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complete information where two players negotiate for mechanisms with
ex post verifiable types at the interim stage. We prove the existence of
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plemented with probability one. Further, the ex post Nash bargaining
solution is a unique outcome of a stationary equilibrium under the prop-
erty of Independence of Irrelevant Types (IIT), whereby the response
of every type of a player is independent of allocations proposed to his
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1 Introduction

We consider a two-person bargaining problem with incomplete information in
which each player has private information about his type. Knowing their own
types, players negotiate for a contract (or a mechanism) that is a contingency
plan that prescribes a joint action for every possible type profile of players.
Players’ private information may affect their preferences over agreements. To
reach a preferable agreement, players may want to reveal or conceal their types.
Private information may leak through actions in negotiations. A bargaining
situation is called a case of wverifiable types if players’ types become publicly
known and verifiable when an agreement is implemented. In the other case
of unverifiable types, a contract should satisfy the Bayesian incentive compat-
ibility so that players have incentives to disclose their types truthfully.! To
focus on the analysis of bargaining behavior with incomplete information, we
assume the condition of verifiable types in this paper.

As an example, consider disarmament negotiations between two countries
(Harsanyi and Selten 1972). Neither country has precise knowledge about the
other country’s armament levels, technology, political and economic conditions,
and utility values to possible agreements. These uncertain variables are rep-
resented by players’ types in games with incomplete information. A physical
action prescribed by a disarmament treaty may or may not depend on types of
countries. It may simply require the countries to destroy an absolute number
of military weapons by each side. In a general case, it may require countries to
reduce the numbers of weapons in their possession, depending on their types.
For example, some agreements require each country to destroy a certain per-
centage of its total stockpile of missiles. Others may prescribe the number of
missiles destructed by either side according to a mathematical function of both

sides’ missile stocks.? Such type-dependent agreements can be implemented

!'When players’ types represent their internal states such as satisfaction, risk attitudes
and psychological characters, it is appropriate for us to model them as unverifiable types.
2The new START treaty agreed by the United States and Russia on April 8, 2010 pre-



only if countries’ types are truthfully disclosed. To overcome the enforcement
problem, a disarmament treaty involves a specified procedure which provides
both countries opportunities of inspection and verification about each other’s
type to the extent that the treaties can be enforced.?

In this paper, we consider a Rubinstein (1982)-type sequential bargaining
process under incomplete information. Knowing his own type, a randomly
selected player proposes a contract. The other player either accepts or rejects
it. If he accepts it, then the contract is agreed upon. Thereafter, a process
of verification is conducted, and an action prescribed by the contract for both
players’ types is jointly taken. If the proposal is rejected, then there is the
risk that negotiations may fail with a positive probability. In this case, a pre-
determined outcome results. In the example of disarmament negotiations, the
status-quo prevails. If negotiations may not fail (with the remaining probabil-
ity), then negotiations go to the next round, and the same process is repeated
over (possibly) infinitely many rounds until an agreement is made.

Our bargaining model with verifiable types can be applied to some eco-
nomic situations under uncertainty. For example, consider an insurance con-
tract which prescribes how much a customer should be covered for contingen-
cies by an insurer. At the time of trading, both parties have only imperfect
and private information about which event may happen. When the contract
is implemented, the insurer is assumed to have a sufficient ability to verify a
realized damage. Sharecropping is another example. A tenant and a landlord
negotiate for a rental share contract that specifies the proportion of outputs

the tenant should deliver to the landlord. The outputs may depend on un-

scribes that each party shall reduce and limit its armaments so that the aggregate numbers
are (a) 700 for deployed ICBMs, deployed SLBM, and deployed heavy bombers, (b) 1550 for
warheads on deployed ICBMs, warheads on deployed SLBMs, and nuclear warheads counted
for deployed heavy bombers, and (c) 800 for deployed and non-deployed ICBM launchers,
deployed and non-deployed SLBM launcher, and deployed and non-deployed heavy bombers
(Article IT).

3The new START treaty involves various measures to ensure compliance: creation and
notification of database (Article VII), exchange of telemetric information (Article IX), na-
tional technical means of verification (Article X) and inspections (Article XT).



certain events such as weather and other agricultural conditions. While the
output is publicly known and verifiable to both parties at the time of con-
tract implementation, they are only partly informed about it at the time of
contracting.

The result of the paper is as follows. We consider the ex post Nash bar-
gaining solution of the two-person Bayesian bargaining problem, which is a
specific contract that assigns the Nash bargaining solution to every type pro-
file of players. We first show that there exists a sequential equilibrium of the
bargaining game which implements the ex post Nash bargaining solution in the
limit that the continuation probability of negotiations in case of rejection (al-
ternatively, the discount factor of future payoffs) goes to one. The constructed
equilibrium satisfies several properties: (stationarity) every player’s equilib-
rium strategy depends only on his own types, independent of past actions; (no
delay of agreement) an agreement is made with probability one in the initial
round; (inscrutability) every type of a proposer proposes the same contract;
(information revealing) a proposer may update his prior belief about a proposer
based on revealed information when he receives an unexpected proposal.

In the last part of the paper, we provide a characterization result of a se-
quential equilibrium of the bargaining game satisfying the properties above.
We prove that the ex post Nash bargaining solution is asymptotically a unique
outcome of a stationary sequential equilibrium satisfying the property of in-
dependence of irrelevant types (IIT) and a refinement condition based on self-
selection. IIT means that the response of every type of a player depends only
on a proposal made to himself, independent of allocations proposed to his other
(irrelevant) types. We prove that no delay of agreement occurs in a stationary
equilibrium with IIT. Our refinement concept of a sequential equilibrium, sim-
ilar to the notion of a perfect sequential equilibrium of Grossman and Perry
(1986a), assumes that, if a responder is offered an unexpected proposal, then
he infers that a true type of a proposer must be among those who have incen-

tives to make the proposal, and that he updates his prior belief based on the



revealed information.

The result of the paper has somewhat a surprising implication. Since the ex
post Nash bargaining solution may not be interim efficient, our non-cooperative
approach to the Bayesian bargaining problem does not support any cooper-
ative solution assuming interim efficiency, for example, those obtained in the
axiomatic approach of Harsanyi and Selten (1972) and Myerson (1984). Re-
lating to this, the result implies that insurance benefit based only on private
information is impossible because players’ private information may be revealed
in the process of negotiations.

The literature on the Bayesian bargaining games with incomplete informa-
tion is diverse. In their pioneering work, Harsanyi and Selten (1972) extend the
bargaining theory of Nash (1950) to the case of incomplete information with
verifiable types. They consider a non-cooperative multi-stage model of bar-
gaining. To select a unique equilibrium of the bargaining model, they develop
an axiomatic theory based on Nash (1950) and present a generalized Nash
solution (called the Harsanyi-Selten solution) under incomplete information.
Myerson (1979) applies the Harsanyi-Selten solution to the case of unverifiable
types in which incentive compatibility is required for a feasible agreement. In
a subsequent paper, Myerson (1984) acknowledges a theoretical drawback of
the Harsanyi-Selten solution in that it violates a decision-theoretic axiom of
probability-invariance. He considers an alternative set of axioms and defines a
set-valued solution called a neutral bargaining solution as the minimal solution
satisfying his axioms. The Myerson solution coincides with the classical Nash
bargaining solution when it is applied to the bargaining game with complete
information.

Since the work of Harsanyi and Selten (1972), non-cooperative analysis
of the Bayesian bargaining problem has been mainly done for the principal-
agent set-up in which a principal has all the bargaining power. Most studies
are restricted to the ultimatum bargaining model in which a principal makes

a take-it-or-leave-it offer of a contract to an agent (or agents). There is a



large volume of works on an uninformed principal in the literature of adverse-
selection (or screening) models. Remarkably, Myerson (1983) considers the
mechanism design problem of an informed principal. To deal with the multi-
plicity of sequential equilibria, he applies a cooperative axiom in the core theory
and presents a set-valued solution. Maskin and Tirole (1990, 1992) elaborate
a non-cooperative analysis of the informed principal model and characterize
a perfect Bayesian equilibrium for two cases of private and common values.
de Clippel and Minelli (2004) refine Myerson’s work in the case of verifiable
types. Mylovanov and Tréger (2012) extend the result of Maskin and Tirole
(1990) to a general case of private values. To our best knowledge, there are
few works on sequential bargaining games for mechanism selection.*

The remainder of the paper is organized as follows. Section 2 presents
the model. Section 3 proves the existence of a sequential equilibrium which
implements the ex post Nash bargaining solution asymptotically. Section 4
gives the no-delay result under IIT. Section 5 provides a characterization result.
Section 6 discusses the result of the paper. Section 7 concludes. Some proofs

are given in Appendix.

