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Abstract

We present a formulation of the hybridized DGFEM with lifting operator
for the plane elasticity problem. To validate the formulation, we establish
an inequality of the Korn type by following the method of proof due to
Brenner [Math. Comp., 73 (2004), 1067–1087]. Using the inequality, we
can demonstrate the well-posedness of a discrete problem arising in the
formulation, and derive a priori error estimates for solutions of the discrete
problem.

1. Introduction
Discontinuous Galerkin Finite Element Methods (DGFEMs) have been applied to var-
ious problems arising in scientific and industrial fields. There are many kinds of formu-
lations in the DGFEM [2, 5, 7, 10, 12, 13]. We present a formulation of the hybridized
DGFEM for the plane elasticity problem. This formulation is obtained by adding an
interior penalty term using a lifting operator, which is called the lifting term, to a
formulation proposed by Kikuchi–Ishii–Oikawa [10]. To validate our formulation, we
establish an inequality of the Korn type. To do so, we follow the method of proof de-
vised by Brenner [4], who proved Korn’s inequality for piecewise H1 vector functions.
In our proof, we need to take account of the lifting term and the numerical flux which
is contained in our formulation as an unknown variable. To estimate the lifting term,
we have essentially used an estimation for the lifting operator (Lemma 1) derived by
Kikuchi [9]. Using the inequality of the Korn type, we can show that a discrete prob-
lem arising in our formulation is well-posed. Furthermore we can derive a priori error
estimates for solutions of the discrete problem by a standard method.

The formulation of Kikuchi–Ishii–Oikawa [10], where the lifting term is not em-
ployed, is also applied to the Poisson equation by Oikawa–Kikuchi [13]. When we
use this formulation in practical computations, we need to carefully choose an interior
penalty parameter to get appropriate numerical solutions. To overcome this shortcom-
ing, Oikawa [12] introduced the lifting term in the formulation for the Poisson equation.
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His work inspires us to consider the formulation using the lifting term for the plane
elasticity problem. Thanks to the lifting term, discrete problems in the formulation
equipped with the lifting term is well-posed for an arbitrary positive interior penalty
parameter. This suggests that the lifting term liberates us from the inconvenience of
properly choosing the interior penalty parameter in practical computations.

This paper is organized as follows. In Section 2, we introduce the plane stress
problem and formulate its weak formulation. In Section 3, we present our formulation
of the hybridized DGFEM. In Section 4, we prove the inequality of the Korn type. In
Section 5, using this inequality, we establish the well-posedness of the discrete problem.
In Section 6, we derive the a priori error estimates. In Appendix A, we introduce the
formulation due to Kikuchi–Ishii–Oikawa [10], and moreover we show that a discrete
problem in their formulation is well-posed if the interior penalty parameter is large
sufficiently.

We close this section with the introduction of several notations. For every open
set Ω ⊂ R

2, we can define the Hilbetian Sobolev spaces L2(Ω) and Hκ(Ω) (κ > 0),
where fractional cases (κ /∈ N) are included [1, 11, 8, 5]. The inner product of L2(Ω)j

(j ∈ N) is designated by (·, ·)Ω, with the associated norm done by ‖ · ‖Ω. Furthermore,
the norms and the standard semi-norm of Hκ(Ω) are denoted by ‖ · ‖κ,Ω and | · |κ,Ω,
respectively, where |v|2κ,Ω = ‖v‖2

κ,Ω − ‖v‖2
κ∗,Ω for v ∈ Hκ(Ω) (κ∗ = [κ] for κ /∈ N and

κ∗ = κ − 1 for κ ∈ N). For these spaces associated to domains other than Ω, the same
notations of spaces, norms etc. will be used with Ω replaced appropriately. In addition,
C denotes a generic positive constant, and can be a different value at each of different
places.

2. Linear plane stress problem
We consider a homogeneous isotropic elastic body occupying a reference configura-
tion Ω × [−t/2, t/2] ⊂ R

3 with Ω ⊂ R
2. The body corresponds to a thin elastic

plate with middle surface Ω and thickness t. We introduce orthogonal Cartesian co-
ordinates (x1, x2, x3) such that the x1x2 plane contains the middle surface. We con-
sider the linear static plane stress problem. For the two-dimensional displacement
u = {u1, u2} of the elastic plate, the (linearized) strain tensor εij = εij(u) is given by
εij(u) = 1

2
(∂ui/∂xj + ∂uj/∂xi) (1 ≤ i, j ≤ 2). Instead of the strain tensor, we use its

engineering expression of vector form:

ε(u) ≡ {ε1(u), ε2(u), γ12(u)} :=

{
∂u1

∂x1
,

∂u2

∂x2
,

∂u1

∂x2
+

∂u2

∂x1

}
.

We also use the engineering stress components in vector expression:

σ(u) ≡ {σ1(u), σ2(u), τ12(u)} := {σ11(u), σ22(u), σ12(u) = σ21(u)},

where σij (1 ≤ i, j ≤ 2) denote the usual tensor expressions for the stress.
To describe the isotropic linear elastic stress-strain relation, we introduce the matrix

[D]:

[D] :=
E

1 − ν2




1 ν 0
ν 1 0
0 0 1−ν

2



 ,

where E is Young’s modulus and ν Poisson’s ratio. Usually, we assume that E > 0
and 0 < ν < 1/2. Note that [D] is a symmetric and positive-definite matrix. Then the
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stress-strain relation is written by

σ = [D]ε.

Remark 1 We can argue in exactly the same way for the plane strain problem by
defining [D] as follows:

[D] :=
E

(1 + ν)(1 − ν2)




1 − ν ν 0
ν 1 − ν 0
0 0 1−2ν

2


 .

We assume that Ω is a bounded domain of R
2 with Lipschitz boundary ∂Ω. Then

the outward unit normal is well-defined almost everywhere on ∂Ω, and is denoted by
n = {n1, n2}. The surface force σn on ∂Ω is given by

(1) σn := {σ1n1 + τ12n2, τ12n1 + σ2n2},

where n = {n1, n2} is the outward unit normal.
An equilibrium equation and boundary conditions for the elastic plate are given as

follows:

(2) −
∂σ1

∂x1
−

∂τ12

∂x2
= f1, −

∂τ12

∂x1
−

∂σ2

∂x2
= f2 in Ω,

(3) u = 0 on ∂ΩD, σn(u) = σn on ∂ΩN ,

where f = {f1, f2} is the distributed external body force per unit in-plane area, ∂Ω
is decomposed into disjoint two parts: ∂ΩD and ∂ΩN , and σn is the surface traction
force per unit length on ∂ΩN . We suppose that the measure |∂ΩD| of ∂ΩD is positive.
A weak formulation of (2) and (3) is given as follows: find u ∈ H1

D(Ω)2 such that

(4) a(u, v) = F (v) ∀v ∈ H1
D(Ω)2.

Here H1
D(Ω) := {v ∈ H1(Ω) | v = 0 on ∂ΩD},

a(u, v) := (σ(u), ε(v))Ω , F (v) := (f , v)Ω +

∫

∂ΩN

σn · v ds,

where ds is the infinitesimal line element on ∂ΩN . Bilinear form a is bounded on
H1(Ω)2, i.e.,

(5) |a(u, v)| ≤ C‖u‖1,Ω‖v‖1,Ω ∀u, v ∈ H1(Ω)2,

where C is a positive constant independent of u and v. We define for p, q ∈ [L2(Ω)]3,

d(p, q) := ([D]p, q)Ω,

d(q) := d(q, q)1/2.

Since [D] is a positive definite symmetric matrix, d(·) is a norm in [L2(Ω)]
3
, and

moreover we have

(6) α‖q‖2
Ω ≤ d(q)2 ≤ α‖q‖2

Ω ∀q ∈
[
L2(Ω)

]3
,
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where α and α are the minimum and maximum eigenvalues of [D], respectively.
It follows from Corollary 11.2.22 in [5] that there exists a positive constant C such

that for all v ∈ H1
D(Ω)2

(7) ‖ε(v)‖Ω ≥ C‖v‖1,Ω (Korn’s inequality in H1
D(Ω)2).

Combining (6) and (7), we obtain the coreciveness of a(·, ·) on H1
D(Ω)2, that is,

there exists a positive constant C such that for all v ∈ H1
D(Ω)2

(8) a(v, v) ≥ C‖v‖2
1,Ω.

