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Abstract

This paper provides an explicit asset-pricing formula in a continuous-time general-

equilibrium exchange economy in the presence of moral hazard. Specifically, it solves

an optimal consumption/wealth allocation problem of a representative lender in finan-

cial markets under regular market risk and rare-event risk when an endowment process

is subject to a firm manager’s moral hazard. Consequently, it shows that, under the

moral-hazard problem, a positive premium is stipulated on a riskless rate in market

equilibrium – call it a moral-hazard premium – due to the necessity to give the manager

an incentive to avoid his opportunistic misbehavior.
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1 Introduction

It is well known that moral hazard is one of the most serious problems in finance. There exists

a huge literature on moral hazard in corporate finance (e.g. Tirole (2006, Section 3.2)). In a

typical moral-hazard model, the probability of success of a firm’s project depends on its manager’s

hidden effort. An investor then needs to give the manager an incentive to avoid his opportunistic

misbehavior. Thus the moral hazard distorts optimal risk sharing and allocation. The distortion

should then influence the valuation of not only the firm but also all other financial assets, because

it twists the investor’s pricing kernel as well as the consumption/wealth allocation.
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comments.
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Surprisingly, however, there have been few studies of such valuation of moral hazard in asset

pricing and financial engineering (e.g. fixed-income investment, the term structure of interest rates,

corporate risk management, and actuarial insurance). A notable exception is Ou-Yang (2005),

who studies equilibrium asset pricing in the presence of moral hazard on the assumption of the

exponential utility function and an exogenous constant riskless rate. Still, Ou-Yang (2005, p.1283)

himself discusses the importance of incorporating more general utility functions such as the power

utility function. In addition, the assumption of the exogenous riskless rate seems to have limited

its applicability to financial practices. Thus, there has been a wide gap in the research of moral

hazard between corporate finance and asset pricing/financial engineering.

The purpose of this paper is to fill the gap by (1) providing an explicit asset-pricing formula

on the assumption of the power utility function and an endogenous riskless rate in the presence of

moral hazard and (2) making clear the structural effect of moral hazard on asset prices, especially on

riskless rate. Specifically, we incorporate moral hazard into a continuous-time general-equilibrium

exchange economy.1 This paper solves an optimal consumption/wealth allocation problem of a

representative lender in financial markets under two types of risk, i.e., regular market risk and

rare-event risk, when an endowment process is subject to a firm manager’s moral hazard.

More specifically, there exist not only a representative investor but also a representative firm

(i.e., firm manager) over [0, T ].2 The firm produces a single non-storable consumption good over

time. No productive resources are utilized: the production is an endowment. However, the firm can

control the probability measure by incurring effort costs. The endowment process is then subject

to a dynamic moral-hazard problem. The lender controls ex post optimally a consumption/wealth

allocation while having access to financial markets, designing ex ante optimally a contract with the

firm so as for the manager not to expect better rewards from his opportunistic misbehavior.

Still, this paper is not a generalization of Ou-Yang (2005), but rather is complementary to it.

Mathematically, the investor’s optimization problem is subject to two constraints on states: an

incentive constraint provoked by moral hazard and the firm’s participation constraint. As Yong

and Zhou (1999, p.155) point out, it is very hard, in general, to solve stochastic-control problems

with such state constraints. This model is no exception, i.e., it is hard to obtain a general solution

1As to standard general-equilibrium exchange economies, see e.g. Lucas (1978), Breeden (1979),
Cox et al. (1985), Dana and Jeanblanc (2007, Ch.7).

2We could construct a model of heterogeneous firms and then solve an aggregation problem in
the presence of moral hazard. That will be our next research topic.
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not only analytically but also numerically. It implies that some approximations are necessary for

explicit valuation of moral hazard in financial practices. To obtain an explicit (closed-form) solution

in this paper, we restrict the contract form to a stationary linear contract, which means that it is

linear (i.e., proportional to the production) at a constant (i.e, time-independent) rate of change,

in exchange for generalizing the utility function into the power utility one and endogenizing the

riskless rate, as compared to Ou-Yang (2005).

This paper consequently provides an explicit asset-pricing formula under the moral-hazard

problem and obtains equilibrium state prices (in particular, equilibrium riskless rate and market

prices of diffusive risk and jump risk). It then makes clear the structural effects of moral hazard

on equilibrium asset prices under the two types of risk. Most notably, it shows that, under the

moral-hazard problem, a positive premium is stipulated on a riskless rate in market equilibrium –

call it a moral-hazard premium – because the lender demands compensation for a loss caused due to

the necessity to give the firm an incentive to avoid his opportunistic misbehavior. The premium is

time-varying, due to the optimal dynamic behavior of the firm’s effort. It implies that the risk-free

rate puzzle, explored first by Weil (1989), is more serious in the presence of moral hazard.3

Moreover, the explicit result could be used as a benchmark for approximating numerically gen-

eral solutions under more general contract forms, e.g. via the Taylor expansion method, in future.

We can conjecture that the linearity of the contract is not quite restrictive in optimum because

the whole system of equations is linear in this model. Based on the conjecture, the equilibrium

market prices of diffusive risk and jump risk obtained under the stationary linear contract hold

true for the more general contract forms as well. So does the premium. However, the stationarity

(i.e., the constant sharing ratio) may not be optimal for them. If the sharing ratio of the firm is

decreasing (increasing) in time, then the moral-hazard premium is raised (lowered), because the

marginal utility of the investor is decreasing (increasing).

This paper is most closely related to Cvitanić and Zhang (2007) in the rapidly growing literature

on continuous-time moral hazard.4 Both papers study optimal contracting on the assumption of

more general utility functions than the exponential one.5 However, this paper extends Cvitanić

and Zhang (2007)’s bilateral optimal contracting model into a general-equilibrium model where the

3Note, however, that Weil (1989) assumes recursive utility in contrast to our paper.
4E.g., Holmström and Milgrom (1987), Schättler and Sung (1993), Sannikov (2008). As to a

survey of the literature, see the book of Cvitanić and Zhang (2013).
5Cvitanić and Zhang (2007) examine the problem of adverse selection as well.
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lender has access to the financial markets.6

This paper also has several technological departures from Cvitanić and Zhang (2007). To draw

asset-pricing implications, we assume that the consumption takes place all over [0, T ], whereas they

assume that the players consume only at the terminal point T . Also, this paper assumes not only

Brownian motions as regular market risk but also Poisson processes as rare-event risk, whereas

they assume only a Brownian motion.

Furthermore, more importantly, this model assumes that the firm controls directly the prob-

ability measure, in the spirit of standard discrete-time moral-hazard models (e.g., Tirole (2007,

Section 3.2)). In contrast, Cvitanić and Zhang (2007) presume that the agent controls the drift

rate based on the information set generated only by a history of the endowment, neither by a

history of his own observable true shocks nor of his efforts.7 In other words, in their paper, the

agent controls the drift rate while continuing to forget how he has controlled it and has suffered

the true shocks until then. The presumption seems irrelevant in practice. This model avoids the

irrelevance by assuming the firm’s control of the probability measure.

Also, this paper formulates the effort cost as relative entropy. The relative entropy is a measure

of statistical discrimination between the original measure and the controlled probability measure,

and stands for a ‘distance’ between the two measures.8 It has been lately used as a cost of controlling

the probability measure in economics and finance.9 The relative entropy is a good measure to gauge

the firm’s effort cost. This formulation is tractable as there exists the rare-event risk as well.10

The rest of this paper is organized as follows. Next section defines the environment of this model.

Section 3 gives a formal representation of the firm’s and the lender’s optimization. Section 4 defines

market equilibrium and characterizes it in a closed form explicitly. Section 5 examines equilibrium

asset prices and draws asset-pricing implications. Final section concludes.

6Ou-Yang (2005) extends the optimal-contracting model with the exponential utility function
(e.g., Holmström and Milgrom (1987), Schättler and Sung (1993)) to an asset-pricing model.

7Cvitanić and Zhang (2007) solve the optimal contracting problem in the weak formulation
on the assumption of the firm’s drift control. This paper solves it in the weak formulation, but
assumes the firm’s control of the probability measure. On the other hand, the paper of Nakamura
and Takaoka (2013) solves the problem in the strong formulation, where the information set is
generated by a history of an agent’s efforts as well as a history of true shocks, although it restricts
the contract function to being almost everywhere differentiable.

8See e.g. Cover and Thomas (2006, p.18) in the statistics literature.
9See e.g. Hansen and Sargent (2007), Hansen et al. (2006), Sims (2003) in economics. Also, in

mathematical finance, Delbaen et al. (2002) use it as a penalty in hedging contingent claims.
10For more details, see e.g. a companion work of this current paper, namely Misumi et al. (2013).
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2 Environment

2.1 Players and filtered probability space

We consider a dynamic stochastic economy with two players: a representative firm manager (simply

called a firm) and a representative investor on a time interval [0, T ] for a finite time T > 0. The

firm and the investor are indexed by player 1 and player 2, respectively. For convenience, we will

use female pronouns for the investor, and male ones for the firm.

Define a filtered probability space (Ω,F ,F = {F(t)}0≤t≤T ,P). {B1(t), · · · , Bn(t)}0≤t≤T are n

independent one-dimensional standard F-Brownian motions on the probability space, i.e., for any

t, s satisfying 0 ≤ t ≤ s, Bj(s) − Bj(t) is independent of F(t) and Bj(0) = 0 for j = 1, · · · , n.

{N1(t), · · · , Nm(t)}0≤t≤T are m independent Poisson processes, each of which is characterized

by its intensity λi > 0 for i = 1, · · · ,m. Let the compensated Poisson process be denoted

by Mi(t) := Ni(t) − λit, which is a P-martingale. The Poisson processes are independent of

{Bj(t); j = 1, · · · , n}0≤t≤T as well. The filtration F is generated by {Bj(t); j = 1, · · · , n}0≤t≤T

and {Ni(t); i = 1, · · · ,m}0≤t≤T . For notational convenience, we may also write an n dimensional

process B(t) := (B1(t), · · · , Bn(t))
⊤, an m dimensional process N(t) := (N1(t), · · · , Nm(t))⊤, and

an m dimensional process M(t) := (M1(t), · · · ,Mm(t))⊤.

Define a measure Q that is absolutely continuous w.r.t. P, written as Q ≪ P, i.e., P(A) = 0

implies Q(A) = 0 for A ∈ F . Define also the Radon-Nikodym derivative process as

Z(t) :=
dQ

dP

∣∣∣∣
F(t)

= EP
t [
dQ

dP
].