2 The Model

We consider a two-person bargaining problem with incomplete information,
following Myerson (1984). Let N = {1,2} be the set of players. For each
1 = 1,2, let T; be a finite set of player i’s types t;. Let T =T} x T,. An
element of T is denoted by t = (t1,12). For each ¢; € T;, T(t;) denotes the
cylinder set {t;} xT;(j # i). Let m, a probability distribution on 7', denote the

4There exists another branch of the literature which considers various sequential bargain-
ing games with incomplete information. In these games, players with private information
propose type-independent allocations. Typical observations are that there is a large set of
sequential equilibria, and that the equilibrium delay of an agreement may happen. The
literature includes Fudenberg and Tirole (1983), Rubinstein (1985), Grossman and Perry
(1986b) and Chatterjee and Samuelson (1987) among others. Ausubel et al. (2002) present
an excellent review on the literature.



common prior belief of players. For each ¢t € T, 7(t) denotes the probability
that type profile ¢ is realized. We assume that 7(¢) > 0 for all t € T'. For each
t; € T;, the posterior belief of player i given ?; is defined by

W(ti, tg)

i) = s (1

Let A be the set of actions (or outcomes) available to players if they co-
operate. A specific element d* € A is called the disagreement action, and
describes the action that prevails when cooperation fails. We assume that the
disagreement action d* is exogenously given. For each ¢ = 1,2, the function
u; : A X T — R denotes a state-dependent von Neumann—Morgenstern util-
ity function for player i. Without loss of generality, we normalize u; so that
ui(d*,t) =0 forallt € T and all i = 1,2.

A two-person Bayesian bargaining game is represented by G = (A, d*, Ty, T,
uy, ug, ). For each t € T, let U(t) denote the set of payoff vectors u(a,t) =
(ui(a,t))i=12 of players for all actions a € A. A payoff vector u = (uy, uy) of
U(t) is Pareto efficient if there is no other v = (v, v3) € U(t) such that v; > u;
for all i = 1,2 and v; > u; for some i. The Pareto frontier of U(t) is the set of
all Pareto efficient payoff vectors of U(t). We represent the Pareto frontier of
U(t) as an equation H'(uy,us) = 0, and call H' the Pareto frontier function
of U(t). Without loss of generality, we can assume that H'(uy,us) > 0 for all

u € U(t). We make the following assumptions.

Assumption 2.1. For every t € T,
(1) U(t) is a nonempty, convex and compact subset of R?,

(2) the Pareto frontier of U(t) intersects the two axes, u; = 0 and uy = 0, of

R?, and
(3) the disagreement payoff u(d*,t) = (0,0) is an interior point of U(t).
These assumptions of the feasible set U(t) are standard in the literature.
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For each t € T, a payoff vector u = (u1,ug) of U(t) is individually rational if
u; > 0 for all i = 1,2. U, (t) denotes the set of all individually rational payoffs
of U(t). Assumption 2.1 guarantees the existence of the implicit function
u; = hi(u;) satisfying H'(h!(u;),u;) = 0 on Ui (t) for every i,j = 1,2 and
i .

In the game G, players negotiate for a mechanism, not for a single action
in A. A mechanism x is a contract specifying which action should be chosen
jointly, contingent on the player types. Formally, z is a function from T to
A. Let M be the set of all mechanisms. Under a mechanism x, players are
supposed to choose an action a = x(t) when they are of type ¢. When a
mechanism z is implemented, the conditional expected utility Eu;(z|t;) of

player 7 given type t; is defined by

Eug(wlt;) = Y w(tylt:us(a(t), 1). (2)
teT;

As we have noted in the introduction, we assume that players’ types be-
come publicly known and verifiable when a mechanism is implemented, al-
though they are privately known to players during negotiations. In this case
of verifiable types, any mechanism is implementable for the players as long as
it is physically feasible. The Bayesian incentive compatibility is irrelevant in
this paper.

We are interested in a specific mechanism where two players choose the

Nash bargaining solution for every type profile t € T

Definition 2.1. A mechanism zV? in G is called the ez post Nash bargain-
ing solution with weights p = (p1, po) if it assigns to every ¢ € T the Nash

bargaining solution xVB(t) of the feasible set U(t) with weights p = (p1, p2).

The payoff vector (ui(z™V®(t),t), us(xVNP(t),t)) maximizes the Nash product
P,

ul* - ub? over U(t) for every t € T, where the disagreement payoff is given by

u(d*, t) = (0,0).



We formulate a negotiation process over mechanisms with incomplete in-
formation as a sequential bargaining game in the spirit of Rubinstein (1982).
Specifically, as a bargaining protocol, we apply the random proposer rule,
which has been well studied in the literature on non-cooperative bargaining
games with complete information (Binmore, Rubinstein and Wolinsky 1986,
Baron and Ferejohn 1989, and Okada 1996 among others).

Negotiations take place at an interim stage, in which players know their
own type but not that of the other player. After the player types are realized
and revealed to them privately, one player is randomly selected as a proposer
and proposes a feasible mechanism to the other player. If the opponent accepts
it, then the proposed mechanism is agreed. Any agreed-upon mechanism will
be implemented at an ez post stage where players’ types become publicly

> Otherwise, negotiations may stop with probability € > 0, and the

known.
disagreement action d* is chosen. With probability 1 — €, negotiations may
continue in the next round. If this happens, then a new proposer is randomly
selected again, and the same process is repeated. The probability of an infinite
play in negotiations is zero. Players are assumed to maximize their expected
payoffs.

An alternative interpretation of the negotiation model is that negotiations
continue in the next round in the case of rejection, and that players discount
their future payoffs by 6 = 1—e. The disagreement action d* prevails in the case
of no agreements. For sake of exposition, we will employ this interpretation of
the model with a discount factor § < 1 in what follows.

Formally, the bargaining game has two stages of negotiations and of im-

plementation. The first stage of negotiations has the following rule. In round

0, a type profile ¢ = (¢;,t3) of players is realized according to the prior prob-

5This modelling assumption does not mean that players’ types become verifiable upon
agreement to a mechanism. In the example of disarmament negotiations, two countries
engage in mutual inspection and verification according to an agreement before a treaty is
implemented. In a case of sharecropping, an uncertain amount of crops becomes publicly
known in a harvesting season when a contract is implemented.



ability distribution 7. Every player i(= 1,2) knows his own type ¢;, but not
that of the other player, ¢;. At the beginning of round 1, a player is randomly
selected as a proposer according to a predetermined probability distribution
p = (p1,p2). The selected player proposes a feasible mechanism = € M. The
other player either accepts or rejects the proposal. If the responder accepts
the proposal, then z is agreed. If not, then the game continues in round 2,
and a new proposer is randomly selected. The same process as above is re-
peated until some mechanism is agreed. The negotiation stops if an agreement
is reached, and thereafter the agreement is implemented in the second stage
where players’ types become publicly known. When the negotiation does not
stop, the disagreement outcome d* prevails in the implementation stage.’ Let
d(< 1) be the common discount factor for future payoffs of players.

We denote by T'? the bargaining game with incomplete information intro-
duced above. Whenever each player makes a choice in I'’, he knows perfectly
his own type and all past moves, including the selection of proposers. However,
a player does not know the other player’s type. We sometimes omit ¢ in the
notation I’ if no confusion arises.

A strategy for every player in ' is defined in a standard way. A (pure)
strategy o; for player ¢ in [' is a function that assigns a choice to each of
his possible moves, depending on the information he receives. Specifically,
o; prescribes a mechanism o;(¢;,h) € M in every round when player i is a
proposer, given his type ¢; and a history h of play before the round. In addition,
o; prescribes a response o;(t;, h, x) € {accept,reject} to every proposal z when
he is a responder. For a strategy profile 0 = (071, 03), the expected (discounted)

utility Eu;(o) for each player i is defined in a standard way.

50Qur model has the time structure that the disagreement action d* is played after in-
finitely many bargaining rounds. It is constructed to describe bargaining situations without
any “end effect.” It is assumed that players commonly perceive that there would be a chance
that negotiations continue in the next round when a proposal is rejected. As long as a stop-
ping probability is positive in each bargaining round, the probability of an infinite number of
bargaining rounds is zero. In real disarmament negotiations, it seems reasonable to assume
that there would be a chance, however small, that countries may continue negotiations even
after a proposal is rejected.

