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Abstract

This study examines whether information on the yield curve is useful for predicting

volatility of the yield curve. The information is used within dynamic models by spec-

ifying the covariance matrix of changes in yield factors as nonlinear functions of the

factors. Using such models, it is found that the information (1) is useful for predict-

ing volatility of the slope factor, achieving the accuracy comparable to the GARCH

model; (2) has incremental value for predicting volatility of the curvature factor when

combined with a volatility-specific factor; (3) does not much improve prediction of

volatility of the level factor once the volatility-specific factor is introduced.

Keywords: Yield curve, Volatility, Level-dependence, Approximation of conditional mo-

ments.
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1 Introduction

It does not seem unreasonable to think that the current yield curve contains some informa-

tion on the volatility of changes in interest rates. In making bond portfolios or managing

interest rate risks, investors will take account of conditional second moments of bond re-

turns or yield changes. The resulting shape of the yield curve will then reflect investors’

views toward the volatility. The purpose of this study is to examine whether information

on the yield curve is useful for predicting the volatility of the yield curve.

The idea of relating interest rate volatility to the yield curve is not new. Brown and

Schaefer (1994), Christiansen and Lund (2005), Joslin (2010), Litterman, Scheinkman,

and Weiss (1991), and Phoa (1997) relate the volatility to the curvature, or convexity, of

the yield curve. Time-series studies using long historical data on U.S. interest rates find a

relation between the volatility and the level of a particular yield, especially the short-term

rate, such that high volatility is accompanied by high level; see, e.g., Andersen and Lund

(1997a), Ball and Torous (1999), Chan, Karolyi, Longstaff, and Sanders (1992), Durham

(2003), and Gallant and Tauchen (1998).

This simple level-volatility relationship, however, no longer seems to be a decisive

feature for relatively recent data. Figure 1 shows the time series of the level and realized

volatility of the first principal component (PC) constructed from U.S. dollar LIBOR and

swap rates over 1991–2009: The details of these data are provided in Section 2. Note that

the first PC (PC1) is interpreted as a level factor of the yield curve. It is observed that

sharp rise in the volatility of PC1 around 2001–03 and 2008–09 is actually accompanied

by the fall in the level of PC1.

It is, therefore, not surprising that more recent studies using these data are skeptical

about the possibility of extracting volatility information from the yield curve. Andersen

and Benzoni (2010) test affine spanning conditions that yield variances, both ex ante and

ex post, can be expressed by some linear combinations of yield levels if affine term structure

models are true, and reject these conditions. A direct implication of this result is that the

relationship between the volatility and the curvature of the yield curve is not supported

by the data because the curvature is normally measured by a linear combination of yields.

Collin-Dufresne, Goldstein, and Jones (2009), and Jacobs and Karoui (2009) report that

yield variances extracted from the cross-section of yields through affine term structure

models do not behave similarly to typical variance measures computed from time series
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data.

It is too early to conclude, however, that the yield curve is of little relevance to the

volatility. Although information on the cross-section of yields alone may not be rich

enough to identify volatility-specific factors, it may still be useful if it is combined with

information on the time-series of yields. Furthermore, nonlinear relationships between

variances and levels of yields may exist even though a linear relationship as implied by the

affine models is not supported.

This study explores these possibilities that are not fully studied by the earlier work.

To combine information on the cross-section of yields with information on the time-series

of yields, dynamic models of yield factors, rather than regression models, are employed.

Then, nonlinear relationships between variances and levels of yields are incorporated into

the dynamic models. Specifically, the covariance matrix of changes in yield factors is

specified as nonlinear functions of the factors themselves. This is how information on the

yield curve is used: It is used for specification, but not for extraction, of the volatility.

As such, the approach of examining information content of the yield curve with re-

spect to the volatility is different from that in the earlier work. Bikbov and Chernov

(2011), and Thompson (2008) use no-arbitrage affine models with particular attention to

whether model-implied behavior of the volatility changes by modifying estimation methods

or adding options data. This study uses both affine and non-affine models and estimates

them using only time-series dimension of interest rate data with particular attention to

whether information on the yield curve is useful for predicting the volatility. Also, the

dynamic models of the yield curve are different from those in the earlier work. Chris-

tiansen (2005) embeds the GARCH volatility. Christiansen (2004), and Pérignon and

Smith (2007) incorporate regime switching into volatility modeling. This study consid-

ers a volatility-specific factor that has a similar role to the GARCH volatility, but not

regime switching. Instead, the models explored here are characterized by more flexible

level-dependent specifications of the volatility. Using such models, this study uncovers

both usefulness and limitations of information content of the yield curve with respect to

the volatility and contributes to the literature by promoting understanding of appropri-

ate underlying models that are capable of predicting the volatility without sacrificing the

goodness-of-fit to the cross-section of no-arbitrage bond prices.

Section 2 explains the data and realized measures for yield factors and their volatil-
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ities. Section 3 provides level-dependent volatility models that are appropriate for the

research objective together with several competing models. Sections 4 and 5 examine pre-

dictive accuracy of the level-dependent volatility models before and after introducing the

volatility-specific factor, respectively. Section 6 provides concluding remarks. Appendices

collect technical arguments including an approximation method used for estimation and

prediction.

2 Data and realized measures

2.1 Dataset

This study uses data on U.S. dollar LIBOR with maturities of 6 and 12 months and swap

rates with maturities of 2, 3, 4, 5, 7, and 10 years. The sample period is from January

4, 1991 to May 27, 2009. The LIBOR and swap rates are transformed to zero-coupon

bond yields on a continuously compounded basis using a bootstrap method with linear

interpolation applied to discount functions. The maturities of the zero yields used for the

analysis are 0.5, 1, 2, 3, 5, and 10 years.

Weekly data consist of Wednesday observations. The in-sample data for estimation

cover up to April 9, 2003 with 641 observations, and the out-of-sample data for prediction

contain 320 observations. This division allows for incorporating information on the lowest

range of yields into model estimation as well as reserving sufficient out-of-sample observa-

tions. But it is noted that other divisions do not materially change the results presented

below.

This dataset is selected by the following reasons. First, we can make more challeng-

ing the purpose of predicting the volatility using information on the yield curve because

a simple level-volatility relationship disappears in the recent data as seen in Figure 1.

Furthermore, it is also anticipated from Figure 1 that the out-of-sample behavior of the

yield level and volatility makes prediction even more difficult. Second, we can focus on

volatility prediction without introducing an additional complexity of regime switching. As

documented by Dai, Singleton, and Yang (2007), this sample period can be regarded as a

single regime when viewed from a long history of U.S. interest rates.
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2.2 Realized factors

Since the primary interest of this study is in volatility prediction using information on the

yield curve, but not in factor identification, observed variables are used as proxies for yield

factors. First of all, the number of factors is assumed to be three, following Litterman and

Scheinkman (1991) and the subsequent studies. Then, the first three PCs are selected as

proxies for yield factors, which can be interpreted as the level, slope, and curvature factors

of the yield curve. A rotation matrix to obtain the PCs is calculated from the covariance

matrix of changes in yields, which is estimated using the in-sample weekly data. This

rotation matrix is fixed and used in the out-of-sample period to avoid the case in which

the interpretation of the PCs is different between the in- and out-of-sample periods.

The first three PCs are actually convenient proxies relative to the others. They allow

us to focus on the volatilities of the PCs without paying much attention to the covariances

between the PCs. Additionally, they enhance the interpretation of the results regarding

estimation and prediction as will be seen in Sections 4 and 5. Still, a nonlinear relationship

between variances and levels of yields can be detected based on the PCs. Since the PCs

are obtained by linear combinations of yields, if the volatility of the PCs is nonlinear in

the level of the PCs, the volatility of yields is also nonlinear in the level of yields.

2.3 Realized volatility

Using daily data, a realized measure of the conditional variance of changes in the PCs is

constructed. The daily series of zero yields is first transformed into those of the PCs. This

is done using the same rotation matrix calculated with the weekly data to avoid the case

in which the interpretation of the PCs is different between the weekly and daily data.

Denote the i-th PC or PCi at time t by xt,i, and a realized measure of the one-week

ahead conditional variance of xt,i is computed as

RVt,t+Δ,i =

mt+Δ∑
k=1

(xt+ Δ
mt+Δ

k,i − xt+ Δ
mt+Δ

(k−1),i)
2 (i = 1, 2, 3) , (1)

where Δ is a week interval set to 1/52, and mt is the number of observations during a week

ending at time t (usually mt = 5). A realized measure of the h-week ahead conditional

variance is computed as

RVt,t+hΔ,i =
h∑

j=1

RVt+(j−1)Δ,t+jΔ,i . (2)
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The annualized realized variance is obtained by dividing RVt,t+hΔ,i by hΔ.

Forecasting horizons are set to 4, 8, 16, and 32 weeks. We start with the 4-week horizon

to reduce potential impacts of noise or measurement error and extend the horizon up to

32 weeks to examine the effect of longer horizons on predictive accuracy. These realized

variances are generated weekly, which means that there are overlapping observations on

daily squared changes in the PCs between successive observations of the realized variances.

For example, for h = 4, daily observations over three weeks overlap between t and t+Δ

observations of the four-week realized variance.

3 Models

The purpose of this study is to examine whether the current yield curve contains useful

information for predicting the volatility of the yield curve. To achieve this purpose, this

study uses dynamic models that allow for combining information on the cross-section and

time-series of yields and considers nonlinear relationships between variances and levels of

yields within these models. Section 3.1 proposes such appropriate models and Section 3.2

provides several competing models.

3.1 Level-dependent volatility models

Let Xt be a vector consisting of the first three PCs, and the instantaneous change in Xt

is assumed to follow

dXt ∼ N [(K0 +K1Xt)dt, Σtdt] . (3)

The instantaneous mean, or the drift, is simply specified as a linear function of Xt because

the primary interest of this study is in volatility prediction, but not in level prediction.

Additionally, this simple specification is convenient for comparing the proposed models

with the affine models. Specifically, given the same specification of the drift, the differ-

ence in volatility prediction, if any, can be attributed solely to the difference in volatility

specification. In other words, potential impacts of the drift on volatility prediction can be

controlled.

Information on the yield curve is embedded into the covariance matrix, Σt, by speci-

fying it as functions of Xt. But it should be considered that Σt is positive definite. Then,

one simple approach to guarantee the positive definiteness is to take the spectral decom-

position of Σt and model the eigenvalues as functions of Xt such that they take positive
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values for arbitrary Xt. Specifically,

Σt = PLtP
′ , (4)

where Lt is a diagonal matrix consisting of the eigenvalues and P is an orthogonal matrix

having the corresponding eigenvectors of unit length in its columns. Note that Lt is time-

varying whereas P is fixed. The previous studies employing this approach also assume

fixed P ; see, e.g., Fan, Gupta, and Ritchken (2003), Han (2007), Jarrow, Li, and Zhao

(2007), Longstaff, Santa-Clara, and Schwartz (2001), and Pérignon and Villa (2006).

