

i∈I ei. Since F0

(
p̂,
∑

i∈I x̂i −
∑

i∈I ei
)
= ∅, by the defi-

nition of F0, q ·
(∑

i∈I x̂i −
∑

i∈I ei
)
≤ p̂ ·

(∑
i∈I x̂i −

∑
i∈I ei

)
for any q ∈ B. Therefore, ∥p̂∥ = 1

*2 For any set X ⊂ RL, intX denotes the interior of set X in RL.
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and p̂ ·
(∑

i∈I x̂i −
∑

i∈I ei
)

> 0. Thus, (1) implies that p̂ · x̂i ≤ p̂ · ei for each i ∈ I, and that

p̂ ·
(∑

i∈I x̂i −
∑

i∈I ei
)
≤ 0, which is a contradiction. Hence, we can conclude that

∑
i∈I x̂i =

∑
i∈I ei.

Suppose that ∥p̂∥ = 0. Then, β(p̂) = Xi for all i ∈ I, and, by (1), Pi(x̂i) = ∅ for all i ∈ I, which

contradicts assumption (A.5). Thus, ∥p̂∥ ̸= 0.

Now, let d̂ = (d̂1, · · · , d̂N ) be a vector such that d̂1 = · · · = d̂N := 1−∥p̂∥. Then, by (1), for each i ∈ I

,

p̂ · x̂i ≤ p̂ · ei + d̂i and p̂ · yi ≥ p̂ · ei + d̂i for all yi ∈ Pi(x̂i). (2)

Thus, we have shown that {x̂, p̂, d̂} is a dividend quasi-equilibrium.

Finally, since we identify Pi with P̄i, for i ∈ INS(x̂) there is a point y ∈ Pi(x̂i) which is arbitrarily

close to x̂i. Therefore, (2) implies that p̂ · x̂i = p̂ · ei + d̂i. This completes the proof of Theorem 1.

Step 2. We shall define the irreducibility condition for an economy with possibly satiated consumers

and prove the existence of dividend equilibrium in the irreducible economy.

A well-known sufficient condition under which any quasi-equilibrium is an equilibrium is the irre-

ducibility assumption that originates with McKenzie (1956). And a weaker condition of irreducibility

was considered by Bergstrom (1976). The condition can be defined for economies with possibly satiated

consumers in the following fashion:*3

(A.6) Let x = (x1, · · · , xN ) ∈ A and j ∈ INS(x). If INS(x) \ {j} ̸= ∅ then there exist an allocation

y = (y1, · · · , yN ) ∈ X1 × · · · ×XN and a scalar θ > 0 such that

(1) θ(yj − ej) +
∑

i∈IS(x)

(xi − ei) +
∑

i∈INS(x)\{j}

(yi − ei) = 0,

(2) yi ∈ Pi(xi) for each i ∈ INS(x) \ {j}.

The meaning of irreducibility is that the initial endowment of any non-satiated consumer is desired by

some other non-satiated consumers. Evidently, when IS(x) = ∅, the above condition is equivalent to the

condition of Bergstrom (1976).

In order to prove that any quasi-equilibrium is an equilibrium, we need the following assumptions:

(A.7) For each i ∈ I, Pi(xi) is open in Xi for every xi ∈ Xi.*
4

(A.8) For any x ∈ A,
∑

i∈INS(x)

ei ∈ int
∑

i∈INS(x)

Xi.

Condition (A.8) is weaker than the assumption that ei ∈ intXi for all i ∈ I. For example, if there is

at least one consumer who is never satiated and if his initial endowment belongs to the interior of his

consumption set, then the condition holds.

The following is a fundamental lemma which is a modification of the lemma of Debreu (1962).

Lemma 1. Under assumptions (A.6) and (A.7), for any dividend quasi-equilibrium {x̂, p̂, d̂}, if p̂·ei+d̂i >

*3 In Bergstrom (1976), the irreducibility condition is assumed only on individually rational allocations in which no

consumers are worse off than in their initial endowments. Since in a quasi-equilibrium some consumers might be

worse off than in their endowments, we need to take account of all feasible allocations in defining irreducibility.
*4 As Bergstrom (1976) and Won & Yannelis (2011) showed, we can replace this assumption with the following condition:

If yi ∈ Pi(xi) and zi ∈ Xi, then there exists a number θ > 0 such that (1− θ)yi + θzi ∈ Pi(xi).
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inf p̂ ·Xi occurs for some i ∈ INS(x̂), then it occurs for every i ∈ INS(x̂).

Proof. Let {x̂, p̂, d̂} be a dividend quasi-equilibrium. Define two sets in the following way:

I1 := {i ∈ INS(x̂) | p̂ · ei + d̂i = inf p̂ ·Xi}.

I2 := {i ∈ INS(x̂) | p̂ · ei + d̂i > inf p̂ ·Xi}.