10



A belief system for I' is a function p that assigns every player ¢ his belief
about the other player’s type, a probability distribution on 7j. Given (¢;, h),
let u(t;]t;, h) denote the belief of player ¢ about #; when he is a proposer, and
let uu(t;|ti, h, ) be his belief when he responds to a proposal = from player j.

We employ a sequential equilibrium (Kreps and Wilson 1982) as a non-
cooperative solution concept for the bargaining game I'. Roughly, a pair (o, i)
of a strategy profile and a belief system is a sequential equilibrium of IT" if the
strategy of every player is a best response to the other’s strategy for each of
his information sets under the belief system pu, where p should be consistent
with the strategy profile o (and with some slight deviation from it off equilib-
rium play) by the Bayes rule. Since the notion of a sequential equilibrium is
standard, we omit a precise definition.

The multiplicity of a sequential equilibrium is a central issue of the sequen-
tial bargaining theory. Rubinstein (1982) shows that his two-person sequen-
tial bargaining game with complete information has a unique subgame perfect
equilibrium, which is composed of stationary (history-independent) strategies.
The uniqueness of a subgame perfect equilibrium does not hold if n > 3 (see
Sutton 1986 and Osborne and Rubinstein 1990). In the case of incomplete in-
formation, Rubinstein (1985) shows that the set of sequential equilibria is very
large even in the two-person case, due to the freedom of players’ constructing
beliefs off the equilibrium play.

In this paper, we consider a stationary equilibrium of the bargaining game
[ with incomplete information. The definition of a stationary equilibrium is

as follows.

Definition 2.2. A sequential equilibrium (o, i) of T is said to be stationary
if every player ¢’s behavior in every round depends only on his type ¢;: specifi-
cally, (i) a proposer’s behavior depends only on his type, and (ii) a responder’s

behavior depends only on his type and a proposal.

This definition of a stationary equilibrium for sequential bargaining games

11



with incomplete information is essentially the same as that with complete
information in the literature. That is, players’ proposals and responses in each
round are independent of past actions. A usual justification for a stationary
equilibrium is a focal-point (or reference point) argument.” Tt is the simplest
form of bargaining strategies, and it may be easier for bargainers to coordinate
their expectations.

We remark that some type of “learning” may happen in a stationary equi-
librium. In particular, a central issue in this paper is what a responder may
learn about a type of a proposer when he receives an unexpected proposal off
the equilibrium play. The notion of a sequential equilibrium, however, is not
sufficient to the study of this issue since it allows an arbitrary belief of the
responder off the equilibrium play. We consider a situation where a proposal
may reveal some information of a proposer’s type if he has an incentive to
screen himself. The responder may update his belief based on such revealed
information.

In what follows, we refer to a stationary sequential equilibrium simply as
a stationary equilibrium. For a stationary equilibrium o and a type profile
t € T, we denote by Eu;(clt) the conditional expected (discounted) payoff
of player ¢ for o evaluated at the beginning of each bargaining round before
the random selection of a proposer occurs. Since o is stationary, Eu;(olt) is
independent of past actions. Whenever no confusion arises, we use a simpler

notation v;(t) for Eu;(colt).

"There are divergent views among researchers about whether a stationary equilibrium
(a Markov-perfect equilibrium, in general) is a reasonable solution for sequential bargaining
games. For a positive theory of bargaining, it is an important question whether or not a
stationary equilibrium can explain bargaining behavior in real situations well. This ques-
tion needs to be investigated empirically. Especially, experimental investigations would be
useful. The exploration to this direction is beyond the scope of the present paper. Here,
we investigate theoretically what features in bargainers’ behavior yield a unique outcome
of negotiations with incomplete information. The outcome is expected to be served as a
reference point for analyses of mechanism bargaining with incomplete information based on
a non-cooperative game theory.

12



3 Existence

In this section, we prove that there exists a stationary equilibrium of the
bargaining game I'? for every 6. In the equilibrium, the ex post Nash bargaining
solution is agreed in the initial round with probability one in the limit as ¢
goes to one.

The first lemma shows the existence of a solution of the well-known equi-
librium condition for a subgame perfect equilibrium in the bargaining game I'?

in the case of complete information.

Lemma 3.1. For every i,j = 1,2 (i # j) and ¢ € T, there exist some real

numbers v;(t) and w;(t) in R, which satisfy the following:
(1) H'(wi(t), dv;(1)) =0,

where p; is the probability that player i is selected as a proposer, and H! is

the Pareto frontier function of U(t).

Proof. For every t € T, let ht be the implicit function of H* defined by
H'(hl(uj),u;) = 0. Assumption 2.1 guarantees that h! is well-defined and
continuous on the projection of U(t), = U(t) N Ry to the j-axis. Define
gi(ui, uj) = pht(du;) + (1 —p;)ou; for i = 1,2. Then, g(u) = (g1(u), g2(u)) is a
continuous function from the convex set U(t), to itself. Since U(t), is also a
compact set, there exists a fixed point v*(t) = (v (), v3(t)) of g by Brouwer’s
fixed point theorem. Define wj(t) = hi(dvj(t)) for 4,j = 1,2 (i # j). Clearly,
v*(t) and w*(t) satisfy (i) and (ii) in the lemma. Q.E.D.

Two properties (i) and (ii) in the lemma are interpreted as follows. For
every i = 1,2 and t € T, v;(t) means the expected payoff of player i for a

subgame perfect equilibrium of I’ in the case of complete information, and
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w;(t) does his demand payoff.® Property (i) means that given a type profile ¢,
player ¢ proposes a payoff allocation which maximizes his payoff subject to the
constraint that player j receives at least his continuation payoff dv;(t) in case
of rejection. The constraint is binding in equilibrium. The expected payoff of

player i satisfies property (ii) under the random proposer rule.

Theorem 3.1. For every § < 1, there exists a stationary equilibrium (o, i)
of T such that every player i = 1,2 proposes a mechanism z?, independent of
his type, and that 20 is accepted by every type of player j(# ). As & goes to
one, the sequence {z¢} of mechanisms for every i = 1,2 converges to the ex
post Nash bargaining solution VP with weights p = (py,ps), where p is the

probability distribution for proposer selection.

Proof. For every i,j = 1,2 (i # j) and t € T, choose 22(t) € A such that
w;(t) = ug(x0(t),t) and dv;(t) = u;(22(t),t) where v(t) and w(t) satisfy (i) and
(ii) in Lemma 3.1. The existence of such z!(t) is guaranteed by Lemma 3.1.
Let 2¢ be the mechanism that assigns 22(t) to every t € T. Using each 22, we

construct a strategy o and a belief 1 as follows. For every i,j = 1,2 (i # j),

(E1) i proposes 2! and j accepts it, independent of their types and a history
of play.

(E2) Every player has a belief which satisfies:
(a) when every type t; of j responds to z? in the first round, he has the

posterior belief 7(:|t;) about type t; of 4,

(b) when type t; responds to any mechanism y # z? in the first round,
he has the posterior belief 7(-|T;",¢;) over the set T;t = {t; €

Tilu;(y(t),t) > w;(t)} where T;" is a non-empty set, and

8In the case of complete information, it is well-known that a subgame perfect equilibrium
of the two-person bargaining game I'? is stationary.

14



(c) after the first round, the same rules as (a) and (b) are applied to a re-
sponder’s belief where his prior belief is possibly updated according

to a game play in previous rounds.

(E3) Every type t; of j responds optimally to a proposal by player ¢ under
the belief (E2) and the strategy (E1) with the tie-breaking rule that he

accepts it when he is indifferent to a response.

We show that (o, 1) is a desired equilibrium of I'? in the theorem. First,
(E1) implies that o is a stationary strategy profile, and that every player i
has the conditional expected payoff v;(¢) given every ¢ € T' by property (ii) in
Lemma 3.1.

Second, responder j’s belief (E2a) in the first round is consistent with the
strategy o on equilibrium play since proposer ¢ proposes the same mechanism
x;, independent of his type. Any belief of j is consistent with o off equilibrium
play in the first round. Specifically, j’s belief (E2b) is consistent with o. After
the first round, the two players’ prior beliefs are possibly updated according
to a history of game play. Since the consistency of the updating rules (E2a)
and (E2b) holds for any prior belief of the responder, responder’s beliefs (E2c)
are also consistent with o.