We see from (5) and (8) that for every f ∈ L2(Ω)2 and σn ∈ L2(∂ΩN )2, problem (4)
has a unique solution u ∈ H1

D(Ω)2.

3. Hybridized DGFEM with lifting operator
3.1. Partition T h of Ω

Hereafter we assume that Ω is a bounded polygonal domain in R
2. We first construct

a partition T h of Ω, which consists of a finite number of elements K such that Ω =⋃
K∈T h K. Here each element K ∈ T h is a bounded m-polygonal (open) domain, where

m is an integer ≥ 3 and can differ with K. Notice here that non-convex elements are
available for m ≥ 4. For different K, K ′ ∈ T h, K ∩ K ′ = ∅ and K ∩ K ′ is exclusively
one of the three sets: (i) ∅, (ii) one vertex, and (iii) one closed edge. We define the set
of nodes of T h by

Vh :=
{
p ∈ R

2 | ∃K ∈ T h such that p is a vertex of polygon K
}

.

Note that Vh may include the “hanging” nodes [5], that is, vertices of a polygon K ∈ T h

which lie in the interior of an edge of another polygon K ′ ∈ T h (see Figure 1). We call

Figure 1: An example of partition of Ω which includes hanging nodes, which are
depicted by dots.

an element of Vh a node of T h. An open line segment between two different nodes of T h

is said to be an edge of T h. The set of edges of T h is denoted by Eh. We use notation
e to denote an edge of T h. For each K ∈ T h, we define EK :=

{
e ∈ Eh | e ⊂ ∂K

}
.

We call an element of EK an edge of K. Note that an element of EK can be different
from an edge of polygon K. We further define the “skeleton” Γh of T h as the union of
closed edges in Eh: Γh :=

⋃
e∈Eh e.
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The diameter and measure of K are denoted by hK and |K|, respectively, while the
length of an edge e ∈ EK by |e|. Furthermore, h = maxK∈T h hK . We will use (·, ·)K

and ‖ · ‖K for both L2(K)j (j ∈ N), and also define, for û, v̂ ∈ L2(∂K)j (j ∈ N),

〈û, v̂〉∂K =

∫

∂K

û · v̂ ds, |v̂|∂K = 〈v̂, v̂〉
1/2
∂K ,

where ds is the infinitesimal line element on ∂K. For each edge e ∈ EK , 〈·, ·〉e and | · |e
are similarly defined.

3.2. Function spaces associated to partitions

Over T h, we consider the “broken” or piecewise Sobolev spaces (κ > 0):

Hκ(T h) :=
{
v ∈ L2(Ω); v|K ∈ Hκ(K) (∀K ∈ T h)

}
,

which can be identified with
∏

K∈T h Hκ(K), where, as was already noted, Hκ(K) is the

Sobolev space of (possibly fractional) order κ over K. For v ∈ H
1

2
+γ(T h) (γ > 0) and

K ∈ T h, the trace of v|K to ∂K is well-defined as an element of L2(∂K) and denoted
by v|∂K or simply v, which can be double-valued on edges shared by two elements

[2, 5]. For v ∈ H
3

2
+γ(T h) (γ > 0), we can define the trace of ∇ (v|K) to ∂K and the

normal derivative ∂v/∂n = (∇v) · n there in the L2 sense.

On Γh of T h, we consider a kind of flux v̂ ∈ L2(Γh), which is single-valued on each
edge shared by two elements, unlike various double-valued ones [2, 5].

For each T h, we define bilinear form Ih: for every {u, û}, {v, v̂} ∈ H1(T h)2 ×
L2(Γh)2,

Ih({u, û}, {v, v̂}) :=
∑

K∈T h

∑

e∈EK

1

|e|
〈û − u, v̂ − v〉e ,

and the associated semi-norm: for every {v, v̂} ∈ H1(T h)2 × L2(Γh)2,

Ih({v, v̂}) := Ih({v, v̂}, {v, v̂})1/2.

Further, let us define the following semi-norms and norms: for v = {v1, v2} ∈ H1(T h)2,

|v|2H1(T h) :=
2∑

i=1

‖∇hvi‖
2
Ω,

‖v‖2
H1(T h) := |v|2H1(T h) + ‖v‖2

Ω,

and for {v, v̂} ∈ H1(T h)2 × L2(Γh)2,

|{v, v̂}|2h :=

2∑

i=1

‖∇hvi‖
2
Ω + Ih({v, v̂}),

‖{v, v̂}‖2
1,h := |{v, v̂}|2h + ‖v‖2

Ω,

where ∇h : H1(T h) −→ L2(Ω)2 is characterized by (∇hv)|K = ∇ (v|K) for v ∈ H1(T h)
and K ∈ T h. Notice again that v and ∇v can be double-valued on e but v̂ is not so,
and, in addition, that all the above (semi-)norms are mesh-dependent.
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3.3. Finite element spaces

To approximate {v, v̂} ∈ H
3

2
+γ(T h)2 × L2(Γh)2 (0 < γ ≤ 1

2
) associated to T h, let us

prepare two finite dimensional spaces: for k ∈ N

Uh
k :=

∏

K∈T h

Pk(K)
(
⊂ H1(T h)

)
,

Ûh
k :=

∏

e∈Eh

Pk(e)
(
⊂ L2(Γh)

)
.

Then the finite element spaces are given by

V h
k :=

(
Uh

k

)2
×
(
Ûh

k

)2

⊂ H
3

2
+γ(T h)2 × L2(Γh)2 (γ > 0).

3.4. Lifting operators

To consider a local lifting operator [2, 12] for each K ∈ T h, let us introduce

QK
k := Pk−1(K).

We can define the local lifting operator RK : L2(∂K)2 −→
(
QK

k

)3
by

(9) ([D]RKg, q)K = 〈g, ([D]q)n〉∂K ∀g ∈ L2(∂K)2, ∀q ∈
(
QK

k

)3
,

where n = {n1, n2} is the outward unit normal on ∂K, and for every p = {p1, p2, p12} ∈(
QK

k

)3
,

(10) pn :=

(
n1 0 n2

0 n2 n1

)


p1

p2

p12



 .

Note that replacing p by σ = {σ1, σ2, τ12} in (10), we get (1).
Identifying Qh

k :=
∏

K∈T h QK
k with a subspace of L2(Ω) and making the identifica-

tion
∏

K∈T h

(
QK

k

)3
=
(
Qh

k

)3
, the global lifting operator is defined by

Rh : g̃ = {g∂K}K∈T h ∈
∏

K∈T h

L2(∂K)2 −→ {RKg∂K}K∈T h ∈
(
Qh

k

)3
⊂ L2(Ω)3.

3.5. Discrete problem

Let u ∈ H3/2+γ(Ω) (γ > 0) satisfy (2) and (3), and let û := u|Γh ∈ L2(Γh). To
formulate a discrete problem of (4), we derive a weak formulation which {u, û} satisfies.
From the Green formula in each K ∈ T h, we have, for all v ∈ H1(K)2,

∫

K

σ(u) · ε(v) dx −

∫

∂K

σn(u) · v ds =

∫

K

f · v dx.

Summing up this identity over all K ∈ T h, we get for all v ∈ H1(T h)2,

(11)
(
σh(u), εh(v)

)
Ω
−
∑

K∈T h

〈
σh

n(u), v
〉

∂K
= (f , v)Ω ,

where for v ∈ H1(T h),
εh(v)|K := ε(v|K) ∀K ∈ T h,
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σh(v) ≡ {σh
1 (v), σh

2 (v), τh
12(v)} := [D]εh(v),

and for v ∈ H3/2+γ(T h) (γ > 0),

σh
n(v) := {σh

1 (v)n1 + τh
12(v)n2, τh

12(v)n1 + σh
2 (v)n2}.

On the other hand, we have, for all v̂ ∈ L2(Γh)2,

(12)
∑

K∈T h

〈
σh

n(u), v̂
〉

∂K
=
∑

e∈Eh
∂

〈
σh

n(u), v̂
〉

e
,

where Eh
∂ := {e ∈ Eh | e ⊂ ∂Ω}. Adding (12) to (11) leads to

(13)
(
σh(u), εh(v)

)
Ω

+
∑

K∈T h

〈
σh

n(u), v̂ − v
〉

∂K
= (f , v)Ω +

∑

e∈Eh
∂

〈
σh

n(u), v̂
〉

e
.