By the Martingale Representation Theorem (cf. Theorem 5.43 of Medvegyev (2007)), there exist

F-predicable processes θj and αi ≥ −1, where
∫ T

0 (θj(t))
2 dt < ∞ and

∫ T

0 αi(t) dt < ∞, for all

i = 1, · · · ,m and all j = 1, · · · , n such that

dZ(t) = Z(t−)
{ n∑

j=1

θj(t) dBj(t) +

m∑

i=1

αi(t) dMi(t)
}
. (2.1)

Note that, once Z(τ) = 0 at some time τ due to a jump, Z(t) = 0 for t ≥ τ . And, for each

j = 1, · · · , n,

B̃j(t) := Bj(t)−

∫ t

0
θj(s) ds (2.2)
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is a Q-Brownian motion, and for each i = 1, · · · ,m,

M̃i(t) := Ni(t)−

∫ t

0
λ̃i(s) ds (2.3)

is a Q-(local) martingale where λ̃i(s) := λi{αi(s) + 1} (cf. Theorem 41 of Protter (2010, Ch.III)).

Note that B̃j(t) and M̃i(t) (or Ni(t)) are uncorrelated instantaneously for any i, j, i.e., the quadratic

variations dB̃j(t)·dNi(t) = 0 and dB̃j(t)·dM̃i(t) = 0 for any i, j, but are not necessarily independent

under Q, whereas Bj(t) and Mi(t) (or Ni(t)) are independent under P for any i, j.

Applying the Itô’s formula to Eq.(2.1) (see e.g. T3 Theorem of Brémaud (1981, p.166) and

Theorem 11.6.9 of Shreve (2004, p.503)),

Z(t) =

n∏

j=1

exp

{∫ t

0
θj(s) dBj(s)−

1

2

∫ t

0
(θj(s))

2 ds

}
·

m∏

i=1

exp




∑

0<s≤t

log

(
λ̃i(s)

λi

)
∆Ni(s) +

∫ t

0
(λi − λ̃i(s)) ds



 . (2.4)

2.2 Production

The firm produces a single non-storable consumption good over time. No productive resources are

utilized: the production is an endowment. The endowment process, denoted by X, is characterized

by the following stochastic differential equation (SDE):

dX(t) = X(t−) dG(t)

:= X(t−)
(
µG dt+

n∑

j=1

σG
j dBj(t) +

m∑

i=1

zGi dMi(t)
)
, X(0) = x0 > 0 (2.5)

where dG denotes the rate of endowment growth (i.e., GDP growth), µG, σG
j , z

G
i ∀ i, j are constants,

σG
j > 0∀ j, −1 < zGi < 0∀ i, and zGi1 6= zGi2 if i1 6= i2. We may also write an n dimensional row

vector σG := (σG
1 , · · · , σ

G
n ) and an m dimensional row vector zG := (zG1 , · · · , z

G
m). In financial

terms, {Bj ; j = 1, · · · , n} stands for regular market (i.e., diffusive) risk and {Ni; i = 1, · · · ,m}

stands for rare-event (i.e., jump) risk. For each i = 1, · · · ,m, zGi stands for the jump size of Ni,

and −1 < zGi < 0 means that the jump causes a loss.
∑m

i=1 z
G
i Ni can be interpreted as a mixed

Poisson process with its intensity
∑m

i=1 λi, for which process λi∑m
i=1 λi

stands for the probability of

having the jump size zGi when a jump occurs.
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2.3 Moral hazard

We assume that the firm can control the probability measure so as to maximize his own expected

payoff, in the spirit of the standard moral-hazard literature in corporate finance (see e.g. Tirole

(2006, Section 3.2)). More specifically, P is the original probability measure, that is, the measure

when the firm would not control it – we may also call it the reference measure. The firm changes

the probability measure from P into Q such that Q ≪ P.11 Assume that P is the public information,

and that the investor knows the fact that Q is absolutely continuous w.r.t P, but cannot observe

Q directly, i.e., Q is the private information of the firm.

We also assume that the firm incurs a utility cost when controlling the probability measure.

The cost is represented by relative entropy, denoted by H(Q||P),12 which is defined as:

H(Q ||P) := EP

[
dQ

dP

(
log

dQ

dP

)
1{dQ

dP
>0}

]

= EQ

[(
log

dQ

dP

)
1{dQ

dP
>0}

]
= EQ

[
log

dQ

dP

]
.

Assume that H(Q ||P) < ∞.13 Roughly speaking, the relative entropy is a measure of the distance

between the probability measures P and Q.14 From a statistical viewpoint, it represents a measure

of the type-I error of rejecting the true probability measure Q and, instead, assuming P incorrectly.

That is, it stands for the statistical inefficiency of assuming that the probability measure is P when

the true measure is Q. A low level of the relative entropy means that Q and P are not so distant as

to significantly discriminate P against Q. Thus, in this model, the relative entropy means how far

the true probability measure Q is distorted from the reference measure P. The effort cost impedes

the firm’s adopting the probability measure far away from P. As we will show below, due to this

11Under the absolute-continuity restriction, zero probability is necessarily assigned, under Q, to
the state to which zero probability is assigned under P. In other words, this model does not look
at the states that are supposed not to occur under the reference measure P.

12This formulation of moral hazard is borrowed basically from a companion work of this paper,
namely Misumi et al. (2013).

13Note that this finiteness assumption is imposed for removing the indeterminacy of the firm’s
optimal expected utility defined in Eq.(3.1) below.

14The relative entropy is always non-negative and is zero if and only if Q = P. Strictly speaking,
it is not a true distance because neither the symmetry nor the triangle inequality is satisfied.
However, it is well known that it is useful to regard the relative entropy as a distance between two
probability measures. See e.g. Cover and Thomas (2006, p.18) in the statistics literature. The
relative entropy has been lately used as a cost of controlling probability measures in the economics
literature. See e.g. Hansen and Sargent (2007), Hansen et al. (2006), Sims (2003). Also, Delbaen
et al. (2002) use it as a penalty in hedging contingent claims in the finance literature.
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cost, the investor can infer the true probability measure Q, although she cannot observe it directly.

In this framework, from Eq.(2.2), Eq.(2.3) and Eq.(2.4), we can characterize the relative entropy

by using θj and αi for all i, j as follows:

H(Q ||P) = EQ

[
log

dQ

dP

]
= EQ



∑n

j=1

∫ T

0 θj(s) dB(s)− 1
2

∫ T

0 (θj(s))
2 ds+

∑m
i=1

∫ T

0

{
λ̃i(s) log

(
λ̃i(s)
λi

)
+ (λi − λ̃i(s))

}
ds




= EQ




n∑

j=1

∫ T

0

(θj(s))
2

2
ds+

m∑

i=1

∫ T

0

{
λ̃i(s) log

(
λ̃i(s)

λi

)
+ (λi − λ̃i(s))

}
ds


 .(2.6)

Recall that λ̃i(s)
λi

= αi(s) + 1. If there are no jump terms, H(Q ||P) = EQ
[∑n

j=1
1
2

∫ T

0 (θj(s))
2 ds

]
.

The second term inside the expectation of Eq.(2.6) corresponds to the jump terms.

There is a caveat. In contrast to Cvitanić and Zhang (2007), this paper does not assume that

the firm controls directly the drift rate θj and the jump intensity λ̃i for each i, j. θj and αi for

each i, j are adapted to F, not to the filtration generated by the controlled B̃j(t) and M̃i(t) for all

i, j, in the weak formulation.15 If we assume that the firm controls θj and αi for each i, j, then the

controls would be undertaken based on the information set generated only by X, which continues

to lose the information of a history of the controls and the true shocks over time. It would seem

irrelevant in practice.

2.4 Consumption good

The players consume the consumption good at each instant over [0, T ] by sharing the produced

consumption good. Let S = {S(t)}0≤t≤T and C = {C(t)}0≤t≤T denote the consumption pro-

cesses of the firm and the investor, respectively. Let H denote the Hilbert space of all R-valued

adapted processes Y such that EP
[∫ T

0 Y (t)2 dt+ Y (T )2
]
< ∞ with the inner product (Y |Z) :=

EP
[∫ T

0 Y (t)Z(t) dt+ Y (T )Z(T )
]
for Y,Z ∈ H. H+ denotes the set of all non-negative processes in

H. C,S are in H+. Also, the endowment process X characterized by Eq.(2.5) is in H+. Due to the

non-storability, the terminal stock levels of the consumptions are zeros, i.e., C(T ) = 0, S(T ) = 0.

The good is shared according to terms of a contract – call S a contract or a payment rule. S is

the firm’s consumption, while C is the investor’s one out of her allocation X−S. We will see below

15Nakamura and Takaoka (2013) generalize the information set so as to be generated by a history
of an agent’s efforts as well as a history of true shocks. That paper then solves the optimization
problem in the strong formulation, rather than in the weak one.
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that, by designing the payment structure properly, the lender can control indirectly the probability

measure Q that is controlled directly by the firm. The investor offers a menu of contract payoffs

{S(t)}0≤t≤T to the firm ex ante, and the firm then decides whether or not to accept it at time 0.

We will specify the detailed form of the contract below.

2.5 Financial markets

Financial markets are accessible only to the investor, not to the firm. There are two types of

financial securities in the markets: a riskless asset and d risky assets. The return process of the

riskless asset with its price {P0(t)}0≤t≤T is characterized by:

dP0(t)

P0(t)
= r(t) dt

where r(t) is the riskless rate and is determined endogenously in the markets. This model assumes

that r(t) can be negative and, in addition,
∫ T

0 |r(t)|dt < ∞ a.s..

The excess returns of the risky assets, denoted by d-dimensional dR, are characterized by:

dR(t) = µR dt+
n∑

j=1

σR
j dBj(t) +

m∑

i=1

zRi dMi(t)

where the elements of µR ∈ Rd, σR
j ∈ Rd and zRi ∈ Rd ∀ i, j are constants. In particular, the

elements of σR
j > 0∀ j, and the elements of zRi > −1∀ i. We may also write a (d×n)-matrix σR :=

(σR
1 , · · · , σ

R
n ) and a (d×m)-matrix zR := (zR1 , · · · , z

R
m).

The investor has initial funds W (0) = w0 = 0 at time 0 and makes a financial portfolio among

the financial securities dynamically over [0, T ]. This model presumes that the representative investor

can take non-zero positions of the financial securities in off-equilibrium, but takes zero positions

in equilibrium. Also, to make the price process well-defined, this model assumes that the wealth

process can be negative, as in Cox et al. (1985).16 The portfolio ratio on the risky assets is denoted

by an Rd-valued predictable process β such that:

Definition 2.1 Define the set of β as B such that B is the set of F-predictable processes β satisfying
∫ T

0 |β(t)|2 dt < +∞ a.s. and β(t)⊤zRi ≥ −1, ∀ i.

16In contrast to Cox et al. (1985), there exist negative proportional jumps in this model. When
a jump occurs for negative wealth, the wealth-level improves. This seems inconceivable. However,
such negative wealth never takes places in equilibrium.
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The residual is invested in the riskless asset. Thus the wealth process W is characterized by

dW (t) = W (t−)r(t) dt+W (t−)β(t)
⊤ dR(t) +

(
X(t)− C(t)− S(t)

)
dt, W (0) = w0. (2.7)

The wealth is storable whereas the consumption good is non-storable. Thus the last term
(
X(t)−

C(t)−S(t)
)
on the right-hand side of Eq.(2.7) is the current value of the saving of the consumption

good in the future spot market. It means that the term can be negative: the investor can borrow

from the markets. In equilibrium, however, all the consumption good is used up, and thus the

equilibrium saving is zero in the financial markets.