P can be parameterized as,

P =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 cosϕP
3 − sinϕP

3

0 sinϕP
3 cosϕP

3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

cosϕP
2 0 − sinϕP

2

0 1 0

sinϕP
2 0 cosϕP

2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

cosϕP
1 − sinϕP

1 0

sinϕP
1 cosϕP

1 0

0 0 1

⎞
⎟⎟⎟⎟⎠ . (5)

Free parameters in P are actually three: sinϕP
i (i = 1, 2, 3). This is because though P is

a three-by-three matrix, there are six constraints arising from the fact that each column

of P is of unit length and orthogonal to the others. For identification, ϕP
i ∈ [−π/2, π/2]

is placed, so that cosϕP
i =

√
1− sin2 ϕP

i .

The diagonal elements of Lt in equation (4) are specified as functions of Xt, which

are denoted as Li(Xt) (i = 1, 2, 3). To guarantee Li(Xt) > 0 for arbitrary Xt, this study

proposes the following two models.

3.1.1 SVQ model

The first model labeled as SVQ (Stochastic Volatility with Quadratic specification) spec-

ifies Li(Xt) as

Li(Xt) = ci +X ′
tΓ

iXt (i = 1, 2, 3) , (6)

where Γi is either a positive definite matrix with ci ≥ 0 or a nonnegative definite matrix

with ci > 0. In the estimation, the latter restriction is placed on Γi and ci as this can

lead to a more parsimonious specification: Γi = 0 is possible as long as the data support.

Similar to Σt, the non-negative definite matrix Γi is parameterized based on the spectral

decomposition:

Γi = QiM iQi′ , (7)
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where

M i =

⎛
⎜⎜⎜⎜⎝

mi
1 0 0

0 mi
2 0

0 0 mi
3

⎞
⎟⎟⎟⎟⎠ with 0 ≤ mi

1 ≤ mi
2 ≤ mi

3 , (8)

and

Qi =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 cosϕQi

3 − sinϕQi

3

0 sinϕQi

3 cosϕQi

3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

cosϕQi

2 0 − sinϕQi

2

0 1 0

sinϕQi

2 0 cosϕQi

2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

cosϕQi

1 − sinϕQi

1 0

sinϕQi

1 cosϕQi

1 0

0 0 1

⎞
⎟⎟⎟⎟⎠ , (9)

with ϕQi

j ∈ [−π/2, π/2] (j = 1, 2, 3). It is noted that sinϕQi

j cannot be identified for

some mi
j. For example, when mi

j = 0 for all j, sinϕQi

j cannot be identified for any j. In

such cases, sinϕQi

j = 0 is placed. In the estimation, some parameters reach the boundary

values or violate the sign constraints. Such parameters are fixed in the following and then

the remaining parameters are re-estimated: ci = 10−8 for ci > 0 and mi
j = 0 for mi

j ≥ 0.

3.1.2 SVE model

The second model labeled as SVE (Stochastic Volatility with Exponential specification)

specifies Li(Xt) as

Li(Xt) = exp
{
si0 + s′iXt

}
(i = 1, 2, 3) . (10)

No parameter restriction is required for the SVE model. The exponential specification that

naturally avoids negative volatility is popular in time series analysis; see, e,g., Andersen

and Lund (1997a, b), Ball and Torous (1999), and Gallant and Tauchen (1998).

3.1.3 Discussion on the level-dependent volatility models proposed here

The SVQ/E models are just a few examples of level-dependent volatility models. Nat-

urally, they are restrictive. The first source of the restriction is the eigenvectors that

are fixed: They may also vary over time. This restriction may not be severe, however,

as long as the PCs, which are unconditionally uncorrelated with each other, are used as

proxies for the factors. In fact, as will be seen in Section 4.1, none of the parameters

in P are statistically significant, which means that the PCs are also nearly conditionally

uncorrelated. The second source of the restriction is the eigenvalues that are quadratic

or exponential functions of Xt: They may be more general functions of Xt taking posi-

tive values. Nevertheless, the degree of level-dependence in the SVQ/E models is more
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deepened than it is in the previous models where the volatility depends on one or at most

two variables. Therefore, bearing in mind that the proposed models are approximations

of more general level-dependent volatility models, this study utilizes them for examining

information content of the yield curve with respect to the volatility.

Furthermore, when the proposed models are used as underlying models of the term

structure of interest rates by providing market price of risk and imposing no-arbitrage

conditions, there are both strengths and weaknesses. An obvious weakness is that no-

arbitrage bond prices cannot be derived as closed-form functions of Xt. But this weakness

may be overcome by relying on analytical approximation. An example of such approx-

imation is proposed by Takamizawa and Shoji (2009). Another weakness is the lack of

unspanned volatility factors that are irrelevant to the cross-section of yields. The necessity

of such factors for describing joint data on bonds and options is emphasized by many stud-

ies; see, e.g., Collin-Dufresne and Goldstein (2002), Han (2007), Heidari and Wu (2003,

2009), Jarrow et al. (2007), and Li and Zhao (2006). The introduction of the unspanned

factors into the level-dependent volatility models is straightforward. Therefore, this study

also considers extended models having both level-dependent and unspanned volatilities in

Section 5, aiming at examining relative importance of the level-dependent volatility over

the unspanned volatility.

On the other hand, the proposed models have strength of accommodating the following

two properties: (i) the covariance matrix is time-varying; (ii) all factors can change signs

over time. The affine models cannot accommodate both: The Gaussian model satisfies

property (ii) but not property (i), whereas the affine models with stochastic volatility

satisfy property (i) but not property (ii). The advantage of satisfying property (ii) is

demonstrated by Duffee (2002). Specifically, property (ii) allows for flexible modeling

of the market price of risk, which in turn allows for flexible modeling of the physical

dynamics of the factors. Then, Duffee (2002) shows that the Gaussian model having this

flexibility predicts the level of yields more accurately than any other affine model. This

finding suggests that since the proposed models can be regarded as an extension of the

Gaussian model (in a way where the yield factors also drive the covariance matrix), they

are expected to inherit the predictive power for the level of yields and at the same time

improve the predictive power for the volatility of yields.
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3.2 Competing models

3.2.1 Gaussian or A0(3) model

The instantaneous change in Xt for the Gaussian model is given by (3) with Σt replaced by

Σ, a constant positive definite matrix. Since given a forecasting horizon h, the Gaussian

model produces a constant forecast independently of Xt, it serves as a benchmark as does

Random Walk in predicting the level of yields.

This study denotes the Gaussian model as A0(3), which is a conventional notation

developed by Dai and Singleton (2000). In general, Am(n) stands for an affine model

in terms of both physical and risk-neutral dynamics of the factors, where n is the total

number of factors, among which m factors drive the covariance matrix of the n factors and

jointly follow the square-root processes taking non-negative values. Although this study

considers only the physical dynamics, this notation is used for convenience.

3.2.2 A1(3) model

An affine model with stochastic volatility, A1(3), is adopted, which strikes the balance be-

tween fitting time-series and cross-sectional properties of interest rate data as documented

by Dai and Singleton (2000). Besides, since the PCs are used as proxies for the factors, the

square-root process is applicable only to PC1, but not to PC2 or PC3 as they potentially

change sings over time.

The instantaneous change in Xt for the A1(3) model is also given by (3), where the

i-th diagonal element of Σt, denoted as Σt,i, is given by

Σt,1 = σ1xt,1 , (11)

Σt,i = σixt,1 + ci (i = 2, 3) , (12)

and the off-diagonal elements of Σt are assumed to be zero. 1 It may be concerned that

xt,1 or the level factor also plays a role of driving the volatility. However, even if the

volatility factor in the A1(3) model is treated as a latent process and backed out from

the cross-section of yields, it is often the case that the resulting process is very persistent

1The A1(3) model with non-diagonal covariance matrix is also estimated. The results (not shown in this

draft but available upon request) are that most of the off-diagonal parameters are statistically insignificant

and hence that volatility prediction is little affected, which are not surprising as the PCs are used as proxies

for the factors.
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and highly correlated with the level factor; see, e.g., Jacobs and Karoui (2009, Table 7).

Furthermore, the earlier work also uses an observed yield for modeling level-dependent

volatility of the yield curve; see, e.g., Pérignon and Smith (2007).

The covariance matrix of the A1(3) model is also level-dependent, however, the degree

of level-dependence is different between the A1(3) and SVQ/E models. The motivation of

adopting the A1(3) model is to examine whether the following two properties, embedded

in the SVQ/E models but not in the A1(3) model, are jointly helpful for predicting the

volatility: One is a nonlinear relationship between variances and levels and the other is

the involvement of all factors in driving the volatility.

3.2.3 CEV model

A model with constant elasticity of volatility (CEV) is a representative model with level-

dependent volatility. Some affine models can also be regarded as special cases of the CEV

class of models. Examples of the CEV class include one-factor models proposed by Cox,

Ingersoll, and Ross (1985), Chan et al. (1992), and Aı̈t-Sahalia (1996), and multi-factor

models proposed by Longstaff and Schwartz (1992), Brenner, Harjes, and Kroner (1996),

and Andersen and Lund (1997a, b). A CEV model considered in this study is such that it

nests the A1(3) model provided in equations (11) and (12). Specifically, the instantaneous

change in Xt is given by (3), where the diagonal covariance matrix is specified as

Σt,1 = σ1x
γ1
t,1 , (13)

Σt,i = σix
γi
t,1 + ci (i = 2, 3) . (14)

Note that if the value of γi in equation (14) is statistically insignificant, it is difficult to

identify both σi and ci. In such case, σi = γi = 0 is placed to retain numerical stability.

The relationship between variances and levels is nonlinear in the CEV model, however,

only the level factor xt,1 contributes to driving the volatility. The motivation of selecting

the CEV model is to examine whether the multivariate level-dependence, which is embed-

ded in the SVQ/E models but not in the CEV model, has additional value for predicting

the volatility.

3.2.4 GARCH(1,1) model

Although there are a number of variants of the GARCH model, the GARCH(1,1) model

is selected because more complicated models do not necessarily beat the simplest one in
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out-of-sample tests; see Hansen and Lunde (2005). In fact, as will be seen in Section 4.2,

the model has a remarkably high out-of-sample predictive power for the volatility of PC1.

The model is fitted to weekly data on each xt,i and hence specified as

xt+Δ,i = αi + βixt,i +
√
ht+Δ,i zt+Δ,i , (15)

ht+Δ,i = ωi + φiht,iz
2
t,i + ρiht,i , (16)

where it is assumed for simplicity that zt,i ∼ i.i.d.N(0, 1) and is independent of zt,j (j �= i).

It is noted that since the PCs are used as proxies for the factors, the estimation with each,

but not joint, series does not seem unfavorable for the GARCH model.

Since the GARCH model is a well-established volatility model and estimated with the

same data used for the other models provided above, it serves as an alternative benchmark.

Specifically, predictive accuracy of each model is statistically tested against that of the

GARCH model. It is noted that this comparison framework contrasts to that in Jacobs

and Karoui (2009), where the EGARCH model is treated as a true, but not competing,

model. As such, the comparison here is carried out under more severe conditions.