Since u − û = 0 on Γh, we have

aη
h({u, û}, {v, v̂}) = (f , v)Ω +

∑

e∈Eh
∂

〈
σh

n(u), v̂
〉

e

for all {v, v̂} ∈ H
3

2
+γ(T h)2 × L2(Γh)2 (γ > 0), where aη

h is defined by

aη
h({u, û}, {v, v̂}) :=

(
σh(u), εh(v)

)
Ω

(14)

+
∑

K∈T h

[〈
σh

n(u), v̂ − v
〉

∂K
+
〈
û − u, σh

n(v)
〉

∂K

]

+d (Rh(û − u), Rh(v̂ − v))

+ηIh({u, û}, {v, v̂})

for every {u, û}, {v, v̂} ∈ H
3

2
+γ(T h)2 × L2(Γh)2 (γ > 0). Here η ≥ 0 is an interior

penalty parameter and the third and fourth terms in the right-hand side of (14) are
called the lifting and interior penalty terms, respectively. Bilinear form aη

h is symmetric.
Moreover, taking account of the boundary condition (3), we have

(15) aη
h({u, û}, {v, v̂}) = Fh({v, v̂})

for all {v, v̂} ∈ H
3

2
+γ(T h)2 × L2

D(Γh)2 (γ > 0), where

L2
D(Γh) :=

{
v̂ ∈ L2(Γh) | v̂ = 0 on ∂ΩD

}
,

Fh({v, v̂}) := (f , v)Ω +

∫

∂ΩN

σn · v̂ ds.

We present a discrete problem of (4) as follows: find {uh, ûh} ∈ V h
k,D such that

(16) aη
h({uh, ûh} , {vh, v̂h}) = Fh({vh, v̂h}) ∀ {vh, v̂h} ∈ V h

k,D,

where

Ûh
k,D := Ûh

k ∩ L2
D(Γh), V h

k,D :=
(
Uh

k

)2
×
(
Ûh

k,D

)2

.

Since the exact solution {u, û} satisfies (15), discrete problem (16) is said to be con-
sistent [2].

We will describe the unique solvability of discrete problem (16) for every η > 0 in
Section 5. To do so, we first establish an inequality of Korn type in Section 4.
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3.6. Some properties of the bilinear forms

Since εh(vh)|K ∈
(
QK
)3

≡ Pk−1(K)3 for each K ∈ T h and for all vh ∈
(
Uh

k

)2
, it follows

from the definition (9) of RK that

([D]RKg, εh(vh))K = 〈g, σn(vh)〉∂K ∀g ∈ L2(∂K)2, ∀vh ∈
(
Uh

k

)2
.

Thus we find from (14) that for all {uh, ûh}, {vh, v̂h} ∈ V h
k ,

(17) a0
h({uh, ûh}, {vh, v̂h}) = d

(
εh(uh) + Rh(ûh − uh), εh(vh) + Rh(v̂h − vh)

)
.

This implies
a0

h({vh, v̂h}, {vh, v̂h}) ≥ 0 ∀{vh, v̂h} ∈ V h
k .

So we can define the associated semi-norm: for {vh, v̂h} ∈ V h
k ,

a0
h({vh, v̂h}) := a0

h({vh, v̂h}, {vh, v̂h})
1/2.

Note that for every uh, vh ∈
[
Uh

k ∩ H1(Ω)
]2

, we have uh|Γh, vh|Γh ∈ L2(Γh)2, and
moreover

(18) a0
h ({uh, uh|Γh} , {vh, vh|Γh}) = d(εh(uh), εh(vh)).

Remark 2 If k = 1, then we have for every {uh, ûh}, {vh, v̂h} ∈ V h
1 ,

(19) a0
h({uh, ûh}, {vh, v̂h}) = d (Rhûh, Rhv̂h) .

Indeed, it follows from the Green formula that

(20) ([D]ε(v), q)K = 〈v, ([D]q)n〉
∂K

∀v ∈ H1(K)2, ∀q ∈
(
QK

1

)3
≡ P0(K)3,

where we used the fact that all first order partial derivatives of [D]q ∈ P0(K)3 vanish.
From (9) and (20), we can get

(21) ([D]ε(v), q)K = ([D]RKv, q)K ∀v ∈ H1(K)2, ∀q ∈
(
QK

1

)3
≡ P0(K)3.

Using (21), we can reduce (17) to (19).

4. An inequality of the Korn type
Let K be a star-shaped bounded domain with respect to a open disk D ⊂ K of positive
radius, that is, for every x ∈ K the closed convex hull of {x} ∪ D is included in K
[5]. For every star-shaped bounded domain K with respect to a open disk D ⊂ K of
positive radius, we can define ρK as the maximum of radii of such possible D’s, i.e.,

ρK := max

{
r(D)

∣∣∣∣
open disk D ⊂ K such that
K is a star-shaped with respect to D

}
,

where r(D) denotes the radius of D.
Then by using ρK and hK := diam K, the chunkiness parameter ζK for K is defined

as:
ζK := hK/ρK .

We consider a family of partitions {T h}0<h≤h̄ that satisfies the following conditions
(cf. [9]):

8



(H1) For all h ∈ (0, h̄] (h̄ ≤ 1), each K ∈ T h is star-shaped with respect to a open
disk of positive radius.

(H2) There exists a positive integer M (≥ 3) such that for all h ∈ (0, h̄] and for all
K ∈ T h, the number m of elements in EK is less than or equal to M .

(H3) (Chunkiness condition) There exists a positive constant γC such that

sup
0<h≤h̄

max
K∈T h

ζK ≤ γC .

(H4) (Local quasi-uniformity of edge sizes) There exists a positive constant γU such
that for all h ∈ (0, h̄] and for all K ∈ T h

max
e∈EK

|e| ≤ γU min
e∈EK

|e|.

Theorem 1 Let k ∈ N. Assume that a family
{
T h
}

0<h≤h̄
of partitions of Ω satisfies

conditions (H1)–(H4). Then there exists a positive constant C such that for all h ∈
(0, h̄] and for all {vh, v̂h} ∈ V h

k ,

(22) ‖{vh, v̂h}‖1,h ≤ C
[
a1

h({vh, v̂h}) + ‖vh‖Ω

]
,

where C is independent of h and {vh, v̂h}.

Hereafter we will assume that k ∈ N and that a family
{
T h
}

0<h≤h̄
of partitions of

Ω satisfies conditions (H1)–(H4) unless otherwise stated.
To prove this theorem, we first show three lemmas.

Lemma 1 There exists a positive constant Cr such that for all h ∈ (0, h̄], for all
K ∈ T h, and for all g ∈ L2(∂K)2,

(23) ‖RKg‖K ≤ Cr

[
∑

e∈EK

1

|e|

∣∣∣g|e
∣∣∣
2

e

]1/2

,

where Cr is independent of h, K, and g.

Proof. Lemma 1 is proved in [9, (42)].

Lemma 2 There exists a positive constant C such that for all h ∈ (0, h̄] and for all
{vh, v̂h} ∈ V h

k ,

(24)
∥∥εh(vh)

∥∥
Ω
≤ Ca1

h({vh, v̂h}),

where C is independent of h and {vh, v̂h}.

Proof. From (6), we have, for all vh ∈
(
Uh

k

)2
,

(25)
∥∥εh(vh)

∥∥
Ω
≤ α−1/2d(εh(vh)).

The triangle inequality yields that for every v̂h ∈
(
Ûh

k

)2

,

(26) d(εh(vh)) ≤ d(εh(vh) + Rh(v̂h − vh)) + d(Rh(v̂h − vh)).
9



Using (23), we have

d(Rh(v̂h − vh))
2 =

∑

K∈T h

([D]RK(v̂h − vh), RK(v̂h − vh))K(27)

≤ ᾱ
∑

K∈T h

‖RK(v̂h − vh)‖
2
K (by (6))

≤ ᾱC2
r Ih({vh, v̂h})

2 (by (23)).

We see from (26) and (27) that

(28) d(εh(vh)) ≤ d(εh(vh) + Rh(v̂h − vh)) + ᾱ1/2CrIh({vh, v̂h}).

From (28) and (17), we find

(29) d(εh(vh)) ≤ a0
h({vh, v̂h}) + ᾱ1/2CrIh({vh, v̂h}).