Since µR, σR, zR are constants and
∫ T

0 |β(t)|2 dt < +∞ a.s. due to Definition 2.1,

∫ T

0
|β(t)⊤µR|dt < +∞,

∫ T

0
|β(t)⊤σR|2 dt < +∞, and

∫ T

0
|β(t)⊤zRi |dt < +∞∀i, a.s..

Also,

β(t)⊤ dR(t) =
d∑

k=1

βk(t)
(
µR
k dt+

n∑

j=1

σR
k,j dBj(t) +

m∑

i=1

zRk,i dMi(t)
)

=
d∑

k=1

βk(t)µ
R
k dt+

n∑

j=1

{ d∑

k=1

βk(t)σ
R
k,j

}
dBj(t) +

m∑

i=1

{ d∑

k=1

βk(t)z
R
k,i

}
dMi(t).

The condition β(t)⊤zRi ≥ −1∀ i ensures that the wealth does not turn into opposite signs by jumps.

2.6 Utility

The two players rank their own consumption/wealth processes via time-separable utility of con-

sumption, characterized by a common constant instantaneous discount factor δ > 0 and different

instantaneous utility forms of consumption/wealth. Let fk : R++ → R ∪ {−∞} for k ∈ {1, 2} de-

note player k’s instantaneous utility function of his or her own consumption. In particular, we set

f1(x) = a log x for x > 0 and f2(x) =
x1−γ

1−γ
for x > 0 where a, γ are constants and 0 < γ < 1. The

investor’s power utility with 0 < γ < 1 means that she is less risk-averse than the firm. Obviously,

for k = 1, 2, the utility function fk is non-decreasing and concave, and is continuously differentiable

on its effective domain denoted by dom fk := {x ∈ R | fk(x) > −∞}. Also, the investor enjoys a

linear utility of the terminal wealth W (T ) whereas the firm does not receive any utility of wealth.17

17If the financial markets are accessible to the firm, the moral-hazard problem would influence
the firm’s utility via the financial markets as well. With such accessibility, the firm might make
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To define the players’ performance criteria well, we first define mathematical regularities for the

control triples (S,C, β) ∈ H+ ×H+ × B:

Definition 2.2 Define A as the set of the control triples (S,C, β) ∈ H+ ×H+ × B such that

(i) 0 < S(t) ≤ X(t) ∀ [0, T ) a.s. and S(T ) = 0,

(ii) S is of the Markovian form S(t) := s̃(t,X(t)) for some deterministic function s̃. In par-

ticular, we restrict the contract form as follows: for some constant s ∈ (0, 1) ∈ R++,

S(t) = sX(t)∀ t ∈ [0, T ) a.s.. Call it a stationary linear payment rule. Note that it does

not depend on W .

(iii) P[
∫ T

0 e−δu log S(u) du > −∞] > 0,

(iv) 0 < C(t) ≤ X(t) ∀ [0, T ) a.s. and C(T ) = 0,

(v) C is of the Markovian form C(t) := c(t,X(t),W (t)) for some deterministic function c,

(vi) β is of the Markovian form β(t) := b(t,X(t),W (t)) for some deterministic function b,

(vii) The wealth process W , which is generated via Eq.(2.7), satisfies EP[(W (T ))2] < ∞.

Due to the assumption of the Markovian controls, we avoid the measurability problem of the control

functions in dynamic programing (see e.g. Pham (2009, p.42)).

The players’ performance criteria are written as follows. For a controlled probability measure

Q and for a consumption process S(t) > 0 for 0 ≤ t ≤ T , let U1(S; Q) denote the firm’s expected

discounted utility, net of the effort cost:

U1(S; Q) = EQ[

∫ T

0
e−δuf1(S(u)) du]−H(Q ||P). (2.8)

He is exogenously given a reservation utility, denoted by a constant ρ ∈ R, at time 0. If the investor

offers to the firm any lower utility than the reservation utility ρ ex ante, the firm would not take

the offer. To make the contractual relationship viable, we assume

Assumption 2.1 ρ < logEP
[
e
∫ T
0 e−δua logX(u) du

]
.

higher efforts than otherwise, because, by doing so, he would receive higher financial returns.

11



As we will discuss in detail below, if this assumption is not satisfied, the firm has no incentive to

participate in the contact. Let us check the integrability of U1. The process X, characterized by

Eq.(2.5), is integrable. So is S due to Definition 2.2 (i). By the concavity of f1, U1 < +∞. On

the other hand, Definition 2.2 (iii) does not always ensure U1 > −∞. Still, since the firm reserves

ρ ∈ R as an outside option in this model, U1 is well-defined in equilibrium.

Next, we define the investor’s performance criterion. For a given Q, let U2(C,W (T ); Q) denote

the investor’s expected discounted utility. I.e.,

U2(C,W (T ); Q) = EQ

[∫ T

0
e−δuf2(C(u)) du+ e−δTW (T )

]

= EP

[
dQ

dP

{∫ T

0
e−δuf2(C(u)) du+ e−δTW (T )

}]
.

Let us check the integrability of U2. Due to the integrability of X and Definition 2.2 (iv), U2 < +∞.

In addition, since f2 ≥ 0, U2 ≥ 0. Hence, U2 is well-defined.

3 Optimization

3.1 Firm’s optimization

For a contact S ∈ S, we define the firm’s optimal expected utility under the controlled probability

measure Q, denoted by V1, as:

V1 := sup
Q≪P

H(Q||P)<∞

U1 (S; Q) . (3.1)

We obtain the following lemma:

Lemma 3.1 For S ∈ S,

V1 = logEP
[
e
∫ T
0 e−δua logS(u) du

]
. (3.2)

The maximizer, denoted by Q∗, is then characterized by an L2-process:

dQ∗

dP
=

e
∫ T

0
e−δua logS(u) du

EP

[
e
∫ T

0
e−δua logS(u) du

] = e−V1e
∫ T

0
e−δua logS(u) du. (3.3)

12



This result and its variants are known in the fields of operations research and mathematical finance:

for a literature review, see e.g. the first remark in Section 1 of Delbaen et al. (2002). For the sake

of completeness, we present a proof.

Proof: See appendix.

The investor cannot directly observe the true probability measure Q, but can verify the opti-

mal Q∗ by designing the contract to satisfy Eq.(3.3). Thus the investor can implement the optimal

Q∗ by controlling S through Eq.(3.3). To ensure that the firm participates in the contract, the

investor provides him with no lower utility than his reservation utility, i.e.,

V1 ≥ ρ. (3.4)

We call it the participation constraint. From Eq.(3.3) and Eq.(3.4),

dQ∗

dP
= e−V1e

∫ T
0 e−δua logS(u) du ≤ e−ρe

∫ T
0 e−δua logS(u) du (3.5)

with equality if the participation constraint is binding (i.e., V1 = ρ). Eq.(3.5) plays an incentive

constraint in the investor’s optimization, as shown in the next subsection.

3.2 Investor’s optimization

We define the investor’s optimization subject to the firm’s optimization. Specifically, taking as

given the firm’s optimization characterized by Lemma 3.1, the investor optimizes his utility while

controlling Q indirectly by giving the firm the incentive Eq.(3.5). In addition, the investor’s opti-

mization is subject to the firm’s participation constraint Eq.(3.4), i.e., the lender gives the firm no

lower utility than his reservation utility ρ. Let {V2(t)}0≤t≤T denote the process of the investor’s

optimal expected discounted utility. We formulate the investor’s optimization problem with respect

13



to (S,C, β) ∈ A as follows:

V2(0) = sup
(S,C,β)∈A

U2 (C,W (T ) ; Q∗) (3.6)

s.t.

dW (t) = W (t−)r(t) dt+W (t−)β(t)
⊤ dR(t) +

(
X(t)− C(t)− S(t)

)
dt, W (0) = w0,

dR(t) = µR dt+

n∑

j=1

σR
j dBj(t) +

m∑

i=1

zRi dMi(t),

dX(t) = X(t−)
(
µG dt+

n∑

j=1

σG
j dBj(t) +

m∑

i=1

zGi dMi(t)
)
, X(0) = x0,

V1 = logEP
[
e
∫ T
0

e−δua logS(u) du
]
≥ ρ, (from Eq.(3.4))

dQ∗

dP
= e−V1e

∫ T

0
e−δua logS(u) du (from Eq.(3.5))

where U2 (C,W (T ) ; Q∗) = EQ∗

[∫ T

0 e−δu C(u)1−γ

1−γ
du+ e−δTW (T )

]
. Note that S is designed ex ante,

whereas, by contrast, the pair (C, β) is controlled ex post. Due to Eq.(3.5), the investor can take

her expectation under Q∗. Due to Definition 2.2, the integrability is ensured in Eq.(3.6).

Definition 3.1 A control triple (S,C, β) ∈ A is said to be optimal for Eq.(3.6) if (S,C, β) ∈ A is

the maximizer of Eq.(3.6), if any.

From Eq.(3.6), we define the Lagrangian as follows:

sup
(S,C,β)∈A

EQ∗

[∫ T

0
e−δuC(u)1−γ

1− γ
du+ e−δTW (T ) + χ

]
(3.7)

= sup
(S,C,β)∈A

e−V1EP

[
e
∫ T

0
e−δua logS(u) du

(∫ T

0
e−δuC(u)1−γ

1− γ
du+ e−δTW (T ) + χ

)]

s.t. dW (t) = W (t−)r(t) dt+W (t−)β(t)
⊤ dR(t) +

(
X(t) −C(t)− S(t)

)
dt, W (0) = w0,

dR(t) = µR dt+

n∑

j=1

σR
j dBj(t) +

m∑

i=1

zRi dMi(t),

dX(t) = X(t−)
(
µG dt+

n∑

j=1

σG
j dBj(t) +

m∑

i=1

zGi dMi(t)
)
, X(0) = x0

where χ denotes the Lagrangian multiplier associated with the participation constraint Eq.(3.4).
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4 Market equilibrium

4.1 Definition

We define market equilibrium, in which a control triple (S,C, β) is optimal for Eq.(3.6) and the

markets of the good and the financial assets are cleared. We focus on time-consistent market equi-

librium, in that the investor voluntarily commits herself ex post to the ex-ante designed contract S.

Definition 4.1 A control triple (S,C, β) ∈ A is said to be in (time-consistent) market equilibrium

if the following conditions are satisfied:

(i) The control triple (S,C, β) ∈ A is optimal for Eq.(3.6),

(ii) For all t, C(t) = X(t)− S(t),

(iii) For all t, all the elements of β(t) = 0,

4.2 Characterization

It is hard to obtain directly a closed-form solution to the investor’s optimization problem, because

it is subject to two constraints on states: the participation constraint Eq.(3.4) and the incentive

constraint Eq.(3.5). More specifically, due to the incentive constraint Eq.(3.5), the firm’s utility

is embedded in the lender’s utility (i.e., as in the term e−V1) while, at the same time, due to the

participation constraint Eq.(3.4), the Lagrangian multiplier χ is involved in Eq.(3.7).18

To characterize the solution in this paper, we examine a modified version of market equilibrium,

instead of looking directly at the time-consistent one. The modification consists of two steps. First,

we assume that the investor provides the firm with a contract that promises the expected utility

equivalent to his reservation utility ex ante, but does not need to commit herself to the promise ex

post. Precisely, after making the contract with the firm, the lender can revise it ex ante (i.e. before

starting the allocation): Eq.(3.5) holds equality ex ante, whereas Eq.(3.4) is not imposed ex post.