3.2.5 HAR-RV regression

To set an absolute standard for volatility prediction, the HAR-RV regression employed

by Andersen and Benzoni (2010) is considered, which is directly fitted to the realized

volatility series. In this study, it is specified as

HAR-RV:

√
RVt,t+hΔ,i

hΔ
= ah,i +

∑
j={4,8,16,32}

bh,i,j

√
RVt−jΔ,t,i

jΔ
+ uhart+hΔ,i . (17)

Since the HAR-RV regression is constructed on the object of prediction, it will provide

a conventional reference about upper limit of predictive accuracy in the current setting.2

2This study also considers the mixed data sampling (MIDAS) approach developed by Ghysels, Santa-

Clara, and Valkanov (2005, 2006), which is directly fitted to the realized volatility series to generate

volatility forecasts. Not surprisingly, therefore, predictive accuracy is very similar to that of the HAR-RV

regression and therefore not reported in this draft for saving space.
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4 Empirical analysis without a volatility-specific factor

4.1 Estimation

The quasi-maximum likelihood (QML) method is used for estimating the models. The

log-likelihood function to be maximized is

∑
t

ln fT (Xt|Xt−Δ; Θ) , (18)

where fT stands for transition density and Θ for parameter vector. For the CEV and

SVQ/E models, since fT does not have a closed-form for finite observation frequency Δ, it

is approximated by the multivariate normal density function. This approximation is also

applied to the A1(3) model for convenience. Since the weekly data with Δ = 1/52 are used

for the estimation, this approximation seems acceptable. The conditional first and second

moments of the factors, which are substituted into fT , are computed using a method

proposed by Shoji (2002): A brief explanation of this method is provided in Appendix

A. Note that the conditional moments for the affine and SVQ models can be computed

exactly, as the drift vector is linear and the covariance matrix is at most quadratic in Xt,

respectively. Even in this case, equation (43) (without the residual term) in Appendix A

is useful for computing the conditional moments.

Some insignificant parameters at the first round of estimation are set to zero and

the remaining parameters are re-estimated, which is aimed at keeping the models simple

to enhance the interpretation of estimation and prediction results. Since out-of-sample

tests are conducted, such simplification does not lead to an unfavorable evaluation of the

predictive power of the models.

Table 1 presents the estimation results for the A1(3) and CEV models. Since the

primary interest of this study is in volatility prediction, only the parameter estimates in

the covariance matrix are reported and those in the drift are summarized in Table 9. Panel

A of Table 1 shows that in the A1(3) model, the volatility of PC1 exhibits level-dependence

but the volatilities of PC2 and PC3 do not because σ2 and σ3 are insignificant at the first

round of estimation and hence set to zero. These results are basically inherited into the

CEV model presented in Panel B of Table 1. In particular, although γi (i = 2, 3) are free

parameters, they are not statistically significant and thus set to zero.3 The volatility of PC1

3The result is in line with Cristiansen (2005) but not with Pérignon and Smith (2007). These studies

use the data starting in 1970, including periods in which yield volatility tends to be high when yield level
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also depends on xt,1 in the CEV model, however, the estimate of γ1 sharply distinguishes

CEV from A1(3): It is −0.618 and statistically different from one assumed in A1(3). The

negative estimate of γ1 indicates that the volatility of PC1 is higher the lower the level of

PC1. This inverse relation is consistent with Figure 1 and also reported by Collin-Dufresne

et al. (2009, Table 6), and Jacobs and Karoui (2009, Table 7) using relatively recent data

on U.S. interest rates. Mathematically, however, γ1 must not be negative. This is because

xt,1, starting from an arbitrary initial value x0,1 > 0, will become negative with positive

probability, so the diffusion term, xγ1t,1, cannot stay real. Nevertheless, this mathematical

inconsistency may be overcome by considering nonlinear drift as proposed by Aı̈t-Sahalia

(1996). Specifically, if there is a term in the drift of xt,1 such that it increases sufficiently

rapidly as xt,1 approaches zero, then xt,1 does not reach zero in finite time even though

the volatility of xt,1 becomes also very large. Put simply, the positive drift more than

offsets the volatility near the boundary of zero, which prevents xt,1 from going below zero.

If in addition this term is sufficiently small in an observed range of xt,1, it is innocuous

to actual estimation.4 In this way, since the deficiency of the CEV model with negative

γ1 may virtually be corrected, it is continuously used as a competing model for volatility

prediction.

Table 2 presents the estimation results for the SVQ/E models. In both models, none

of the parameters in P , sinϕP
i (i = 1, 2, 3), are estimated significantly, leading to P =

I (the identity matrix). Consequently, Li(Xt) can be interpreted as the instantaneous

variance of PCi (i = 1, 2, 3). Panel A of Table 2 shows that many parameters in the

SVQ model are fixed due mainly to sign constraints. Nevertheless, the volatilities of all

factors are time-varying. In fact, the volatilities of PC2 and PC3 have more complicated

level-dependence than the volatility of PC1, where m1
1 = m1

2 = 0 is placed. The result

highlights the importance of nonlinear and multivariate specifications in modeling level-

dependent volatility for recent interest rate data. The estimation results of the SVQ model

are further discussed in Section 4.3 in relation to the predictive power for the volatility

is high. Pérignon and Smith (2007) use the three-month yield for driving the volatility of the yield curve,

and detect the level-dependence for all factors. Cristiansen (2005) uses the slope factor for driving the

volatility of the slope factor, and finds little evidence of the level-dependence for the slope factor.
4A simple formulation of the above arguments is as follows. Suppose the drift of xt,1 is of the form,

μ(xt,1) = a + bxt,1 + cxd
t,1 with c > 0. Then, if d < γ1 − 1, xt,1 does not reach zero in finite time; see

Aı̈t-Sahalia (1996, Appendix). Additionally, if c is fixed at a sufficiently small number, the last term in

μ(xt,1) is negligible in an observed range of xt,1, which is actually [0.043, 0.194] in the dataset used here.
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evaluated in Section 4.2.

The estimation results for the SVE model, presented in Panel B of Table 2, are more

intuitive because of the simpler form of the eigenvalue functions. Most notably, none of

the coefficients on xt,1, si1 (i = 1, 2, 3), are statistically significant, indicating that among

the yield factors, the level factor is the least relevant to the volatility. It then follows that

the A1(3) model, either in the particular form considered in this study or in a general

form where the volatility factor is treated as a latent process, has difficulty in predicting

the volatility: As noted in Section 3.2.2, a volatility factor, when backed out from the

cross-section of yields, is often highly correlated with the level factor.

4.2 Prediction

4.2.1 Setting

To enhance the interpretation of the results, the object of prediction is annualized standard

deviation, but not variance. The predictive accuracy is evaluated by root mean squared

prediction error (RMSPE) using both in- and out-of-sample data. The prediction errors are

the residuals of the following equations (except the HAR-RV regression given in equation

(17)):

√
RVt,t+hΔ,i

hΔ
=

√
vart[xt+hΔ,i]

hΔ
+ ut+hΔ,i , (19)

√
RVt,t+hΔ,i

hΔ
= ah,i + bh,i

√
vart[xt+hΔ,i]

hΔ
+ uregt+hΔ,i , (20)

where vart[·] stands for model-implied conditional variance. Equation (19) is aimed at

examining pure predictive power of the models whereas equation (20) is at examining to

what degree the prediction improves by the help of the forecasting regression. (ah,i, bh,i)

in equation (20) are estimated by OLS. It is noted that in the HAR-RV regression the

first 32 weeks’ observations are not used for estimating the parameters (they are used

for forming the explanatory variables on the right-hand side of equation (17)). To make

competitive conditions equal, these observations are not used in equation (19) or (20).

Since vart[xt+hΔ,i] is not available in closed-form for the CEV and SVE models, it

is computed approximately with the same method used for estimating the models. But

here, since the time interval for the prediction is up to 32 times longer than that for the

estimation, there may be a concern about the accuracy of the approximation. In Appendix
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A, the accuracy is checked and confirmed to be high as long as reasonable parameter and

state variable values are provided. vart[xt+hΔ,i] for the GARCH model is computed by

iteration, an explanation of which is provided in Appendix B.

To statistically compare predictive accuracy, the Diebold and Mariano (DM) (1995)

test is implemented as in Colline-Dufresne et al. (2009). Two notes are in order. First,

as noted in Section 3.2.4, the GARCH model is the fixed benchmark against which each

model is tested. Second, as noted in Section 2.3, since overlapping observations are used

for computing realized variances with h > 1, the standard error of the test statistic is

computed by the method of Newey and West (1987) with lag length equal to h.

4.2.2 Predicted time-series of volatility

To obtain intuition about predictive accuracy of the models, Figures 2–4 display the time

series of four-week ahead forecasts of volatilities (annualized standard deviations) of the

first three PCs produced by the four models: GARCH, A1(3), SVQ, SVE. In each graph,

the time-series of the corresponding realized value is also plotted with the thin line. It is

noted that in generating out-of-sample forecasts, the model parameters are held fixed at

the in-sample estimates.

First, Figure 2 shows that the GARCH model is the most successful among the four

models in forecasting the volatility of PC1. The sample correlation calculated from the

whole sample between the forecast and realized series is 0.57. The forecast series produced

by the SVQ/E models look similar and reasonably track the trend of the realized series with

the sample correlations around 0.35. In contrast, the A1(3) model fails to even capture

the trend. The forecast series is negatively correlated with the realized series, −0.37. The

result is not surprising, however, given similar graphs obtained by the previous studies;

see Colline-Dufresne et al. (2009, Fugure 1), Jacobs and Karoui (2009, Figures 1 and 2),

and Thompson (2008, Figure 3).

Next, Figure 3 shows that the SVQ model performs the best in predicting the volatility

of PC2 with the sample correlation 0.51. It is also capable of generating the forecast

series that varies intensively in accordance with the realized series. This is particularly

evident in the out-of-sample period, implying in turn that the model parameters are stable

between the in- and out-of-sample periods. The GARCH model follows with the sample

correlation 0.44. The SVE model exhibits a reasonable correlation 0.41 compared with
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the GARCH model, however, it fails to produce sufficient variation in forecasts. The

forecast series of the A1(3) model looks constant over time. But actually, it slightly varies

and is negatively correlated with the realized series. The slight variation comes from

the fact that the instantaneous variance of PC1 is time-varying and that PC1 and PC2

are conditionally correlated through the drift; see Table 9 for the estimates of the drift

parameters. Therefore, even though the instantaneous variance of PC2 is constant, the

conditional variance of PC2 over the four-weak horizon or longer is not.

Finally, Figure 4 shows that the GARCH model returns to the best performer in

predicting the volatility of PC3 with the sample correlation 0.49, followed by the SVE

model with the sample correlation 0.45. The forecast series of the SVQ model looks

similar to that of the GARCH model for many periods, however, the sample correlation

is somewhat lower, 0.41. The graph for the A1(3) model is similar to that presented in

Figure 3 for the same reason mentioned above.

As seen in Figures 2–4, while the forecast series of the volatility of PC1 are similar

between the SVQ and SVE models, those of the volatilities of PC2 and PC3 are not.