Third, we show that (E1) prescribes an optimal proposal for every type
t; of every player i. Suppose that type i deviates from (E1) and proposes
a mechanism y. Without loss of generality, we can assume that there exists
some t; € Ty such that w;(y(t;,t;), (t:,1;)) > wi(ti,t;). Otherwise, type t;
never becomes better off by proposing y, no matter how player j responds to
y. By (E2b), type t; believes that the true type of player i must be in the
set T;" = {t; € Tilui(y(t;,t; ), (t;,t;)) > wi(ti, t;)}. Since the payoff vector
(w;(t:,t7), dv;(t;, 7)) is Pareto efficient in U(¢;,¢;) by (i) in Lemma 3.1,

] IR IR

holds that w;(y(ti, t; ), (t;,t;)) < dv;(t;,t;) for every t; € T;". Thus, type t;
optimally rejects y. The arguments so far show that type ¢; never obtains a

payoff higher than w;(¢) for any possible type t; by proposing y. Thus, it is
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optimal for #; to propose z;. By (E3), (o, 1) prescribes an optimal response
for every player. Since the arguments above do not depend on an initial belief
of proposer 7, it can be applied not only to the first round but also to other
rounds in which the proposer’s belief may be updated by a history of play.
Finally, we can see from Lemma 3.1 that the allocation assigned by the
constructed equilibrium (o, i) to every type profile ¢ € T satisfies the equilib-
rium condition in the case of complete information. Since the convergence to
the ex post Nash bargaining solution in the last part of the theorem can be

proved in the standard manner, its proof is given in Appendix. Q.E.D.

It is well-known that there is a large freedom of players’ belief when they
observe unexpected actions in a sequential equilibrium. In fact, any arbitrary
belief of a responder off equilibrium play can be consistent with the proposer’s
equilibrium strategy in the sense of Kreps and Wilson (1982) in the bargaining
game ['. In the proof of Theorem 3.1, we choose the following belief of a
responder. When he receives an unexpected proposal, he believes that given
his type, a true type of a proposer should be among those who are better
off by doing so, if it is accepted, than in the equilibrium proposal. Since the
equilibrium proposal is Pareto efficient for each type profile, the responder will
be worse-off than in the equilibrium proposal if he accepts such an unexpected
proposal. Thus, all non-equilibrium proposals are rejected under the selected
belief of the responder if the proposer attempts to obtain a payoff higher than
in the equilibrium proposal.

The next example illustrates the result of Theorem 3.1.

Example 3.1. Consider a two-person bargaining game in which two players
have two types, Ty = {t1,t}} for player 1 and T, = {t,,t,} for player 2. The
prior belief of players is given by the uniform distribution on 7" =T} x T5. The
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feasible set U(t) for each type profile ¢ € T is given by

U(tl,tQ) == U(tll,tg) == {(:cl,a:Q) € Ri| 21’1 + T S 1}

U(tll,tQ) = U(tl,tg) = {(:cl,xQ) € Ri| T —|—21‘2 S 1}

The four possible feasible sets are illustrated in Figure 3.1. In Figure 3.1, Uys
denotes the feasible set U(t1, o) where player 1 is of type ¢; and player 2 is of
type to. Other notations of feasible sets can be interpreted similarly.

A story behind the feasible sets is as follows (Harsanyi 1968). Two players
negotiate for a division of a fixed amount of money. One of them may have
to pay half of his gross payoffs to the third party, depending on their type
profile. When the type profile ¢ is either (¢1,%5) or (¢],t), it is player 1 who
pays. When the type profile ¢ is either (},t5) or (¢1,t}), it is player 2 who
pays. No type of a player knows in advance who pays. The disagreement
payoffs are (0,0), independent of players’ types. The ex post (symmetric)
Nash solution zV? of this two-person Bayesian bargaining problem is given by
(11, 10) = (1, 1) = (5, ) and @B (, 1) = 2V (11, 15) = (3, 1),

According to Theorem 3.1, for a sufficiently large , the ex post Nash
solution zV? can be asymptotically attained by a sequential equilibrium of the
bargaining game I’ where two players are selected as a proposer with equal
probability. In the equilibrium, every type of player 1 proposes the mechanism

2f satisfying = (t1,t2) = 2(t],th) = (32%,2) and 2{(t),t2) = 2{(t1,th) =

(;5, g). Every type of player 2 proposes the mechanism z4 where z3(#,,t,) =

2 (th,th) = (§,%52) and z3(t], 1) = 23 (t1,t5) = (3, %2%). When every player is
offered a mechanism y, he believes that a true type of the proposer should be
among those (if any) who are better off in y than in the equilibrium mechanism,
given his type. Owing to the linearity of the Pareto frontier in each feasible set,
the expected equilibrium payoff of every player given a type profile ¢ coincides

with the Nash bargaining solution ¥ (¢).

By definition, the ex post Nash bargaining solution is ex post efficient,
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that is, it is Pareto efficient given every type profile of players. It, however,
is not interim efficient in terms of conditional expected payoffs given every
player’s type. For example, consider a mechanism y in Example 3.1 such that
y(ti,ta) = y(t),ty) = (1,0) and y(t],t2) = y(t1,t5) = (0,1). The mechanism y
assigns the whole payoff to an efficient player who does not need to pay half of
his dividend to the third party. The conditional expected payoff of every type
of every player is § for y, and is 2 for the ex post Nash bargaining solution z*.
This means that y interim-payoff dominates V2. Then, a natural question
arises: why do not two players agree to y? The answer is as follows. If any
type, say t, of player 1 proposes y, then type %, of player 2 believes that a true
type of player 1 must be type t;, knowing that only type ¢; is better off in y
than in V2. Under this updated belief, type t, of player 2 optimally rejects .
By the same reason, type t,, of player 2 optimally rejects y, too. It can be easily
shown that the mechanism y is interim-efficient. So, any cooperative solution
assuming interim-efficiency and interim symmetry selects y in the example.
The non-cooperative analysis in this section does not support this selection.
In the following sections, we consider under what conditions a stationary
equilibrium of the bargaining game I' can uniquely implement the ex post
Nash bargaining solution in the limit as the discount factor for future payoffs
goes to one. To answer this question, we examine the three properties of the

stationary equilibrium constructed in the proof of Theorem 3.1:

1. (no delay of agreements) an agreement is immediately made with prob-

ability one,

2. (inscrutability) every type of a proposer proposes the same mechanism

on the equilibrium play, and

3. (information revealing) a proposer may update his prior belief based on
revealed information when he receives an unexpected proposal (off the

equilibrium play).
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4 No-delay Agreements

The timing of agreements has been a major topic in the literature of sequen-
tial bargaining. In the case of complete information, Rubinstein (1982) shows
that an agreement is reached in the initial round, provided that future payoffs
are discounted. On the other hand, a large volume of literature on sequen-
tial bargaining with incomplete information shows that delay of agreements
may happen in equilibrium. Rubinstein (1985) further considers a sequential
bargaining game with one-sided incomplete information where one player has
two types, strong and weak, about time preference and the opponent does
not know his type. Rubinstein shows that delay may occur with a positive
probability. Delay is caused by a conflict between different types of the in-
formed player. A weak type may want to pretend to be a strong type. To gain
an advantage over the weak type, a strong type may want to reveal his type
by making an unacceptable offer. Equilibrium delay has been investigated in
many other bargaining models with incomplete information (Fudenberg and
Tirole 1983; Chatterjee and Samuelson 1987; Grossman and Perry 1986b, for
example). In fact, most previous studies are motivated to explain delay in
reaching agreements among rational agents.

An opposite approach is taken here. We are concerned with under what
conditions an agreement can be made immediately with probability one in
negotiations with incomplete information. To consider this problem, it is im-
portant to notice a difference between bargaining over allocations studied in
the literature and that over mechanisms in this paper. In the mechanism bar-
gaining, players negotiate over allocations contingent on every type profile of
players. In other words, players can negotiate on an allocation “type by type,”
and thus the competition among different types of the same player does not
have a direct effect on an agreement. It, however, has an indirect effect on an
agreement since the opponent is uncertain about a true type of the player.

Due to an informational linkage among different types, it is not simple to
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answer the question whether an agreement is made immediately in mechanism
bargaining. A proposal may affect a belief of a responder about a type of
the opponent, and the responder may have a belief such that rejection is his
optimal response. In a simple case of ultimatum bargaining (corresponding to
the case of § = 0), we show that a proposal may be rejected with a positive
probability in a sequential equilibrium. Note that an agreement is reached
in the case of complete information as long as there is a mutually beneficial

allocation for players.