As the second step, we check whether or not the solution at the first step satisfies the participation

constraint. If not, the solution is adjusted to the constraint by controlling the sharing ratio s.

We can characterize the modified equilibrium explicitly in a closed form. This is because, on

the second line of Eq.(3.7), the term e−V1 is replaced with a constant e−ρ and the Lagrangian

multiplier χ is removed. We call the modified equilibrium time-inconsistent market equilibrium.

18As to a general discussion of such mathematical difficulty, see e.g. Yong and Zhou (1999, p.155).
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We give the formal definition of the time-inconsistent market equilibrium. Condition (i) of

Definition 4.1 is replaced by Condition (i)’ as follows:

Definition 4.2 A control triple (S,C, β) ∈ A is said to be in time-inconsistent market equilibrium

if the following conditions are satisfied:

(i)’ The control triple (S,C, β) ∈ A is optimal for Eq.(3.6) except that (1) Eq.(3.5) holds equality

ex ante and (2) the participation constraint Eq.(3.4) is not imposed ex post,

(ii) For all t, C(t) = X(t)− S(t),

(iii) For all t, all the elements of β(t) = 0.

The lender’s optimal utility in the time-inconsistent market equilibrium, denoted by a pro-

cess {V̂2(t)}0≤t≤T , is:

V̂2(0) := sup
(S,C,β)∈A

EP


 e

∫ T

0
e−δua logX(u) du

EP

[
e
∫ T

0
e−δua logX(u) du

]
(∫ T

0
e−δuC(u)1−γ

1− γ
du+ e−δTW (T )

)


= sup
(S,C,β)∈A

e−ρe
∫ T
0 e−δua log sduEP



∫ T

0 e−δuEP
u[e

∫ T
0 e−δua logX(u) du]C(u)1−γ

1−γ
du

+e−δT e
∫ T

0
e−δua logX(u) duW (T )




= sup
(S,C,β)∈A

e−ρ+
(1−e−δT )a log s

δ EP



∫ T

0 e−δuEP
u[e

∫ T
0 e−δua logX(u) du]C(u)1−γ

1−γ
du

+e−δT e
∫ T

0
e−δua logX(u) duW (T )


 (4.1)

s.t. dW (t) = W (t−)r(t) dt+W (t−)β(t)
⊤ dR(t) +

(
X(t)− C(t)− S(t)

)
dt, W (0) = w0,

dR(t) = µR dt+

n∑

j=1

σR
j dBj(t) +

m∑

i=1

zRi dMi(t),

dX(t) = X(t−)
(
µG dt+

n∑

j=1

σG
j dBj(t) +

m∑

i=1

zGi dMi(t)
)
, X(0) = x0.

As defined above, in the time-inconsistent market equilibrium, the participation constraint is sat-

isfied ex ante. Let ŝ denote the sharing rule s when the participation constraint binds ex ante.

Because ρ < logEP
[
e
∫ T
0 e−δua logX(u) du

]
due to Assumption 2.1, there exists ŝ such that

ρ =
(1− e−δT )a log ŝ

δ
+ logEP

[
e
∫ T

0
e−δua logX(u) du

]
.

I.e., ŝ = exp

{
δ

a(1− e−δT )

(
ρ− logEP

[
e
∫ T
0 e−δua logX(u) du

])}
. (4.2)
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logEP
[
e
∫ T

0
e−δua logX(u) du

]
stands for the firm’s optimal utility in the case that he would receive the

whole production over time. If Assumption 2.1 is not satisfied, the firm would not obtain a level of

the reservation utility under the contract even if he receives the whole production over time. Thus

Assumption 2.1 is a necessary condition for making the contractual relationship viable.

We characterize the process of the distorted probability measure. Define a time-t distortion of

the probability measure caused by the endowment process X all over [0, T ] as

Y (t) := EP
t

[
e a

∫ T
0 e−δu logX(u) du

]
. (4.3)

We obtain the following lemma:

Lemma 4.1

Y (t) = exp




a



∫ t

0 e
−δu logX(u) du+ e−δt−e−δT

δ
logX(t)

+e−δt
(
µG − 1

2

∑n
j=1(σ

G
j )

2 −
∑m

i=1 λi

)
1−e−δ(T−t)(1+δ(T−t))

δ2




+
∑n

j=1

(ae−δtσG
j )2

2
1
δ2

∫ T−t

0 (e−δu − e−δ(T−u))2 du

+
∑m

i=1 λi(T − t)(−1 + e−
e−δ(T−t)

δ
log(1+zGi ) 1

T−t

∫ T−t

0 e
e−δu

δ
log(1+zGi ) du)




.

Proof : See appendix.

Plugging Y (0) = EP
[
e
∫ T

0
e−δua logX(u) du

]
into Eq.(4.2),

ŝ = exp





δ
a(1−e−δT )

×



ρ−




a




1−e−δT

δ
log x0

+
(
µG − 1

2

∑n
j=1(σ

G
j )

2 −
∑m

i=1 λi

)
1−e−δT (1+δT )

δ2




+
∑n

j=1

(aσG
j )2

2
1
δ2

∫ T

0 (e−δu − e−δT )2 du

+
∑m

i=1 λiT (−1 + e−
e−δT

δ
log(1+zGi ) 1

T

∫ T

0 e
e−δu

δ
log(1+zGi ) du)











. (4.4)

We next characterize the stochastic differential of Y (t). Note that Y (t) is a martingale.

Lemma 4.2 The martingale Y (t) satisfies

dY (t) = Y (t−)



a

e−δt − e−δT

δ

n∑

j=1

σG
j dBj(t) +

m∑

i=1

(
(1 + zGi )

a e−δt
−e−δT

δ − 1

)
dMi(t)



 .

Proof: See appendix.
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Note that it is because of the assumption of the firm’s log utility function that we have obtained

such explicit characterization of Y in Lemma 4.1 and Lemma 4.2.

We solve Problem (4.1) by using Y as well as X,W as state variables and applying a verifica-

tion theorem for the optimal control problem with the classical Hamilton-Jacobi-Bellman (HJB)

equation (see e.g. Øksendal and Sulem (2007, Theorem 3.1, p.46), Pham (2009, Theorem 3.5.2,

p.47)). For a twice continuously differentiable function h(t,X(t), Y (t),W (t)) ∈ C1,2,2,2, define the

generator of (t,X(t), Y (t),W (t)) as:

LC,βh(t,X(t), Y (t),W (t)) (4.5)

:= ht + µGX(t)hx +
(
rW (t) + β(t)⊤µRW (t) +

(
(1− s)X(t)− C(t)

))
hw

+
1

2

n∑

j=1

{
(σG

j )
2X(t)2hxx + (β(t)⊤σR

j )
2W (t)2hww + (a

e−δt − e−δT

δ
σG
j )

2Y (t)2hyy

}

+

n∑

j=1





(β(t)⊤σR
j σ

G
j )X(t)W (t)hxw + (a e−δt−e−δT

δ
(σG

j )
2)X(t)Y (t)hxy

+(a e−δt−e−δT

δ
β(t)⊤σR

j σ
G
j )Y (t)W (t)hyw





+

m∑

i=1

λi





h(t, (1 + zGi )X(t), (1 + zGi )
a e−δt

−e−δT

δ Y (t), (1 + β(t)⊤zRi )W (t))

−h(t,X(t), Y (t),W (t))





where ht :=
∂h
∂t
, hx := ∂h

∂X(t) , hy := ∂h
∂Y (t) , hw := ∂h

∂W (t) , hxx := ∂2h
∂X(t)2 , hyy := ∂2h

∂Y (t)2 , hww := ∂2h
∂W (t)2 ,

hxy := ∂2h
∂X(t)∂Y (t) , hyw := ∂2h

∂Y (t)∂W (t) and hxw := ∂2h
∂X(t)∂W (t) that are continuous. Note that, in

Eq.(4.5), s is fixed and is not necessarily equal to the ex-ante designed ŝ, because the lender can

break the promise ŝ in the time-inconsistent market equilibrium.

For notational convenience, using Eq.(4.4), define a constant K as

K :=
1

Y (0)
=

1

EP

[
e
∫ T

0
e−δua logX(u) du

] = e−ρ+ (1−e−δT )a log ŝ

δ .

By the verification theorem, if, for J(t,X(t), Y (t),W (t)) ∈ C1,2,2,2, the HJB equation

0 = sup
C(t), β(t)

(
K Y (t)

C(t)1−γ

1− γ
+ LC,βJ(t,X(t), Y (t),W (t))

)
(4.6)

holds under some regularities for a fixed s, then V̂2(t) = J(t,X(t), Y (t),W (t)). It can then be

shown that J(t,X(t), Y (t),W (t)) is strictly increasing and concave in X(t), Y (t),W (t) (see e.g.
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Jarrow and Rosenfeld (1984, p.341)19).

From the HJB equation (4.6), we obtain a necessary and sufficient condition for optimality:

[C(t)] K Y (t)C(t)−γ = Jw > 0, (4.7)

[β(t)] W (t)Jw(µ
R)⊤ +W (t)2Jwwβ(t)

⊤σR(σR)⊤ +W (t)X(t)Jxwσ
G(σR)⊤

+W (t)Y (t)Jwyσ
G(σR)⊤a

e−δt − e−δT

δ
+W (t)Jwλ

⊤(zR)⊤ = 0. (4.8)

Now, we characterize the equilibrium solution. First, we look at the optimal β. Dividing both

sides of Eq.(4.8) by W (t) and taking the limit W (t) → 0 due to the market clearing condition, we

characterize the excess return as follows:

µR + zRλ = −σR(σG)⊤
X(t)Jxw + Y (t)Jwya

e−δt−e−δT

δ

Jw
. (4.9)

Second, we look at the optimal consumption/wealth. From Eq.(4.6), we see that the lower s

is better for the lender so long as the participation constraint is satisfied. Therefore, in optimum,

the participation constraint is binding, i.e., the optimal s is equivalent to the sharing ratio ŝ

characterized by Eq.(4.4). Letting the optimal sharing ratio be denoted by s∗,

s∗ = ŝ. (4.10)

Accordingly, in the remaining, we call both types of market equilibrium simply ‘market equilibrium’

in common. In the market equilibrium, the equilibrium consumption processes of the investor and

the firm, denoted by C∗ and S∗ respectively, are written as: using s∗ defined by Eq.(4.10),

C∗(t) = (1− s∗)X(t), (4.11)

S∗(t) = s∗X(t). (4.12)

Also, the equilibrium wealth, denoted by W ∗, is: W ∗(t) = 0∀ t a.s..