The results can be explained as follows. First, for the SVE model, all forecast series are

generally less volatile because an exponential function can be well approximated by a linear

function in a narrow range where the eigenvalues move and because a linear function is

difficult to produce intensive variation. Second, for the SVQ model, the forecast series of

the volatility of PC1 exhibits variation as moderate as that for the SVE model because

many parameters are set to zero in L1(Xt). Conversely, the level-dependence of L2(Xt) and

L3(Xt) is more complex than that of L1(Xt) and this complexity is the key to generating

intensive variation in forecasts. This key point is further discussed in Section 4.3.

4.2.3 Prediction results without forecasting regression

Table 3 presents the RMSPEs without the forecasting regression, where the prediction

error is the residual in equation (19). The RMSPEs are multiplied by 104 and thus

interpreted in units of basis points (bps, 1 bp = 0.0001). The smallest and the second

smallest numbers in each column are displayed in bold and italic, respectively. * and **

indicate that the DM test rejects the null hypothesis that predictive accuracy between a

model in each row and the GARCH model is equal at the 5% and 1% significance levels,

respectively. In making the out-of-sample prediction, the parameter values of the models
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are held fixed at the in-sample estimates. To make competitive conditions equal, the

parameter values of the HAR-RV regression are also held fixed throughout the out-of-

sample period.

Overall, the HAR-RV regression has the smallest RMSPEs for all cases in-sample and

all but three cases out-of-sample. Specifically, the superiority of the HAR-RV regression

is most evident in predicting the volatility of PC2, the accuracy of which is significantly

higher than that of the GARCH model (and most of the other models) both in- and out-

of-sample except at h = 32. Also, the predictive accuracy for the volatility of PC3 is

remarkably high in-sample. In contrast, regarding prediction of the volatility of PC1, the

superiority of the HAR-RV regression is not relatively high. The result suggests that it

is originally difficult to predict the volatility of the level factor or long-term yields that

are highly correlated with the level factor, and is consistent with the previous results;

Andersen and Benzoni (2010), Jacobs and Karoui (2009). Instead, the GARCH model

works well in this dimension, exhibiting the smallest out-of-sample RMSPEs except at

h = 4.

More precisely, in Panel A of Table 3 displaying the results for PC1, it is noticed

that the linear and univariate level-dependence is worse than constant. The differences in

RMSPE between the A1(3) and A0(3) models are around 13 bps in-sample and range from

14 to 18 bps out-of-sample. Second, a slight modification of the A1(3) model dramatically

improves the predictive accuracy. The CEV model with free elasticity parameter γ1 has

smaller in-sample RMSPEs than the A1(3) model with γ1 = 1 and the A0(3) model with

γ1 = 0 at all horizons. In the out-of-sample period, however, while the CEV model

still exhibits better predictive accuracy than the A1(3) model, it is slightly behind the

A0(3) model. Third, the nonlinear and multivariate level-dependence further improves

the predictive accuracy. Although the SVQ/E models do not clearly outperform the CEV

model in-sample, they do out-of-sample with the differences in RMSPE ranging from

6 to 10 bps. The result suggests that the nonlinear and multivariate level-dependence

is more robust to changes in predictive environments. Fourth, the SVQ/E models are

outperformed by the GARCH model. Specifically, between the SVE and GARCH models,

the in-sample differences are at most 2.4 bps at h = 4 and not statistically significant,

however, the out-of-sample differences reach up to 18 bps at h = 8. Nevertheless, the

out-of-sample differences are not statistically significant except at h = 4 because of the
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small sample size and of very volatile forecast errors as evidenced in Figure 2.

In Panel B of Table 3 displaying the results for PC2, the RMSPEs for the A0(3), A1(3),

and CEV models are almost the same, resulting from the constant instantaneous variance

of PC2 (they are not exactly the same, however, for the same reason mentioned in Section

4.2.2). The SVQ/E models continuously outperform these models. For example, the

differences in RMSPE between the CEV and SVQ models are around 3 bps at all horizons

in-sample and reach 7.7 bps at h = 8 out-of-sample. Though not statistically significant,

the SVQ model even outperforms the GARCH model at all horizons in-sample and at

h = 4, 8 out-of-sample. The SVEmodel is also comparable to the GARCH model in-sample

but slightly worse than it out-of-sample. These results demonstrate that information on

the yield curve is useful for predicting the volatility of PC2 when nonlinear and multivariate

level-dependent specifications are considered.

Conversely, Panel C of Table 3 shows that the nonlinear and multivariate level-dependence

has difficulty in predicting the volatility of PC3. Compared with the in-sample RMSPEs

for the A0(3) model, those for the SVE model little differ whereas those for the SVQ model

are only marginally smaller by around 1 bp. They both are statistically significantly larger

than those for the GARCH model, which in turn are statistically significantly larger than

those for the HAR-RV regression. The difficulty of the nonlinear and multivariate level-

dependence is somewhat mitigated in the out-of-sample period. The SVQ model is better

than the A0(3) model with the differences in RMSPE ranging from 4 to 6 bps and even

comparable to the GARCH model.

4.2.4 Prediction results with forecasting regression

As expected, the models fitted to the weekly data do not in general predict the volatility

as accurately as the HAR-RV regression. Of interest here is whether this is still the case

after introducing the forecasting regression. Also of interest is whether the advantage of

the nonlinear and multivariate level-dependence over the linear or nonlinear univariate

level-dependence remains to hold.

Table 4 presents the RMSPEs with the forecasting regression, where the prediction

error is the residual in equation (20). Before reporting the results, the following notes are

in order. First, in making the out-of-sample prediction, the parameter values of the models

are held fixed at the in-sample estimates as in Section 4.2.3 whereas the parameter values
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of the forecasting regression in (20) and of the HAR-RV regression in (17) are re-estimated

every time the prediction is made in a rolling window fashion. Second, the RMSPEs for

the A0(3) model are not presented here as the forecasts given h are constant over time.

Third, the in-sample RMSPEs are no larger than those in Table 3 by construction of

the forecasting regression whereas the out-of-sample RMSPEs are not guaranteed to be

smaller. Finally, the in-sample RMSPEs for the HAR-RV regression are the same as those

in Table 3, but the results of the statistical significance are different, because predictive

accuracy is compared with that of “GARCH + forecasting regression.”

Overall, the differences in RMSPE are narrowed. Indeed, the number of cases in which

the difference is statistically significant is decreased from that in Table 3. Nevertheless, the

forecasting regression is not effective enough to change the performance ranking. There-

fore, only the key results are reported below with particular attention to the performance

of the SVQ/E models. First, the SVQ/E models are comparable even to the HAR-RV

regression in predicting the volatility of PC1 in-sample but largely outperformed out-of-

sample by both the GARCH model and the HAR-RV regression. Second, the SVQ/E

models generally produce smaller RMSPEs than the A1(3) and CEV models, indicating

that the advantage of the nonlinear and multivariate level-dependence remains to hold

though it is somewhat reduced compared to prior to introducing the forecasting regres-

sion. Third, the SVQ model is confirmed to have a robust performance of predicting the

volatility of PC2, which is comparable to, or slightly better than, the GARCH model.

4.3 Further evidence on the performance of the SVQ model

This subsection addresses the following two questions: (i) why is the quadratic multivari-

ate specification effective for predicting the volatility of PC2 and relatively effective for

predicting the volatility of PC3 compared with the univariate specification, but not for

predicting the volatility of PC1; (ii) does information on the past yield curve, in addi-

tion to the current one, improve volatility prediction within the quadratic multivariate

specification?

To obtain the answer to question (i), we rewrite the instantaneous variances of PC1–

3 for the SVQ model given in equations (6)–(9) and substitute the parameter values

presented in Panel A of Table 2. First, let Qi = (qi1 qi2 qi3) in equation (9), and the i-th
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instantaneous variance can be rewritten as

Li(Xt) = ci +
3∑

j=1

mi
j(q

i′
j Xt)

2 (i = 1, 2, 3) . (21)

Then, by substituting the parameter values, 5

L1 = 10−8 + 1.598 × (−0.295 × PC2 + 0.956 × PC3)2 , (22)

L2 = 10−8 + 0.036 × (0.201 × PC1 + 0.964 × PC2− 0.176 × PC3)2

+2.933 × (0.129 × PC1 + 0.152 × PC2 + 0.980 × PC3)2 , (23)

L3 = 10−8 + 0.006 × (0.257 × PC1 + 0.956 × PC2− 0.141 × PC3)2

+0.990 × (0.128 × PC1 + 0.111 × PC2 + 0.985 × PC3)2 . (24)

It is seen from equations (22)–(24) that except L1 where m1
1 and m1

2 are set to zero

as they are not significantly estimated, the instantaneous variances are decomposed into

two quadratic terms with each term consisting of a linear combination of the PCs and

hence the current yields. To examine behavior of these components, Figure 5 plots Li (i =

1, 2, 3), where the values of the components of Li are added up to the value of Li. A

common feature found in L2 and L3 is that these two components have different roles.

The first term, m2(q
′
2Xt)

2, captures persistent movement of the variance whereas the

second term, m3(q
′
3Xt)

2, captures transitory movement. In fact, it is the second term

that generates intensive behavior of the variance in the out-of-sample period. To further

examine differences in these terms, Table 5 presents sample statistics of these terms over

the whole period. Indeed, compared to the first term, the second term in L2 and L3 has

a large standard deviation relative to the mean and autocorrelations decaying quickly.

Originally, having different components is the key feature of the GARCH(1,1) model,

where the own lag captures persistent movement and the lagged squared innovation of

underlying yield process captures transitory movement. The success of the quadratic mul-

tivariate specification seems to lie in accommodating this key feature. It is not surprising

that persistent component of the volatility is accommodated because persistent yields are

used for driving the volatility. A nontrivial result is that transitory component of the

5Qi (i = 1, 2, 3) are realized as follows:

Q1 =

⎛
⎜⎝ 1.000 0.000 0.000

0.000 0.956 −0.295

0.000 0.295 0.956

⎞
⎟⎠ , Q2 =

⎛
⎜⎝ 0.971 0.201 0.129

−0.219 0.964 0.152

−0.094 −0.176 0.980

⎞
⎟⎠ , Q3 =

⎛
⎜⎝ 0.958 0.257 0.128

−0.271 0.956 0.111

−0.094 −0.141 0.985

⎞
⎟⎠.
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volatility can be replicated, at least partially, by linearly combining and then squaring the

current yields.

This line of explanation is consistent with why the quadratic multivariate specification

does not work well for predicting the volatility of PC1. There is only one component in L1

as seen in equation (22). From Figure 5 and Table 5, it can capture persistent movement

but not transitory movement. The difficulty in predicting the volatility of PC1 is further

discussed in Section 5.2 after introducing a volatility specific factor.

If squared changes between the current and past yields embedded in the GARCH model

are more or less replicated by squared combinations of the current yields, information on

the past yields may not be very helpful for predicting the volatility. Then, question (ii)

naturally arises: does information on the past yield curve, in addition to the current one,

improve volatility prediction within the quadratic multivariate specification? To obtain

the answer to question (ii) more directly, it is convenient to conduct regression analysis,

where the realized annual standard deviation is the object of prediction as is the case for

the HAR-RV regression. The following regression models are considered, all of which are

based on the quadratic multivariate specification.