From (25) and (29), we can get (24).
Let Eh

0 be the set of interior edges of T h. For each e ∈ Eh let Ve be the set of two

endpoints of ē, and T e the set of polygons K such that e ⊂ ∂K. For vh ∈
(
Uh

k

)2
and

e ∈ Eh
0 , let [vh]e denote the jump of vh across the edge e, i.e.,

[vh]e := vh|Ke
1

− vh|Ke
2

on e (T e = {Ke
1 , Ke

2}).

Lemma 3 There exists a positive constant C such that for all h ∈ (0, h̄] and for all
{vh, v̂h} ∈ V h

k ,

(30)
∑

e∈Eh
0

∑

p∈Ve

∣∣∣[vh]e(p)
∣∣∣
2

≤ CIh({vh, v̂h})
2,

where C is independent of h and {vh, v̂h}.

Proof. By a standard inverse estimate (cf. (3.10) in [4]), we have, for every {vh, v̂h} ∈
V h

k ,

∑

e∈Eh
0

∑

p∈Ve

∣∣∣[vh]e(p)
∣∣∣
2

=
∑

e∈Eh
0

∑

p∈Ve

∣∣∣ vh|Ke
1

(p) − vh|Ke
2

(p)
∣∣∣
2

(T e = {Ke
1 , Ke

2})

≤ 2
∑

e∈Eh
0

∑

p∈Ve

∑

K∈T e

∣∣∣ vh|K (p) − v̂h(p)
∣∣∣
2

≤ C
∑

e∈Eh
0

|e|−1
∑

K∈T e

∣∣∣ vh|K − v̂h

∣∣∣
2

e

(by a standard inverse estimate)

≤ CIh({vh, v̂h})
2.

4.1. Proof of Theorem 1 in the case when
{
T h
}

0<h≤h̄
is a family of triangu-

lations

We first prove Theorem 1 in the case when each T h is a triangulation without hanging
nodes, i.e., a partition consisting of triangles having a property that no vertex of any
triangle lies in the interior of an edge of another triangle. We then note that a family

10



of triangulations without hanging nodes satisfies conditions (H1)–(H4) if and only if it
is regular in the sense of Ciarlet [6].

In Section 4.1 we assume that
{
T h
}

0<h≤h̄
is a family of triangulations which is

regular.
We now define

W h := Uh
1 ∩ H1(Ω) = Uh

1 ∩ C0(Ω).

Let E : Uh
1 −→ W h be the reconstruction operator defined in [4], i.e., for every vh ∈ Uh

1 ,
we can define an element Evh ∈ W h by

(Evh)(p) =
1

|T p|

∑

K∈T p

(vh|K) (p) ∀p ∈ Vh,

where T p :=
{
K ∈ T h; p ∈ ∂K

}
is the set of triangles sharing p as a common vertex

and |T p| is the number of triangles in T p. Note that the restriction of E to W h is the
identity operator of W h.

Since the family {T h}0<h≤h̄ of triangulations is regular, we have

(31) sup
0<h≤h̄

max
p∈Vh

|T p| < +∞.

We can also regard E as an operator from
(
Uh

1

)2
onto

(
W h
)2

as Evh := {Evh1, Evh2} ∈(
W h
)2

for all vh = {vh1, vh2} ∈
(
Uh

1

)2
.

Lemma 4 Suppose that a family {T h}0<h≤h̄ of triangulations is regular. Then there
exists a positive constant C such that for all h ∈ (0, h̄] and for all {vh, v̂h} ∈ V h

1 ,

|vh − Evh|H1(T h) ≤ CIh({vh, v̂h}),(32)

‖vh − Evh‖Ω ≤ ChIh({vh, v̂h}),(33)

where C is independent of h and {vh, v̂h}.

Proof. From (2.10) in [4] and the estimation in Example 2.3 of [4], we have

|vh − Evh|
2
H1(T h) ≤ C

∑

e∈Eh
0

∑

p∈Ve

∣∣∣[vh]e(p)
∣∣∣
2

,

‖vh − Evh‖
2
Ω ≤ C

∑

e∈Eh
0

∑

p∈Ve

|e|2
∣∣∣[vh]e(p)

∣∣∣
2

.

Combining these inequalities and (30), we get (32) and (33).

Remark 3 Assume that a family {T h}0<h≤h̄ of triangulations is regular, and that{
{vh, v̂h} ∈ V h

1

}
0<h≤h̄

satisfies

(34) ‖{vh, v̂h}‖1,h ≤ 1.

Then there exist a v ∈ H1(Ω)2 and a subsequence of
{
{vh, v̂h}

}
0<h≤h̄

, which is also

denoted by the same notation for convenience, such that vh and Evh converge strongly
to v in L2(Ω) as h tends to zero.

11



Indeed, it follows from Theorem 1 in [9] that there exist a v ∈ H1(Ω)2 and a

subsequence of
{
{vh, v̂h}

}

0<h≤h̄
such that

(35) lim
h−→0

‖vh − v‖Ω = 0.

Moreover

‖Evh − v‖Ω ≤ ‖Evh − vh‖Ω + ‖vh − v‖Ω

≤ ChIh ({vh, v̂h}) + ‖vh − v‖Ω (by (33))

−→ 0 (h −→ 0) (by (34) and (35)).

Lemma 5 Suppose that a family {T h}0<h≤h̄ of triangulations is regular. Then there

exists a positive constant C such that for all h ∈ (0, h̄] and for all vh ∈
(
Uh

1

)2
,

(36) Ih ({vh, Evh|Γh})2 ≤ C
∑

e∈Eh
0

∑

p∈Ve

∣∣∣[vh]e(p)
∣∣∣
2

.

where C is independent of h and vh.

Proof. We have, for every vh ∈
(
Uh

1

)2
,

(37) Ih ({vh, Evh|Γh})2 ≤
∑

K∈T h

∑

e∈EK

‖vh − Evh‖
2
C0(ē)2 ,

where ‖v‖2
C0(ē)2 :=

∑2
j=1 (maxx∈ē |vj(x)|)2. Since each element of Evh − vh is a linear

function on e, it takes a maximum of its absolute value at one of the endpoints of e.
Thus we have

(38)
∑

K∈T h

∑

e∈EK

‖vh − Evh‖
2
C0(ē)2 ≤ 2

∑

K∈T h

∑

p∈VK

|(vh − Evh)(p)|2 ,

where VK :=
{
p ∈ Vh | p ∈ ∂K

}
. From (31) and Lemma 2.1 in [4], we see that for all

vh ∈
(
Uh

1

)2
,

∑

K∈T h

∑

p∈VK

|(vh − Evh)(p)|2 ≤ C
∑

p∈Vh

|(vh − Evh)(p)|2 (by (31))(39)

≤ C
∑

p∈Vh

∑

e∈Ep
0

∣∣∣[vh]e(p)
∣∣∣
2

(by Lemma 2.1 in [4]),

where Ep
0 :=

{
e ∈ Eh

0 ; p ∈ ∂e
}
. Here noticing

(40)
∑

p∈Vh

∑

e∈Ep
0

∣∣∣[vh]e(p)
∣∣∣
2

=
∑

e∈Eh
0

∑

p∈Ve

∣∣∣[vh]e(p)
∣∣∣
2

,

we conclude from (37)–(40) that (36) holds.
We will prove (22) for each of the cases when k = 1 and k > 1 in Sections 4.1.1 and

4.1.2, respectively.
12



4.1.1. Proof of (22) in the case when k = 1

Since Evh ∈ H1(Ω)2 for every vh ∈
(
Uh

1

)2
, we have Evh|Γh ∈

(
Ûh

1

)2

. For every

{vh, v̂h} ∈ V h
1 , we have

‖{vh, v̂h}‖1,h ≤ ‖{vh, v̂h} − {Evh, Evh|Γh}‖1,h + ‖{Evh, Evh|Γh}‖1,h(41)

=: I + II.

1◦ We have

I2 = ‖{vh, v̂h} − {Evh, Evh|Γh}‖
2
1,h

= |{vh, v̂h} − {Evh, Evh|Γh}|
2
h + ‖vh − Evh‖

2
Ω

= ‖vh − Evh‖
2
H1(T h) + Ih ({vh, v̂h} − {Evh, Evh|Γh})2

= ‖vh − Evh‖
2
H1(T h) + Ih ({vh, v̂h})

2 .