We characterize the investor’s value function in the market equilibrium in a closed form. Since

W ∗(t) = 0∀ t a.s., it is sufficient to consider that the value function is J(t,X(t), Y (t), 0) in the

19The proof is identical to a proof contained in Cox et al. (1985, Lemma 2).
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market equilibrium. As to the generator Eq.(4.5) for h = J , the Jw-term in the market equilibrium is

(
r · 0 + β(t)⊤µR · 0 +

(
(1− s∗)X(t)− C∗(t)

))
Jw(t,X(t), Y (t), 0) = 0.

Let the value function be denoted by J∗(t,X(t), Y (t)) := J(t,X(t), Y (t), 0). From Eq.(4.6), for

x = X(t), y = Y (t),

0 = K(1− s∗)1−γy
x1−γ

1− γ
+ J∗

t + µGxJ∗
x

+
1

2

n∑

j=1

{
(σG

j )
2x2J∗

xx + (a
e−δt − e−δT

δ
σG
j )

2y2J∗
yy

}
+

n∑

j=1

a
e−δt − e−δT

δ
(σG

j )
2xyJ∗

xy

+

m∑

i=1

λi

{
J∗(t, (1 + zGi )x, (1 + zGi )

a e−δt
−e−δT

δ y)− J∗(t, x, y)

}
.

We try J∗(t, x, y) = py x1−γ

1−γ
for some deterministic function of time p = p(t) with p(T ) = 0. Thus,

p′ + pL(t) = −K(1− s∗)1−γ ; p(T ) = 0

where L(t) := (1− γ)µG − (1− γ)σG(σG)⊤
(
γ

2
− a

e−δt − e−δT

δ

)

+
m∑

i=1

λi

{
(1 + zGi )

(1−γ)+a e−δt
−e−δT

δ − 1

}
.

Hence, for some constant C and for L(t) 6= 0,

p(t) = Ce−
∫
L(t) dt −

K(1− s∗)1−γ

L(t)

where

∫
L(t) dt =

(
(1− γ)µG − (1− γ)σG(σG)⊤

(γ
2
+

a

δ
e−δT

)
−

m∑

i=1

λi

)
t

−(1− γ)σG(σG)⊤
a

δ2
e−δt

−
1(

(2− γ) + a e−δt−e−δT

δ

)
ae−δt

m∑

i=1

λi(1 + zGi )
(2−γ)+a e−δt

−e−δT

δ

From p(T ) = 0,

p(t) =
K(1− s∗)1−γ

L(t)




L(t) exp
{
−
∫
L(t) dt

}

L(T ) exp
{
−
( ∫

L(t) dt
)
t=T

} − 1



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where L(T ) = (1− γ)µG −
γ(1 − γ)

2
σG(σG)⊤ +

m∑

i=1

λi

{
(1 + zGi )

1−γ − 1
}
,

(∫
L(t) dt

)
t=T

=

(
(1− γ)µG − (1− γ)σG(σG)⊤

(γ
2
+

a

δ
e−δT

)
−

m∑

i=1

λi

)
T

−(1− γ)σG(σG)⊤
a

δ2
e−δT −

1

(2− γ)ae−δT

m∑

i=1

λi(1 + zGi )
2−γ .

Thus we obtain the value function J∗(t, x, y) explicitly. Also, from Eq.(4.9),

µR + zRλ = −σR(σG)⊤
(
−γ + a

e−δt − e−δT

δ

)
.

5 Equilibrium asset prices

We characterize the behavior of asset prices in the market equilibrium. Since the assets are traded

ex post (i.e., after the contract is made), we consider the equilibrium behavior of asset prices by

taking as given the optimally designed contract S∗ defined by Eq.(4.12). For notational convenience,

define the process of the investor’s consumption/terminal wealth process φ ∈ H+ as

φ(t) :=





C(t) for 0 ≤ t < T

W (T ) for t = T

Since S∗ defined by Eq.(4.12) is independent of W and β, the consumption/wealth process φ is

determined uniquely for each (S∗, C, β) ∈ A and is thus well-defined in A with S∗ given. Let Φ(S∗)

denote the set of (φ, β) that corresponds to (S∗, C, β) ∈ A.

In the following, we will first formalize a state price, which is the price of a security that agrees

to pay one unit of the consumption/wealth φ if a particular time-path ω occurs at a particular

time t in the future and to pay zero unit of it otherwise. Second, we will find optimal controls

(φ, β) ∈ Φ(S∗) – call them ex-post optimal controls– and then obtain an equilibrium state price by

imposing the market-clearing conditions. Finally, we will obtain a riskless rate and market prices

of risk and jump risk in equilibrium.20

20This method is similar to the one in Skiadas (2007). However, there exists two main departures
from that. First, we explore an SDE method, rather than a backward SDE method. Second, this
method deals with jumps.
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5.1 State prices

We give a formal representation of state prices in the financial markets. Define a process Π ∈ H+

for some n dimensional process η and m dimensional process ξ as:

dΠ(t) = Π(t−)
(
− r(t) dt− η(t)⊤ dB(t)− ξ(t)⊤ dM(t)

)
, Π(0) = 1 (5.1)

where η stands for the market price of (diffusive) risk and ξ stands for the market price of jump

risk. Define an (m×m)-matrix Iξ in which its diagonal element xii = ξi for all i = 1, · · · ,m and

the other elements xij = 0 for i, j = 1, · · · ,m and i 6= j.

Definition 5.1 Π is said to be a state price at a pair (φ, β) ∈ Φ(S∗) if, for the pair (φ, β) ∈ Φ(S∗)

and for any h ∈ H such that (φ+ h, β′) ∈ Φ(S∗), (Π|h) ≤ 0.

We put an assumption on the market opportunities as follows.

Assumption 5.1 For the market prices of risk and jump risk η, ξ, the law of one price holds in

the markets. That is,

µR = σRη + zRIξλ.

From Eq.(2.7),

dW (t) = −
(
C(t) + S∗(t)−X(t)−W (t−)r(t)−W (t−)β(t)

⊤µR
)
dt

+W (t−)β(t)
⊤
(
σR dB(t) + zR dM(t)

)
, W (0) = w0.

Thus, by the Itô’s formula,

d(Π(t)W (t)) = W (t−) dΠ(t) + Π(t−) dW (t) + dΠ(t) dW (t)

=





−Π(t−)
(
C(t) + S∗(t)−X(t)

)

+Π(t−)W (t−)β(t)
⊤µR −Π(t−)W (t−)β(t)

⊤σRη(t)





dt

−Π(t−)W (t−)β(t)
⊤zRIξ(t) dN(t) + · · · dB(t) + · · · dM(t).

22



Assumption 5.2 For a pair (φ, β) ∈ Φ(S∗),

EP[sup
t

Π(t)W (t)] < ∞.

Lemma 5.1 Fix S∗ defined by Eq.(4.12). Under Assumption 5.1, Π is a state price at the pair

(φ, β) ∈ Φ(S∗) satisfying Assumption 5.2.

Proof: See appendix.

Note that β does not influence the state price, except via W (T ) indirectly.

5.2 Optimal ex-post consumption/wealth allocation and equilibrium state price

Under the contract S∗ defined by Eq.(4.12), the investor controls her consumption/wealth ex post

optimally while trading the assets. Note that we will show shortly below that this ex-post equilib-

rium is equivalent to the market equilibrium obtained in Section 4.

Let Q̂∗ denote the optimal Q under S = S∗ when Eq.(3.4) binds. From Eq.(3.5),

dQ̂∗

dP
= e−ρe

∫ T
0 e−δua logS∗(u) du = e−ρe

1−e−δT

δ
a log s∗e

∫ T
0 e−δua logX(u) du.

From Eq.(2.9), let {Û2(t)}0≤t≤T denote the investor’s utility process when Eq.(3.4) binds:

Û2(t) := eδtEP
t

[∫ T

t

e−δuEP
u[
dQ̂∗

dP
]
C(u)1−γ

1− γ
du+ e−δT dQ̂∗

dP
W (T )

]

At t = 0, Û2(0) = U2(C,W (T ); Q̂∗) from Eq.(2.9). Also, at t = T , Û2(T ) = W (T ). Since

e−δtÛ2(t)+
∫ t

0 e
−δuEP

u[
dQ̂∗

dP ]C(u)1−γ

1−γ
du = EP

t

[∫ T

0 e−δuEP
u[

dQ̂∗

dP ]C(u)1−γ

1−γ
du+ e−δT dQ̂∗

dP W (T )
]
, it is a mar-

tingale. By the Martingale Representation Theorem (cf. Theorem 5.43 of Medvegyev (2007)), there

exist F-predicable processes Θj and Ξi ≥ −1, where
∫ T

0 (Θj(t))
2 dt < ∞ and

∫ T

0 Ξi(t) dt < ∞, for

all i = 1, · · · ,m and all j = 1, · · · , n such that

e−δtÛ2(t) +

∫ t

0
e−δuEP

u[
dQ̂∗

dP
]
C(u)1−γ

1− γ
du

= EP

[∫ T

0
e−δuEP

u[
dQ̂∗

dP
]
C(u)1−γ

1− γ
du+ e−δT dQ̂∗

dP
W (T )

]

+

∫ T

0

n∑

j=1

Θj(u) dBj(u) +

∫ T

0

m∑

i=1

Ξi(u) dMi(u).
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Thus, correspondingly, there exist F-predicable processes Σ and Γ such that

−δ Û2(t) dt+ dÛ2(t) + EP
t [
dQ̂∗

dP
]
C(t)1−γ

1− γ
dt = Σ(t) dB(t) + Γ(t) dM(t).

I.e., dÛ2(t) = −F̂ (t, φ(t), Û2(t); Q̂
∗) dt+Σ(t) dB(t) + Γ(t) dM(t),

Û2(T ) = F̂ (T, φ(T ), Û2(T ); Q̂
∗)

where

F̂ (t, φ(t), Û2(t); Q̂
∗) :=





e−ρe
1−e−δT

δ
a log s∗Y (t)C(t)1−γ

1−γ
− δÛ2(t) for 0 ≤ t < T,

e−ρe
1−e−δT

δ
a log s∗Y (T )W (T ) for t = T.

Recall that Y (t) = EP
t [e

∫ T
0 e−δua logX(u) du]. Define F̂u(t) := ∂F̂ (t)

∂Û2(t)
, F̂c(t) := ∂F̂ (t)

∂C(t) , and F̂cc(t) :=

∂ 2F̂ (t)
∂C(t)2

. We can confirm that F̂ is concave in φ and Û2. Define E(t) := e−δt and

Λ(t) := E(t)F̂φ(t) :=





E(t)F̂c(t) for t ∈ [0, T ),

E(T )e−ρe
1−e−δT

δ
a log s∗Y (T ) for t = T.

where F̂c(t) = e−ρe
1−e−δT

δ
a log s∗Y (t)C(t)−γ .