(M1)

√
RVt,t+hΔ,i

hΔ
= ch,i +

√
X ′

tΓ
h,iXt + et+hΔ,i , (25)

(M2)

√
RVt,t+hΔ,i

hΔ
= ch,i +

√
(Xt − ah,i ·Xt−Δ)′Γh,i(Xt − ah,i ·Xt−Δ) + et+hΔ,i ,(26)

(M3)

√
RVt,t+hΔ,i

hΔ
= ch,i +

√
X ′

tΓ
h,iXt +

√
X ′

t−ΔΩ
h,iXt−Δ + et+hΔ,i , (27)

(M4)

√
RVt,t+hΔ,i

hΔ
= ch,i +

K∑
j=0

bh,i,j
√
X ′

t−jΔΓ
h,iXt−jΔ + et+hΔ,i , (28)

where ch,i > 0, Γh,i and Ωh,i are non-negative definite matrices, and bh,i,j ≥ 0.

Several notes are in order. First, the regression models are estimated with each fore-

casting horizon (index h) and PC (index i) using the in-sample data. Second, in making

the out-of-sample prediction, the parameter values are fixed at the in-sample estimates.

Third, M1 in equation (25) serves as a baseline model, which uses information on the cur-

rent yields alone for volatility prediction. Fourth, the other models in equations (26)–(28)

are specified such that they nest M1. Specifically, M2 leads to M1 by setting ah,i = 0:

Note that ah,i ·Xt−Δ stands for element-wise product. The lagged level of the PCs, multi-

plied by ah,i, enters into M2 in the form of the first difference. M3 leads to M1 by setting

Ωh,i = 0. The lagged level enters into M3 as an additional quadratic term. M4 leads to
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M1 by setting bh,i,0 = 1 and bh,i,j = 0 (j = 1, ...,K). More lagged levels are included

in M4 in a parsimonious way where Γh,i is fixed independently of lags (index j). To pin

down the level of Γh,i, bh,i,0 = 1 is placed in the estimation. The results presented below

are those with K = 1, however, other values of K do not change the results.6

Table 6 presents the RMSPEs expressed in bps. The DM test is also conducted under

the null hypothesis that predictive accuracy is equal between M1 and Mi (i = 2, 3, 4).

The answer to question (ii) derived from Table 6 is that including the lagged level of the

PCs does not lead to improving volatility prediction within the quadratic multivariate

specification. While the in-sample RMSPEs for Mi (i = 2, 3, 4) are no larger than those

for M1 by construction, there are generally no noticeable differences. Similarly, the out-of-

sample RMSPEs do not vary much across the models. The exception is M3 in predicting

the volatility of PC2. However, the statistically better in-sample performance of M3 at h =

4, 8, 16 is accompanied by the statistically worse out-of-sample performance, suggesting

that M3 is overfitted to the in-sample data.

An additional important finding can be obtained by comparing the results for M1

with those for the SVQ model presented in Table 3. By directly regressing the realized

volatility on the quadratic form of the PCs at each forecasting horizon, higher predictive

accuracy is indeed achieved for the volatility of PC1: M1 has smaller RMSPEs than SVQ

by around 11 bps in-sample and 5–8 bps out-of-sample. This is also the case for the

in-sample prediction of the volatility of PC3. However, the regression does not much

improve volatility prediction for PC2 or PC3 in the out-of-sample period. The result

provides additional evidence that high accuracy can be maintained even by the diffusion

model of the PCs estimated with weekly data.

5 Empirical analysis with a volatility-specific factor

We have seen so far that the nonlinear and multivariate level-dependence is more appro-

priate for predicting the volatility than the linear or nonlinear univariate level-dependence.

But it may be concerned that the level-dependence for the A1(3) and CEV models is too

restrictive although such restriction is inevitable as long as the PCs are used as proxies for

6This fact may not be surprising because the yields are persistent and hence there is not much incre-

mental information in lagged yields. Also, the result is similar to that for the GARCH volatility, where

more lagged terms do not necessarily improve both in- and out-of-sample predictions.
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the factors. To address this concern, an additional factor that drives the volatility of the

yield curve is introduced into the A1(3) model. It is also introduced into the SVQ model,

which is aimed at examining whether the nonlinear and multivariate level-dependence is

still useful.

5.1 Extended models

Let Vt be a latent process affecting the volatilities of all factors considered. This study

does not consider multiple volatility factors because according to the principal component

analysis applied to the covariance matrix of changes in the three realized volatility series

used in this study, the first principal component can explain more than 96% of the variation

regardless of the time horizon h in equation (2). Vt is first introduced into the A1(3)

model. Prior to the introduction, xt,1 is excluded from the instantaneous variance of PC1

because the linear dependence has an adverse effect on volatility prediction as seen in

Table 3. Then, the A1(3) model is extended to the A1(4) model, where only Vt drives the

covariance matrix. Precisely, the instantaneous change in (X ′
t Vt)

′ for the A1(4) model is

specified as

d

⎛
⎜⎝ Xt

Vt

⎞
⎟⎠ ∼ N

⎡
⎢⎣
⎧⎪⎨
⎪⎩
⎛
⎜⎝ K0

kvθv

⎞
⎟⎠+

⎛
⎜⎝ K1 0

0′ −kv

⎞
⎟⎠
⎛
⎜⎝ Xt

Vt

⎞
⎟⎠
⎫⎪⎬
⎪⎭ dt, Σt dt

⎤
⎥⎦ , (29)

where 0 stands for the three dimensional vector of zeros and where Σt is a diagonal

covariance matrix with the diagonal elements specified as

Σt,i = σiVt + ci (i = 1, 2, 3) , (30)

Σt,4 = σ4Vt . (31)

It is noted that Σt is diagonal and the drift ofXt does not depend on Vt. This is because

we wish to break the interaction between Xt and Vt so that Vt specializes in predicting

the volatility as much as possible. In other words, we let it play like an almost unspanned

factor in the sense that it is of little relevance to the yield factors. Consequently, this

specification will work toward reducing the effectiveness of level-dependence and hence

be useful for preventing spurious detection of it. Given the purpose of this study, this

benefit will exceed the cost of missing important features such as a leverage effect or an

ARCH-in-mean like effect.
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Vt is also introduced into the SVQ model in both multiplicative (SVQ-M) and ad-

ditive (SVQ-A) forms, which is similar in spirit to Brenner et al. (1996) who consider

multiplicative and additive combinations of the GARCH and level-dependent volatilities.

Since the covariance matrix of the SVQ model is decomposed as Σt = PLtP
′ and P can

be regarded as the identity matrix when the PCs are used as proxies for the factors, it

holds that Σt = Lt. Then, Σt,i is used in this section, instead of Li(Xt), for denoting the

instantaneous variance of PCi. The instantaneous change in (X ′
t Vt)

′ for the SVQ-M/-A

models is specified as in (29), where the diagonal elements of Σt are specified as

(SVQ-M) Σt,i = X ′
tΓ

iXtVt + ci (i = 1, 2, 3) , (32)

(SVQ-A) Σt,i = σiVt +X ′
tΓ

iXt (i = 1, 2, 3) , (33)

and Σt,4 is the same as in the A1(4) model.

It is noted that this study does not explore appropriate specifications for the dynamics

of Vt because the purpose is to compare the SVQ-M/-A models with the A1(4) model and

examine whether the nonlinear and multivariate level-dependence is stull useful given the

presence of the volatility-specific factor. To achieve this purpose, it is necessary to use

the same specification for the dynamics of Vt and control for potential impacts associated

with Vt. It is also noted that the same extension is not applied to the SVE model as it

does not perform equally well to the SVQ model as seen in Section 4.2.

5.2 Estimation and prediction results

The QML method is used for estimating the models. Since Vt is treated as a latent

process, it needs to be integrated out of the likelihood function. The likelihood function

is computed following Thompson (2008). 7 For identification of the parameters in (29),

θv = 1 is placed as in Gallant and Tauchen (1998). This means that given κv > 0 the

unconditional mean of Vt is set to one.

Table 7 presents the estimation results for the A1(4), SVQ-M and SVQ-A models. As

before, only the parameter estimates in the covariance matrix are reported and those in the

drift are summarized in Table 9. In Panel A, the estimates of σi (i = 1, 2, 3) in the A1(4)

model are all significant, indicating the importance of introducing the volatility-specific

factor for capturing time-varying features of the volatility. In Panel B, the significantly
7We first discretize the values of Vt with the number of grid points, d, set to 21 and sum the likelihood

function over the points. We also tried d = 51 and the results are essentially the same as those with d = 21.
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estimated parameters in the SVQ-M model are the same as those for the original SVQ

model presented in Table 2, indicating that the significance of the level-dependence remains

unchanged in the multiplicative form. In Panel C, the level-dependence is also confirmed

in the SVQ-A model, however, the number of significant parameters is reduced. Most

importantly, m2
2 = m3

2 = 0 is placed. The simpler level-dependence is supported because

the level-dependent term in the SVQ-A model is in place of the constant term in the A1(4)

model and because Vt can generate sufficient variation in forecast as seen below.

Figure 6 presents the time-series of four-week ahead forecasts of volatilities (annualized

standard deviations) of the first three PCs generated by the A1(4) model (the left panel)

and the SVQ-A model (the right panel). It is clear from the left panel that owing to Vt

the forecast series vary sufficiently and well track the realized series. It is also seen from

the right panel that the level-dependent term generates additional variation in forecasts,

which appears more desirable particularly in the out-of-sample period.

Table 8 presents the RMSPEs without the forecasting regression. 8 For comparison,

the RMSPEs for the GARCH model and the HAR-RV regression presented in Table 3

are add to the last two rows in each panel. The DM tests for equal predictive accuracy

are conducted based on the GARCH model also here. The results are reported to answer

whether the introduction of the volatility-specific factor improves the prediction through

the comparison of the A1(4) and A1(3) models and whether the nonlinear and multivariate

level-dependence is still of value through the comparison of the SVQ-M/-A and A1(4)

models.

In Panel A of Table 8 displaying the results for PC1, it is found that the volatility-

specific factor significantly improves the prediction both in- and out-of-sample. Specifi-

cally, the RMSPEs for the A1(4) model are uniformly smaller than those for the A1(3)

model by up to 20.8 bps at h = 16 in-sample and by up to 38.6 bps at h = 8 out-of-sample.

In fact, the introduction of Vt is effective enough to make the A1(4) model comparable to

the GARCH model in-sample though it is still not enough out-of-sample. Also, Vt improves

predictive accuracy when introduced into the SVQ model. Specifically, the RMSPEs for

the SVQ-A model are smaller than those for the original SVQ model by 5–8 bps in-sample

and 5–13 bps out-of-sample. Next, the nonlinear and multivariate level-dependence does

not seem to add value to predicting the volatility of PC1 once Vt is introduced. Between

8The RMSPEs with the forecasting regression are not reported because the points to note are essentially

the same as those from Table 8, as is the case between Tables 3 and 4.
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the SVQ-A and A1(4) models, while the former (latter) performs better in-sample (out-

of-sample), the differences in RMSPE are minor. The SVQ-M model is outperformed by

the A1(4) model both in- and out-of-sample.