Thus we see from (32) and (33) that

(42) I ≤ CIh({vh, v̂h}).

2◦ Since Evh ∈ H1(Ω)2, it follows from Korn’s inequality for H1-functions (see Theo-
rem 11.2.16 in [5]) that

(43) II = ‖Evh‖1,Ω ≤ C [‖ε(Evh)‖Ω + ‖Evh‖Ω] .

Using (6) and (18), we have

(44) ‖ε(Evh)‖Ω ≤ α−1/2d(εh(Evh)) = α−1/2a0
h({Evh, Evh|Γh}).

Substituting (44) into (43) yields

(45) II ≤ C
[
a0

h({Evh, Evh|Γh}) + ‖Evh‖Ω

]
.

First let us estimate the first term in the right-hand side of (45). We have, for all

v̂h ∈
(
Ûh

1

)2

,

(46) a0
h({Evh, Evh|Γh}) ≤ a0

h({vh, v̂h}) + a0
h({vh − Evh, v̂h − Evh|Γh}).

It follows from (17) that

a0
h({vh − Evh, v̂h − Evh|Γh}) = d

(
εh(vh − Evh) + Rh(v̂h − vh)

)
(47)

≤ d
(
εh(vh − Evh)

)
+ d (Rh(v̂h − vh)) .

From (6) and (32), we have

d
(
εh(vh − Evh)

)
≤ α1/2

∥∥εh(vh − Evh)
∥∥

Ω
(48)

≤ C |vh − Evh|H1(T h)

≤ CIh({vh, v̂h}).

Combining (47), (48), and (27), we get

(49) a0
h({vh − Evh, v̂h − Evh|Γh}) ≤ CIh({vh, v̂h}).

13



It follows directly from (46) and (49) that

(50) a0
h({Evh, Evh|Γh}) ≤ Ca1

h({vh, v̂h}).

Next let us estimate the second term in the right-hand side of (45). From (33) we
get

(51) ‖Evh‖Ω ≤ ‖vh‖Ω + ‖Evh − vh‖Ω ≤ ‖vh‖Ω + CIh({vh, v̂h}).

From (45), (50), and (51), we obtain

(52) II ≤ C
[
a1

h({vh, v̂h}) + ‖vh‖Ω

]
.

We conclude from (41), (42), and (52) that (22) holds true for k = 1.

4.1.2. Proof of (22) in the case when k > 1

Assume k > 1 in this section.
Let RM(Ω) be the space of (infinitesimal) rigid motions on Ω defined by

RM(Ω) :=
{
a + ηx; a ∈ R

2 and η ∈ so(2)
}

,

where x = (x1, x2)
T is the position vector function on Ω and so(2) is the Lie algebra of

anti-symmetric 2× 2 matrices. The spaces RM(Ω) is precisely the kernel of the strain
tensor [5], i.e., for v ∈ H1(Ω)2,

(53) ε(v) = 0 ⇐⇒ v ∈ RM(Ω).

We define on each K ∈ T h an interpolation operator ΠK from H1(K)2 onto RM(K)
by the following conditions:

∣∣∣∣
∫

K

(v − ΠKv)dx

∣∣∣∣ = 0 ∀v ∈ H1(K)2,

∣∣∣∣
∫

K

∇× (v − ΠKv)dx

∣∣∣∣ = 0 ∀v ∈ H1(K)2,

where for v = {v1, v2} ∈ H1(K)2,

∇× v :=
∂v2

∂x1
−

∂v1

∂x2
.

Let Π : H1(T h)2 −→
(
Uh

1

)2
be defined by

(Πv)|K := ΠK (v|K) ∀K ∈ T h.

We have, for every {vh, v̂h} ∈ V h
k ,

‖{vh, v̂h}‖1,h(54)

≤ ‖ {vh, v̂h} − {Πvh, EΠvh|Γh} ‖1,h + ‖ {Πvh, EΠvh|Γh} ‖1,h

=: I + II.

1◦ We have

(55) I2 = |vh − Πvh|
2
H1(T h) + ‖vh − Πvh‖

2
Ω + Ih ({vh, v̂h} − {Πvh, EΠvh|Γh})2 .
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It follows from (3.3) in [4] that

(56) |vh − Πvh|H1(T h) ≤ C‖εh(vh)‖Ω.

We see from (3.4) in [4] and (56) that

‖vh − Πvh‖
2
Ω =

∑

K∈T h

‖vh − Πvh‖
2
K(57)

≤ C
∑

K∈T h

h2
K |vh − Πvh|

2
H1(K) (by (3.4) in [4])

≤ Ch2 |vh − Πvh|
2
H1(T h)

≤ Ch̄2‖εh(vh)‖
2
Ω (by (56)).

The triangle inequality yields

(58) Ih ({vh, v̂h} − {Πvh, EΠvh|Γh}) ≤ Ih ({vh, v̂h}) + Ih ({Πvh, EΠvh|Γh}) .

Using (36) where vh is replaced by Πvh and (3.12) in [4], we have

Ih ({Πvh, EΠvh|Γh})2(59)

≤ C
∑

e∈Eh
0

∑

p∈Ve

∣∣∣ [Πvh]e (p)
∣∣∣
2

(by (36))

≤ C


∥∥εh(vh)

∥∥2

Ω
+
∑

e∈Eh
0

1

|e|

∣∣∣πe[vh]e

∣∣∣
2

e


 (by (3.12) in [4]),

where for e ∈ Eh, πe is the orthogonal projection operator from L2(e)2 onto P1(e)
2. We

have
∑

e∈Eh
0

1

|e|

∣∣∣πe[vh]e

∣∣∣
2

e
(60)

=
∑

e∈Eh
0

1

|e|

∣∣∣πe

(
vh|Ke

1

− vh|Ke
2

)∣∣∣
2

e
(T e = {Ke

1 , Ke
2})

≤ 2
∑

e∈Eh
0

1

|e|

{∣∣∣vh|Ke
1

− v̂h

∣∣∣
2

e
+
∣∣∣vh|Ke

2

− v̂h

∣∣∣
2

e

} (
∀v̂h ∈

(
Ûh

k

)2
)

≤ 2Ih({vh, v̂h})
2.

From (59) and (60), we get

(61) Ih ({Πvh, EΠvh|Γh}) ≤ C
[
‖εh(vh)‖Ω + Ih({vh, v̂h})

]
.

Note that we may delete πe in (59) and (60) to derive (61).
From (55)–(58), and (61), we get

(62) I ≤ C
[
‖εh(vh)‖Ω + Ih({vh, v̂h})

]
.

2◦ Since {Πvh, EΠvh|Γh} ∈ V h
1 , it follows from (22) in the case when k = 1 that

II = ‖{Πvh, EΠvh|Γh}‖1,h(63)

≤ C
[
a0

h ({Πvh, EΠvh|Γh}) + Ih ({Πvh, EΠvh|Γh}) + ‖Πvh‖Ω

]
.
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Let us first estimate the first term in the right-hand side of (63). Since Πvh|K ∈
RM(K) for all K ∈ T h, it follows from (53) that εh(Πvh) = 0. Hence we see from
(17) that

(64) a0
h ({Πvh, EΠvh|Γh}) = d (Rh (Πvh − EΠvh)) .

Further it follows from (6) and (23) that

d (Rh (Πvh − EΠvh)) ≤ α1/2 ‖Rh (Πvh − EΠvh)‖Ω (by (6))(65)

≤ CIh({Πvh, EΠvh|Γh}) (by (23)).

Let us next estimate the third term in the right-hand side of (63). From (57), we
have

(66) ‖Πvh‖Ω ≤ ‖vh‖Ω + ‖vh − Πvh‖Ω ≤ ‖vh‖Ω + C‖εh(vh)‖Ω.

From (63)–(66), and (61), we get

(67) II ≤ C
[
‖εh(vh)‖Ω + Ih({vh, v̂h}) + ‖vh‖Ω

]
.

We finally combine (54), (62), (67), and (24) to get (22) for k > 1.

4.2. Proof of Theorem 1 in the case when
{
T h
}

0<h≤h̄
is a family of general

polygonal partitions

We first demonstrate that we can construct a regular family of triangulations from a
family of partitions satisfying conditions (H1)–(H4).