Example 4.1. Consider a two-person bargaining game in which two players
have two types, T1 = {t1,t}} for player 1 and T, = {t,,t,} for player 2. The
prior belief of players is the uniform distribution on 7} x T5. Player 1 is called
player 1(¢;) if he is of type t;. Similar notations are used for other types
of players. Consider two mechanisms = and y in Table 4.1. For simplicity,
it is assumed that other mechanisms are not feasible. Note that the two
mechanisms x and y assign the same payoffs for both players when player
2 is of type t,,. We consider the ultimatum protocol whereby player 1 proposes
either x or y and player 2 responds to this. If player 2 rejects the proposal,
then the game ends with the disagreement payoffs (0, 0).

We construct a sequential equilibrium where a proposal may be rejected.
Player 1 proposes z, independent of his type. Player 2(¢) rejects x and player
2(t,) accepts it. If player 1 proposes y, then player 2 responds in the opposite
way, that is, player 2(¢5) accepts y and player 2(t},) rejects it. Player 2’s beliefs
are given as follows. Since proposal x gives player 2 no additional information
about player 1, all types of player 2 receiving = believe that player 1 is of
either type ¢; or type t] with equal probability. Given proposal y, player 2(t5)
has an arbitrary belief, and player 2(¢}) believes that player 1 must be of type
1. Those beliefs of player 2 off equilibrium play are consistent with player
I’s strategy in the sense of Kreps and Wilson (1982). It can be easily seen

that player 2’s strategy prescribes his optimal responses for all his types under
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the belief specified above. Given player 2’s responses, player 1(¢;) receives
expected payoff 3 for x and 2 for y. Similarly, player 1(¢}) receives expected
payoff 3/2 for x and 1 for y. Thus, x is the optimal proposal for every type of
player 1.

t t ty t
tl 1,-2 6,6 t| o 4,4 6,6
1,1 3,—1 ol 2,2 3,—1
x y

Table 4.1 Two mechanisms in ultimatum bargaining

In equilibrium, player 1’s proposal z is rejected by player 2(¢5). One may
wonder why any type of player 1 does not propose y which makes all types of
all players weakly better off than in x. The reason is that proposing y affects
player 2(¢,)’s belief and, as a result, he rejects y. Thus, each type of player 1
is worse off by proposing y than by proposing .

There exists another sequential equilibrium where an agreement is made
with probability one. In equilibrium, player 1 proposes mechanism ¥, indepen-
dent of his type. All types of player 2 accept it. Player 2(¢5) rejects x, and
player 2(t,) accepts it. The beliefs of player 2 are as follows. Given proposal
y, all types of player 2 believe that player 1 may be of either type t; or type ¢y
with equal probability. Given proposal x, they believe that player 1 is of type
t;. It is easy to see that the strategy is a sequential equilibrium under these
beliefs.

Two mechanisms x and y in Table 4.1 are identical from the viewpoint of
player 2(¢}): he knows that the two mechanisms yield the same outcome. In
the second equilibrium with an agreement, player 2(t}) responds to x and y in
the same manner, that is, acceptance. On the contrary, he responds to them

differently in the first equilibrium where an agreement may not be reached with
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a positive probability. In what follows, we prove that there exists no delay of
agreements in a stationary equilibrium of the bargaining game I if every type
of a player responds identically to two proposals which are identical, given his
type.

For a stationary equilibrium (o, 1) of T, let M (o) be the set of all mecha-
nisms proposed on equilibrium plays of . We consider the following property

of responders’ behavior.

Definition 4.1. A stationary equilibrium (o, p) of T' is said to satisfy inde-
pendence of irrelevant types (IIT) if, for every i = 1,2, ¢; € T;, x € M(0), and
yeM,

x=yon T(t;) implies o;(t;, z) = o;(t;,y),

where 0;(t;, x) and o;(t;, y) are the responses of player i to x and y, respectively,

prescribed by o; when his type is ;.

The IIT condition means that every type of a player responds to an equilib-
rium proposal and a non-equilibrium proposal in the same way if they prescribe
the same outcomes, given his type, in every contingency for the other player’s
type. In other words, every type of a player makes the same responses to two
mechanisms if he knows that they are identical. Every player type’s response
to a proposal is independent of the allocations it assigns to his other (irrele-

vant) types.

Proposition 4.1. If a stationary equilibrium (o, p) of ' satisfies IIT, then

every player’s proposal is accepted in the initial round with probability one.

Proof. Given a type profile ¢ € T for the players, let v(t) = (vi(t),v2(t)) be
their conditional expected discounted payoffs for o evaluated at the start of
each round before the random selection of a proposer. Since o is stationary,

v(t) is independent of past actions. It holds that v(t) € U(t) since U(t) is a
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closed and convex set by Assumption 2.1.(1). Since the disagreement payoff
u(d*,t) = (0,0) is an interior point of U(t) by Assumption 2.1.(2), it holds
that dv(t) is also an interior point of the convex set U(t).

By way of contradiction, suppose that there exists some player 7, say i = 1,
whose equilibrium proposal = € M (o) is rejected with positive probability in
the initial round in ¢ when his type is some t; € T}. Then, the type set T, of
player 2 is partitioned into two subsets, T3 and 73, such that x is accepted on
{ti} x Ty and rejected on {t;} x Ty in 0. Ty is non-empty by supposition. For
type ¢ of player 1, his equilibrium proposal z is rejected by each type t, € T
of player 2, and the game goes to the next round. Thereafter, the continuation
payoffs for the two players with type profile t € T} x T, are given by duv(t)
since o is stationary. Since dv(t) is an interior point of U(t) for all ¢t € T, there
exists a mechanism y € M such that

(i) u;(y(t),t) > dv;(t) for every j = 1,2 and every t € Ty x Ty,

(ii) y(t) = z(t) for every t € Ty x Ty

Suppose that player 1 employs strategy o’ (# o) to propose y when he is
of type t;. For every ty € Ty, it holds by (i) that for every ¢t = (t1,t2) € T (t2),

us(y(t),t) > dva(t).

Thus, every type to € T, of player 2 optimally accepts y, independent of his
belief. For every t, € Ty, it holds by (ii) that for every s; € T,

y(s1,t2) = z(s1,12).

By IIT, it holds that oy(ts,2) = 03(te,y). Since ty € Ty, 0o(ta, x) = accept.
Thus, every type to € TY of player 2 accepts y in o.

It has been shown that all types of player 2 accept proposal y by type ¢}
of player 1. Thus, the conditional expected payoff for player 1 given ¢} for
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(01, 09) satisfies

Euy(o},02[t}) = Y wltalt)ua(y(t), 1) + Y wltalt))ua(y(t), t)

ta€Ty Lo €Ty
> ) w(talt)ovi () + Y wltalt])ua (x(t), 1) (3)
t2€Ty ta TS

= EU1 (0'1, 0'2|t>{)

where ¢ = (¢},t3). This contradicts the fact that o is a sequential equilibrium.

Q.E.D.