Assume that I2 is non-empty. Choose j ∈ I1. Then, (A.6) implies that there are an allocation

y = (y1, · · · , yN ) ∈ X1 × · · · ×XN and a scalar θ > 0 such that

θ(yj − ej) +
∑

i∈INS(x̂)\{j}

(yi − ei) +
∑

i∈IS(x)

(x̂i − ei) = 0 (3)

and yi ∈ Pi(x̂i) for each i ∈ INS(x̂) \ {j}. Since
∑

i∈I(x̂i − ei) = 0, by (3) we have

θ(yj − ej) + (ej − x̂j) +
∑

i∈INS(x)\{j}

(yi − x̂i) = 0. (4)

On the other hand, from the definition of quasi-equilibrium, it follows that p̂ · yi ≥ p̂ · ei + d̂i ≥ p̂ · x̂i

for all i ∈ INS(x̂) and in particular, by (A.7), p̂ · yi > p̂ · ei + d̂i for each i ∈ I2. In addition, as for j,

since ej ∈ Xj , we have d̂j = 0 and p̂ · ej = p̂ · x̂j . Hence, p̂ · (yj − ej) ≥ 0. Thus, we have

θp̂ · (yj − ej) + p̂ · (ej − x̂j) +
∑

i∈INS(x̂)\{j}

p̂ · (yi − x̂i) ≥
∑

i∈INS(x̂)\{j}

p̂ · (yi − x̂i) > 0.

This is a contradiction to (4). This shows that I2 ̸= ∅ implies that I1 = ∅. �

Now, let {x̂, p̂, d̂} be a dividend quasi-equilibrium. From (A.8), it follows that p̂ · ei > inf p̂ ·Xi occurs

for some i ∈ INS(x̂), i.e., p̂ · ei + d̂i > inf p̂ ·Xi occurs for some i ∈ INS(x̂). Therefore, by Lemma 1, it

occurs for all i ∈ INS(x̂), i.e., p̂ · ei + d̂i > inf p̂ ·Xi for all i ∈ INS(x̂), and by (A.7) we can easily show

that {x̂, p̂, d̂} is a dividend equilibrium. Thus, by Theorem 1 we have the following theorem:

Theorem 2. Under assumptions (A.1)-(A.8), there exists a dividend equilibrium. More precisely, there

exists a dividend equilibrium {x̂, p̂, d̂} such that p̂ · x̂i = p̂ · ei + d̂i for all i ∈ INS(x̂) and d̂1 = · · · = d̂N .

Step 3. We shall prove the existence of Walras equilibrium under weaker non-satiation assumptions.

The irreducibility condition (A.6) is a relation among non-satiated consumers. In order to prove the

existence of Walras equilibrium, we need an additional assumption which relates satiated consumers to

non-satiated ones. In what follows, we shall consider two types of conditions which are weaker than that

of Won & Yannelis (2011).*5

For x ∈ A, we define a cone by

K(x) :=
∑

i∈INS(x)

Ki(xi).

First we consider the following condition which is a straightforward extension of that of Won & Yannelis

(2011).

*5 Won & Yannelis (2011) assumed the following: For any x ∈ A, xi − ei ∈ cl[
∑

j∈INS(x)(Pj(xj) − {xj})] for all

i ∈ IS(x).
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(R.1) For any x ∈ A,
∑

i∈IS(x)

(xi − ei) ∈ cl K(x).

Set K(x) indicates the desirable directions for the non-satiated consumers in allocation x. Therefore,

roughly speaking, condition (R.1) means that in any feasible allocation the sum of the directions of

satiation points from initial endowments for satiated consumers is one of the directions which are desirable

for non-satiated consumers.

Now, let {x̂, p̂, d̂} be a dividend equilibrium such that p̂ · x̂i = p̂ · ei + d̂i for all i ∈ INS(x̂) and

d̂1 = · · · = d̂N . From the definition of dividend equilibrium, it follows that for each i ∈ INS(x̂),

p̂ · yi > p̂ · ei + d̂i = p · x̂i for any yi ∈ Pi(x̂i), and therefore, p̂ · z > 0 for any z ∈ Ki(x̂i). Hence, by the

definition of K(x̂), p̂ · z ≥ 0 for any z ∈ cl K(x̂). Thus, by (R.1), we have p̂ ·
∑

i∈IS(x̂)(x̂i − ei) ≥ 0.

Since
∑

i∈I(x̂i − ei) = 0, it follows that p̂ ·
∑

i∈INS(x̂)(x̂i − ei) ≤ 0. Since p̂ · (x̂i − ei) = d̂i ≥ 0 for

all i ∈ INS(x̂), we conclude that p̂ · (x̂i − ei) = d̂i = 0 for all i ∈ INS(x̂), and that d̂i = 0 for all i ∈ I.

Therefore, {x̂, p̂} is a Walras equilibrium. Thus, by virtue of Theorem 2 we have proved the following

theorem.

Theorem 3. Under assumptions (A.1)-(A.8) and (R.1), there exists a Walras equilibrium {x̂, p̂} such

that p̂ · x̂i = p̂ · ei for all i ∈ I.