Lemma 5.2 Fix S∗ defined by Eq.(4.12). For (φ, β) ∈ Φ(S∗) and for any h ∈ H such that

(φ+ h, β′) ∈ Φ(S∗),

Û2(φ+ h, S∗) ≤ Û2(φ, S
∗) + (Λ|h).

Proof: See appendix.

We obtain our first main result:

Proposition 5.1 Under Assumption 5.1 and Assumption 5.2, for the optimal contract S∗ defined

by Eq.(4.12), Π = Λ = EF̂φ is a state price at:

φ(t) =





C∗(t) for 0 ≤ t < T,

0 for t = T

β(t) = 0 for 0 ≤ t ≤ T
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where C∗ is defined by Eq.(4.11).

Proof: See appendix.

Let us look at how this result is related to the market equilibrium obtained in Section 4. In the

environment of Subsection 4.2, from Eq.(4.7), due to the market-clearing condition,

F̂c(t)
∣∣∣
C(t)=C∗(t)

= e−ρe
1−e−δT

δ
a log s∗Y (t)C∗(t)−γ = Jw

Thus, the result in Proposition 5.1 is equivalent to the market equilibrium obtained in Section 4.

Accordingly, we obtain a state price in the market equilibrium – call it an equilibrium state

price. Define Λ∗ := EF ∗
c where F ∗

c (t) := F̂c(t)
∣∣∣
C(t)=C∗(t)

= e−ρe
1−e−δT

δ
a log s∗Y (t)C∗(t)−γ =

e−ρe
1−e−δT

δ
a log s∗(1− s∗)−γY (t)X(t)−γ . The equilibrium state price is written as

Π(t) = Λ∗(t) = E(t)F ∗
c (t) for 0 ≤ t < T. (5.2)

In it, e−δtX(t)−γ corresponds to the equilibrium state price in the absence of moral hazard. Also,

Y (t) is the stochastic part other than e−δtX(t)−γ . Note that Π(T ) = Λ(T ) = E(T )F ∗
φ (T ).

5.3 Riskless rate and market prices of risk and jump risk in equilibrium

We characterize explicitly a riskless rate and market prices of risk and jump risk in the market

equilibrium. Recalling Eq.(5.1), from Eq.(5.2),

dΠ(t)

Π(t−)
= −r(t) dt− η(t)⊤ dB(t)− ξ(t)⊤ dM(t)

=
dΛ∗(t)

Λ∗(t−)
= −δ dt+

dF ∗
c (t)

F ∗
c (t−)

, with Π(0) = Λ(0) = 1. (5.3)

Now, solving dF ∗

c (t)
F ∗

c (t−) in Eq.(5.3), we obtain our second main result:

Proposition 5.2 In the environment of Proposition 5.1, the equilibrium riskless rate and the equi-

librium market prices of risk and jump risk in the absence of moral hazard, denoted by rs, ηs, ξs
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respectively, are constants:

rs = δ + γµG −
γ(γ + 1)

2

n∑

j=1

(σG
j )

2 +

m∑

i=1

{
1− (1 + zGi )

−γ − γzGi
}
λi, (5.4)

ηsj = γσG
j for j = 1, · · · , n,

ξsi = 1− (1 + zGi )
−γ for i = 1, · · · ,m.

On the other hand, the equilibrium riskless rate and the equilibrium market prices of risk and jump

risk in the presence of moral hazard are time-varying:

r(t) = rs +




(
γa e−δt−e−δT

δ

)∑n
j=1(σ

G
j )

2

−
∑m

i=1

(
1− (1 + zGi )

−γ
)(

1− (1 + zGi )
a e−δt

−e−δT

δ

)
λi




= δ + γµG +

(
γa

e−δt − e−δT

δ
−

γ(γ + 1)

2

) n∑

j=1

(σG
j )

2

+
m∑

i=1

{(
1− (1 + zGi )

−γ
)
(1 + zGi )

a e−δt
−e−δT

δ − γzGi

}
λi,

ηj(t) = ηsj − a
e−δt − e−δT

δ
σG
j =

(
γ − a

e−δt − e−δT

δ

)
σG
j for j = 1, · · · , n,

ξi(t) = ξsi + (1 + zGi )
−γ
(
1− (1 + zGi )

a e−δt
−e−δT

δ

)
= 1− (1 + zGi )

−γ+a e−δt
−e−δT

δ for i = 1, · · · ,m.

Proof: From Eq.(5.2),

dΛ∗(t)

Λ∗(t−)
= −δ dt+

d(X(t)−γ)

X(t−)−γ
+

dY (t)

Y (t−)
+

dY (t) d(X(t)−γ)

Y (t−)X(t−)−γ
. (5.5)

Firstly, by Itô’s formula,

d(X(t)−γ)

X(t−)−γ
=


−γµG +

γ(γ + 1)

2

n∑

j=1

(σG
j )

2 +
m∑

i=1

{
(1 + zGi )

−γ − 1 + γzGi
}
λi


 dt

−γ

n∑

j=1

σG
j dBj(t) +

m∑

i=1

{
(1 + zGi )

−γ − 1
}
dMi(t). (5.6)

Suppose that there is no moral hazard. Under the restriction of the stationary linear payment

rule,
d(C(t)−γ)
C(t−)−γ =

d(X(t)−γ)
X(t−)−γ in the market equilibrium.21 Therefore, the first two terms on Eq.(5.5)

21If we relax the restriction, then the equilibrium consumption in the presence of moral hazard
could be different form the one in the absence of moral hazard.
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correspond to the equilibrium state price in the absence of moral hazard, denoted by Λs:

dΛs(t)

Λs(t−)
= −δ dt+

d(X(t)−γ)

X(t−)−γ

= −δ dt+


−γµG +

γ(γ + 1)

2

n∑

j=1

(σG
j )

2 +
m∑

i=1

{
(1 + zGi )

−γ − 1 + γzGi
}
λi


 dt

−γ

n∑

j=1

σG
j dBj(t)−

m∑

i=1

{
1− (1 + zGi )

−γ
}
dMi(t). (5.7)

From Eq.(5.3),

rs = δ + γµG −
γ(γ + 1)

2

n∑

j=1

(σG
j )

2 +

m∑

i=1

{
1− (1 + zGi )

−γ − γzGi
}
λi,

ηsj = γσG
j for j = 1, · · · , n,

ξsi = 1− (1 + zGi )
−γ for i = 1, · · · ,m.

In other words, these represent the equilibrium pricing behavior driven only by the aggregate shock

d(X(t)−γ)
X(t−)−γ , as in the standard general-equilibrium exchange economies.

On the other hand, in this model, the equilibrium pricing behavior is influenced by moral hazard

as well, due to the necessity to make the firm avoid his opportunistic misbehavior. The third and

fourth terms on Eq.(5.5) stand for the effect of the moral hazard on the dynamics of the equilibrium

state price. Recall from Lemma 4.2 that

dY (t)

Y (t−)
= a

e−δt − e−δT

δ

n∑

j=1

σG
j dBj(t) +

m∑

i=1

{(1 + zGi )
a e−δt

−e−δT

δ − 1}dMi(t). (5.8)

From Eq.(5.7) and Eq.(5.8),

dΛ∗(t)

Λ∗(t−)
=

dΛs(t)

Λs(t−)
+




−
(
γa e−δt−e−δT

δ

)∑n
j=1(σ

G
j )

2

+
∑m

i=1

(
(1 + zGi )

−γ − 1
)(

(1 + zGi )
a e−δt

−e−δT

δ − 1
)
λi


 dt (5.9)

+a
e−δt − e−δT

δ

n∑

j=1

σG
j dBj(t) +

m∑

i=1

(1 + zGi )
−γ
(
(1 + zGi )

a e−δt
−e−δT

δ − 1
)
dMi(t).
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From Eq.(5.3) and Eq.(5.9), the market prices of risk and jump risk are:

ηj(t) = ηsj − a
e−δt − e−δT

δ
σG
j

=

(
γ − a

e−δt − e−δT

δ

)
σG
j for j = 1, · · · , n,

ξi(t) = ξsi + (1 + zGi )
−γ
(
1− (1 + zGi )

a e−δt
−e−δT

δ

)

= 1− (1 + zGi )
−γ+a e−δt

−e−δT

δ for i = 1, · · · ,m.

Also, with regard to the riskless rate,

r(t) = rs +




(
γa e−δt−e−δT

δ

)∑n
j=1(σ

G
j )

2

−
∑m

i=1

(
1− (1 + zGi )

−γ
)(

1− (1 + zGi )
a e−δt

−e−δT

δ

)
λi




= δ + γµG +

(
γa

e−δt − e−δT

δ
−

γ(γ + 1)

2

) n∑

j=1

(σG
j )

2

+
m∑

i=1

{(
1− (1 + zGi )

−γ
)
(1 + zGi )

a e−δt
−e−δT

δ − γzGi

}
λi.

�

We call (r(t)− rs) a moral-hazard premium on the equilibrium riskless rate:

r(t)− rs =

(
γa

e−δt − e−δT

δ

) n∑

j=1

(σG
j )

2 (5.10)

−
m∑

i=1

(
1− (1 + zGi )

−γ
)(

1− (1 + zGi )
a e−δt

−e−δT

δ

)
λi.

Also,

ηj(t)− ηsj = −a
e−δt − e−δT

δ
σG
j ≤ 0

with equality if t = T for j = 1, · · · , n,

ξi(t)− ξsi = (1 + zGi )
−γ
(
1− (1 + zGi )

a e−δt
−e−δT

δ

)
≥ 0

with equality if t = T for i = 1, · · · ,m.

are distortions of the market prices of risk and jump risk caused by moral hazard, respectively.

We draw asset-pricing implications of moral hazard from Proposition 5.2. First, from Eq.(5.5)

and Eq.(5.7), the market prices of risk and jump risk are distorted, as compared to the case of no
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moral hazard, only through dY (t)
Y (t−) . More essentially, inside of Y (t), e a logX(t)

∫ T
t

e−δu du = X(t)α(t),

where α(t) = a
∫ T

t
e−δu du = a e−δt−e−δT

δ
, plays a pivotal role in distorting the market prices of

risk and jump risk. Recall that Y (t) represents a time-t distortion of the probability measure

caused by the endowment process X all over [0, T ]. In parallel with Y (t), X(t)α(t) represents a

time-t distortion of the probability measure caused by the time-t endowment. From Eq.(5.8), the

distortion of the market price of risk is the diffusion coefficient of the stochastic differential of

the distortion of the probability measure. While the market price of risk in the absence of moral

hazard (i.e., γσG
j for j = 1, · · · , n) is positive because the lender is risk-averse, the distortion of the

market price of risk is negative because a positive (negative) diffusive shock improves (decreases)

the probability measure. The distortion of the probability measure works as a hedge against the

diffusive shock. Thus the moral hazard reduces the market price of risk. However, as t → T , the

effect of the reduction is diminishing to zero because α(t) ↓ 0.