For each K ∈ T h, there exists an open disk DK ⊂ K such that the radius of DK

equals ρK . Let c be the center of DK . We subdivide K into m triangles by connecting
c with each of nodes in VK (see Figure 2), where m is the number of nodes in VK .
We can then obtain a triangulation of Ω. We show that a family of the triangulations
constructed in this way from a given family {T h}0<h≤h̄ satisfies the minimum angle
condition [6, 5], that is, the family of triangulations is regular.

p

p
p

p

1

2

m

cm-1

Figure 2: A triangulation of polygonal element K.

According to Kikuchi [9, Remark 4], it follows from (H2) and (H4) that for each
K ∈ T h

(68) min
e∈EK

|e| ≥
2

MγU

hK .
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We number the nodes in VK from 1 to m anticlockwise as in Figure 2. For each
i = 1, 2 . . . , m, let si be the line segment between pi and c, θi the angle between si

and si+1, ei the line segment between pi and pi+1, and Ti the triangle with vertices c,
pi, and pi+1, where sm+1 = s1 and pm+1 = p1 (see Figure 3).

p

T

p

i

i+1
i

c

si

si+1

θi

e
i

Figure 3: Triangle Ti, line segments si,
edges ei, and angle θi.

p

T

p

i

i+1
i

c

si

si+1

θi

e
i

φi

η
i

Figure 4: Angle φi and the distance ηi

from c to the line including ei.

For every i = 1, 2 . . . , m, let ηi be the distance from c to the line including ei (see
Figure 4). Since |Ti| = 1

2
ηi|ei| and ηi ≥ ρK , where |Ti| denotes the area of Ti, we can

get

(69) |Ti| ≥
1

2
ρK |ei|.

On the other hand, we have |Ti| = 1
2
|si||si+1| sin θi, and hence, by (69), (68), and (H3),

(70) sin θi =
2|Ti|

|si||si+1|
≥

ρK |ei|

|si||si+1|
≥

ρK

h2
K

min
1≤i≤m

|ei| ≥
2

MγUγC
.

Let φi be the angle between ei and si (see Figure 4). It follows from the law of
sines, (H3), and (70) that

(71) sin φi =
|si+1|

|ei|
sin θi ≥

ρK

hK
sin θi ≥ γ−1

C sin θi ≥
2

MγUγ2
C

.

This estimate holds for the angle between ei and si+1 as well. Therefore we can con-
clude from (70) and (71) that the family of triangulations satisfies the minimum angle
condition.

We are now in a position to prove (22). Let {T̃ h}0<h≤h̄ be the family of triangu-
lations constructed from a given family {T h}0<h≤h̄ of polygonal partitions of Ω in the
way as described above. We will denote Eh, V h

k , aη
h, Ih, and Rh corresponding to the

triangulation T̃ h by Ẽh, Ṽ h
k , ãη

h, Ĩh, and R̃h, respectively. For every {vh, v̂h} ∈ V h
k , we

can define {ṽh, ˜̂vh} ∈ Ṽ h
k as follows:

ṽh| eK := vh| eK for K̃ ∈ T̃ h,

˜̂vh

∣∣∣
ee
:=

{
vh|ee if ẽ ∈ Ẽh \ Eh,
v̂h|ee if ẽ ∈ Eh.
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Then for every ẽ ∈ Ẽh \ Eh, ṽh − ˜̂vh = 0 on ẽ, and hence

Ĩh

({
ṽh, ˜̂vh

})
= Ih ({vh, v̂h}) ,(72)

‖{vh, v̂h}‖1,h =
∥∥∥
{

ṽh, ˜̂vh

}∥∥∥
1,h

.(73)

Using (22) in the case of triangulations and (72), we have

(74)
∥∥∥
{

ṽh, ˜̂vh

}∥∥∥
1,h

≤ C
[
ã0

h

({
ṽh, ˜̂vh

})
+ Ih ({vh, v̂h}) + ‖vh‖Ω

]
,

where C is independent of h and {vh, v̂h}. It follows from (17) that

ã0
h

({
ṽh, ˜̂vh

})
= d

(
ε̃h(ṽh) + R̃h

(
˜̂vh − ṽh

))
(75)

≤ d
(
εh(vh)

)
+ d

(
R̃h

(
˜̂vh − ṽh

))
.

It follows from (23) and (72) that

(76)
∥∥∥R̃h

(
˜̂vh − ṽh

)∥∥∥
Ω
≤ CIh ({vh, v̂h}) .

We see from (75), (6), (24), and (76) that

(77) ã0
h

({
ṽh, ˜̂vh

})
≤ Ca1

h ({vh, v̂h}) .

Combining (73), (74), and (77) leads to (22).

5. Unique solvability of discrete problem (16)
We will show that for each η > 0, discrete problem (16) has a unique solution {uh, ûh} ∈
V h

k,D for every f ∈ L2(Ω)2 and σn ∈ L2(∂ΩN )2.
We introduce the Poincaré–Friedrichs inequality and the Korn inequality of another

type which are established by Brenner [3, 4]: there exists a positive constant C such
that for all v ∈ H1(T h),

(78) ‖v‖2
Ω ≤ C


|v|2H1(T h) +

∣∣∣∣
∫

∂ΩD

v ds

∣∣∣∣
2

+
∑

e∈Eh
0

|e|−1
∣∣∣[v]e

∣∣∣
2

e


 (see [3, Remark 1.1]),

(79) |v|2H1(T h) ≤ C


‖εh(v)‖2

Ω + |v|2∂ΩD
+
∑

e∈Eh
0

|e|−1
∣∣∣[v]e

∣∣∣
2

e


 (see [4, (1.19)]),

where C is independent of h and v. It is necessary to be careful when we use these
inequalities under assumptions (H1)–(H4). Because Brenner [3, 4] assumed that there
exists a fixed finite set of reference polygons such that every polygonal element in⋃

0<h≤h̄ T
h is affine homeomorphic to a reference polygon in the set, and this assump-

tion is not included in assumptions (H1)–(H4). However, this assumption is automat-
ically satisfied for an arbitrary family of triangulations. Moreover, according to [3, 4],
we see that (78) and (79) are true for a regular family of triangulations. This implies

that (78) and (79) hold good for the family {T̃ h}0<h≤h̄ of triangulations constructed as
18



in Section 4.2 from a family {T h}0<h≤h̄ of polygonal partitions satisfying (H1)–(H4).

Furthermore we have, for all v ∈ H1(T h) ⊂ H1(T̃ h),

|v|H1(T h) = |v|H1(eT h) and
∑

e∈Eh
0

|e|−1
∣∣∣[v]e

∣∣∣
2

e
=
∑

e∈eEh
0

|e|−1
∣∣∣[v]e

∣∣∣
2

e
,

where Ẽh
0 is the set of interior edges of T̃ h. Therefore we find that (78) and (79) hold

for a family {T h}0<h≤h̄ of polygonal partitions satisfying (H1)–(H4) as well.
From these inequalities and Theorem 1, we can establish the coreciveness of aη

h(·, ·)
on V h

k,D. Note that | · |h becomes a norm of V h
k,D if |∂ΩD| > 0.

Proposition 1 There exists a positive constant C such that for all h ∈ (0, h̄], for all
η > 0, and for all {vh, v̂h} ∈ V h

k,D,

(80) aη
h({vh, v̂h}) ≥ C min{1, η}|{vh, v̂h}|h,

where C is independent of h, η, and {vh, v̂h}.

Proof. We will show (80) only in the case when η = 1. Because it follows easily from
this result that (80) also holds for an arbitrary positive η. For this purpose, because
of Theorem 1, it is sufficient to show that there exists a positive constant C such that
for all h ∈ (0, h̄] and for all {vh, v̂h} ∈ V h

k,D,

(81) ‖vh‖Ω ≤ Ca1
h({vh, v̂h}).

It follows from (78) and (79) that for all vh ∈
(
Uh

k

)2
,

(82) ‖vh‖
2
Ω ≤ C


‖εh(vh)‖

2
Ω +

∣∣∣∣
∫

∂ΩD

vh ds

∣∣∣∣
2

+
∑

e∈Eh
0

|e|−1
∣∣∣[vh]e

∣∣∣
2

e
+ |vh|

2
∂ΩD


 .