In Panel B of Table 8 displaying the results for PC2, it is noticed that Vt does not

necessarily improve the in-sample prediction. For example, the in-sample RMSPE at

h = 32 for the A1(4) model is 30.5 bps, which is larger than 27.8 bps for the A1(3) model

with the constant instantaneous variance of PC2. Similarly, the in-sample RMSPEs for

the SVQ-A model range from 29–33 bps, which are larger than the corresponding RMSPEs

for the SVQ model with the gap increasing with h. The result, however, may be indirect

evidence of the advantage of the level-dependence over Vt. In contrast to the in-sample

prediction, Vt does improve the out-of-sample prediction. Specifically, the differences in

the out-of-sample RMSPE between the A1(3) and A1(4) models reach up to 8.4 bps at

h = 4. Next, it is also noticed that the nonlinear and multivariate level-dependence has

incremental value over Vt especially out-of-sample. Specifically, while the differences in the

in-sample RMSPE between the A1(4) and SVQ-A models are at most 1.3 bps at h = 32,

those in the out-of-sample RMSPE are 3–4 bps. In fact, the SVQ-A model is the best

performer out-of-sample.

Finally, the results for PC3 shown in Panel C of Table 8 have a similar pattern to the

results for PC2. The introduction of Vt is effective out-of-sample but not in-sample, and

the nonlinear and multivariate level-dependence contributes to additionally reducing the

RMSPEs. Still, the combination of these two properties is not sufficient to resolve the

difficulty of the diffusion model in predicting the volatility of PC3 by taking the in-sample

performance of the HAR-RV regression into consideration.

Taken together, among the dynamic models considered in this study, the SVQ-A model

seems desirable, which is capable of predicting the volatility of PC1 equally well to the

A1(4) model and better at predicting the volatilities of PC2 and PC3 than the A1(4)

model. There are even cases in which the SVQ-A model is comparable to the HAR-RV

regression that is fitted directly to the realized volatility series. The result is not trivial as

the SVQ-A model is supposed to capture various features of interest rate data, not limited

to the volatility.

Nevertheless, the role of the nonlinear and multivariate level dependence is not re-

markably well in predicting the volatility of PC1. As noted in Section 4.2.3, it has been
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reported by the earlier work that it is difficult to predict the volatility of the level factor

or long-term yields. This study has further shown that the originally small predictable

component is difficult to be captured by the yield factors even with their nonlinear com-

binations. One explanation of this difficulty, which is more general than that presented

in Section 4.3, is as follows. It is well-known that long-term yields are more affected by

the risk premium than are short-term yields that are tied by monetary policy. And, it is

found by Duffee (2011) that the risk premium is driven in part by hidden factors that are

of little relevance to the current yield curve.

6 Concluding remarks

This study has predicted yield volatility using information on the current yield curve. The

information is embedded in dynamic models of yield factors. Specifically, the covariance

matrix of changes in the factors is made dependent on the factors with particular attention

to nonlinear and multivariate dependence that is not fully studied by the earlier work. To

maintain the positive definiteness of the covariance matrix at the same time, mainly two

models are considered in which the eigenvalues of the covariance matrix are specified by

quadratic (model SVQ) or exponential (model SVE) function. Although these models

are approximations of more general level-dependent volatility models, they contribute to

uncovering both usefulness and limitations of information content of the yield curve with

respect to the volatility.

It is found that the quadratic level-dependent specification is comparable, or even

superior, to the GARCH(1,1) specification in predicting the volatility of the second prin-

cipal component or the slope factor of the yield curve. The finding is robust to, and in

fact reinforced by, the introduction of a volatility-specific factor. The quadratic level-

dependent specification is also confirmed to be useful for out-of-sample prediction of the

volatility of the third principal component or the curvature factor when it is combined

with the volatility-specific factor. Regarding prediction of the volatilities of the slope and

curvature factors, therefore, information on the yield curve is useful.

In contrast, the nonlinear and multivariate level-dependent specification has a limited

predictive power for the volatility of the first principal component or the level factor of the

yield curve. Although it is better than the linear or nonlinear univariate level-dependent

specification, it is outperformed by the GARCH specification particularly out-of-sample.
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Besides, it does not bring further improvement of predictive accuracy once the volatility-

specific factor is introduced.

This study has also found that the level factor is the least relevant to the volatility of the

yield curve, which will make challenging the development of no-arbitrage term structure

models that can explain both time-series and cross-sectional dimensions of interest rate

data without conflict. But the above findings on information content of the yield curve

will contribute to overcoming this challenge.
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Appendix A: An approximation method of conditional mo-

ments

A1. Outline of the method

The method is originally developed by Shoji (2002) and applied to the pricing of bonds by

Takamizawa and Shoji (2009). The method generally allows for the computation of up to

n-th conditional moments, if they exist, for a d-dimensional diffusion process. To ease the

explanation, this study narrows focus on the case of (n, d) = (2, 2), i.e., the conditional

first and second moments of a two-dimensional diffusion process. As seen below, n can be

considered as the order of approximation.

Let Xt = (xt,1 xt,2)
′ be a two-dimensional diffusion process, which evolves according

to the following SDE:

dxt,i = fi(Xt)dt+ ξi(Xt)
′dWt (i = 1, 2) , (34)

where Wt is two-dimensional Brownian motion, and the drift and diffusion functions, fi

and ξi (i = 1, 2), satisfy certain technical conditions for the solution to equation (34) to

exist for an arbitrary X0.

Let Ψs,t be a vector consisting of the first and second moments of an increment of Xt

conditioned on time s < t:

Ψ′
s,t = Es

(
xt,1 − xs,1 xt,2 − xs,2 (xt,1 − xs,1)

2 (xt,2 − xs,2)
2 (xt,1 − xs,1)(xt,2 − xs,2)

)
.

The goal is to obtain an approximation of Ψs,t, which will turn out to be the solution to

an ordinary differential equation.

By integrating equation (34) and taking the conditional expectation,

Es[xt,i − xs,i] = Es

[∫ t

s
fi(Xu)du

]
. (35)

By applying the Taylor expansion to fi(Xu) around Xs up to the second order

fi(Xu) = fi(Xs)

+f
(1,0)
i (Xs)(xu,1 − xs,1) + f

(0,1)
i (Xs)(xu,2 − xs,2) +

1

2
f
(2,0)
i (Xs)(xu,1 − xs,1)

2

+
1

2
f
(0,2)
i (Xs)(xu,2 − xs,2)

2 + f
(1,1)
i (Xs)(xu,1 − xs,1)(xu,2 − xs,2) + ei , (36)
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where f (k,l) = ∂k+lf
∂xk

1∂x
l
2
, and ei is a residual term. By substituting equation (36) into

equation (35) and expressing the resulting equation in a vector form

Es[xt,i − xs,i] = fi(t− s)

+

(
f
(1,0)
i f

(0,1)
i

1

2
f
(2,0)
i

1

2
f
(0,2)
i f

(1,1)
i

)∫ t

s
Ψs,udu+Ri , (37)

where Xs is omitted for notational convenience, and Ri = Es[ei].

Next, by applying the Ito formula to (xt,1 −xs,1)
2 and taking the conditional expecta-

tion,

Es[(xt,1 − xs,1)
2] = Es

[∫ t

s
{2f1(Xu)(xu,1 − xs,1) + g11(Xu)}du

]
, (38)

where g11 = ξ′1ξ1. By applying the Taylor expansion to f1(Xu) and g11(Xu) around Xs

up to the first and second orders, respectively, the integrand of equation (38) becomes

2f1(Xu)(xu,1 − xs,1) + g11(Xu)

= g11(Xs) + {2f1(Xs) + g
(1,0)
11 (Xs)}(xu,1 − xs,1) + g

(0,1)
11 (Xs)(xu,2 − xs,2)

+{2f (1,0)
1 (Xs) +

1

2
g
(2,0)
11 (Xs)}(xu,1 − xs,1)

2 +
1

2
g
(0,2)
11 (Xs)(xu,2 − xs,2)

2

+{2f (0,1)
1 (Xs) + g

(1,1)
11 (Xs)}(xu,1 − xs,1)(xu,2 − xs,2) + e11 , (39)

where g(k,l) is defined analogously with f (k,l), and e11 is a residual term. By substituting

equation (39) into equation (38),

Es[(xt,1 − xs,1)
2] = g11(t− s)

+

(
2f1 + g

(1,0)
11 g

(0,1)
11 2f

(1,0)
1 +

1

2
g
(2,0)
11

1

2
g
(0,2)
11 2f

(0,1)
1 + g

(1,1)
11

)

×
∫ t

s
Ψs,udu+R11 , (40)

where R11 = Es[e11]. A similar manipulation is applied to Es[(xt,2−xs,2)
2] and Es[(xt,1−

xs,1)(xt,2 − xs,2)]. Expressing the resulting equations together in a vector form leads to

Ψs,t = A(Xs)

∫ t

s
Ψs,udu+ b(Xs)(t− s) +R , (41)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f
(1,0)
1 f

(0,1)
1

1
2f

(2,0)
1

1
2f

(0,2)
1 f

(1,1)
1

f
(1,0)
2 f

(0,1)
2

1
2f

(2,0)
2

1
2f

(0,2)
2 f

(1,1)
2

2f1 + g
(1,0)
11 g

(0,1)
11 2f

(1,0)
1 + 1

2g
(2,0)
11

1
2g

(0,2)
11 2f

(0,1)
1 + g

(1,1)
11

g
(1,0)
22 2f2 + g

(0,1)
22

1
2g

(2,0)
22 2f

(0,1)
2 + 1

2g
(0,2)
22 2f

(1,0)
2 + g

(1,1)
22

f2 + g
(1,0)
12 f1 + g

(0,1)
12 f

(1,0)
2 + 1

2g
(2,0)
12 f

(0,1)
1 + 1

2g
(0,2)
12 f

(1,0)
1 + f

(0,1)
2 + g

(1,1)
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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b = (f1 f2 g11 g22 g12)
′ ,

R = (R1 R2 R11 R22 R12)
′ .

Equation (41) can be solved as

Ψs,t =

∫ t

s
eA(Xs)(t−u)b(Xs)du+ R̂ . (42)

If, in addition, A is invertible,

Ψs,t = A−1(Xs){eA(Xs)(t−s) − I}b(Xs) + R̂ . (43)

It is noted that equations (41)–(43) hold for any (n, d) with modification to A(Xs) and

b(Xs). In general, Ψs,t consists of
(n+d

n

)−1 = (n+d)!/(n!d!)−1 elements when up to n-th

conditional moments for a d-dimensional diffusion process are computed. Correspondingly,

up to n-th derivatives of fi and gij (i, j = 1, ..., d) are taken to compute the elements

of A(Xs). Omitting the residual vector, R or R̂, leads to the approximation formula.