On the other hand, the distortion of the market price of jump risk consists of two parts: (1) the

jump coefficient of the distorted probability measure and (2) the jump coefficient of the quadratic

covariation of the distorted probability measure and X(t)−γ . The distortion of the market price

of jump risk is positive because a negative jump shock decreases the probability measure. Thus

the moral hazard raises the market price of jump risk, as compared to the one in the absence of

moral hazard (i.e., 1 − (1 + zGi )
−γ < 0 for i = 1, · · · ,m). However, again, as t → T , the effect is

diminishing because α(t) ↓ 0.

Second, the moral-hazard premium is positive, since both of the two terms are positive on the

right-hand side of Eq.(5.10). The positivity of the premium holds true for either the regular market

risk or the rare-event risk. We investigate the moral-hazard premium in more detail. With regard

to the first term, since the distortion of the probability measure caused by moral hazard is a hedge

against the diffusive shock, it reduces the diffusive-risk premium by
(
γa e−δt−e−δT

δ

)∑n
j=1(σ

G
j )

2.

Thus it raises the riskless rate by the amount, i.e., the first term is positive. It is diminishing as

t → T , in parallel with the distortion of the market price of risk.

On the other hand, the second term represents the compensation for the market-valued jump

risk distorted by moral hazard (ξi(t) − ξsi ) dMi for all i = 1, · · · ,m. The distortion of the market-

valued jump risk aggravates average profitability in the financial markets by its covariance (adjusted

by the size of (1 + zGi )
−γ) with the original jump risk ξsi dMi. The second term then makes up for

the loss of the profitability. Since −1 < zGi < 0, 1− (1 + zGi )
−γ < 0 for all i = 1, · · · ,m. Thus the
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second term is positive and raises the jump-risk premium as compared to the one in the absence

of moral hazard (i.e.,
∑m

i=1

{
(1 + zGi )

−γ − 1
}
λi).

22 Again, it is diminishing as t → T .

These results give new insights into the risk-free rate puzzle, which was explored first by

Weil (1989). From Eq.(5.4), in the absence of moral hazard, large negative jumps (i.e., low zG)

tend to mitigate the puzzle by lowering the riskless rate rs. However, from Eq.(5.10), moral hazard

raises the riskless rate. It implies that the risk-free puzzle is more serious under moral hazard.

5.4 Discussion of directions for future research

In this section, we end up with discussing directions for future research. We imposed two crucial

simplifications on this model for obtaining the explicit (closed-form) solution. First, we assumed

the CRRA/log utility function. It is more general than the exponential utility function, but is

still time- and state-separable. It would be desirable to have more general utility forms such as

stochastic differential utility, habit formation, and ambiguity aversion. In particular, as in Weil

(1989), the risk-free rate puzzle should be investigated in a model with time-nonseparable utility.

Second, we assumed the stationary linear contract. This assumption is restrictive, in the context

of the literature on optimal contracting under moral hazard (see e.g., Cvitanić and Zhang (2007)).

We can conjecture that the linearity of the contract is not quite restrictive in optimum because

the whole system of equations is linear in this model. Based on the conjecture, the above-obtained

equilibrium market prices of risk and jump risk hold true for more general contract forms as well.

So does the above-obtained premium.

However, the stationarity (i.e., the constant sharing ratio) may not be optimal for them, due

to the finiteness of the time period. When the optimal contract is time-dependent, the moral-

hazard premium can be decreased or increased as compared to the case of the stationary linear

payment rule. For example, if the sharing ratio of the firm is decreasing (increasing) in time,

then the moral-hazard premium is raised (lowered), because the marginal utility of the investor

is decreasing (increasing). Still, when it is difficult to obtain any explicit general solutions under

more general contract forms, the result obtained under the stationary linear contract could be used

as a benchmark for approximating numerically the general solutions, e.g. via the Taylor expansion

method, in future.

22For positive jumps (i.e., zGi > 0 for some i), the second term could be negative. As the positive
jumps are a reward for the investor, the negative return on the investment would be demanded.
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6 Concluding remarks

This paper provides an explicit asset-pricing formula under the moral-hazard problem and obtains

equilibrium state prices (in particular, equilibrium riskless rate and market prices of diffusive risk

and jump risk). It thus makes clear the structural effect of moral hazard on equilibrium asset

prices. Notably, it shows that, under the moral-hazard problem, a positive premium is stipulated

on a riskless rate in market equilibrium – call it a moral-hazard premium – because the lender

demands compensation for a loss caused due to the necessity to make the firm manager avoid

his opportunistic misbehavior. This result implies that the risk-free rate puzzle, explored first by

Weil (1989), is more serious in the presence of moral hazard.

This paper imposes two simplifications on the model: (1) the CRRA utility and (2) the station-

ary linear payment rule. The risk-free rate puzzle might be, at least partly, resolved by assuming

more general utility forms like stochastic differential utility and habit formation (see e.g. Naka-

mura et al. (2009)). Second, this paper assumes the stationary linear payment rule for obtaining

the explicit solution. The assumption is restrictive, but the explicit solution obtained under the

restriction could be used as a good benchmark for future numerical approximations, e.g. via the

Taylor expansion method.

Appendix

A Proof of Lemma 3.1

Taking exponential of EQ[
∫ T

0 e−δua log S(u) du]−H(Q ||P),

e
EQ

[ ∫ T
0 e−δua logS(u) du

]
−H(Q ||P)

= e
EQ

[ ∫ T
0 e−δua logS(u) du−log dQ

dP

]

≤ EQ
[
e
∫ T

0
e−δua logS(u) du−log dQ

dP

]
(by Jensen’s inequality)

= EQ
[
e
∫ T

0
e−δua logS(u) du dP

dQ

]
= EP

[
e
∫ T

0
e−δua logS(u) du1{dQ

dP
>0}

]

≤ EP
[
e
∫ T
0 e−δua logS(u) du

]
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with equality if and only if
∫ T

0 e−δua logS(u) du− log dQ
dP is a constant. Therefore,

dQ

dP
=

e
∫ T

0
e−δua logS(u) du

EP

[
e
∫ T

0
e−δua logS(u) du

] .

Thus Q∗ is obtained. �

B Proof of Lemma 4.1

From Eq.(2.5), dX(t) = X(t−)
(
µG dt+

∑n
j=1 σ

G
j dBj(t)+

∑m
i=1 z

G
i dMi(t)

)
, X(0) = x0 > 0. Hence,

X(t) = x0e
µGt+

∑n
j=1

(
σG
j Bj(t)−

(σG
j )2

2
t

)
−
∑m

i=1 z
G
i λit

m∏

i=1

∏

0≤s≤t

(1 + zGi ∆Ni(s)),

i.e., log
X(t)

x0
= µGt+

n∑

j=1

(
σG
j Bj(t)−

(σG
j )

2

2
t
)
−

m∑

i=1

zGi λit+

m∑

i=1

∑

0≤s≤t

log(1 + zGi ∆Ni(s))

=
(
µG −

(σG
j )

2

2
−

m∑

i=1

zGi λi

)
t+

n∑

j=1

σG
j Bj(t) +

m∑

i=1

(
log(1 + zGi )

)
Ni(t). (B.1)

Substituting Eq.(B.1) into Eq.(4.3), we examine each term on the right-hand side of Eq.(B.1).

Firstly, the t-term is simply solved. Secondly, we look at the Bj-term (j = 1, · · · , n). In particular,

for a constant c, we solve EP[e c
∫ T
0 e−δtBj(t) dt]. By Itô’s formula,

−
e−δT

δ
Bj(T ) =

∫ T

0
e−δtBj(t) dt−

∫ T

0

e−δt

δ
dBj(t) (∵ dBj(t) dt = 0).

I.e.,

∫ T

0
e−δtBj(t) dt = −

e−δT

δ
Bj(T ) +

1

δ

∫ T

0
e−δt dBj(t)

= −
e−δT

δ

∫ T

0
dBj(t) +

1

δ

∫ T

0
e−δt dBj(t)

=
1

δ

∫ T

0

(
e−δt − e−δT

)
dBj(t) ∼ N

(
0,

1

δ2

∫ T

0

(
e−δt − e−δT

)2
dt
)

where, for some µ ∈ R and σ > 0, N (µ, σ2) denotes a normal distribution with mean µ and

variance σ2. Therefore,

EP[e c
∫ T
0 e−δtBj(t) dt] = e

c2

2
1
δ2

∫ T

0 (e
−δt−e−δT )

2
dt
. (B.2)
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Lastly, we look at the Ni-term (i = 1, · · · ,m). In particular, for a constant c, we solve

EP[e c
∫ T
0 e−δtNi(t) dt]. Still, before solving it directly, we make preparations for it. Let the k-th

jump time of Ni be denoted by τk. Consider the case of Ni(T ) = p for some integer p ≥ 1. We can

choose distinct 2p points of time (s1, s2, · · · , sp) and (t1, t2, · · · , tp) satisfying

0 ≤ s1 < t1 < s2 < t2 < · · · < sp < tp < T.

We then take a joint probability conditional on Ni(T ) = p as follows:

P[sk < τk < tk, k = 1, · · · p |Ni(T ) = p ]

= P[Ni(s1) = 0, Ni(t1) = 1, Ni(s2) = 1, · · · , Ni(sp) = p− 1, Ni(tp) = p |Ni(T ) = p ]

=
1

(λiT )p

p! e−λiT




e−λis1λi(t1 − s1)e
−λi(t1−s1)e−λi(s2−t1)λi(t2 − s2)e

−λi(t2−s2)

· · · e−λi(sp−tp)λi(tp − sp)e
−λi(T−sp)




= p!

p∏

k=1

(
tk − sk

T

)
. (B.3)

As a brief remark, we give an intuitive explanation to the conditional joint probability. As tk → sk

for all k, the corresponding joint probability density conditional on Ni(T ) = p is p!
T p . As it is well

known, the volume of the domain {(t1, · · · , tp) ∈ Rp | 0 < t1 < t2 < · · · < tp < T} is T p

p! . Hence,

the asymptotic joint probability density is equivalent to a uniform distribution over the volume.

On the other hand, we take p independent real-valued random variables U1, U2, · · · , Up, each

of which is defined on [0, T ] with a uniform distribution. For each scenario ω ∈ Ω, let the p

realizations be arranged in ascending order as R1, R2, · · · , Rp, i.e., R1 ≤ R2 ≤ · · · ≤ Rp. Note that

the equalities hold with probability zero. Thus, applying Eq.(B.3) to this case,

P[sk < Rk < tk, k = 1, · · · p ] = p!

p∏

k=1

(
tk − sk

T

)
.

Since P[sk < Rk < tk, k = 1, · · · p ] = p!P[sk < Uk < tk, k = 1, · · · p ],

P[sk < Uk < tk, k = 1, · · · p ] =

p∏

k=1

(
tk − sk

T

)
. (B.4)

Now, using Eq.(B.4) and the terminology used during its derivation, we solve EP[e c
∫ T
0 e−δtNi(t) dt]
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for a constant c. Taking expectation conditional on Ni(T ) = p,

EP[e c
∫ T

0
e−δtNi(t) dt] =

∞∑

p=0

P[Ni(T ) = p ]EP[e c
∫ T

0
e−δtNi(t) dt |Ni(T ) = p ].