Let us estimate each term in the right-hand side of (82). We have, for all {vh, v̂h} ∈
V h

k,D,

|vh|
2
∂ΩD

=
∑

e∈Eh
D

|e|

|e|
|vh|

2
e(83)

≤ |∂ΩD|
∑

e∈Eh
D

1

|e|
|vh|

2
e (by |e| ≤ |∂ΩD|)

≤ |∂ΩD| Ih({vh, v̂h})
2 (by v̂h = 0 on ∂ΩD) ,

where Eh
D :=

{
e ∈ Eh | e ⊂ ∂ΩD

}
. This implies that for all {vh, v̂h} ∈ V h

k,D,

∣∣∣∣
∫

∂ΩD

vh ds

∣∣∣∣ ≤ |∂ΩD| Ih({vh, v̂h}).(84)

In a similar manner to (60) we get, for all {vh, v̂h} ∈ V h
k ,

(85)
∑

e∈Eh
0

|e|−1
∣∣∣[vh]e

∣∣∣
2

e
≤ 2Ih({vh, v̂h})

2.
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From (82)–(85), and (24), we can obtain (81).

We now define another semi-norm: for {v, v̂} ∈ H
3

2
+γ(T h)2 × L2(Γh)2 (γ > 0),

(86) |||{v, v̂}|||2h := |{v, v̂}|2h +
∑

K∈T h

∑

e∈EK

|e|
∣∣∣∇(v|K)

∣∣∣
2

e
.

Proposition 2 (Boundedness) There exists a positive constant C such that for all

h ∈ (0, h̄], for all η > 0, and for all {u, û}, {v, v̂} ∈ H
3

2
+γ(T h)2 × L2(Γh)2 (γ > 0),

(87) aη
h({u, û}, {v, v̂}) ≤ C max{1, η}|||{u, û}|||h|||{v, v̂}|||h,

where C is independent of h, η, {u, û}, and {v, v̂}.

Proof. Let us estimate each term in the right-hand side of (14). Let {u, û} and

{v, v̂} be arbitrary elements in H
3

2
+γ(T h)2 × L2(Γh)2. The Schwarz inequality yields

the following estimates:

(88)
∣∣(σh(u), εh(v))Ω

∣∣ ≤ α
∥∥εh(u)

∥∥
Ω

∥∥εh(v)
∥∥

Ω
≤ C ‖∇hu‖Ω ‖∇hv‖Ω ,

∑

K∈T h

∣∣〈û − u, σh
n(v)

〉
∂K

∣∣ ≤
∑

K∈T h

∑

e∈EK

∣∣〈û − u, σh
n(v)

〉
e

∣∣(89)

≤
∑

K∈T h

∑

e∈EK

|û − u|e
∣∣σh(v)

∣∣
e

=
∑

K∈T h

∑

e∈EK

1

|e|1/2
|û − u|e |e|

1/2
∣∣σh(v)

∣∣
e
.

Here we have, for each e ∈ Eh,

∣∣σh
n(v)

∣∣2
e

≤

∫

e

∣∣σh
1n1 + τh

12n2

∣∣2 +
∣∣τh

12n1 + σh
2n2

∣∣2 ds(90)

≤

∫

e

∣∣σh
1

∣∣2 + 2
∣∣τh

12

∣∣2 +
∣∣σh

2

∣∣2 ds

≤ α2

∫

e

∣∣εh
∣∣2 ds

≤ C

∫

e

|∇v|2 ds.

Substituting (90) into (89) and applying the Schwarz inequality, we get

∑

K∈T h

∣∣〈û − u, σh
n(v)

〉
∂K

∣∣(91)

≤ C
∑

K∈T h

∑

e∈EK

1

|e|1/2
|û − u|e |e|

1/2
∣∣∣∇(v|K)

∣∣∣
e

≤ C

(
∑

K∈T h

∑

e∈EK

1

|e|
|û − u|2e

)1/2(∑

K∈T h

∑

e∈EK

|e|
∣∣∣∇(v|K)

∣∣∣
2

e

)1/2

.
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Using (23), we obtain

∑

K∈T h

|([D]RK(û − u), RK(v̂ − v))K |(92)

≤ α
∑

K∈T h

‖RK(û − u)‖K ‖RK(v̂ − v)‖K

≤ C
∑

K∈T h

(
∑

e∈EK

1

|e|
|û − u|2e

)1/2(∑

e∈EK

1

|e|
|v̂ − v|2e

)1/2

≤ C

(
∑

K∈T h

∑

e∈EK

1

|e|
|û − u|2e

)1/2(∑

K∈T h

∑

e∈EK

1

|e|
|v̂ − v|2e

)1/2

.

In addition, the Schwarz inequality gives us

(93) |Ih({uh, ûh}, {vh, v̂h})| ≤ Ih({uh, ûh})Ih({vh, v̂h}).

From (14), (88), (91), (92), (93), and (86), we obtain (87).

Lemma 6 (Local inverse inequality) There exists a positive constant C such that
for all h ∈ (0, h̄], K ∈ T h, e ∈ EK, and v ∈ Pk(K),

(94) |e|1/2|v|e ≤ C‖v‖K ,

where C is independent of h, K, e, and v.

Proof. Let
{
T̃ h
}

0<h≤h̄
be the family of triangulations that is constructed from {T h}0<h≤h̄

as in Section 4.2. For each K ∈ T h and e ∈ EK , there exists a K̃ ∈ T̃ h such that
K̃ ⊂ K and e ∈ E

eK . We choose a reference triangle K̂. Then there exists an affine map

F eK : K̂ −→ K̃ such that F eK

(
K̂
)

= K̃. For every K̃ ∈ T̃ h, e ∈ E
eK , and v ∈ Pk(K̃),

we have

(95) |v|2e =

∫

e

|v|2 ds ≤ ‖v‖2
C0(e)|e| ≤ ‖v‖2

C0( eK)
|e| = ‖v ◦ F eK‖2

C0( bK)
|e|.

Since norms ‖·‖
C0( bK)

and ‖·‖ bK are equivalent on Pk(K̂), there exists a positive constant

C such that

(96) ‖v ◦ F eK‖
C0( bK)

≤ C‖v ◦ F eK‖ bK = C
(∣∣∣K̂

∣∣∣ /
∣∣∣K̃
∣∣∣
)1/2

‖v‖ eK.

Further, since
{
T̃ h
}

0<h≤h̄
is satisfies the minimum angle condition, there exists a

positive constant C such that for all h ∈ (0, h̄], K̃ ∈ T̃ h, and e ∈ E
eK ,

(97) |e|2|K̃|−1 ≤ C

where C is independent of h, K̃, and e. From (95)–(97),

|e|1/2|v|e ≤ C
(∣∣∣K̂

∣∣∣ /
∣∣∣K̃
∣∣∣
)1/2

|e|‖v‖ eK ≤ C‖v‖K .

This shows that (94) holds.
21



Lemma 7 The semi-norm ||| · |||h is equivalent to the semi-norm | · |h on V h
k .

Proof. It is trivial that

|{vh, v̂h}|h ≤ ||| {vh, v̂h} |||h ∀ {vh, v̂h} ∈ V h
k .

So we will show that there exists a positive constant C such that

(98) ||| {vh, v̂h} |||h ≤ C |{vh, v̂h}|h ∀ {vh, v̂h} ∈ V h
k .

For this purpose it is sufficient to estimate the term
∑

K∈T h

∑

e∈EK

|e|
∣∣∣∇(vh|K)

∣∣∣
2

e
. For each

h ∈ (0, h̄], K ∈ T h, e ∈ EK , and vh ∈
(
Uh

k

)2
, we have, by Lemma 6,

|e|
∣∣∣∇(vh|K)

∣∣∣
2

e
= |e|

2∑

i,j=1

∣∣∣∣
∂vhj

∂xi

∣∣∣∣
2

e

≤ C

2∑

i,j=1

∥∥∥∥
∂vhj

∂xi

∥∥∥∥
2

K

(by Lemma 6)

= C
∥∥∥∇(vh|K)

∥∥∥
2

K
.

Thus it follows from (H2) that

∑

e∈EK

|e|
∣∣∣∇(vh|K)

∣∣∣
2

e
≤ CM

∥∥∥∇(vh|K)
∥∥∥

2

K
,

and hence ∑

K∈T h

∑

e∈EK

|e|
∣∣∣∇(vh|K)

∣∣∣
2

e
≤ CM ‖∇hvh‖

2
Ω .

Thus we see that (98) holds.