The roles of stationarity and IIT in the proposition can be explained as
follows. If negotiations fail between two players with a type profile ¢t € T', then
each player i(= 1,2) expects to receive the continuation payoff dv;(t) where
v; () is player 4’s conditional expected payoff given ¢, evaluated at the beginning
of each round. Since an equilibrium is stationary, v;(¢) is independent of a
history of game play. Suppose that some type ¢} of player 7, say : = 1, makes
an unacceptable proposal x in the initial round. Then, player 2 are divided
into two types, those who accept x (7§ in the proof) and those who reject (T4
in the proof). Since the continuation payoff vector duv(t) is in the interior of
the feasible set U(t) for all t € T', type ¢} of player 1 can construct and propose
a new mechanism y such that (i) players 1 and 2 are strictly better off in y
than in dv(¢) for any type profile ¢ in Ty x Ty, and (ii) x and y are identical
on Ty x T¢. Property (i) implies that all rejection types Ty of player 2 accept
y, regardless of their beliefs about player 1’s type. Note that rejection types
in T3 do not know whether or not non-equilibrium proposal y is made by type
t; of player 1. Property (ii) means that all acceptance types in Ty know that
x and y prescribe the same outcomes. Thus, IIT implies that they respond to
x and y in the same manner, that is, they accept y. Since all types of player
2 accept y, type t] of player 1 is better off if he proposes the non-equilibrium

mechanism y. This is a contradiction.
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To conclude the section, let us discuss the relevance of the IIT condi-
tion. The condition assumes that every type of a responder responds to a
non-equilibrium proposal in the same way as to an equilibrium one if both
proposals are identical, given his type. IIT trivially holds if the responder has
the same beliefs about a true type of the opponent when he receives either of
the two proposals. We, however, remark that IIT does not necessarily assume
this. Specifically, consider again the sequential equilibrium constructed in The-
orem 3.1 that implements asymptotically the ex post Nash bargaining solution.
In equilibrium, every type of a responder is offered exactly his continuation
payoff in every contingency of players’ types. This implies that the responder
optimally accepts a non-equilibrium proposal in the IIT condition under any
belief about the opponent. Thus, IIT is satisfied without any restriction on
a responder’s belief in the case of the ex post Nash bargaining solution. In a
general case, II'T may restrict a responder’s belief off the equilibrium so that
the response assumed by it can be optimal to him. For example, the second
equilibrium in Example 4.1 satisfies IIT if type t, of player 2 believes that
player 1 may be of type ¢; with at least probability 1/7, being proposed mech-
anism x. Under the prior belief, he anticipates so with probability 1/2. Note
that IIT does not violate the notion of a sequential equilibrium since it allows

an arbitrary belief of the responder off the equilibrium play in I'.

5 Characterization

In this section, we first show that there is no loss of generality if we restrict our
analysis to a pooling equilibrium where all types of proposer choose the same
mechanisms. In such an equilibrium, the choice of a mechanism does not reveal
any private information of the proposer. Myerson (1983) calls this result the
principle of inscrutability and justifies it in his ultimatum bargaining model
of an informed principal. The following lemma shows that the principle also

holds true in the sequential bargaining game TI'.
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Lemma 5.1. For any stationary equilibrium (o, ) of T' satisfying IIT, there
exists some stationary equilibrium (o', /) of T' that satisfies IIT and the fol-

lowing properties:

(i) (o,p) and (o', ') are outcome-equivalent; that is, both equilibria generate

the same outcomes for every type profile t € T

(ii) In (o', y'), all types of every player i = 1,2 propose the same mechanism

x; € M. The other player accepts it, independent of his type.

The proof of the lemma is given in Appendix. The result was first proved
by Myerson (1983) in a problem of mechanism design by an informed principal.
Although we assume IIT for the sake of our analysis, the lemma is a general
principle which holds without IIT in a mechanism bargaining game (see Okada
2012). The basic idea of Myerson can be applied to a general situation.

A key observation to prove Lemma 5.1 is that any equilibrium generates
a single mechanism that assigns the same outcome as in equilibrium to every
type profile of players. When different types of the proposer propose different
mechanisms, such a single mechanism can be defined by “combining” differ-
ent mechanisms over the proposer’s type set. Then, we can construct a new
equilibrium in which all types of the proposer propose this outcome-equivalent
mechanism. All types of the responder accept it under the posterior beliefs,
knowing their own types. Off the equilibrium play, the new equilibrium coin-
cides with the original one. If any private information regarding the proposer
is revealed in the original equilibrium, then it is optimal for the responder to
accept the proposal, given his type and each of the revealed information. Since
the acceptance is optimal for the responder given every revealed information
in the original equilibrium, it is also optimal for him to accept the proposal in
the new equilibrium where no information is revealed. Given the responder’s
acceptance, each type of the proposer is indifferent to which he proposes, the

original mechanism or the constructed one.
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In addition to the inscrutability principle, we need a refinement of a sequen-
tial equilibrium for our characterization result. It is well-known that many se-
quential bargaining games have a large set of sequential equilibrium outcomes,
caused by a freedom of players’ beliefs off the equilibrium play. Specifically,
a responder’s belief about a proposer can be arbitrary in a sequential equilib-
rium when he is offered an unexpected proposal. Some of responders’ beliefs,
however, are unreasonable in the situation that the proposer has an incentive
to screen himself. To eliminate unreasonable beliefs off equilibrium play, we
introduce a self-selection condition which has been considered in the literature
of refinements of sequential equilibrium (Grossman and Perry 1986a and 1986h
and Rubinstein 1985 among others).

To illustrate the idea of our refinement, let us consider again the sequen-
tial equilibrium in Example 3.1 that implements the ex post Nash bargaining
solution. In equilibrium, every type of player 1 proposes the mechanism
satisfying 28 (t1,12) = 23(t1,#4) = (352, %) and 28(¢, 1) = al(ts, 1) = (352, 9).
Suppose that type t; of player 1 proposes a non-equilibrium mechanism y such
that y(t1,t2) = y(¢),t,) = (1,0) and y(t],t2) = y(t1,t,) = (0,1). Although
type to of player 2 does not know a true type of player 1, either #; or ¢}, he
knows that only type t; is better off in y, if it is accepted, than in the equi-
librium proposal z{. With this knowledge, type t; of player 2 infers credibly
that a true type of player 1 must be ¢y, not ¢]. Our refinement requires that

type ty of player 2 should have such a belief, given the proposal y.

We now formalize the self selection property of a sequential equilibrium.

Definition 5.1. Let (o, 1) be a stationary equilibrium of T satisfying IIT in
which every player i = 1,2 proposes a mechanism z; (independent of his type).
An equilibrium (o, i) is said to satisfy self-selection if, when every type t; € T;

of responder j(# i) receives a proposal y; from player i satisfying that the set

T;" = {t; € Tilui(yi(t), ) > ui(w;(t),t) for t = (t;,t;)}
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is non-empty, the belief system p assigns to type ¢; of responder j a posterior
belief of which support is equal to 7;".9 If T;" is an empty set, then no restric-

tion on the belief system is imposed.

The property of self-selection can be explained as follows. Suppose that
a responder receives an unexpected proposal off equilibrium play. It assumes
that the responder believes that a true type of the proposer should be among
those (T;") who are better off by the proposal, if it is accepted, than in the
equilibrium proposal, given his type. In other words, the proposer credibly
reveals his type in 7;" by making a non-equilibrium proposal where all types
of T:" and only themselves have incentives to doing so. Note that our self-
selection property is weak in the sense that it does not restrict a responder’s
belief to his posterior belief 7(-|T;",¢;) given (T;",¢;), allowing an arbitrary
belief with support 7.

The self-selection belief gives us the following refinement test of a sequen-
tial equilibrium. Suppose that some type of a proposer deviates from the
equilibrium, and that he makes a non-equilibrium proposal. If all types of
the responder accept it under their self-selection beliefs and thus the deviating
type of the proposer becomes better off, then the sequential equilibrium in
question is considered to be destabilized by the deviation. We eliminate such
an unreasonable equilibrium.

A refinement of a sequential equilibrium based on the idea of self-selection is
first proposed by Grossman and Perry (1986a) in the context of the two-player
signaling games. They name an equilibrium satisfying self-selection a per-
fect sequential equilibrium. Grossman and Perry show that the self-selection
property is stronger than the criterion of Cho and Kreps (1987) for signaling

games. The self-selection is also related to “neologism-proofness” of Farrell

(1993) for cheap-talk games. While both refinements of a sequential equilib-

9The support of a probability distribution F on the finite set T} is the set of all elements
t; € T; with F(tl) > 0.
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rium impose some restrictions of receivers’ beliefs, a difference between them
is that the criterion of Farrell essentially allows a sender to choose an updat-
ing rule which is in his best interest, assuming the mutual understanding of
meaning of language. See Grossman and Perry (1986a) on this point. Ru-
binstein (1985) and Grossman and Perry (1986b) show that the self-selection
refinement is so powerful that it selects a unique sequential equilibrium in
two-person alternating-offers bargaining games with one-sided incomplete in-
formation. In Okada (2012), we present a refinement of Wilson’s (1978) coarse
core, called the signaling core, of an n-person coalitional game with incomplete
information based on a criterion of self-selection.

The next is a key lemma for our characterization result.

Lemma 5.2. Suppose that (o, ) is a stationary equilibrium of T' satisfying
ITT and self-selection. For every i = 1,2, let x; be the equilibrium mechanism
proposed by every type of player i, and let v;(¢) be the conditional expected
payoff Eu,;(c|t) of player i for o at the beginning of each round given ¢. Then,
for every i,7 = 1,2 (i # j) and every t € T, the following properties hold:

(i) w;(z(t),t) = 0v,(t), and

(ii) w(t) = (ui(z(t), 1), uj(x;(t),t)) is Pareto efficient in U(t).