Focusing on
∫ T

0 e−δtNi(t) dt in the equation,

∫ T

0
e−δtNi(t) dt = 0 ·

1− e−δτ1

δ
+ 1 ·

e−δτ1 − e−δτ2

δ
+ · · ·

+(p− 1) ·
e−δτp−1 − e−δτp

δ
+ p ·

e−δτp − e−δT

δ

= −p
e−δT

δ
+

p∑

k=1

e−δτk

δ

(d)
= −p

e−δT

δ
+

p∑

k=1

e−δRk

δ
= −p

e−δT

δ
+

p∑

k=1

e−δUk

δ

where the equality
(d)
= stands for equality in probability distribution. By Eq.(B.4),

EP[e c
∫ T
0 e−δtNi(t) dt] =

∞∑

p=0

(λiT )
p

p!
e−λiT × e−pc e−δT

δ EP[ec
∑p

k=1
e−δUk

δ ]

=
∞∑

p=0

(λiT )
p

p!
e−λiT × e−pc e−δT

δ

p∏

k=1

EP[ec
e−δUk

δ ]

=

∞∑

p=0

(λiT )
p

p!
e−λiT × e−pc e−δT

δ

(
1

T

∫ T

0
e

c
δ
e−δu

du

)p

= exp

{
λiT

(
−1 + e−c e−δT

δ
1

T

∫ T

0
e

c
δ
e−δu

du

)}
. (B.5)

where
∫ T

0 e
c
δ
e−δu

du is called an exponential integral.23

Finally, we solve EP
t

[
e
∫ T
0 e−δua log(X(u)) du

]
explicitly. From Eq.(B.1),

EP
t

[
e
∫ T
0 e−δua log(X(u)) du

]

= ea
∫ t
0 e−δu log(X(u)) duE

[
eae

−δt
∫ T−t
0 e−δua log(X̃(u)) du

∣∣∣ X̃(0) = X(t)
]

23For the reference, we look at the case of δ = 0, although δ = 0 is not assumed in this paper.
By taking the same procedures,

EP[ec
∫ T
0 Ni(t) dt] = exp

{
λiT

(
−1 +

ecT − 1

cT

)}
.
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where log X̃(u) = logX(0) + (µG − 1
2

∑n
j=1(σ

G
j )

2 −
∑m

i=1 λi)u +
∑n

j=1 σ
G
j Bj(u) +

∑m
i=1 log(1 +

zGi )Ni(u). Using Eq.(B.2) and Eq.(B.5),

EP
t

[
e
∫ T
0 e−δua log(X(u)) du

]

= exp




a
∫ t

0 e
−δu log(X(u)) du+ a e−δt−e−δT

δ
logX(t)

+ae−δt(µG − 1
2

∑n
j=1(σ

G
j )

2 −
∑m

i=1 λi)
∫ T−t

0 e−δuudu

+
∑n

j=1

(ae−δtσG
j )2

2
1
δ2

∫ T−t

0 (e−δu − e−δ(T−u))2 du

+
∑m

i=1 λi(T − t)(−1 + e−
e−δ(T−t)

δ
log(1+zGi ) 1

T−t

∫ T−t

0 e
e−δu

δ
log(1+zGi ) du)




By integration by parts,
∫ T−t

0 e−δuudu = 1−exp{−δ(T−t)(1+δ(T−t))}
δ2

. �

C Proof of Lemma 4.2

Recalling Eq.(2.5),

dX(t) = X(t−)
(
µG dt+

n∑

j=1

σG
j dBj(t) +

m∑

i=1

zGi dMi(t)
)
, X(0) = x0 > 0.

Thus,





dXc(t) = X(t−)
(
µG dt+

∑n
j=1 σ

G
j dBj(t)−

∑m
i=1 z

G
i λi dt

)
,

∆X(t) = X(t−)
∑m

i=1 z
G
i ∆Ni(t).

When a jump of Ni occurs at time t,

∆X(t) = X(t−)z
G
i , i.e., X(t) = X(t−)(1 + zGi ). (C.1)

For a twice continuously differentiable function f(x, t), by Itô’s formula,

f(X(t), t) = f(X(0), 0) +

∫ t

0

∂f

∂x
(X(u−), u) dX

c(u) +

∫ t

0

∂f

∂t
(X(u−), u) du

+
1

2

∫ t

0

∂2f

∂x2
(X(u−), u)(dX

c(u))2 +
∑

0<u≤t

∆f(X(u), u).
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First, set f(x, t) = log x. ∂f
∂x

= 1
x
, ∂2f

∂x2 = − 1
x2 , and

∂f
∂t

= 0. Taking logarithms on both sides of

Eq.(C.1),

logX(t) = logX(t−) + log(1 + zGi ) i.e., ∆ logX(t) = log(1 + zGi ).

Thus, for u > t,

logX(u) = logX(t) +

n∑

j=1

σG
j (Bj(u)−Bj(t)) +

(
µG −

1

2

n∑

j=1

(σG
j )

2 −
m∑

i=1

zGi λi

)
(u− t)

+
m∑

i=1

log(1 + zGi ) {Ni(u)−Ni(t)} .

Hence, logX(u)− logX(t) is independent of Ft. On the other hand,

Y (t) = EP
t

[
e a

∫ T
0 e−δu logX(u) du

]

= e a
∫ t

0
e−δu logX(u) du e a(logX(t))

∫ T

t
e−δu du EP

t

[
e a

∫ T

t
e−δu{logX(u)−logX(t)} du

]
.

There, the second factor is X(t)α(t), where α(t) := a
∫ T

t
e−δu du = a e−δt−e−δT

δ
. Also, the third

factor is equivalent to the unconditional expected value, and thus is a deterministic function that

is differentiable with respect to t. Therefore, the stochastic differential of Ỹ (t) := Y (t)

X(t)α(t) takes the

form of dỸ (t) = · · · dt. That is, there exist neither dBj(t)-terms nor dNi(t)-terms in it.

Next, we look at the dynamics of X(t)α(t). Set f(x, t) = xα(t) and apply Itô’s formula to it.

Note that ∂f
∂x

= α(t)xα(t)−1. Since, as shown above, X(t) = X(t−)(1 + zGi ) when a jump of Ni

occurs at time t,

X(t)α(t) = X(t−)
α(t)(1 + zGi )

α(t), i.e., ∆X(t)α(t) = X(t−)
α(t){(1 + zGi )

α(t) − 1}.

Hence,

d
(
X(t)α(t)

)
= α(t)X(t−)

α(t)−1X(t−)
( n∑

j=1

σG
j dBj(t) + · · · dt

)

+ · · · dt+ · · · dt+X(t−)
α(t)

m∑

i=1

{(1 + zGi )
α(t) − 1}dNi(t).
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Therefore,

dY (t) = d
(
Ỹ (t)X(t)α(t)

)

= Ỹ (t−) d
(
X(t)α(t)

)
+X(t−)

α(t) dỸ (t) + dỸ (t) d
(
X(t)α(t)

)

= Ỹ (t−)X(t−)
α(t)
(
α(t)

n∑

j=1

σG
j dBj(t) +

m∑

i=1

{(1 + zGi )
α(t) − 1}dMi(t) + · · · dt

)

+ · · · dt+ 0

= Y (t−)
(
α(t)

n∑

j=1

σG
j dBj(t) +

m∑

i=1

{(1 + zGi )
α(t) − 1}dMi(t)

)
+ · · · dt.

Since Y is a martingale, the total sum of the dt-terms is zero. The result is obtained. �

D Proof of Lemma 5.1

For (φ, β) ∈ Φ(S∗) satisfying Assumption 5.2, due to Assumption 5.1, by Lebesgue’s dominated

convergence theorem,

W (t) = EP
t



∫ T

t




Π(s)
Π(t)

(
C(s) + S∗(s)−X(s)

)

+Π(s)
Π(t)W (s)β(s)⊤

(
µR − σRη(s)− zRIξ(s)λ

)


ds+

Π(T )

Π(t)
W (T )




= EP
t

[∫ T

t

Π(s)

Π(t)

(
C(s) + S∗(s)−X(s)

)
ds+

Π(T )

Π(t)
W (T )

]
.

I.e., w0 = Π(0)W (0)

= EP

[∫ T

0
Π(u)(C(u) + S∗(u)−X(u)) du+Π(T )W (T )

]
= (Π|φ+ S∗ −X).

On the other hand, for any h ∈ H such that φ+ h ∈ Φ(S∗), by Fatou’s lemma,

Π(0)W (0) + (Π|X − S∗) ≥ (Π|φ+ h).

Therefore, (Π|h) ≤ 0. �
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E Proof of Lemma 5.2

Define

∆U := Û2(φ+ h, S∗)− Û2(φ, S
∗),

∆Σ := Σ(φ+ h, S∗)− Σ(φ, S∗),

∆Γ := Γ(φ+ h, S∗)− Γ(φ, S∗).

Also, define

∆F (t) :=





F̂ (φ, S∗, Û2) + F̂ch− δ∆U − F̂ (φ+ h, S∗, Û2 +∆U) for 0 ≤ t < T,

0 for t = T.

Due to the concavity of F̂ , ∆F (t) ≥ 0∀ t. Recalling dÛ2 = −F̂ (φ, S∗, Û2) dt+ΣdB+ΓdM ; Û2(T ) =

dQ̂∗

dP W (T ),

d∆U = dÛ2(φ+ h, S∗)− dÛ2(φ, S
∗)

= −(F̂ch− δ∆U −∆F ) dt+∆Σ dB +∆Γ dM ;

∆U(T ) = F̂φ(T )h(T ) −∆F (T ) = F̂φ(T )h(T ).

Since E is deterministic (i.e., dE(t) = −δ dt),

d(E∆U ) = (−EF̂ch+ E∆F ) dt+ · · · dB + · · · dM ;

E(T )∆U (T ) = E(T )F̂φ(T )h(T ) − E(T )∆F (T ) = E(T )F̂φ(T )h(T ).

By Lebesgue’s dominated convergence theorem,

∆U(0) = EP

[∫ T

0
(EF̂ch− E∆F ) dt+

(
E(T )F̂φ(T )h(T ) − E(T )∆F (T )

)]

= (EF̂φ|h)− (E|∆F ).

Since ∆F (t) ≥ 0∀ t, Û2(φ+ h, S∗)− Û2(φ, S
∗) ≤ (Λ|h). �
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F Proof of Proposition 5.1

By Lemma 5.1 and Lemma 5.2, for (φ, β) ∈ C(S∗) satisfying Assumption 5.2 and for any h ∈ H

such that (φ+ h, β′) ∈ C(S∗),

∆U(0) = Û2(φ+ h, S∗)− Û2(φ, S
∗) ≤ (Π|h) ≤ 0.

Hence, at such (φ, β), Π is a state price and the utility is maximized. Since the optimal C is uniquely

determined for the given s∗ in the market equilibrium where W (t) = 0 for all t, the equilibrium C

is equal to C∗ defined in Eq.(4.11). Obviously, such (φ, β) is in C(S∗). �
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