Proposition 3 (Coreciveness) There exists a positive constant C such that for all
h ∈ (0, h̄], for all η > 0, and for all {vh, v̂h} ∈ V h

k ,

(99) aη
h({vh, v̂h}) ≥ C min{1, η}|||{vh, v̂h}|||h,

where C is independent of h, η, and {vh, v̂h}.

Proof. Proposition 3 follows directly from Proposition 1 and Lemma 7.
We find from the boundedness (87) and coreciveness (99) of aη

h that for each η > 0,
discrete problem (16) has a unique solution {uh, ûh} ∈ V h

k,D for every f ∈ L2(Ω)2 and
σn ∈ L2(∂ΩN )2.

6. A priori error estimates
According to Kikuchi [9], if a family

{
T h
}

0<h≤h̄
of partitions of Ω satisfies condi-

tions (H1)–(H4), then there exists a positive constant C such that for every v ∈[
H1

D(Ω) ∩ H3/2+γ(Ω)
]2

(0 < γ ≤ 1/2) we have a sequence {vh, v̂h} ∈ V h
k,D (0 < h ≤ h̄)

which satisfies

(100) |||{v, v̂} − {vh, v̂h}|||h ≤ Ch
1

2
+γ‖v‖ 3

2
+γ,Ω,
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where v̂ := v|Γh and C is independent of v and h.
As mentioned above, we have the consistency (15) of discrete problem (16) and the

boundedness (87) and coreciveness (99) of aη
h. Hence we can obtain the following a

priori error estimates by a standard method [5, 12, 13].

Theorem 2 Let u and {uh, ûh} be the solutions of problems (4) and (16), respectively.
Assume that u ∈ H3/2+γ(Ω)2 (0 < γ ≤ 1/2). Then we have

(101) |||{u, û} − {uh, ûh}|||h ≤ C max{η−1, η}h
1

2
+γ‖u‖ 3

2
+γ,Ω,

where û := u|Γh, and C is a positive constant independent of h, η, u, and {uh, ûh}.

Proof. Let eh := u−uh and êh := û− ûh. The consistency (15) implies the Galerkin
orthogonality:

(102) aη
h ({eh, êh} , {vh, v̂h}) = 0 ∀ {vh, v̂h} ∈ V h

k,D.

Let {vh, v̂h} be an arbitrary element of V h
k,D. The triangle inequality yields

(103) ||| {eh, êh} |||h ≤ ||| {u, û} − {vh, v̂h} |||h + ||| {vh, v̂h} − {uh, ûh} |||h.

We have

||| {vh, v̂h} − {uh, ûh} |||
2
h(104)

≤ C max{1, η−1}aη
h({vh, v̂h} − {uh, ûh} , {vh, v̂h} − {uh, ûh})

(by the coreciveness (99))

≤ C max{1, η−1}aη
h({vh, v̂h} − {u, û} , {vh, v̂h} − {uh, ûh})

(by the Galerkin orthogonality (102))

≤ C max{η−1, η}||| {u, û} − {vh, v̂h} |||h||| {vh, v̂h} − {uh, ûh} |||h

(by the boundedness (87)) .

It follows from (103) and (104) that

(105) ||| {eh, êh} |||h ≤ C max{η−1, η}||| {u, û} − {vh, v̂h} |||h.

Form (105) and (100), we obtain (101).
We now consider the following problem with the homogeneous Neumann boundary

condition on ∂ΩN : for every f ∈ L2(Ω)2, find w ∈ H1
D(Ω)2 such that

(106) a(v, w) = (v, f )Ω ∀v ∈ H1
D(Ω)2.

If the solution w of (106) belongs to H2(Ω)2 for every f ∈ L2(Ω)2, then the closed
graph theorem implies that there exists a positive constant C such that for every
f ∈ L2(Ω)2,

(107) ‖w‖2,Ω ≤ C‖f‖Ω.

The Aubin–Nitsche duality argument derives the following L2-error estimate [5, 12,
13].
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Theorem 3 Let u and {uh, ûh} be the solutions of problems (4) and (16), respectively.
Assume that u ∈ H3/2+γ(Ω)2 (0 < γ ≤ 1/2) and that the solution of (106) belongs to
H2(Ω)2 for every f ∈ L2(Ω)2. Then we have

(108) ‖u − uh‖Ω ≤ C max{η−1, η2}h
3

2
+γ‖u‖ 3

2
+γ,Ω,

where C is a positive constant independent of h, η, u, and {uh, ûh}.

Proof. Let w ∈ H1
D(Ω) be the solution of (106) where f := eh. We have

‖eh‖
2
Ω = aη

h({eh, êh} , {w, ŵ}) (by the consistency (15))

= aη
h({eh, êh} , {w, ŵ} − {χh, χ̂h})

∀ {χh, χ̂h} ∈ V h
k,D (by the Galerkin orthogonality (102))

≤ C max{1, η}||| {eh, êh} |||h||| {w, ŵ} − {χh, χ̂h} |||h

(by the boundedness (87))

≤ max{η−1, η2}h
3

2
+γ‖u‖ 3

2
+γ,Ω‖w‖2,Ω (by Theorem 2 and (100))

≤ max{η−1, η2}h
3

2
+γ‖u‖ 3

2
+γ,Ω‖eh‖Ω (by (107)) .

This implies that (108) holds.
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A. A formulation in Kikuchi–Ishii–Oikawa [10]
Subtracting the lifting term from aη

h gives the following bilinear form:

bη
h({u, û}, {v, v̂}) := aη

h({u, û}, {v, v̂}) − d(Rh(û − u), Rh(v̂ − v)).

Kikuchi–Ishii–Oikawa [10] used the bilinear from bη
h to formulate the following discrete

problem: find {uh, ûh} ∈ V h
k,D such that

(109) bη
h({uh, ûh} , {vh, v̂h}) = Fh({vh, v̂h}) ∀ {vh, v̂h} ∈ V h

k,D.

This discrete problem is also consistent, that is, the exact solution {u, û} satisfies

bη
h({u, û}, {v, v̂}) = Fh({v, v̂})

for all {v, v̂} ∈ H
3

2
+γ(T h)2 × L2

D(Γh)2 (γ > 0).
Boundedness holds for bη

h as well.

Proposition 4 (Boundedness) There exists a positive constant C such that for all

h ∈ (0, h̄], for all η > 0, and for all {u, û}, {v, v̂} ∈ H
3

2
+γ(T h)2 × L2(Γh)2 (γ > 0),

bη
h({u, û}, {v, v̂}) ≤ C max{1, η}|||{u, û}|||h|||{v, v̂}|||h,

where C is independent of h, η, {u, û}, and {v, v̂}.

We can show the coreciveness for bη
h.

Proposition 5 (Coreciveness) There exists positive constants η0 and C such that
for all h ∈ (0, h̄], for all η ≥ η0, and for all {vh, v̂h} ∈ V h

k ,

(110) bη
h({vh, v̂h}) ≥ C|||{vh, v̂h}|||h,

where η0 and C are independent of h, η, {vh, v̂h}.

Proof. We have, for all {vh, v̂h} ∈ V h
k ,

b0
h({vh, v̂h})

2 + ηIh({vh, v̂h})
2

= a1
h({vh, v̂h})

2 + (η − 1)Ih({vh, v̂h})
2 − d(Rh(v̂h − vh))

2 (by (27))

≥ C|||{vh, v̂h}|||
2
h + (η − 1 − αC2

r )Ih({vh, v̂h})
2.

Thus if η ≥ 1 + αC2
r =: η0 then (110) holds.

Theorem 4 Let u and {uh, ûh} be the solutions of problems (4) and (109), respec-
tively. Assume that u ∈ H3/2+γ(Ω)2 (0 < γ ≤ 1/2) and that the solution of (106)
belongs to H2(Ω)2 for every f ∈ L2(Ω)2. Then there exist positive constants η0 and C
such that for all h ∈ (0, h̄] and for all η ≥ η0,

|||{u, û} − {uh, ûh}|||h ≤ C max{1, η}h
1

2
+γ‖u‖ 3

2
+γ,Ω,

‖u − uh‖Ω ≤ C max{1, η2}h
3

2
+γ‖u‖ 3

2
+γ,Ω,

where η0 and C are independent of h, η, u, and {uh, ûh}.

Proof. Theorem 4 is proved in exactly the same way as in Theorems 2 and 3.
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