According to Shoji (2002), both R and R̂ have order of O((t − s)(n+3)/2). Thus, n can

be considered as the order of approximation. In computing conditional first and second

moments for the SVE model, n = 2 is actually considered.

It is also noted that R contains the conditional expectation of derivatives of fi higher

than the first order and derivatives of gij higher than the second order. Then, if fi and

gij are linear and quadratic in Xs, respectively, there is no residual term. In other words,

the conditional moments computed by the formula are exact. The SVQ model applies to

this case. Even in this case, the use of this formula may be beneficial when the derivation

of closed-form conditional moments is demanding.

A2. Accuracy to the conditional standard deviation under the SVE model

vart[xt+hΔ,i] for the SVE model is computed based on the first term on the right-hand side

of equation (43). Naturally, the resulting value contains approximation error. Then, this

appendix checks the accuracy to
√
vart[Xt+hΔ]/hΔ using the Monte Carlo (MC) method.

The parameter values are fixed at the estimates presented in Panel B of Table 2. The

starting values for the MC simulations, at which the accuracy is evaluated, are selected

from the actual data. Specifically, three dates are selected from the whole sample when

PC1 takes the minimum, median, or maximum value. The same is applied to PC2 and
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PC3, which produces in total nine sets of observations. The accuracy is thus evaluated

at not only usual but also unusual times. The subsequent realizations are generated from

(3) with dt replaced by Δ/20, an interval corresponding to 20 observations per week or 4

observations per day. The length of a path is up to 32 weeks. The number of repetition is

set at 10,000 with the antithetic variate method.

Panels A and B of Table 10 present 32-week ahead forecasts of volatilities (annualized

standard deviations in units of bps) of the first three PCs computed by the approximation

and MC methods, respectively. Panel C presents percentage differences between the two

methods, which range between −1.1% and 1.4%. The accuracy is maintained in the current

setting.

Appendix B: Computation of the conditional variance under

the GARCH(1,1) model

The variance of xt+Δ,i conditioned on time t is simply ht+Δ,i, which is observed at time

t. The variance of xt+kΔ,i (k = 2, ..., h) conditioned on time t is computed iteratively

as follows. In equation (15), by substituting t + (k − 1)Δ for t and taking the variance

conditioned on time t,

vart[xt+kΔ,i] = vart[αi + βixt+(k−1)Δ,i +
√
ht+kΔ,izt+kΔ,i]

= β2
i vart[xt+(k−1)Δ,i] + vart[

√
ht+kΔ,izt+kΔ,i]

+2βi covt[xt+(k−1)Δ,i,
√
ht+kΔ,izt+kΔ,i]

= β2
i vart[xt+(k−1)Δ,i] + Et[ht+kΔ,i] (k = 2, ..., h) . (44)

On the other hand, in equation (16), by substituting t + (k − 1)Δ for t and taking the

expectation conditioned on time t,

Et[ht+kΔ,i] = Et[ωi + φiht+(k−1)Δ,iz
2
t+(k−1)Δ,i + ρiht+(k−1)Δ,i]

= ωi + (φi + ρi)Et[ht+(k−1)Δ,i] (k = 2, ..., h) . (45)

Then, vart[xt+hΔ,i] is obtained by iteratively solving equations (44) and (45) starting from

vart[xt+Δ,i] = ht+Δ,i.
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Parameter / Index i = 1 i = 2 i = 3

Panel A: A1(3) model

ci × 104 − 0.456 (0.026) 0.133 (0.008)

σi × 102 0.393 (0.022) 0.000 0.000

Panel B: CEV model

ci × 104 − 0.456 (0.026) 0.133 (0.008)

σi × 102 0.014 (0.007) 0.000 0.000

γi −0.618 (0.233) 0.000 0.000

Table 1: Parameter estimates (standard errors) in the covariance matrix for

the A1(3) and CEV models

The covariance matrix of changes in the first three PCs, Σt, is assumed to be diagonal

with the i-th diagonal element Σt,i given as

A1(3) Σt,1 = σ1x1,t , Σt,i = σix1,t + ci (i = 2, 3) ,

CEV Σt,1 = σ1x
γ1
1,t , Σt,i = σix

γi
1,t + ci (i = 2, 3) ,

where xt,1 corresponds to PC1. Insignificant parameters at the first round of estimation

are set to zero and then the remaining parameters are re-estimated to keep the models

parsimonious. In-sample data from January 4, 1991 to April 9, 2003 are used for estima-

tion.
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Parameter / Index i = 1 i = 2 i = 3

Panel A: SVQ model

ci 1e−8 1e−8 1e−8

mi
1 0.000 0.000 0.000

mi
2 0.000 0.036 (0.009) 0.006 (0.002)

mi
3 1.598 (0.108) 2.933 (0.569) 0.990 (0.179)

sinϕQi

1 0.000 −0.202 (0.023) −0.259 (0.037)

sinϕQi

2 0.000 −0.129 (0.002) −0.129 (0.002)

sinϕQi

3 0.295 (0.034) −0.154 (0.027) −0.112 (0.023)

Pane B: SVE model

si0 × 10−2 −0.088 (0.005) −0.114 (0.004) −0.136 (0.004)

si1 × 10−2 0.000 0.000 0.000

si2 × 10−2 0.296 (0.049) 0.187 (0.051) 0.241 (0.046)

si3 × 10−2 −0.617 (0.245) −0.731 (0.224) −1.255 (0.235)

Table 2: Parameter estimates (standard errors) in the covariance matrix for

the SVQ and SVE models

The covariance matrix of changes in Xt, the first three PCs, is decomposed as Σt = PLtP
′,

where Lt is the diagonal eigenvalue matrix and P is the orthonormal eigenvector matrix

given in equation (5). Actually, P = I because none of the parameters in P are significant.

The i-th diagonal elements of Lt, Li(Xt), for the SVQ and SVE models are given as

SVQ Li(Xt) = ci +X ′
tΓ

iXt (i = 1, 2, 3) ,

SVE Li(Xt) = exp{si0 + s′iXt} (i = 1, 2, 3) ,

where Γi is given in equations (7)–(9). In-sample data from January 4, 1991 to April 9,

2003 are used for estimation.
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In-sample Out-of-sample

Horizon, h 4 8 16 32 4 8 16 32

Panel A: PC1

A0(3) 68.6∗∗ 59.4∗ 51.4 42.3 87.5∗∗ 82.0∗∗ 78.5∗ 74.3

A1(3) 81.1∗∗ 72.7∗∗ 64.9∗∗ 55.0∗ 103.6∗∗ 99.7∗∗ 95.9∗∗ 88.3

CEV 67.0∗ 57.5 49.2 39.9 89.4∗∗ 82.7∗∗ 79.2∗∗ 77.0∗

SVQ 67.2 57.8 49.9 42.9 80.0∗ 74.9 72.3 70.0

SVE 64.2 54.5 46.5 39.5 79.3∗ 74.5 72.2 71.2

GARCH 61.8 53.2 46.9 38.4 63.5 56.5 56.4 55.4

HAR-RV 56.2∗ 48.7 43.1 36.9 62.8 58.2 59.3 60.9

Panel B: PC2

A0(3) 36.3∗∗ 33.8∗ 31.3 28.1 38.6∗ 36.3∗ 34.3∗ 31.6

A1(3) 36.3∗∗ 33.8∗ 31.2 27.8 38.6∗ 36.4∗ 34.4∗ 31.8

CEV 36.3∗∗ 33.8∗ 31.3 28.1 38.6∗ 36.3∗ 34.1∗ 31.5

SVQ 33.1 30.4 28.1 25.1 31.0 28.6 29.0 30.1

SVE 34.3 31.7 29.2 26.2 36.3 34.6 33.0 30.2

GARCH 33.9 31.3 29.0 26.3 32.1 30.5 28.8 26.2

HAR-RV 28.5∗∗ 25.6∗∗ 22.9∗ 20.5 28.4∗∗ 27.2∗∗ 25.4∗ 24.7

Panel C: PC3

A0(3) 27.2∗∗ 27.6∗∗ 29.6∗∗ 33.1∗∗ 22.9∗∗ 22.7∗ 23.7 25.1

A1(3) 27.2∗∗ 27.6∗∗ 29.6∗∗ 33.0∗∗ 22.9∗∗ 22.7∗ 23.7∗ 25.3

CEV 27.2∗∗ 27.6∗∗ 29.6∗∗ 33.1∗∗ 22.9∗∗ 22.7∗ 23.6 24.9

SVQ 26.3∗ 26.5∗ 28.4∗∗ 31.7∗∗ 18.8 17.1 17.9 20.8

SVE 26.7∗ 27.3∗∗ 29.7∗∗ 33.5∗∗ 23.5∗ 23.9∗ 25.5∗ 26.8

GARCH 24.7 24.5 25.3 27.9 17.0 16.5 17.7 20.4

HAR-RV 19.1∗∗ 17.7∗∗ 15.3∗∗ 12.9∗∗ 16.0 15.5 15.5 15.6

Table 3: RMSPEs without forecasting regression

Root mean squared prediction errors (RMSPEs) for h-week ahead annualized standard

deviations of the first three principal components are presented in basis points, where the

prediction error is the residual of equation (19) (without the forecasting regression). The

smallest and second smallest numbers in each column are displayed in bold and italic,

respectively. * and ** indicate that the Diebold and Mariano (DM) (1995) test rejects the

null hypothesis of equal predictive accuracy between a model in each row and the GARCH

model with the 5% and 1% significance levels, respectively. The in-sample period is from

January 4, 1991 to April 9, 2003 and the out-of-sample period is from April 16, 2003 to

May 27, 2009. Throughout the out-of-sample period the parameter values are fixed at the

in-sample estimates.
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In-sample Out-of-sample

Horizon, h 4 8 16 32 4 8 16 32

Panel A: PC1

A1(3) 61.4∗∗ 52.5∗ 45.1 37.3 79.7∗∗ 74.0∗ 71.7 70.7

CEV 61.6∗∗ 52.7∗ 45.3 37.1 80.5∗∗ 74.7∗ 72.5 71.4

SVQ 58.9 49.6 42.1 34.8 78.6 72.4 69.2 66.6

SVE 58.4 49.1 41.5 34.5 80.3∗ 74.8 71.9 69.8

GARCH 56.4 48.2 42.7 36.0 64.0 57.6 58.1 52.1

HAR-RV 56.2 48.7 43.1 36.9 60.8 54.5 54.0 52.2

Panel B: PC2

A1(3) 35.7∗ 32.7 29.6 26.4 37.5∗ 35.6∗ 34.2∗ 32.4

CEV 35.7∗ 32.7 29.6 26.4 37.6∗ 35.8∗ 34.7∗ 33.0

SVQ 32.2 29.1 26.6 24.0 31.0 29.5 30.2 31.7

SVE 33.2 30.0 27.1 24.5 36.7 35.1 33.9 32.9

GARCH 33.5 30.7 28.0 25.0 32.1 31.0 30.3 28.9

HAR-RV 28.5∗∗ 25.6∗∗ 22.9∗ 20.5 29.1∗ 28.0∗ 26.5∗ 26.1

Panel C: PC3

A1(3) 22.8∗ 20.6 18.1 15.4 23.1∗ 22.3 21.7 20.9

CEV 22.9∗ 20.7 18.1 15.4 23.4∗ 22.6∗ 22.1 21.5

SVQ 21.2 18.7 16.2 14.0 21.4∗ 20.6 21.0 22.4∗

SVE 21.5 19.0 16.0 13.7 21.4 20.4 20.2 20.8

GARCH 20.9 18.9 16.3 13.5 18.4 18.1 19.0 18.2

HAR-RV 19.1∗∗ 17.7 15.3 12.9 16.1∗ 15.6∗ 15.7∗ 15.6

Table 4: RMSPEs with forecasting regression

Root mean squared prediction errors (RMSPEs) for h-week ahead annualized standard

deviations of the first three principal components are presented in basis points, where the

prediction error is the residual of equation (20) (with the forecasting regression). The

smallest and second smallest numbers in each column are displayed in bold and italic,

respectively. * and ** indicate that the DM test rejects the null hypothesis of equal

predictive accuracy between a model in each row and the GARCH model with the 5%

and 1% significance levels, respectively. The in-sample period is from January 4, 1991

to April 9, 2003 and the out-of-sample period is from April 16, 2003 to May 27, 2009.