It should be noted that the existence of a dividend equilibrium with equal dividends is essential in

proving Theorem 3.

Next, we consider another weaker assumption of non-satiation. For x ∈ A, we define the following set:

Li(xi) :=

{
{λ(z + xi − ei)|z ∈ Ki(xi), λ > 0} for each i ∈ INS(x)

{λ(xi − ei)|λ > 0} for each i ∈ IS(x).

(R.2) For any x ∈ A, if 0 /∈ int
∑

i∈INS(x) Li(xi), then 0 /∈ int
∑

i∈I Li(xi).*
6

For consumer i ∈ INS(x), set Li(xi) indicates the desirable directions from initial endowment ei

and for consumer i ∈ IS(x), the directions of satiation point xi from initial endowment ei. Therefore,

roughly speaking, condition (R.2) means that in any feasible allocation the directions of satiation points

of satiated consumers are almost the same as the desirable directions for non-satiated consumers in that

the desirable directions for both satiated and non-satiated consumers are contained in a common half

space of RL.

Now, let {x̂, p̂, d̂} be a dividend equilibrium such that p̂ · x̂i = p̂ · ei + d̂i for all i ∈ INS(x̂). From the

definition of dividend equilibrium, it follows that for each i ∈ INS(x̂), p̂ · yi > p · x̂i = p̂ · ei + d̂i for any

yi ∈ Pi(x̂i), which implies that

p̂ · (yi − x̂i) > 0 and p̂ · (x̂i − ei) ≥ 0 for any yi ∈ Pi(x̂i),

accordingly, p̂ · λ(yi − x̂i) + p̂ · (x̂i − ei) > 0 for any yi ∈ Pi(x̂i) and λ > 0,

accordingly, p̂ · (zi + x̂i − ei) > 0 for any zi ∈ Ki(x̂i).

*6 This condition can be proved to be weaker than that of Won and Yannelis (2011). Also, we can show that this

condition neither weaker nor stronger than condition (R.1). For details, see Miyazaki and Takekuma (2012).
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This implies that for each i ∈ INS(x̂), p̂ ·wi > 0 for any wi ∈ Li(x̂i) , and that 0 /∈ int
∑

i∈INS(x̂) Li(x̂i).

Under assumption (R.2), by Minkowski’s separation theorem we have a vector p̄ ∈ RL with p̄ ̸= 0 such

that p̄ · z ≥ 0 for all z ∈
∑

i∈I Li(x̂i). Namely,

p̄ ·
∑

i∈INS(x̂)

λi(zi + x̂i − ei) + p̄ ·
∑

i∈IS(x̂)

λi(x̂i − ei) ≥ 0

for any zi ∈ Ki(x̂i) and λi > 0. Hence, for each i ∈ INS(x̂), p̄ · (x̂i − ei) ≥ 0 and p̄ · (yi − ei) ≥ 0 for any

yi ∈ Pi(x̂i). Moreover, for each i ∈ IS(x̂), p̄ ·(x̂i−ei) ≥ 0. Since
∑

i∈I(x̂i−ei) = 0, p̄ ·(x̂i−ei) = 0 for all

i ∈ I. Thus, {x̂, p̄} is a Walras quasi-equilibrium such that p̄ · x̂i = p̄ · ei for all i ∈ I. Under assumptions

(A.6), (A.7), and (A.8), by the same argument in proving Theorem 2, we can show that {x̂, p̄} is a Walras

equilibrium.*7 Thus, again by virtue of Theorem 2, we have proved the following theorem:

Theorem 4. Under assumptions (A.1)-(A.8) and (R.2), there exists a Walras equilibrium {x̂, p̂} such

that p̂ · x̂i = p̂ · ei for all i ∈ I.

Concluding Remarks. As for the existence of dividend quasi-equilibrium, Theorem 1 is more general

than the result by Allouch & Le Van (2009, Prop.1, p.321) since we consider economies with consumers

whose preferences are non-ordered. As for the existence of dividend equilibrium, Theorem 2 is more

general than the results by Mas-Colell (1992, Thm.1, p.205) and Kajii (1996, Prop.1, p.79) since we

consider irreducible economies in which consumers have not always positive incomes.

As for the existence of Walras quasi-equilibrium, Theorems 3 and 4 are neither more special nor more

general compared with the results by Allouch & Le Van (2009, Thm.2, p.323) and by Sato (2010a,

Thm.2, p541, Thm.3, p.543). While our assumption on consumers’ preferences is weaker than their

assumptions in the sense that consumers’ preferences are non-ordered, the assumptions of non-satiation

are different and cannot be compared directly with each other. However, our assumption admits that

satiation generally occurs in the set of feasible allocations, and our theorem applies to a broader set of

economies. In fact, the example of economy shown by Sato (2010a, Eg.1, p.537) satisfies our assumptions.

In comparison with the work of Won & Yannelis (2011, Thm.4.1, p.249) in which economies with

non-ordered preferences are considered, our results are an extension of their result, since we use the

assumptions of irreducibility and weaker assumptions of non-satiation.
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