Proof. (i) It follows from the inscrutability principle (Lemma 5.1) that player
i proposes x; in (o, u), independent of his type. Thus, responder j never
receives additional information from z;, and so he does not update the prior
belief 7. Since every type t; of player j accepts x; by Proposition 4.1, it must
hold that

S w(t)uslwi(t), 1) = 3wl (e). (4

t; €T; t; €T;
It suffices us to show that w;(z;(t),t) < dv;(t) for every t = (t;,t;). If this
is the case, then we have Y, . m(t)u;(zi(t),t) < >, o 7(t)0v;(t). Since the

opposite inequality also holds true by (4), we can conclude that u;(z;(t),t) =
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dv;(t) for every ¢. That is, (i) holds.

By way of contradiction, suppose that u;(x;(s), s) > dv;(s) for some s € T
If the payoff vector u(s) = (u;(z;(s), s), uj(xi(s), s)) is on the Pareto frontier
of U(s), then Assumption 2.1.(1) guarantees that there exists an action a € A
such that u;(a, s) > u;(x;(s), s) and u;(z;(s), s) > uj(a, s) > dv;(s) by making
a slight “payoff transfer” between ¢ and j at u(s) along the Pareto frontier
of U(s). If u(s) is not on the Pareto frontier of U(s), then it is clear that
there exists an action a € A such that u;(a,s) > w;i(zi(s),s) and u;(a,s) >
u;(z;(s), s) > 0v;(s). Consider the mechanism y; that assigns the action a to

s and coincides with x; for all other type profiles. Then y; satisfies

ui(yi(s),s) > ui(wi(s), s) (5)
ui(yi(t),t) = wi(w;(t),t) for every t # s, (6)
ui(yi(s),s) > 6v;(s). (7)

Since (o, ) satisfies self-selection, it follows from (5) and (6) that type s;
of player j believes that the true type of player ¢ must be s;, if type s; of
player i proposes y;. By (7), type s; optimally accepts y;. For all other types
of j, y; prescribes the same actions as x;. Thus, II'T requires that they should
respond to y; in the same way as to z;. That is, they accept the proposal.
Since all types of j accept y;, (5) implies that type s; of player i is better off by
proposing y; in (o, 1) than z;. This is a contradiction that (o, ;1) is a sequential
equilibrium of T".

(ii) By way of contradiction, suppose that u(s) is not Pareto efficient in U(s)
for some s € T. Then there exists some v’ = (uj,u}) € U(s) such that
u; > ui(wi(s), s) and v} > uj(wi(s),s) = dvj(s). The last equality comes from
(i). Similarly to the proof of (i), consider the mechanism y; that assigns the
action yielding payoffs v’ to s and coincides with z; for all other type profiles.
Then, y; satisfies u;(yi(s),s) = uj > dv;(s) and (5) and (6). By the same

arguments as in (i), if type s; of player i proposes y;, then all types of player j
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accept it, and thus type s; is better off than in (o, ). This is a contradiction

that (o, i) is a sequential equilibrium of I'. Q.E.D.

The lemma shows that a stationary equilibrium with II'T and self-selection
in ' necessarily satisfies the equilibrium condition in the case of complete in-
formation. Specifically, for every type profile ¢, proposer i offers responder j
exactly his continuation payoff dv;(¢), being equal to the discounted value of
his conditional expected payoff v;(t) given ¢. The logic for this result can be ex-
plained as follows. By the no-delay result (Proposition 4.1) and the inscrutabil-
ity principle (Lemma 5.1), it holds that every type of proposer i proposes the
same mechanism and every type of responder j accepts it. This implies that
responder j’s conditional expected payoff for the equilibrium mechanism given
his every type t; is greater than or equal to the conditional expected value
of dv;(t) given t;. A responder receives no additional information about the
type of a proposer. Then, there are two possibilities: (a) the equilibrium offer
to responder j is equal to his continuation payoff dv;(t) for every type profile
t, and (b) the equilibrium offer to j is strictly greater than dv;(s) for some
type profile s. Suppose that case (b) happens. Then, by decreasing the offer
to j slightly at s, the proposer can construct a new mechanism whereby he
is better off than his equilibrium payoff at s and the responder is still better
than dv;(s), while the new mechanism coincides with the equilibrium one for
all other type profiles. If type s; of proposer ¢ makes this new proposal, then
type s; of responder j believes that proposer ¢ must be of type s;, according
to the self-selection property. As a result, responder type s; accepts the new
proposal, since he is better off by doing so than dv;(s). Moreover, all other
responder types also accept it by II'T since both the new and the equilibrium
mechanisms assign the same outcomes to them. Since all possible responder
types accept the new proposal, type s; of proposer i is actually better off by
proposing it. This is a contradiction. By the same logic, it can be shown that

the equilibrium mechanism assigns a Pareto efficient outcome to every type
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profile.
The following theorem characterizes a stationary equilibrium satisfying ITT

and self-selection in I'.

Theorem 5.1. Every player ¢ = 1, 2 proposes a mechanism z;, independent of
his type, in a stationary equilibrium (o, ) of T'? satisfying IIT and self-selection

if and only if z; and =z, satisfy the following properties for every ¢ € T for
J# i

(1) wi(t) = ui(xi(t), 1), 0v;(t) = us(z;(?), 1)

(i) v;(t) = piw;(t) + (1 — p;)ov;(t),

(i) H*(wi(t),0v;(t)) = 0,

where p; is the probability that player i is selected as a proposer, and H! is
the Pareto frontier function of U(¢). The equilibrium mechanism z; proposed

NB

by player i converges to the ex post Nash bargaining solution ™" as d goes

to one.

Proof. The “only if” part follows from Lemma 5.2. To prove the “if” part,
it suffices to show that the stationary equilibrium (o, 1) constructed in the
proof of Theorem 3.1 satisfies IIT and self-selection. In o, only x; (i = 1,2)
are proposed, that is, M (o) = {x1,2,}. If any type t; of player j is offered
a mechanism y satisfying y = =; on T'(¢;), then he receives payoff dv;(t) no
matter how he responds, for every possible type t;. Thus, type ¢; is indifferent
to whether he should accept or reject y, independent of his belief about type
t;. According to (E3) in the proof of Theorem 3.1, type t; accepts y by the tie-
breaking rule in o. This means that (o, 1) satisfies IIT. The belief ;1 prescribed
by (E2b) and (E2c) clearly satisfies self-selection. The convergence result is
proved by Theorem 3.1 (see the proof in Appendix). Q.E.D.

We summarize the characterization result. When two players are suffi-
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ciently patient, they agree to the ex post Nash bargaining solution in the first
round in the bargaining game I', regardless of who proposes, if and only if their
behavior is described by a stationary sequential equilibrium satisfying II'T and

self-selection.

6 Discussion

The first result (Theorem 3.1) shows the existence of a sequential equilibrium
in a sequential bargaining game of mechanism selection in which the ex post
Nash bargaining solution is immediately agreed, independent of players’ types,
in the limit as the discount factor (or the continuation probability) goes to one.
Equilibrium strategies are stationary. Since the ex post Nash bargaining so-
lution is not interim efficient in general, the result implies that the axiom of
interim efficiency assumed in the cooperative solutions with incomplete infor-
mation introduced by Harsanyi and Selten (1972) and Myerson (1984) is not
always supported in a non-cooperative approach to the Bayesian bargaining
problem. The sequential equilibrium constructed in the proof involves a re-
sponder’s punishment (rejection) by his posterior belief based on self-selection
when a proposer chooses a non-equilibrium mechanism. If such an unexpected
proposal is made, then every type of the responder rationally infers that a
true type of the proposer must be one of those who become better off by the
proposal, if it is accepted, than in the equilibrium proposal, given his type.
Since the ex post Nash bargaining solution is Pareto efficient for every type
profile of players, the responder would be worse off against all such types of
the proposer, and thus he optimally rejects the non-equilibrium mechanism.
The characterization result (Theorem 5.1) strengthens the implication of
the paper. It shows that the ex post Nash bargaining solution is an asymp-
totically unique outcome of the Bayesian bargaining problem if and only if
bargaining behavior of players is described by a stationary sequential equilib-

rium satisfying II'T and self-selection. To obtain the characterization result,
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we have first proved the no-delay result of agreements. II'T plays a critical role
in the proof. It restricts the behavior of every type of a responder so that his
response to a proposal is independent of the allocations it assigns to his all
other types. While II'T implicitly imposes some restrictions on the responder’s
belief off equilibrium play in a general case, it does not so for the ex post
Nash bargaining solution. IIT holds true for any belief in the ex post Nash
bargaining solution. Given the no-delay result, the refinement of a sequential
equilibrium by self-selection enables us to obtain the equilibrium condition in
the case of complete information that a responder is exactly offered his contin-
uation payoff for every type profile of players. If there exists any type profile
for which the responder receives strictly higher payoff than his continuation
payoff, then the proposer makes a new mechanism where his type is revealed to
the responder by the self-selection and he is better off than in the equilibrium,
while the responder remains to be better off than his continuation payoff. The
acceptance of the new mechanism is guaranteed by the construction of it and
IIT.