Throughout the out-of-sample period the model parameters are fixed at the in-sample

estimates whereas the regression parameters in equations (17) and (20) are re-estimated

in a rolling window fashion.
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Mean S.D. AR(1) AR(4) AR(8) AR(16) AR(32)

(×104) (×104)

L1(Xt) m1
3(q

1′
3 Xt)

2 4.509 2.266 0.989 0.961 0.930 0.886 0.829

L2(Xt) m2
2(q

2′
2 Xt)

2 0.290 0.202 0.993 0.971 0.940 0.888 0.766

m2
3(q

2′
3 Xt)

2 0.256 0.452 0.919 0.712 0.540 0.355 0.329

L3(Xt) m3
2(q

3′
2 Xt)

2 0.065 0.038 0.992 0.969 0.937 0.882 0.767

m3
3(q

3′
3 Xt)

2 0.094 0.160 0.926 0.745 0.577 0.383 0.374

Table 5: Sample statistics of the components of instantaneous variances of

PC1–3 for the SVQ model

The instantaneous variances Li(Xt) (i = 1, 2, 3) are decomposed as presented in equations

(22)–(24). S.D. is standard deviation and AR(k) is autocorrelation with lag k. The sample

period is from January 4, 1991 to May 27, 2009 (the whole sample).
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In-sample Out-of-sample

Horizon, h 4 8 16 32 4 8 16 32

Panel A: PC1

M1 56.6 47.2 39.5 31.4 73.5 66.7 65.5 64.6

M2 56.3 47.0 39.5 31.3 76.3 67.3 64.9 64.7

M3 56.4 47.1 39.4 31.3 72.4∗ 65.6 65.0 64.2

M4 56.6 47.2 39.5 31.4 73.1 66.5 65.4 64.4

Panel B: PC2

M1 31.4 28.2 25.7 23.2 30.6 28.8 28.2 27.1

M2 31.2 28.0 25.5 23.2 31.7 30.3 28.9 27.3

M3 30.9∗ 27.5∗ 25.1∗ 22.9 32.6∗∗ 31.2∗ 30.8∗ 29.1

M4 31.3 28.2 25.7 23.2 31.2 28.8 28.2 27.1

Panel C: PC3

M1 20.1 17.6 15.0 12.5 21.4 20.3 19.1 18.0

M2 20.0 17.5 14.9 12.5 22.1∗ 20.8 19.4 18.0

M3 19.8 17.5 15.0 12.5 20.1 19.5 18.7 18.3

M4 20.0 17.5 15.0 12.5 22.1∗ 20.5 19.2 17.9

Table 6: RMSPEs for regression models based on the quadratic multivariate

specification

Root mean squared prediction errors (RMSPEs) for h-week ahead annualized standard

deviations of the first three principal components are presented in basis points. * and **

indicate that the DM test rejects the null hypothesis of equal predictive accuracy between

M1 presented in equation (25) and Mi (i = 2, 3, 4) presented in equations (26)–(28) with

the 5% and 1% significance levels, respectively. The in-sample period is from January

4, 1991 to April 9, 2003 and the out-of-sample period is from April 16, 2003 to May 27,

2009. Throughout the out-of-sample period the parameter values are fixed at the in-sample

estimates.
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Parameter / Index i = 1 i = 2 i = 3

Panel A: A1(4) model

ci × 104 1.199 (0.417) 0.000 0.000

σi × 104 2.992 (0.711) 0.346 (0.061) 0.107 (0.019)

Panel B: SVQ-M model

ci 1e−8 1e−8 1e−8

mi
1 0.000 0.000 0.000

mi
2 0.000 0.022 (0.009) 0.005 (0.002)

mi
3 1.567 (0.228) 2.155 (0.624) 0.758 (0.220)

sinϕQi

1 0.000 −0.242 (0.043) −0.288 (0.062)

sinϕQi

2 0.000 −0.126 (0.003) −0.126 (0.003)

sinϕQi

3 0.317 (0.047) −0.121 (0.031) −0.090 (0.036)

Panel C: SVQ-A model

σi × 104 2.118 (0.730) 0.274 (0.073) 0.072 (0.019)

mi
1 0.000 0.000 0.000

mi
2 0.000 0.000 0.000

mi
3 0.717 (0.174) 1.025 (0.426) 0.658 (0.194)

sinϕQi

1 0.000 0.000 0.000

sinϕQi

2 0.000 −0.128 (0.004) −0.129 (0.003)

sinϕQi

3 0.355 (0.073) −0.114 (0.037) −0.083 (0.044)

Table 7: Parameter estimates (standard errors) in the covariance matrix for

the A1(4), SVQ-M, and SVQ-A models

For the A1(4) model, the covariance matrix Σt is assume to be diagonal with the i-th

diagonal element Σt,i given as

A1(4) Σt,i = σiVt + ci (i = 1, 2, 3) , Σt,4 = σ4Vt .

Likewise, the diagonal elements of Σt for the SVQ-M and SVQ-A models are specified as

SVQ-M Σt,i = X ′
tΓ

iXtVt + ci (i = 1, 2, 3) ,

SVQ-A Σt,i = σiVt +X ′
tΓ

iXt (i = 1, 2, 3) ,

and Σt,4 is the same as in A1(4). The estimate (standard error) of σ4 is as follows: A1(4):

10.5 (5.33); SVQ-M: 18.8 (11.5); SVQ-A: 12.7 (9.10). In-sample data from January 4,

1991 to April 9, 2003 are used for estimation.
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In-sample Out-of-sample

Horizon, h 4 8 16 32 4 8 16 32

Panel A: PC1

A1(4) 63.5 53.2 44.1 35.9 66.6 61.1 62.7 64.0

SVQ-M 68.0∗ 57.7 49.4 43.0 74.3 70.6 71.3 72.0

SVQ-A 62.4 51.9 42.7 34.7 67.0 62.1 63.2 65.5

GARCH 61.8 53.2 46.9 38.4 63.5 56.5 56.4 55.4

HAR-RV 56.2∗ 48.7 43.1 36.9 62.8 58.2 59.3 60.9

Panel B: PC2

A1(4) 33.7 32.3 31.6∗ 30.5∗ 30.2 29.1 29.0 28.3

SVQ-M 32.9 30.9 29.4 26.6 28.7∗ 26.9∗ 27.5 27.9

SVQ-A 33.4 31.9 31.1∗ 29.2 27.4∗∗ 25.4∗∗ 24.9 24.9

GARCH 33.9 31.3 29.0 26.3 32.1 30.5 28.8 26.2

HAR-RV 28.5∗∗ 25.6∗∗ 22.9∗ 20.5 28.4∗∗ 27.2 25.4∗ 24.7

Panel C: PC3

A1(4) 26.3∗∗ 27.0∗∗ 29.5∗∗ 33.3∗∗ 18.1 18.9 21.7 24.8

SVQ-M 25.6 25.7 27.1∗ 29.9∗ 17.7 16.1 16.7 18.5

SVQ-A 25.9∗ 26.2∗ 28.2∗∗ 31.7∗∗ 16.8 15.3 16.3 19.4

GARCH 24.7 24.5 25.3 27.9 17.0 16.5 17.7 20.4

HAR-RV 19.1∗∗ 17.7∗∗ 15.3∗∗ 12.9∗∗ 16.0 15.5 15.5 15.6

Table 8: RMSPEs without forecasting regression

The same legend as in Table 3 applies.
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(a) Level
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Figure 1: Time-series of the level and realized volatility of PC1 over 1991–

2009

Panel (a) presents the time-series of the level of the first principle component (PC1).

Panel (b) presents the time-series of the realized volatility (annualized 4-week standard

deviation) of PC1, which is calculated by summing squared daily changes in PC1 over the

four weeks, dividing the sum by 4/52, and taking the square-root. The vertical dotted

line separates the in-sample and out-of-sample periods.
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(a) GARCH
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(c) SVQ
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(b) A1(3)
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(d) SVE

0.00

0.01

0.02

0.03

0.04

0.05

91 93 95 97 99 01 03 05 07 09

Correlation = 0.36

Figure 2: Time series of four-week ahead forecasts of the volatility (annualized

standard deviation) of PC1

Model forecasts (thick line) and the corresponding realized values (thin line) are displayed,

with the vertical dotted line separating the in-sample and out-of-sample periods.
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(a) GARCH
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(c) SVQ
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(b) A1(3)
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Figure 3: Time series of four-week ahead forecasts of the volatility (annualized

standard deviation) of PC2

Model forecasts (thick line) and the corresponding realized values (thin line) are displayed,

with the vertical dotted line separating the in-sample and out-of-sample periods.
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(a) GARCH
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(b) A1(3)
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Figure 4: Time series of four-week ahead forecasts of the volatility (annualized

standard deviation) of PC3

Model forecasts (thick line) and the corresponding realized values (thin line) are displayed,

with the vertical dotted line separating the in-sample and out-of-sample periods.
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(a) PC1
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(b) PC2

0

1

2

3

4

5

91 93 95 97 99 01 03 05 07 09

m3*(q3*X)^2

m2*(q2*X)^2

×10^-4

(c) PC3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

91 93 95 97 99 01 03 05 07 09

m3*(q3*X)^2

m2*(q2*X)^2

×10^-4

Figure 5: Time-series of instantaneous variances of PC1–3 for the SVQ model

The instantaneous variances Li (i = 1, 2, 3) are decomposed as presented in equations

(22)–(24). Each figure is drawn such that the values of the components of Li are added

up to the value of Li. The constant term in Li (10
−8) is omitted. The vertical dotted line

separates the in-sample and out-of-sample periods.
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(a) PC1, A1(4)
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(b) PC1, SVQ-A
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Figure 6: Time series of four-week ahead forecasts of the volatilities (annual-

ized standard deviations) of the PC1–3 generated by the A1(4) model (the left

panel) and the SVQ-A model (the right panel)
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