The result of the paper has the following implication to economic analysis
of insurance contracts. Insurance benefit is impossible if it is contingent solely
on private information possessed by players. Even if one player proposes an
insurance contract which makes all players better off than the ex post Nash
solution (in terms of conditional expected payoffs given their own types) at
the interim stage, then some private information about the proposer may be
revealed by the proposal itself, and the responder optimally rejects it under
the revealed information. Insurance contract should be designed so that it is
contingent on common risks to all players.

Finally, we discuss some extensions of our analysis. The results of the
paper can be extended without much difficulty to the case of n(> 3) players
if no coalition of players is allowed. Although we use a particular bargaining
protocol with random proposers, the results hold for the alternating-offers

model. The analysis of the paper is restricted to a stationary equilibrium.
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While a stationary equilibrium can be served as a useful reference point for our
analysis of mechanism bargaining with incomplete information, it is interesting
to analyze a non-stationary equilibrium of the bargaining model.

The assumption of verifiable types is certainly a limitation of our analysis.
When players’ types are unverifiable, the bargaining model should be expanded
so that an agreement of a contract is followed by a communication game (in
the case of a direct mechanism) where all players report their types to an
arbitrator who implements the contract. The whole process of negotiations and
implementation should be analyzed as a non-cooperative game. The analysis
of this paper suggests that II'T and the self-selection refinement would be useful
to analyze such an extended game, too. In particular, the Bayesian incentive
compatibility condition may be modified so that it could take into account
the possibility of information revealing in negotiations. The extension of the
analysis to the case of unverifiable types will be an interesting work for future
research. If such an extension is successfully done, two branches in game
theory, non-cooperative bargaining theory and mechanism design theory, will

become closer.

7 Conclusion

We have presented a non-cooperative two-person sequential bargaining game
with incomplete information in which players negotiate for mechanisms with
verifiable types. We have proved that there exists a stationary sequential equi-
librium of the bargaining game in which the ex post Nash bargaining solution
with no delay is asymptotically implemented with probability one. We have
further proved that the ex post Nash bargaining solution is an asymptotically
unique outcome of a stationary sequential equilibrium satisfying II'T and self-
selection. Information revealing in negotiations prevents the interim efficiency
of an agreement. The paper extends the non-cooperative bargaining theory

with complete information to a general case of incomplete information.
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Appendix

For simplicity of exposition, we prove the last part of Theorem 3.1 in the
case that the Pareto frontier function H! is differentiable. In the bargaining
theory with complete information, it is well-known that the convergence holds

true in a non-differentiable case, too. Our proof is based on Okada (2010).

Proof of the last part in Theorem 3.1. For every i = 1,2 and t € T,
let v9(t) and w{(t) satisfy (i) and (ii) in Lemma 3.1. Then, it holds for every
t €T that

H'(wf(t),6v5(t)) =0, and H'(5v}(t), wy(t)) = 0, (8)

where H' is the Pareto frontier function of the feasible set U(t). Let 2{(t) =

(wl(t),0v3(t)) and 25(t) = (002 (t), ws(t)). 22(t) is the payoff vector that the
5

mechanism z? assigns to ¢t € T.. Then, from (8) we have

H'((1)) — H(5(t)) = 0.

By Taylor’s theorem, there exists some A\, 0 < A < 1, such that

k() = 5020 - S0k + (1= N4(0) +
5ude) — (0] S (Ae40) + (1= Nefe) =0 )

By (ii) in Lemma 3.1, it holds for every i = 1,2 that

(1= 8)f()

w] (t) — 60} (t) = (10)

Di
It follows from (9) and (10) that
vi(t) OH' .\ s Va(t) OH' g
o an MM+ (= N2() = == 50 ) + (1= )5 (0). (1)
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Since {v°(t) = (v2(t),v3(t))} is a sequence in the compact set U(t) N R, it
has some converging subsequence as 0 goes to one. Let v*(¢) be any limit of a

subsequence of {v°(¢)}. It follows from (10) that

T T 20 (1) — Ty #0 (4) — 0¥
(1551’{?) (1) _(lglg}zl(t) —(1551}2 (t) = v*(1).

Thus, by taking 6 — 1 in (8) and (11), we obtain

vi(t) OH vy(t) OH

H(v*(t)) =0 and . G—xl(v*(t)) = Dy 6—1;2(U*(t))

Under Assumption 2.1, these conditions show that the limit v*(¢) is the Nash
bargaining solution with weights p = (p1, p2) for the feasible set U(t). Thus,
the sequence {2} of mechanisms proposed by every player i = 1,2 converges

to the ex post Nash bargaining solution with p = (p;,p2) as § goes to one.

Q.E.D.

Proof of Lemma 5.1. By Proposition 3.1, proposals of all types of every
player are accepted in the initial round in (o, p). If the equilibrium (o, 1) sat-
isfies property (ii) in the theorem, then the proof is complete. Suppose that
this is not the case. Then for some player i, say ¢ = 1, different types pro-
pose different mechanisms. Specifically, assume that there exist some partition
(T!,---,T™) of T and different mechanisms 1, - - -,z such that all types of
T? propose x for each j(=1,---,m).

We construct a mechanism x; € M such that for every t = (t1,t) € T,
zi(t) =2 (t) if t, e TV,

By construction, z} is equal to the mechanism generated by (o, ). For player
2, we construct a mechanism 27 in the same way as z7.

We define (o', i') according to the following rules:

(E1) If player 1 becomes a proposer, then he proposes z} independent of his
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type.

(E2) Player 2 accepts proposal 27, independent of his type. Each type 5
for player 2 has the posterior belief 7(¢;|t2) about the type of player 1,

receiving proposal z7.

(E3) If player 2 rejects a7} (off-play of '), then play is restarted according to

(E1) or (E4) in the next round, depending on who becomes a proposer.

(E4) If player 2 becomes a proposer, then he proposes x4 independent of his
type. The response and belief of player 1 receiving x5 are defined in the

same way as for (E2). The same rule as in (E3) is applied.

(E5) Except for the rule above, let 0 = ¢ and u = /.

Clearly, (o, 1) and (o, i) are outcome-equivalent, and (o', /') is stationary and
satisfies IIT. Let v(t) = (vi(t), v2(t)) denote the conditional expected payoffs
for players given a type profile ¢ for both ¢ and o’

We show that every type ty for player 2 optimally accepts =} in (o, p'). If
responder 2 accepts proposal z7 at 5, then he receives the conditional expected

payoff

D w(tilt)ua(@i(t),t) = Z 7 (ty |t )us (2% (2), 1), (12)

teT (t2) k=1t €T,

where t = (t,t3).
Since the type partition for player 1, (T}, .-+ ,T™), is revealed on the play
of (o, i), the sequential rationality of (o, ) means that for every k = 1,--- ,m,

> wtlTE )ua(ab(t),1) > Y w(ts|TF, 12)d0a(t), (13)

t €TF t€TF

where 7(t,|TF, t5) = 7(t1,t2)/ >y ert T(th, 2). From (12) and (13) it is evident
that

t1€Th t1€T1

39



Therefore, it is optimal for every type o for player 2 to accept zj.

Since every type of player 1 in each T} is indifferent to whether he proposes
x* or ¥ (in o), the sequential rationality of o guarantees that z7 is the optimal
proposal for him in ¢’. The same argument as above holds true when player 2
is selected as a proposer. The sequential rationality of (o', ') at every other

information set is trivially satisfied since 0 = ¢’ and p = i there according to

(E5). Thus, (o', 1) is a sequential equilibrium of T'. Q.E.D.
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